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In this paper, we consider a one-dimensional linear Bresse system with infinite memories acting in the three equations of
the system. We establish well-posedness and asymptotic stability results for the system under some conditions imposed
into the relaxation functions regardless to the speeds of wave propagations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

The Bresse system is known as the circular arch problem and is given by the following equations:8̂<̂
:
�1'tt D Qx C lNC F1,

�2 tt D Mx � QC F2,

�3wtt D Nx � lQC F3,

(1.1)

where

N D k0 .wx � l'/ , Q D k.'x C lwC  /, M D b x

and �1, �2, �3, l, k, k0, b are positive constants.
As in [1], we use N, Q and M to denote, respectively, the axial force, the shear force and the bending moment. By w,' and  we are

denoting, respectively, the longitudinal, vertical and shear angle displacements. Here

�1 D �A, �2 D �I, k0 D EA,

k D k0GA, b D EI, l D R�1.

To the material properties, we use � for density, E for modulus of elasticity, G for the shear modulus, k0 for the shear factor, A for the
cross-sectional area, I for the second moment of area of the cross section and R for the radius of curvature, and we assume that all
these quantities are positive. Finally, by Fi we are denoting external forces in �0, LŒ��0,C1Œ together with initial conditions and Dirichlet
boundary conditions or Dirichlet–Neumann boundary conditions. For more details, we refer to [2].

If we consider F1 D F3 D 0 and F2 D �� t with � > 0, we obtain the system obtained by Bresse [3] in 1856, which consists of
three coupled wave equations and is more general than the well-known Timoshenko system, where the longitudinal displacement is
not considered: l D 0 [4, 5].

The third equation in (1.1) can be negligible [6], and the lack of exponential decay to the first and second equations was assured by
Muñoz Rivera and Racke [7] using boundary conditions of type Dirichlet–Neumann.

Concerning the asymptotic behavior of the Bresse system (or circular arch problem), we have only a few results. The most important
is due to Liu and Rao [8], where the authors considered a thermoelastic Bresse system (with two dissipative mechanisms) and proved
that the solutions decay exponentially to zero if and only if the velocities of wave propagations are the same. Otherwise, the solutions
decay polynomially to zero with rates t�4C� or t�6C� provided that the boundary conditions is of Dirichlet–Neumann–Neumann or
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Dirichlet–Dirichlet–Dirichlet type, respectively, where � is an arbitrary positive constant. Alabau-Boussouira et al. [1] considered only
one dissipative mechanism and get a polynomial decay t�4C� for any boundary condition.

In [8], Liu and Rao considered a thermoelastic Bresse system that consists of three wave equations and two heat equations coupled
in a certain pattern. The two wave equations about the longitudinal displacement and the shear angle displacement are effectively
globally damped by the dissipation from the two heat equations. The wave equation about the vertical displacement is subject to a
weak thermal damping and indirectly damped through the coupling. They established exponential energy decay rate when the vertical
and longitudinal waves have the same speeds of wave propagations. Otherwise, a polynomial-type decay is established.

In their paper, Wehbe and Yousef [9] studied the stabilization of the elastic Bresse systems damped by two locally distributed feed-
backs with initial and boundary conditions. They established the exponential stability for this system in the case of the same speeds
of wave propagations of the equation of the vertical displacement and the equation of the rotation angle of the system. When the
speeds of wave propagations are different, the nonexponential decay rate is proved and a polynomial-type decay rate is obtained. The
frequency domain method and the multiplier technique are applied in their proof.

For the Timoshenko system, along with the new theory of Green and Naghdi [10], Messaoudi and Said-Houari [11] considered a
Timoshenko system of thermoelasticity of type III of the form8̂<̂

:
�1'tt � K .'x C  /x D 0 in �0, LŒ�RC,

�2 tt � b xx C K .'x C  /C ˇ�x D 0 in �0, LŒ�RC,

�3�tt � ı�xx C � ttx � k�txx D 0 in �0, LŒ�RC,

(1.2)

where ', and � are functions of .x, t/, which model the transverse displacement of the beam, the rotation angle of the filament and

the difference temperature, respectively. They proved an exponential decay in the case of equal wave speeds
�

K
�1
D b
�2

�
. This result

was later established by Messaoudi and Said-Houari [12] for system (1.2) in the presence of a viscoelastic damping of the formZ C1
0

g.s/ xx.x, t � s/ds

acting in the second equation. Moreover, the case of nonequal speeds
�

K
�1
¤ b
�2

�
was studied, and a polynomial decay result was

proved for solutions with smooth initial data. A more general decay result, from which the exponential and polynomial rates of decay
are only special cases, was also established by Kafini [13]. In this paper, the viscoelastic damping of the formZ t

0
g.t � s/�xx.x, s/ds

is acting in the third equation only.
The problem of stability of abstract hyperbolic systems with infinite memory was investigated by Guesmia [14]. The approach used

in [14] allowed the kernel function to have decay at infinity arbitrary close to 1
t . In [15], Guesmia et al. applied this approach for various

types of Timoshenko systems. For more results concerning materials with ‘finite’ or ‘infinite’ memory, we refer to [16–19]. Concerning
the stability of Bresse systems with local and global dampings, we refer to [20–23]. Decay rates for Bresse system with arbitrary nonlinear
localized damping were also obtained by Charles et al.[24].

In this work, we will study the Bresse system with infinite memories acting in the three equations. So, our system with the initial–
boundary conditions takes the form8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�1'tt � k1 .'x C  C lw/x � lk3 .wx � l'/C
RC1

0 g1.s/'xx .x, t � s/ ds D 0,

�2 tt � k2 xx C k1 .'x C  C lw/C
RC1

0 g2.s/ xx .x, t � s/ ds D 0,

�1wtt � k3 .wx � l'/x C lk1 .'x C  C lw/C
RC1

0 g3.s/wxx .x, t � s/ ds D 0,

' .0, t/ D  .0, t/ D w .0, t/ D ' .L, t/ D  .L, t/ D w .L, t/ D 0,

' .x,�t/ D '0.x, t/,'t .x, 0/ D '1.x/,

 .x,�t/ D  0.x, t/, t .x, 0/ D  1.x/,

w .x,�t/ D w0.x, t/, wt .x, 0/ D w1.x/,

(P)

where .x, t/ 2�0, LŒ�RC, gi : RC ! RC are given functions and L, l, �i , ki are positive constants. The infinite integrals in (P) represent
the infinite memories. The derivative of a generic function f with respect to a variable y is noted fy or @yf . If f has only one variable, its
derivative is noted f 0.

Our goal is to study the well-posedness and asymptotic stability of this system in terms of the growth at infinity of the kernels gi and
without paying any attention to the speeds of wave propagations defined by

k1

�1
,

k2

�2
and

k3

�1
. (1.3)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014



A. GUESMIA AND M. KAFINI

We prove, under suitable conditions on the initial data and the memories gi , that the system is well-posed and its energy converges
to zero when time goes to infinity, and we provide a connection between the decay rate of energy and the growth of gi at infinity. The
proof is based on the semigroup’s theory for the well-posedness, and the energy method and the approach introduced by Guesmia
[14], for the stability.

The paper is organized as follows. In Section 2, we present our assumptions on gi and state and prove the well-posedness of (P).
Section 3 is devoted to the statement and proof of the asymptotic stability.

2. Well-posedness of (P)

We introduce, as in [25], the new variables

8̂<̂
:
�1.x, t, s/ D '.x, t/ � '.x, t � s/ in �0, LŒ�RC �RC,

�2.x, t, s/ D  .x, t/ �  .x, t � s/ in �0, LŒ�IRC �RC,

�3.x, t, s/ D w.x, t/ � w.x, t � s/ in �0, LŒ�IRC �RC.

(2.1)

These functionals satisfy 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t�1 C @s�1 � 't D 0, in �0, LŒ�RC �RC,

@t�2 C @s�2 �  t D 0, in �0, LŒ�RC �RC,

@t�3 C @s�3 � wt D 0, in �0, LŒ�RC �RC,

�i.0, t, s/ D �i.L, t, s/ D 0, in RC �RC, i D 1, 2, 3,

�i.x, t, 0/ D 0, in �0, LŒ�RC, i D 1, 2, 3.

(2.2)

In order to convert our problem to a system of first-order ordinary differential equations, we note the following:

�0
i .x, s/ D �i.x, 0, s/, i D 1, 2, 3, (2.3)

U D .', , w,'t , t , wt , �1, �2, �3/
T (2.4)

and

U0.x/ D
�
'0.x, 0/, 0.x, 0/, w0.x, 0/,'1.x/, 1.x/, w1.x/, �

0
1.x, ./, �0

2.x, ./, �0
3.x, ./

�T
.

Then (P) is equivalent to the following abstract system: (
@tU D AU,

U.x, 0/ D U0.x/,
(2.5)

where A is the linear operator defined by

AU D

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

't

 t

wt

1
�1

�
k1 �

RC1
0 g1.s/ds

�
'xx �

l2k3
�1
' C k1

�1
 x C

l
�1
.k1 C k3/wx C

1
�1

RC1
0 g1.s/@xx�1ds

� k1
�2
'x C

1
�2

�
k2 �

RC1
0 g2.s/ds

�
 xx �

k1
�2
 � lk1

�2
wC 1

�2

RC1
0 g2.s/@xx�2ds

� l
�1
.k1 C k3/'x �

lk1
�1
 C 1

�1

�
k3 �

RC1
0 g3.s/ds

�
wxx �

l2k1
�1

wC 1
�1

RC1
0 g3.s/@xx�3ds

't � @s�1

 t � @s�2

wt � @s�3

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

. (2.6)
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We define the functional space of U as follows.

H D
�

H1
0 .�0, LŒ/

�3
�
�

L2 .�0, LŒ/
�3
� H�1 � H�2 � H�3 , (2.7)

where

H�i D

(
v : RC ! H1

0.�0, LŒ/,

Z L

0

Z C1
0

gi.s/v
2
x .s/dsdx < C1

)
. (2.8)

The domain D.A/ of A is defined by

D.A/ D fU 2 H; AU 2 H, �i.x, t, 0/ D 0, i D 1, 2, 3g . (2.9)

Now, to get the well-posedness of .P/, we assume that the functions gi satisfy the following hypothesis:
(H1) gi : RC ! RC are differentiable non-increasing functions and integrable on RC such that there exists a positive constant k0

satisfying, for any .', , w/ 2
�

H1
0.�0, LŒ/

�3
,

k0

Z L

0

�
'2

x C  
2
x C w2

x

�
dx �

Z L

0

�
k2 

2
x C k1.'x C  C lw/2 C k3.wx � l'/2

�
dx

�

Z L

0

  Z C1
0

g1.s/ds

!
'2

x C

 Z C1
0

g2.s/ds

!
 2

x C

 Z C1
0

g3.s/ds

!
w2

x

!
dx.

(2.10)

Remark 2.1
By contradiction arguments, it is easy to see that there exists a positive constant Nk0 such that, for any .', , w/ 2

�
H1

0.�0, LŒ/
�3

,

Nk0

Z L

0

�
'2

x C  
2
x C w2

x

�
dx �

Z L

0

�
k2 

2
x C k1 .'x C  C lw/2 C k3.wx � l'/2

�
dx. (2.11)

Therefore, if

g0
i :D

Z C1
0

gi.s/ds < Nk0, i D 1, 2, 3, (2.12)

then (2.10) is satisfied with

k0 D Nk0 �max
˚

g0
1, g0

2, g0
3

�
.

On the other hand, thanks to Poincaré inequality, there exists a positive constant Qk0 such that, for any .', , w/ 2
�

H1
0.�0, LŒ/

�3
,

Z L

0

�
k2 

2
x C k1.'x C  C lw/2 C k3.wx � l'/2

�
dx � Qk0

Z L

0

�
'2

x C  
2
x C w2

x

�
dx. (2.13)

Thus, the right-hand side of the inequality (2.10) defines a norm on
�

H1
0.�0, LŒ/

�3
for .', , w/ equivalent to the usual norm of�

H1.�0, LŒ/
�3

.
Under hypothesis (H1), the sets H�i and H are Hilbert spaces equipped, respectively, with the inner products that generate the norms

k�ik
2
H�i
D

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx

and

kUk2
H D

Z L

0

�
�1'

2
t C �2 

2
t C �1w2

t C k2 
2
x C k1.'x C  C lw/2 C k3.wx � l'/2

�
dx

�

Z L

0

�
g0

1'
2
x C g0

2 
2
x C g0

3w2
x

�
dx C k�1k

2
H�1
C k�2k

2
H�2
C k�3k

2
H�3

.
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Now, the domain of D.A/ is dense in H, and a simple computation implies that, for U 2 D.A/,

hAU, UiH D �
1

2

Z L

0
g1.s/

Z C1
0

@s .@x�1/
2 dsdx �

1

2

Z L

0
g2.s/

Z C1
0

@s .@x�2/
2 dsdx

�
1

2

Z L

0
g3.s/

Z C1
0

@s .@x�3/
2 dsdx.

Integration by parts, using (H1) and the boundary conditions in (2.2), yields

hAU, UiH D
1

2

Z L

0

Z C1
0

�
g01.s/.@x�1/

2 C g02.s/.@x�2/
2 C g03.s/.@x�3/

2
�

dsdx (2.14)

and then, because, for any i D 1, 2, 3, the kernel gi is non-increasing,

hAU, UiH � 0. (2.15)

This implies that A is a dissipative operator. Next, we prove that Id �A is surjective. Let F D .f1, � � � , f9/
T 2 H. We prove the existence

of V D .v1, � � � , v9/ 2 D.A/ solution of the equation

.Id �A/V D F. (2.16)

The first three equations of (2.16) give

v4 D v1 � f1, v5 D v2 � f2 and v6 D v3 � f3. (2.17)

Using (2.17), the last three equations of (2.16) imply

@sv7 C v7 D v1 C f7 � f1, @sv8 C v8 D v2 C f8 � f2, @sv9 C v9 D v3 C f9 � f3.

By integrating these three differential equations and using the fact that v7.0/ D v8.0/ D v9.0/ D 0, we get

v7 D .1 � e�s/ .v1 � f1/C

Z s

0
e��sf7.�/d� ,

v8 D .1 � e�s/ .v2 � f2/C

Z s

0
e��sf8.�/d�

(2.18)

and

v9 D .1 � e�s/ .v3 � f3/C

Z s

0
e��sf9.�/d� .

Inserting (2.18) into the fourth, fifth and sixth equations of (2.16), multiplying them by �1 Qv1, �2 Qv2 and �1 Qv3, respectively, and integrating
their sum over �0, LŒ, we get

a
�
.v1, v2, v3/

T , .Qv1, Qv2, Qv3/
T
�
D Qa

�
.Qv1, Qv2, Qv3/

T
�

, 8.Qv1, Qv2, Qv3/
T 2

�
H1

0.�0, LŒ/
�3

, (2.19)

where

a
�
.v1, v2, v3/

T , .Qv1, Qv2, Qv3/
T
�
D

Z L

0
.k1.@x v1 C v2 C lv3/.@x Qv1 C Qv2 C lQv3/C k3.@x v3 � lv1/.@x Qv3 � lQv1// dx

C

Z L

0
.�1v1 Qv1 C �2v2 Qv2 C �1v3 Qv3/dx

C

Z L

0

�
�Qg0

1@x v1@x Qv1 C .k2 � Qg
0
2/@x v2@x Qv2 � Qg

0
3@x v3@x Qv3

�
dx,

(2.20)

Qg0
i D

Z C1
0

e�sgi.s/ds

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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and

Qa
�
.Qv1, Qv2, Qv3/

T
�
D

Z L

0
.�1.f1 C f4/Qv1 C �2.f2 C f5/Qv2 C �1.f3 C f6/Qv3/ dx

C

Z L

0

�
.g0

1 � Qg
0
1/@x f1@x Qv1 C .g

0
2 � Qg

0
2/@x f2@x Qv2 C

�
g0

3 � Qg
0
3

�
@x f3@x Qv3

�
dx

�

Z L

0

 Z C1
0

g1.s/

Z s

0
e��s@x f7.�/d�ds

!
@x Qv1dx

�

Z L

0

 Z C1
0

g2.s/

Z s

0
e��s@x f8.�/d�ds

!
@x Qv2dx

�

Z L

0

 Z C1
0

g3.s/

Z s

0
e��s@x f9.�/d�ds

!
@x Qv3dx.

Thanks to (2.10) and (2.13), we have that a is a bilinear continuous coercive form on
�

H1
0.�0, LŒ/

�3
�
�

H1
0.�0, LŒ/

�3
, and Qa is a linear continu-

ous form on
�

H1
0.�0, LŒ/

�3
. Then, using Lax–Milgram theorem [26], we deduce that (2.19) has a unique solution .v1, v2, v3/

T 2
�

H1
0.�0, LŒ/

�3
.

Thus, using (2.17), (2.18) and classical regularity arguments, we conclude that (2.16) admits a unique solution V 2 D.A/. Therefore,
Id �A is surjective.

Finally, thanks to the Lumer–Phillips theorem [26, 27], we deduce that A generates a C0-semigroup of contraction in H, which gives
the following well-posedness results of (P) [27, 28]:

Theorem 2.1
Assume that (H1) holds. For any U0 2 H, (2.5) has a unique weak solution

U 2 C.RC;H/.

Moreover, if U0 2 D.A/, then

U 2 C.RC; D.A// \ C1.RC;H/.

3. Stability of (P)

In this section, we prove the stability of .P/, where the decay rate of solution is explicitly specified in function of gi and where no
restriction is considered on the speeds of wave propagations (1.3). We consider the following additional hypothesis:

(H2) There exist positive constants ıi and an increasing strictly convex function G : RC ! RC of class C1.RC/ \ C2.�0,C1Œ/
satisfying

G.0/ D G0.0/ D 0 and lim
t!C1

G0.t/ D C1 (3.1)

such that gi.0/ > 0, and, for any i D 1, 2, 3, one of the following two conditions is satisfied:

g0i .s/ � �ıigi.s/, 8s 2 RC (3.2)

or Z C1
0

gi.s/

G�1.�g0i .s//
dsC sup

s2RC

gi.s/

G�1.�g0i .s//
< C1. (3.3)

Theorem 3.1
Assume that (H1) and (H2) are satisfied, and let U0 2 H such that, for any i D 1, 2, 3,

.3.2/ holds or 9Mi � 0 :

Z L

0
.@x�

0
i /

2dx � Mi , 8s > 0. (3.4)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Then there exist positive constants c0, c00 and �0 such that

kU.t/k2
H � c00e�c0t if .3.2/ holds, for any i D 1, 2, 3, (3.5)

and

kU.t/k2
H � c00H�1.c0t/ otherwise, (3.6)

where

H.s/ D

Z 1

s

1

�G0.�0�/
d� , 8s 2�0, 1�. (3.7)

Remark 3.1
Condition (3.2) implies that gi converges at least exponentially to zero and then the exponential stability (3.5) of .P/ is obtained only
when all the functions gi converge at least exponentially to zero without restrictions on �0

i .

Remark 3.2
Condition (3.3), introduced in [14], allows gi to have a decay rate arbitrarily close to 1

t , and the decay rate in (3.6) depends on gi , which
has the weakest decay.

Remark 3.3
Let us consider this simple example (for other examples, see [14, 15]). Let gi.t/ D

di
.1Ct/qi for qi > 1, and di > 0 be small enough so that

(2.12) is satisfied. Condition (3.2) does not hold, but condition (3.3) holds with G.t/ D t1C 1
p , for any p 2�0, q�1

2 Œ, where q D minfqig.
Then (3.6) gives, for all p 2�0, q�1

2 Œ,

kU.t/k2
H �

c0

.1C t/p
. (3.8)

Proof of Theorem 3.1
We have only to prove (3.5) and (3.6) for U0 2 D.A/, so the calculations are justified, and therefore, (3.5) and (3.6) remain valid for
U0 2 H by density arguments. The proof is based on the multipliers method and an approach of [14] to estimate the memory terms in
case (3.3). First, we consider the following functionals:

I1.t/ D ��1

Z L

0
't

Z C1
0

g1.s/�1dsdx, (3.9)

I2.t/ D ��2

Z L

0
 t

Z C1
0

g2.s/�2dsdx (3.10)

and

I3.t/ D ��1

Z L

0
wt

Z C1
0

g3.s/�3dsdx. (3.11)

Lemma 3.1
The functionals Ii satisfy, for any ı > 0,

I01.t/ � ��1

�
g0

1 � ı
� Z L

0
'2

t dx C ı

Z L

0

�
 2

x C .'x C  C lw/2 C .wx � l'/2
�

dx

C cı

Z L

0

Z C1
0

g1.s/.@x�1/
2dsdx � cı

Z L

0

Z C1
0

g01.s/.@x�1/
2dsdx,

(3.12)

I02.t/ � ��2.g
0
2 � ı/

Z L

0
 2

t dx C ı

Z L

0

�
 2

x C .'x C  C lw/2
�

dx

C cı

Z L

0

Z C1
0

g2.s/.@x�2/
2dsdx � cı

Z L

0

Z C1
0

g02.s/.@x�2/
2dsdx

(3.13)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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and

I03.t/ � ��1

�
g0

3 � ı
� Z L

0
w2

t dx C ı

Z L

0

�
 2

x C .'x C  C lw/2 C .wx � l'/2
�

dx

C cı

Z L

0

Z C1
0

g3.s/.@x�3/
3dsdx � cı

Z L

0

Z C1
0

g03.s/.@x�3/
2dsdx, (3.14)

where g0
i is defined by (2.12) and cı is a positive constant depending on ı.

Proof
Direct computations, using the first equation of (P), integrating by parts and using the fact that

@t

Z C1
0

g1.s/�1ds D @t

Z C1
0

g1.t � s/.'.t/ � '.s//ds

D

Z C1
0

g01.t � s/.'.t/ � '.s//dsC

 Z C1
0

g1.t � s/ds

!
't

D

Z C1
0

g01.s/�1dsC g0
1't ,

yield

I01.t/ D ��1g0
1

Z L

0
'2

t dx � �1

Z L

0
't

Z C1
0

g01.s/�1dsdx

C k1

Z L

0
.'x C  C lw/

Z C1
0

g1.s/@x�1dsdx � lk3

Z L

0
.wx � l'/

Z C1
0

g1.s/�1dsdx

�

Z L

0
'x

 Z C1
0

g1.s/@x�1ds

!
dx C

Z L

0

 Z C1
0

g1.s/@x�1ds

!2

dx.

Using Young’s, Poincaré (for �1) and Hölder’s inequalities for the last five terms of this equality, and (2.11) to estimate
R L

0 '
2
x dx,

we get (3.12).
Similarly, using the second and third equations of (P), we find (3.13) and (3.14).

Lemma 3.2
There exist positive constants c1 and c2 such that the functional

I4.t/ D

Z L

0
.�1''t C �2  t C �1wwt/dx (3.15)

satisfies

I04.t/ �

Z L

0

�
�1'

2
t C �2 

2
t C �1w2

t

�
dx

� c1

Z L

0

�
 2

x C .'x C  C lw/2 C .wx � l'/2
�

dx

C c2

Z L

0

Z C1
0

�
g1.s/.@x�1/

2 C g2.s/.@x�2/
2 C g3.s/.@x�3/

2
�

dsdx.

(3.16)

Proof
By exploiting equations of .P/ and integrating by parts, we get

I04.t/ D

Z L

0

�
�1'

2
t C �2 

2
t C �1w2

t

�
dx � k1

Z L

0
.'x C  C lw/2dx

� k3

Z L

0
.wx � l'/2dx C g0

1

Z L

0
'2

x dx �
�

k2 � g0
2

� Z L

0
 2

x dx C g0
3

Z L

0
w2

x dx

�

Z L

0
'x

Z C1
0

g1.s/@x�1dsdx �

Z L

0
 x

Z C1
0

g2.s/@x�2dsdx

�

Z L

0
wx

Z C1
0

g3.s/@x�3dsdx.

(3.17)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014



A. GUESMIA AND M. KAFINI

Using Young’s and Hölder’s inequalities for the last three terms of this equality, we get, for all � > 0, a positive constant c� such that

�

Z L

0
'x

Z C1
0

g1.s/@x�1dsdx �

Z L

0
 x

Z C1
0

g2.s/@x�2dsdx �

Z L

0
wx

Z C1
0

g3.s/@x�3dsdx

� �

Z L

0

�
'2

x C  
2
x C w2

x

�
dx C c�

Z L

0

Z C1
0

�
g1.s/.@x�1/

2 C g2.s/.@x�2/
2 C g3.s/.@x�3/

2
�

dsdx.

Inserting this inequality into (3.17) and using (2.10), we find

I04.t/ �

Z L

0

�
�1'

2
t C �2 

2
t C �1w2

t

�
dx � .k0 � �/

Z L

0

�
'2

x C  
2
x C w2

x

�
dx

C c�

Z L

0

Z C1
0

�
g1.s/.@x�1/

2 C g2.s/.@x�2/
2 C g3.s/.@x�3/

2
�

dsdx.

(3.18)

Then, choosing 0 < � < k0 and inserting (2.13) in (3.18), we get (3.16) with c1 D
k0��
Qk0

and c2 D c� .
Now, let N1, N2 > 0 and

I5 D N1E C N2.I1 C I2 C I3/C I4, (3.19)

where E is the energy functional associated to (P) and defined by

E.t/ D
1

2
kU.t/k2

H. (3.20)

First, note that E is non-increasing according to (2.5), (2.14) and (2.15),

E0.t/ D
1

2

Z L

0

Z C1
0

�
g01.s/.@x�1/

2 C g02.s/.@x�2/
2 C g03.s/.@x�3/

2
�

dsdx � 0. (3.21)

Now, using (3.12)–(3.14) with ı D 1
N2

2
, (3.16) and (3.21), we get

I05.t/ � �

�
c1 �

3

N2

�Z L

0

�
 2

x C .'x C  C lw/2 C .wx � l'/2
�

dx

� �1

�
N2g0

1 �
1

N2
� 1

�Z L

0
'2

t dx � �2

�
N2g0

2 �
1

N2
� 1

�Z L

0
 2

t dx

� �1

�
N2g0

3 �
1

N2
� 1

�Z L

0
w2

t dx

C

�
N1

2
� cN2

�Z L

0

Z C1
0

�
g01.s/.@x�1/

2 C g02.s/.@x�2/
2 C g03.s/.@x�3/

2
�

dsdx

C cN2

Z L

0

Z C1
0

�
g1.s/.@x�1/

2 C g2.s/.@x�2/
2 C g3.s/.@x�3/

2
�

dsdx,

where cN2 D N2cı C c2. We choose N2 large enough so that

min

	
c1 �

3

N2
, N2 min

˚
g0

i

�
�

1

N2
� 1



> 0

(note that g0
i > 0 because gi is continuous non-negative and gi.0/ > 0) and we find, for some positive constants c3 and c4,

I05.t/ � �c3E.t/C

�
N1

2
� c4

�Z L

0

Z C1
0

�
g01.s/.@x�1/

2 C g02.s/.@x�2/
2 C g03.s/.@x�3/

2
�

dsdx

C c4

Z L

0

Z C1
0

�
g1.s/.@x�1/

2 C g2.s/.@x�2/
2 C g3.s/.@x�3/

2
�

dsdx.

(3.22)
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On the other hand, by (2.10) and definition of E and Ii , there exists a positive constant N3 (not depending on N1) such that

.N1 � N3/E � I5 � .N1 C N3/E. (3.23)

Thus, choosing N1 > maxf2c4, N3g and using the fact that g0i � 0,

I05.t/ � �c3E.t/C c4

Z L

0

Z C1
0

�
g1.s/.@x�1/

2 C g2.s/.@x�2/
2 C g3.s/.@x�3/

2
�

dsdx. (3.24)

Now, we estimate the terms
R L

0

RC1
0 gi.s/.@x�i.s//2dsdx.

Lemma 3.3
For any i D 1, 2, 3, there exist positive constants di and Qdi such that, for any �0 > 0, the following inequalities hold:

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx � �diE

0.t/ if .3.2/ holds (3.25)

and

G0.�0E.t//

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx (3.26)

� �QdiE
0.t/C Qdi�0E.t/G0.�0E.t// if .3.3/ holds and (3.2) does not hold.

Proof
When (3.2) holds, using (3.21), we get (3.25) with di D

2
ıi

.

When (3.3) holds and (3.2) does not hold, we follow an approach of Guesmia [14]. Let us consider the case where (3.2) does not hold
for i D 1. Therefore, (3.3) holds for i D 1. Then, using (2.10), (3.4) and (3.21), we have

Z L

0
.@x�1/

2dx � 2

Z L

0

�
'2

x .x, t/C '2
x .x, t � s/

�
dx

� 4 sup
t�0

Z L

0
'2

x .x, t/dx C 2 sup
s>0

Z L

0
.@x'0/

2.x, s/dx

�
8

k0
E.0/C 2 sup

s>0

Z L

0

�
2.@x�

0
1/

2.x, s/C 2.@x'0/
2.x, 0/

�
dx

�
16

k0
E.0/C 4M1.

Similar estimates hold for �2 and �3; that is, for bi D
16
k0

E.0/C 4Mi ,

Z L

0
.@x�i/

2dx � bi , 8t, s 2 RC. (3.27)

Recall that, if E.t0/ D 0 for some t0 � 0, then E.t0/ D 0 for any t � t0 as E is non-increasing and non-negative. Therefore, by continuity
of E, (3.6) holds. Hence, without loss of generality, we assume that E.t/ > 0 for any t 2 RC. Similarly, if g0i .s0/ D 0 for some s0 � 0, then
gi.s0/ D 0 because of (3.3). So, gi.s/ D 0 for any s � s0 as gi is non-increasing and non-negative. Therefore,

Z C1
0

gi.s/.@x�i/
2ds D

Z s0

0
gi.s/.@x�i/

2ds.

Hence, without loss of generality, we assume that g0i .s/ < 0 for any s 2 RC.
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Now, let �0, �i , si > 0 and K.s/ D s
G�1.s/

, for s 2 RC. Thanks to the properties of G, K.0/ D G0.0/ D 0 and K is non-decreasing.
Therefore, using (3.27),

K

�
�sig
0
i .s/

Z L

0
.@x�i/

2dx

�
� K.�bisig

0
i .s//.

Then

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx D

1

�iG0.�0E.t//

Z C1
0

G�1

�
�sig
0
i .s/

Z L

0
.@x�i/

2dx

�

�
�iG0.�0E.t//gi.s/

�sig0i .s/
K

�
�sig
0
i .s/

Z L

0
.@x�i/

2dx

�
ds

�
1

�iG0.�0E.t//

Z C1
0

G�1

�
�sig
0
i .s/

Z L

0
.@x�i/

2dx

�
�iG0.�0E.t//gi.s/

�sig0i .s/
K.�bisig

0
i .s//ds

�
1

�iG0.�0E.t//

Z C1
0

G�1

�
�sig
0
i .s/

Z L

0
.@x�i/

2dx

�
bi�iG0.�0E.t//gi.s/

G�1.�bisig0i .s//
ds.

We denote by G� the dual function of G defined by

G�.t/ D sup
s2RC

fts � G.s/g, 8t 2 RC.

Thanks to (H2), G0 is increasing and defines a bijection from RC to RC, and then, for any t 2 RC, the function s 7! ts � G.s/ reaches
its maximum on RC at the unique point .G0/�1.t/. Therefore,

G�.t/ D t.G0/�1.t/ � G..G0/�1.t//, 8t 2 RC.

Using Young’s inequality

t1t2 � G.t1/C G�.t2/,

for

t1 D G�1

�
�sig
0
i .s/

Z L

0
.@x�i/

2dx

�
and t2 D

bi�iG0.�0E.t//gi.s/

G�1.�bisig0i .s//
,

we get

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx �

�si

�iG0.�0E.t//

Z L

0

Z C1
0

g0i .s/.@x�i/
2dsdx

C
1

�iG0.�0E.t//

Z C1
0

G�
�

bi�iG0.�0E.t//gi.s/

G�1.�bisig0i .s//

�
ds.

Using (3.21) and the fact that

G�.t/ � t.G0/�1.t/,

we obtain

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx �

�2si

�iG0.�0E.t//
E0.t/C bi

Z C1
0

gi.s/

G�1.�bisig0i .s//
.G0/�1

�
bi�iG0.�0E.t//gi.s/

G�1.�bisig0i .s//

�
ds.

Thanks to (3.3),

sup
s2RC

gi.s/

G�1.�g0i .s//
D ai < C1.
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Then, using the fact that .G0/�1 is non-decreasing (thanks to (H2)) and choosing si D
1
bi

, we get

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx �

�2

bi�iG0.�0E.t//
E0.t/C bi.G

0/�1
�

biai�iG
0.�0E.t//

� Z C1
0

gi.s/

G�1.�g0i .s//
ds.

Choosing �i D
1

bi ai
and using the fact that

Z C1
0

gi.s/

G�1.�g0i .s//
ds D li < C1

thanks to (3.3), we obtain Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx �

�2ai

G0.�0E.t//
E0.t/C bili�0E.t/,

which implies (3.26) with Qdi D maxf2ai , bilig.
Now, if (3.2) holds, for all i 2 f1, 2, 3g, then (3.24) and (3.25) imply that

I05.t/ � �c3E.t/ � c4.d1 C d2 C d3/E
0.t/. (3.28)

Let

F D I5 C c4.d1 C d2 C d3/E.

Thanks to (3.23) and (3.28), we have F0 � �c0F, where

c0 D
c3

N1 C N3 C c4.d1 C d2 C d3/
.

Integrating over ŒCR0, t�, we arrive at

F.t/ � F.0/e�c0t ,

which, thanks to (3.20) and (3.23), gives (3.5) with

c00 D
2F.0/

N1 � N3 C c4.d1 C d2 C d3/
.

If (3.2) does not hold at least for one i 2 f1, 2, 3g, then, according to (3.25) and (3.26), we see that

G0.�0E.t//

Z L

0

Z C1
0

gi.s/.@x�i/
2dsdx � �˛iG

0.�0E.t//E0.t/ � ˇiE
0.t/C �0ˇiG

0.�0E.t//E.t/, (3.29)

where

˛i D

(
di if (3.2) holds,

0 otherwise

and

ˇi D

(
0 if (3.2) holds,edi otherwise.

Thus, multiplying (3.24) by G0.�0E.t// and using (3.29), we get

G0.�0E.t//I05.t/ � �.c3 � c4�0.ˇ1 C ˇ2 C ˇ3//E.t/G
0.�0E.t// � c4.ˇ1 C ˇ2 C ˇ3/E

0.t/ � c4.˛1 C ˛2 C ˛3/G
0.�0E.t//E0.t/.
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Choosing

0 < �0 <
c3

c4.ˇ1 C ˇ2 C ˇ3/

(note that �0 is well defined as ˇ1 C ˇ2 C ˇ3 > 0 because (3.2) does not hold at least for one of the kernels), we get

G0.�0E.t//I05.t/C c4

�
ˇ1 C ˇ2 C ˇ3 C .˛1 C ˛2 C ˛3/G

0.�0E.t//
�

E0.t/ � �c5E.t/G0.�0E.t//, (3.30)

where

c5 D c3 � c4�0.ˇ1 C ˇ2 C ˇ3/.

Let

F D �
�

G0.�0E/I5 C c4

�
ˇ1 C ˇ2 C ˇ3 C .˛1 C ˛2 C ˛3/G

0.�0E
�
/E
�

, (3.31)

where � > 0. The fact that G0.�0E/ is non-increasing (due to (H2) and (3.21)) and I5 � 0 (thanks to (3.23)) imply that

�
G0.�0E/

�0
I5 � 0 and

�
G0.�0E/

�0
E � 0.

Therefore, using (3.30), we get

F0 � �c5�EG0.�0E/. (3.32)

Thanks to (3.23) and the fact that

G0.�0E.t// � G0.�0E.0//,

we can choose � > 0 small enough such that

F � E and F.0/ � 1, (3.33)

and we find, for c0 D c5� (note that s 7! sG0.�0s/ is non-decreasing),

F0 � �c0FG0.�0F/, (3.34)

which implies that .H.F//0 � c0, where H is defined in (3.7). Then, by integrating over Œ0, t�, we obtain

H.F.t// � c0tC H.F.0//.

Because F.0/ � 1, H.1/ D 0 and H is decreasing, we arrive at

H.F.t// � c0t.

Because H�1 is decreasing, we deduce that F.t/ � H�1.c0t/. Then (3.20), (3.31) and dropping the positive terms G0.�0E/I5 and .˛1 C

˛2 C ˛3/G0.�0E/E give (3.6) with

c00 D
2

�c4.ˇ1 C ˇ2 C ˇ3/
.

This completes the proof of Theorem 3.1.
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