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A general stability result in a Timoshenko
system with infinite memory: A new approach

Aissa Guesmiaa,b and Salim A. Messaoudib*†

Communicated by W. Sprößig

In this paper, we consider a Timoshenko system in the presence of an infinite memory, where the relaxation function
satisfies a relation of the form

g0.t/� ��.t/g.t/, 8t 2RC.

Under the same hypothesis on g and � imposed for the finite memory case, we establish some general decay results for the
equal and nonequal speed propagation cases. Our results improve in some situations some known decay rates. Also, some
applications to other problems are discussed. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

A great deal of attention has been paid lately to the issue of existence and stability of Timoshenko systems [1], and a growing number
of papers, addressing this matter, has appeared in the last decades. In fact, various types of damping mechanisms have been utilized
to stabilize these systems and to obtain precise rates of decay. For frictional damping acting either in a part of the domain or at the
boundary, we mention, among others, the work of Guesmia and Messaoudi [2], Mustafa and Messaoudi [3], Guesmia et al. [4], Kim and
Renardy [5], Raposo et al. [6], Soufyane and Wehbe [7], Rivera and Racke [8] and [9], Messaoudi and Mustafa [10] and [11]. For stabiliza-
tion via heat dissipation, we mention the work of Rivera and Racke [12], Messaoudi et al. [13], Fernández Sare and Racke [14], Messaoudi
and Said-Houari [15] and [16], Guesmia et al. [17] and [4], and Messaoudi and Fareh [8].

Regarding Timoshenko systems for material with ‘infinite’ memory, Fernández Sare and Rivera [19] considered8<
:
�1'tt.x, t/� K.'x.x, t/C .x, t//x D 0,

�2 tt.x, t/� b xx.x, t/C k1.'x.x, t/C .x, t//C

Z C1
0

g.s/ xx.x, t� s/dsD 0,
(1.1)

where .x, t/ 2�0, LŒ�RC, L, �1, �2, K , b are positive constants, and g is a positive twice differentiable function satisfying, for some
constants k0, k1, k2 > 0,

� k0g.t/� g0.t/��k1g.t/ and jg00.t/j � k2g.t/, 8t 2RC (1.2)

and

b�

Z C1
0

g.s/ds> 0, (1.3)

and showed that the dissipation given by the memory term is strong enough to stabilize the system exponentially if and only if the

wave speeds are equal
�

K
�1
D b
�2

�
. They also proved that the energy of regular solutions decays polynomially for the case of differ-

ent wave speeds
�

K
�1
¤ b
�2

�
. Messaoudi and Said-Houari [20] discussed (1.1) when g is decaying polynomially and established some
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stability results under weaker conditions than (1.2). Recently, Guesmia et al. [4] revisited (1.1), as well as different kind of coupled
Timoshenko-heat systems, for relaxation functions satisfying (1.3) and the following condition introduced in [21]: there exists an
increasing strictly convex function G : RC!RC of class C1.RC/\ C2.�0,C1Œ/ satisfying

G.0/D G0.0/D 0 and lim
t!C1

G0.t/DC1

such that

Z C1
0

g.s/

G�1.�g0.s//
dsC sup

s2IRC

g.s/

G�1.�g0.s//
<C1, (1.4)

and they established, using the approach of [3], a general decay result, from which the results in [19] and [20] are only particular cases.
Concerning Timoshenko systems for material with ‘finite’ memory, Ammar-Khodja et al. [22] treated a linear Timoshenko-type system

with memory of the form

8<
:
�1'tt.x, t/� K.'x.x, t/C .x, t//x D 0,

�2 tt.x, t/� b xx.x, t/C k1.'x.x, t/C .x, t//C

Z t

0
g.s/ xx.x, t� s/dsD 0

(1.5)

together with initial data and homogeneous boundary conditions, and proved, using the multiplier method, that the system is uni-

formly stable if and only if the wave speeds are equal
�

K
�1
D b
�2

�
and g decays uniformly. Precisely, under some extra technical

conditions on both g0 and g00, they established an exponential (respectively polynomial) decay result for g decaying exponentially
(respectively polynomially). This latter result was later obtained by Guesmia and Messaoudi [23] under weaker conditions than those
considered in [22]. Furthermore, Messaoudi and Mustafa [24] discussed (1.5), for relaxation functions satisfying

g0.t/���.t/g.t/, 8t 2RC, (1.6)

where � is a positive nonincreasing differentiable function, and proved a more general decay result, from which the usual exponential
and polynomial decay results are only special cases. Some other results considering this wider class of relaxation functions have been
established by Guesmia and Messaoudi [2]. Similar results to the ones of Messaoudi and Mustafa [24] were obtained by Guesmia et al.
[25] for coupled semi-linear wave equations with source terms and two finite memories, where the kernels satisfy (1.6). We mention
also here the recent result of Guesmia and Messaoudi [26] concerning the stability of the wave equation with complementary infinite
and finite memories, where the corresponding kernels satisfy, respectively, (1.4) and (1.6).

The stability of (1.5) in the case of different wave speeds
�

K
�1
¤ b
�2

�
was studied by Guesmia and Messaoudi [27] under the condition

g0.t/���.t/gp.t/, 8t 2RC,

where p� 1, and a general decay estimate (in term of � and p) for the energy of regular solutions was proved.
Very recently, Messaoudi and Mustafa [28] considered (1.5), for relaxation functions satisfying, instead of (1.6), a relation of the form

g0.t/� �H.g.t//, 8t 2RC,

where H is a positive convex function. They used some properties of the convex functions together with the generalized Young
inequality and established a general decay result depending on g and H.

In the present work, we consider the following problem:

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

�1'tt.x, t/� k1.'x.x, t/C .x, t//x D 0,

�2 tt.x, t/� k2 xx.x, t/C k1.'x.x, t/C .x, t//C

Z C1
0

g.s/ xx.x, t � s/dsD 0,

'.0, t/D  .0, t/D '.L, t/D  .L, t/D 0,
'.x, 0/D '0.x/, 't.x, 0/D '1.x/,
 .x,�t/D  0.x, t/,  t.x, 0/D  1.x/,

(1.7)

and investigate the asymptotic behavior of solutions, under the assumption (1.6) instead of (1.4) introduced in [21] and considered in
[4] and [26]. This work will ‘relatively’ extend the result of Messaoudi and Mustafa [3], known for the finite memory case, to the infi-
nite memory case. The proof of the current result is easier than the one in [4] because we need no convex function properties or the
generalized Young inequality. Moreover, this result gives a better rate of decay in some situations (see Remark 2.2 later).

The paper is organized as follows. In Section 2, we state some hypotheses and present our stability results. The proofs of these
stability results will be given in Sections 3. Finally, we conclude our paper by giving applications to some Timoshenko-type systems
(Timoshenko-heat, Timoshenko-thermoelasticity, and porous thermoelastic).

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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2. Main result

We state in this section some assumptions on g and present our main result. We assume that

(A1) g : RC!RC is of class C1.RC/ nonincreasing and satisfies

g0 :D

Z C1
0

g.s/ds 2�0, k2Œ. (2.1)

(A2) There exists a nonincreasing differentiable function � : RC!RC such that

g0.s/� ��.s/g.s/, 8s 2RC. (2.2)

1. Well-posedness. Assume that (A1) holds and let

H0 D

�
.'0, 0.�, 0/,'1, 1/ 2

�
H1

0.�0, LŒ/
�2
�
�

L2.�0, LŒ/
�2

;

Z L

0

Z C1
0

g.s/. 0x.x, 0/� 0x.x, s//2dsdx <C1

)

and

H1 D

�
.'0, 0.�, 0/,'1, 1/ 2

�
H2.�0, LŒ/\ H1

0.�0, LŒ/
�
�
�

H1
0.�0, LŒ/

�3
;

.k2 � g0/ 0xx.�, 0/C

Z C1
0

g.s/. 0xx.x, 0/� 0xx.x, s//ds 2 L2.�0, LŒ/,

Z L

0

Z C1
0

g.s/. 0x.x, 0/� 0x.x, s//2dsdx <C1,

Z L

0

Z C1
0

g.s/ 2
0xs.x, s/dsdx <C1

)

It is well known that (see for example [4]), under (A1), the system (1.7) is well-posed in the sense of semigroup; that is, for
any .'0, 0.�, 0/,'1, 1/ 2H1, system (1.7) has a unique (classical) solution

.', ,'t , t/ 2 C .RC; H1/\ C1 .RC; H0/ . (2.3)

Moreover, if .'0, 0.�, 0/,'1, 1/ 2H0, then system (1.7) has a unique (weak) solution

.', ,'t , t/ 2 C .RC; H0/ . (2.4)

2. Stability. This paper is devoted to the study of the asymptotic behavior of solutions of (1.7). First, the energy functional
associated with (1.7) is defined as follows (see, for example, [4] and [20]):

E.t/D
1

2

Z L

0

�
�1'

2
t .x, t/C �2 

2
t .x, t/C k1.'x.x, t/C .x, t//2C .k2 � g0/ 

2
x .x, t/

�
dx

C
1

2

Z L

0

Z C1
0

g.s/. x.x, t/� x.x, t � s//2dsdx. (2.5)

Our stability estimate depends on the following relation between the speeds of wave propagation k1
�1

and k2
�2

:

k1

�1
D

k2

�2
. (2.6)

Theorem 2.1
Assume that (A1) and (A2) hold.

1. If (2.6) holds, then, for any .'0, 0.�, 0/,'1, 1/ 2H0 satisfying, for some m0 � 0,Z L

0
 2

0x.x, s/dx �m0, 8s > 0, (2.7)

there exist constants �0, ı1 > 0 such that, for all t 2RC and for all ı0 2�0, �0�,

E.t/� ı1

�
1C

Z t

0
.g.s//1�ı0 ds

�
e
�ı0

Z t

0
�.s/ds

C ı1

Z C1
t

g.s/ds. (2.8)

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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2. If (2.6) does not hold, then, for any .'0, 0.�, 0/,'1, 1/ 2H1 satisfying, for some m0 � 0,

max

(Z L

0
 2

0x.x, s/dx,

Z L

0
 2

0xs.x, s/dx

)
�m0, 8s > 0, (2.9)

there exists a constant ı1 > 0 such that, for all t > 0,

E.t/�
ı1

�
1C

R t
0 �.s/

RC1
s g.�/d�ds

�
R t

0 �.s/ds
. (2.10)

Remark 2.2
Let us consider two examples to compare our estimates (2.8) and (2.10) with the ones obtained in [4] using the approach of [21].

Example 1. Our estimate (2.8) improves, in particular when g converges to zero at infinity faster than polynomially, the decay rate
given in [4] using the approach of [21]. Indeed. Let g.t/ D de�.1Ct/q

with 0 < q < 1, and d > 0 small enough so that (2.1) holds. Then,
(2.2) holds with �.t/D q.1C t/q�1 and consequently, (2.8) and (2.10) give, respectively, for two positive constants c1 and c2,

E.t/� c1e�c2.1Ct/q
, 8t 2RC (2.11)

and

E.t/� c1.1C t/�q, 8t 2RC. (2.12)

Estimate (2.11) improves the following decay rate obtained in [4]:

E.t/� c1e�c2tp
, 8t 2RC, 8p 2�0,

q

2
Œ. (2.13)

However, estimate (2.12) is weaker than the following one obtained in [4]:

E.t/� c1.1C t/
�1

p , 8t 2RC, 8p > 1. (2.14)

Example 2. When g has at most a polynomial decay, for example g.t/ D d.1C t/�q with q > 1, and d > 0 small enough so that (2.1)
holds, our assumption (2.2) holds with �.t/D q.1C t/�1 and consequently, (2.8) and (2.10) give, respectively, for two positive constants
c1 and c2,

E.t/� c1.1C t/�c2 , 8t 2RC (2.15)

and

E.t/� c1.ln.1C t//�1, 8t > 0. (2.16)

The constant c2 in (2.15) is generated by the calculations and it is generally small. The approach of [21] gives, in this case, the following
stronger and precise decay rate:

E.t/� c1.1C t/�p, 8t 2RC, 8p 2�0,
q� 1

2
Œ. (2.17)

On the other hand, (2.16) is much weaker than the following one given by the approach of [21]:

E.t/� c1.1C t/�p, 8t 2RC, 8p 2�0,
q� 1

qC 1
Œ. (2.18)

Comment. According to the earlier particular two examples, it seems that our approach gives a better decay rate than the one of [21]
when (2.6) holds and g converges to zero faster than any polynomial, and the approach of [21] gives better decay rates than ours when
g converges to zero at most polynomially or when (2.6) does not hold.

3. Proof of stability results

Following the same proof of [4], [19], and [20] for example, it is well known that, for any .'0, 0.�, 0/,'1, 1/ 2H1,

E0.t/D
1

2

Z L

0

Z C1
0

g0.s/. x.x, t/� x.x, t� s//2dsdx, 8t 2RC (3.1)

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013



A. GUESMIA AND S. A. MESSAOUDI

and there exists a functional I equivalent to E which satisfies, for some positive constants ˛1 and ˛2,

I0.t/�� ˛1E.t/C ˛2

Z L

0

Z C1
0

g.s/. x.x, t/� x.x, t � s//2dsdx

C

�
�1k2

k1
� �2

�Z L

0
't.x, t/ xt.x, t/dx, 8t 2RC.

(3.2)

The main difficulty in the proof of the stability estimates is how to estimate the infinite integral term in (3.2) using (2.2) and (3.1). Here,
we introduce a new approach on the basis of an adaptation of the assumption (2.2) to the case of infinite memory.

Using (2.2) and the fact that � is nonincreasing, we obtain, for all t 2RC,

�.t/

Z L

0

Z t

0
g.s/. x.x, t/� x.x, t � s//2dsdx �

Z L

0

Z t

0
�.s/g.s/. x.x, t/� x.x, t � s//2dsdx

��

Z L

0

Z t

0
g0.s/. x.x, t/� x.x, t � s//2dsdx,

then, using (3.1) and the fact that g is nonincreasing, to obtain

�.t/

Z L

0

Z t

0
g.s/. x.x, t/� x.x, t� s//2dsdx � �2E0.t/, 8t 2RC. (3.3)

On the other hand, the definition of E and the fact that E is nonincreasing imply thatZ L

0
 2

x .x, t/dx �
2

k2 � g0
E.t/�

2

k2 � g0
E.0/, 8t 2RC.

Therefore, using (2.7), Z L

0
. x.x, t/� x.x, t � s//2dx �2

Z L

0
 2

x .x, t/dxC 2

Z L

0
 2

x .x, t� s/dx

�
8

k2 � g0
E.0/C 2m0, 8t, s 2RC.

Then, we deduce that, for all t 2RC,

�.t/

Z L

0

Z C1
t

g.s/. x.x, t/� x.x, t � s//2dsdx �

�
8

k2 � g0
E.0/C 2m0

�
�.t/

Z C1
t

g.s/ds. (3.4)

Finally, multiplying (3.2) by �.t/ and combining with (3.3) and (3.4), we obtain, for all t 2RC,

�.t/I0.t/C ˇ1E0.t/�� ˛1�.t/E.t/C ˇ2�.t/

Z C1
t

g.s/ds

C

�
�1k2

k1
� �2

�
�.t/

Z L

0
't.x, t/ xt.x, t/dx.

(3.5)

with ˇ1 D 2˛2 and ˇ2 D ˛2

�
8

k2�g0
E.0/C 2m0

�
.

Now, let

F D � IC ˇ1E and h.t/D �.t/

Z C1
t

g.s/ds.

Thanks to the fact that I and E are equivalent, and � is nonnegative and nonincreasing, we have, for some positive constants m1

and m2,

m2E � F �m1E. (3.6)

Then, using (3.5), (3.6) and again the fact that � is nonincreasing,

F0.t/� ��0�.t/F.t/C ˇ2h.t/C

�
�1k2

k1
� �2

�
�.t/

Z L

0
't.x, t/ xt.x, t/dx, 8t 2RC (3.7)

with �0 D
˛1
m1

. This inequality still holds, for any ı0 2�0, �0�; that is

F0.t/� �ı0�.t/F.t/C ˇ2h.t/C

�
�1k2

k1
� �2

�
�.t/

Z L

0
't.x, t/ xt.x, t/dx, 8t 2RC. (3.8)

Now, we distinguish two cases depending on (2.6).

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013



A. GUESMIA AND S. A. MESSAOUDI

Case 1: (2.6) holds. Because the last term in (3.8) vanishes, then (3.8) implies that, for all t 2RC,

0
B@e
ı0

Z t

0
�.s/ds

F.t/

1
CA
0

� ˇ2e
ı0

Z t

0
�.s/ds

h.t/.

Therefore, by integrating over Œ0, T�with T � 0,

F.T/� e
�ı0

Z T

0
�.s/ds

0
B@F.0/C ˇ2

Z T

0
e
ı0

Z t

0
�.s/ds

h.t/dt

1
CA ,

which implies, thanks to (3.6), that

E.T/�
1

m2
e
�ı0

Z T

0
�.s/ds

0
B@F.0/C ˇ2

Z T

0
e
ı0

Z t

0
�.s/ds

h.t/dt

1
CA . (3.9)

Because

e
ı0

Z t

0
�.s/ds

h.t/dtD
1

ı0

0
B@e
ı0

Z t

0
�.s/ds

1
CA
0 Z C1

t
g.s/ds, 8t 2RC,

then, by integration by parts,

Z T

0
e
ı0

Z t

0
�.s/ds

h.t/dtD
1

ı0

0
BB@e
ı0

Z T

0
�.s/ds Z C1

T
g.s/ds�

Z C1
0

g.s/dsC

Z T

0
e
ı0

Z t

0
�.s/ds

g.t/dt

1
CCA .

Consequently, combining with (3.9),

E.T/�
1

m2

0
BB@F.0/e

�ı0

Z T

0
�.s/ds

C
ˇ2

ı0

Z C1
T

g.s/ds

1
CCA

C
ˇ2

m2ı0
e
�ı0

Z T

0
�.s/ds Z T

0
e
ı0

Z t

0
�.s/ds

g.t/dt.

(3.10)

On the other hand, (2.2) implies that

0
B@e
ı0

Z t

0
�.s/ds

.g.t//ı0

1
CA
0

� 0, for all t 2RC, and then e
ı0

Z t

0
�.s/ds

.g.t//ı0 � .g.0//ı0 . Therefore,

Z T

0
e
ı0

Z t

0
�.s/ds

g.t/dt � .g.0//ı0

Z T

0
.g.t//1�ı0 dt. (3.11)

Finally, (3.10) and (3.11) give (2.8) for any classical solution of (1.7) with

ı1 D
1

m2
max

�
F.0/,

ˇ2

ı0
,
ˇ2

ı0
.g.0//ı0

�
.

By density arguments, (2.8) remains valid for any weak solution of (1.7).
Case 2: (2.6) does not hold. First, as in [4], [19], and [20] for example, we can estimate the last term of (3.7) as follows: for any � > 0,

there exists a positive constant c� (depending on �) such that�
�1k2

k1
� �2

�Z L

0
't.x, t/ xt.x, t/dx � �E.t/C c�

Z L

0

Z C1
0

g.s/. xt.x, t/� xt.x, t� s//2dsdx

� c�

Z L

0

Z C1
0

g0.s/. x.x, t/� x.x, t� s//2dsdx. (3.12)

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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Consequently, using (3.6), choosing � 2�0, m2�0Œ and combining (3.1), (3.7), and (3.12),

F0.t/�� �1�.t/E.t/C ˇ2h.t/� 2c��.t/E
0.t/

C c��.t/

Z L

0

Z C1
0

g.s/. xt.x, t/� xt.x, t� s//2dsdx, 8t 2RC,
(3.13)

where �1 Dm2�0� �. As in [20], let QE be the second-order energy defined as E with 't and t instead of ' and , respectively. A simple
calculation (as for (3.1)) implies that

QE0.t/D
1

2

Z L

0

Z C1
0

g0.s/. xt.x, t/� xt.x, t� s//2dsdx, 8t 2RC. (3.14)

On the other hand, using (2.2), (2.9), and (3.14), we obtain (as for (3.3) and (3.4)),

�.t/

Z L

0

Z t

0
g.s/. xt.x, t/� xt.x, t � s//2dsdx ��2QE0.t/ (3.15)

and

�.t/

Z L

0

Z C1
t

g.s/. xt.x, t/� xt.x, t � s//2dsdx �

�
8

k2 � g0

QE.0/C 2m0

�
h.t/. (3.16)

Hence, combining (3.13), (3.15), and (3.16),�
F.t/C 2c� QE.t/C 2c��.t/E.t/

	0
� ��1�.t/E.t/C ˇ3h.t/C 2c��

0.t/E.t/, 8t 2RC, (3.17)

where ˇ3 D ˇ2 C
�

8
k2�g0

QE.0/C 2m0

�
c� . Because � is nonincreasing, the last term of (3.17) is nonpositive, therefore, by integrating on

Œ0, T� and using the fact E is nonincreasing, we obtain

�1E.T/

Z T

0
�.t/dt � F.0/C 2c� QE.0/C 2c��.0/E.0/C ˇ3

Z T

0
h.t/dt, 8t 2RC,

which gives (2.10) with ı1 D
1
�1

max
˚

F.0/C 2c� QE.0/C 2c��.0/E.0/,ˇ3



.

4. Applications

Our approach can be applied to different Timoshenko-type systems. We present here some examples.

1. Timoshenko-heat. Let us consider coupled Timoshenko-heat systems under Fourier’s law of heat conduction8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂
ˆ̂̂:

�1'tt.x, t/� k1.'x.x, t/C .x, t//x D 0,

�2 tt.x, t/� k2 xx.x, t/C k1.'x.x, t/C .x, t//C k4�x.x, t/C

Z C1
0

g.s/ xx.x, t � s/dsD 0,

�3�t.x, t/� k3�xx.x, t/C k4 xt.x, t/D 0,
'.0, t/D  .0, t/D �.0, t/D '.L, t/D  .L, t/D �.L, t/D 0,
'.x, 0/D '0.x/, 't.x, 0/D '1.x/,
 .x,�t/D  0.x, t/,  t.x, 0/D  1.x/, �.x, 0/D �0.x/

(4.1)

and under Cattaneo’s law8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:

�1'tt.x, t/� k1.'x.x, t/C .x, t//x D 0,

�2 tt.x, t/� k2 xx.x, t/C k1.'x.x, t/C .x, t//C k4�x.x, t/C

Z C1
0

g.s/ xx.x, t � s/dsD 0,

�3�t.x, t/C k3qx.x, t/C k4 xt.x, t/D 0,
�4qt.x, t/C k5q.x, t/C k3�x.x, t/D 0,
'.0, t/D  .0, t/D q.0, t/D '.L, t/D  .L, t/D q.L, t/D 0,
'.x, 0/D '0.x/, 't.x, 0/D '1.x/,
 .x,�t/D  0.x, t/,  t.x, 0/D  1.x/,
�.x, 0/D �0.x/, q.x, 0/D q0.x/,

(4.2)

where � and q denote, respectively, the temperature difference and the heat flux vector (see [14] for more details). Systems (4.2)
(Cattaneo law), with �4 D 0, implies (4.1) (Fourier’s law). Under (A1), systems (4.1) and (4.2) are well-posed; for details, see [4] for
example. On the other hand, similar to (1.7), Theorem 2.1 holds for (4.1), where the energy functional is defined by

E.t/D
1

2

Z L

0

�
�1'

2
t .x, t/C �2 

2
t .x, t/C �3�

2.x, t/C k1.'x.x, t/C .x, t//2C .k2 � g0/ 
2
x .x, t/

�
dx

C
1

2

Z L

0

Z C1
0

g.s/. x.x, t/� x.x, t � s//2dsdx.
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For (4.2), it is now well known ([14]) that (4.2) is not exponential stable even if (2.6) holds. Combining our approach with some
arguments of [4], (2.10) holds for (4.2), where

E.t/D
1

2

Z L

0

�
�1'

2
t .x, t/C �2 

2
t .x, t/C �3 Q�

2.x, t/C �4q2.x, t/C k1.'x.x, t/C .x, t//2C .k2 � g0/ 
2
x .x, t/

�
dx

C
1

2

Z L

0

Z C1
0

g.s/. x.x, t/� x.x, t � s//2dsdx

and Q�.x, t/D �.x, t/� 1
L

Z L

0
�0.y/dy.

2. Timoshenko-thermoelasticity. Our approach can be applied to the following Timoshenko-thermoelasticity system of type III:8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

�1'tt.x, t/� k1.'x.x, t/C .x, t//x D 0,

�2 tt.x, t/� k2 xx.x, t/C k1.'x.x, t/C .x, t//C k4�xt.x, t/C

Z C1
0

g.s/ xx.x, t� s/dsD 0,

�3�tt.x, t/� k3�xx.x, t/C k4 xt.x, t/� k5�xxt.x, t/D 0,
'.0, t/D  .0, t/D �x.0, t/D '.L, t/D  .L, t/D �x.L, t/D 0,
'.x, 0/D '0.x/, 't.x, 0/D '1.x/,
 .x,�t/D  0.x, t/,  t.x, 0/D  1.x/,
�.x, 0/D �0.x/, �t.x, 0/D �1.x/,

(4.3)

which models the transverse vibration of a thick beam, taking in account the heat conduction given by Green and Naghdi’s theory
[29–31]. Under (A1), system (4.3) is well-posed (see [4] for example) and, similar to (1.7), Theorem 2.1 holds for (4.3), where the
energy functional is defined by

E.t/D
1

2

Z L

0

�
�1'

2
t .x, t/C �2 

2
t .x, t/C k1.'x.x, t/C .x, t//2C .k2 � g0/ 

2
x .x, t/

�
dx

C
1

2

Z L

0
.�3 Q�

2
t .x, t/C k3 Q�

2
x .x, t//dxC

1

2

Z L

0

Z C1
0

g.s/. x.x, t/� x.x, t � s//2dsdx

where Q�.x, t/D �.x, t/� t
L

Z L

0
�1.y/dy �

1

L

Z L

0
�0.y/dy.

3. Porous thermoelastic. Our approach can also be applied to the following porous thermoelastic system:8̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

�1'tt.x, t/� k1.'x.x, t/C .x, t//x C k4�x.x, t/D 0,

�2 tt.x, t/� k2 xx.x, t/C k1.'x.x, t/C .x, t//� k5�.x, t/C

Z C1
0

g.s/ xx.x, t � s/dsD 0,

�3�t.x, t/� k3�xx.x, t/C k4'xt.x, t/C k5 t.x, t/D 0,
'.0, t/D  .0, t/D �.0, t/D '.L, t/D  .L, t/D �.L, t/D 0,
'.x, 0/D '0.x/, 't.x, 0/D '1.x/,
 .x,�t/D  0.x, t/,  t.x, 0/D  1.x/, �.0, t/D �0.x/

(4.4)

and Theorem 2.1 holds with

E.t/D
1

2

Z L

0

�
�1'

2
t .x, t/C �2 

2
t .x, t/C �3�

2.x, t/C k1.'x.x, t/C .x, t//2C .k2 � g0/ 
2
x .x, t/

�
dx

C
1

2

Z L

0

Z C1
0

g.s/. x.x, t/� x.x, t � s//2dsdx.
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