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SUMMARY

In this paper we consider the following Timoshenko system:

⎧⎪⎨
⎪⎩

�1�t t −k1(�x +�)x =0 in (0,L)×R+

�2�t t −k2�xx +
∫ t

0
g(t−�)(a(x)�x (�))x d�+k1(�x +�)+b(x)h(�t )=0 in (0,L)×R+

with Dirichlet boundary conditions and initial data where a, b, g and h are specific functions and �1, �2,
k1, k2 and L are given positive constants. We establish a general stability estimate using the multiplier
method and some properties of convex functions. Without imposing any growth condition on h at the
origin, we show that the energy of the system is bounded above by a quantity, depending on g and h, which
tends to zero as time goes to infinity. Our estimate allows us to consider a large class of functions h with
general growth at the origin. We use some examples (known in the case of wave equations and Maxwell
system) to show how to derive from our general estimate the polynomial, exponential or logarithmic
decay. The results of this paper improve and generalize some existing results in the literature and generate
some interesting open problems. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A simple model describing the transverse vibration of a beam, which was developed in [1], is
given by the following system of coupled hyperbolic equations:

{
�utt = (K (ux −�))x in (0, L)×R+
I��t t = (EI�x )x +K (ux −�) in (0, L)×R+

(1)

where t denotes the time variable and x is the space variable along the beam of length L in its
equilibrium configuration, u is the transverse displacement of the beam and � is the rotation angle
of the filament of the beam. The coefficients �, I�, E , I and K are, respectively, the density (the
mass per unit length), the polar moment of inertia of a cross section, Young’s modulus of elasticity,
the moment of inertia of a cross section and the shear modulus.

Kim and Renardy [2] considered (1) together with two boundary controls of the form

K�(L, t)−Kux(L, t) = �ut (L, t) on R+

EI�x(L, t) = −��t (L, t) on R+

and used the multiplier techniques to establish an exponential decay result for the natural energy
of (1). They also provided numerical estimates to the eigenvalues of the operator associated with
system (1). Raposo et al. [3] studied (1) with homogeneous Dirichlet boundary conditions and two
linear frictional dampings. Precisely, they looked into the following system:

⎧⎪⎨
⎪⎩

�1utt −K (ux −�)x +ut =0 in (0, L)×R+
�2�t t −b�xx +K (ux −�)+�t =0 in (0, L)×R+
u(0, L)=u(L, t)=�(0, t)=�(L, t)=0 on R+

(2)

and proved that the energy associated with (2) decays exponentially. Soufyane and Wehbe [4]
showed that it is possible to stabilize (1) uniformly by using a unique locally distributed feedback.
Therefore, they considered

⎧⎪⎨
⎪⎩

�utt = (K (ux −�))x in (0, L)×R+
I��t t = (EI�x)x +K (ux −�)−b�t in (0, L)×R+
u(0, t)=u(L, t)=�(0, t)=�(L, t)=0 on R+

(3)

where b is a positive and continuous function that satisfies

b(x)�b0>0 ∀x ∈[a0,a1]⊂[0, L]

In fact, they proved that the uniform stability of (3) holds if and only if the wave speeds are equal
(K/�=EI/I�); otherwise, only the asymptotic stability has been proved. This result has been
recently improved by Muñoz Rivera and Racke [5], where an exponential decay of the solution
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energy of (3) has been established, allowing b to be with an indefinite sign. In addition, Muñoz
Rivera and Racke [6] treated a system of the form

⎧⎪⎨
⎪⎩

�1�t t −�(�x ,�)x =0 in (0, L)×R+
�2�t t −b�xx +K (�x +�)+	
x =0 in (0, L)×R+
�3
t −K
xx +	�xt =0 in (0, L)×R+

where �, � and 
 are functions of (x, t) model transverse displacement of the beam, the rotation
angle of the filament and the difference temperature, respectively. Under appropriate conditions
of �, �i , b, K and 	, they proved several exponential decay results for the linearized system and
nonexponential stability result for the case of different wave speeds of propagation. In addition,
Muñoz Rivera and Racke [7] considered the following nonlinear Timoshenko system:

{
�1�t t −�(�x ,�)x =0 in (0, L)×R+
�2�t t −b�xx +K (�x +�)+d�t =0 in (0, L)×R+

with homogeneous boundary conditions and proved that the system is exponentially stable if and
only if K/�1=b/�2 and a polynomial stability otherwise. Alabau-Boussouira [8] extended the
results of Muñoz Rivera and Racke [7] to the case of nonlinear feedback �(�t ), instead of d�t ,

where � is a globally Lipchitz function satisfying some growth conditions at the origin.
Ammar-Khodja et al. [9] considered a linear Timoshenko-type system with memory of the form

⎧⎪⎨
⎪⎩

�1�t t −K (�x +�)x =0 in (0, L)×R+

�2�t t −b�xx +
∫ t

0
g(t−s)�xx (s)ds+K (�x +�)=0 in (0, L)×R+

(4)

together with homogeneous boundary conditions. They used the multiplier techniques and proved
that the system is uniformly stable if and only if the wave speeds are equal (K/�1=b/�2) and
g decays uniformly. Precisely, they proved an exponential decay if g decays at an exponential
rate and polynomially if g decays at a polynomial rate. They also required some extra technical
conditions on both g′ and g′′ to obtain their result. These extra technical conditions were eliminated
by Messaoudi and Mustafa [10], where weaker conditions on g were imposed and a more general
decay estimate was obtained.

The feedback of memory type has also been used by Santos [11]. He considered a Timoshenko
system and showed that the presence of two feedbacks of memory type at a portion of the
boundary stabilizes the system uniformly. He also obtained the rate of decay of the energy, which
is exactly the rate of decay of the relaxation functions. Shi and Feng [12] investigated a nonuniform
Timoshenko beam and showed that, under some locally distributed controls, the vibration of the
beam decays exponentially. A similar result has also been obtained by Ammar-Khodja et al. [13]
for a nonuniform Timoshenko system.
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In the present paper we are concerned with⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�1�t t −k1(�x +�)x =0 in (0, L)×R+

�2�t t−k2�xx+k1(�x +�)+
∫ t

0
g(t−�)(a(x)�x(�))x d�+b(x)h(�t )=0 in (0, L)×R+

�(0, t)=�(L, t)=�(0, t)=�(L, t)=0 on R+
�(x,0)=�0(x),�t (x,0)=�1(x) on (0, L)

�(x,0)=�0(x),�t (x,0)=�1(x) on (0, L)

(5)

in the case of equal speeds of propagation (k1/�1=k2/�2). Therefore, without loss of generality,
we take �1=�2=k1=k2=1 and L=1. Our aim in this paper is to investigate the effect of both
frictional and viscoelastic dampings, where each one of them can vanish on the whole domain or
in a part of it. In addition, we would like to see the influence of these dissipations on the rate
of decay of solutions. Of course, the most interesting case occurs when we have simultaneous
and complementary damping mechanisms. Precisely, we obtain an explicit and general decay rate,
depending on g and h, for the energy of solutions without any growth assumption on h at the origin
and under weaker conditions on the relaxation function g. More precisely, we intend to obtain a
general relation between the decay rate for the energy (when t goes to infinity) and the functions g
and h. In particular, we can consider the cases where h degenerates near the origin polynomially,
between polynomially and exponentially, exponentially or faster than exponentially. This kind of
growth was considered (in less general form) by Komornik [14], Martinez [15], Lasiecka and
co-workers [16–19], Liu and Zuazua [20] and Alabau-Boussouira [21] for the wave equation and
Eller et al. [22] for the Maxwell system.

Our proof combines arguments from [9, 10, 23–27] and some properties of convex functions, in
particular, the dual function of convex function to use the general Young’s inequality and Jensen’s
inequality (instead of Hölder inequality widely used in the classical case of linear or polynomial
growth of h at the origin) in objective to prove our general decay estimate (estimate (10) below)
under a general growth of h at the origin (hypothesis (H2) below). These arguments of convexity
were introduced and developed by Lasiecka and co-workers [16–19, 28, 29] and used by Liu and
Zuazua [20], Alabau-Boussouira [21] and Eller et al. [22].

Our results generalize the ones cited above and improve some of them where only exponential
or polynomial estimates were obtained. In particular, the one of Ammar-Khodja et al. [9] where
the hypotheses imposed on g are stronger than (H3) and (H4). Additionally, our proof is simpler.

This paper is organized as follows: in Section 2, we list our hypotheses and state the main
results of this paper. In Section 3, we prove our main theorem. Finally, we conclude and give some
comments and open questions in Section 4.

2. PRELIMINARIES

In order to state our main result we make the following hypotheses:

(H1) a, b : [0,1]→R+ are such that

a ∈ C1([0,1]), b∈ L∞([0,1])
a = 0 or a(0)+a(1)>0, inf

x∈[0,1]{a(x)+b(x)}>0
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(H2) h :R→R is a differentiable nondecreasing function such that there exist constants �′, c1,
c2>0 and a convex and increasing function H :R+ →R+ of class C1(R+)∩C2((0,∞))

satisfying H(0)=0 and H is linear on [0,�′] or (H ′(0)=0 and H ′′>0 on (0,�′]) such that

c1|s| � |h(s)|�c2|s| if |s|��′

s2+h2(s) � H−1(sh(s)) if |s|��′

(H3) g :R+ →R+ is a differentiable function such that

g(0)>0, 1−‖a‖∞
∫ +∞

0
g(s)ds= l>0

(H4) There exists a nonincreasing differentiable function � :R+ →R+ satisfying

g′(s)�−�(s)g(s) ∀s�0

Remarks

1. We note that in the case where a �=0, by hypothesis (H1), which was considered by Cavalcanti
and Oquendo [27] for the wave equation, we have either a(0)>0 or a(1)>0. Therefore,
without loss of generality, we take in this case a(0)>0 in the whole paper.

2. If h satisfies

h0(|s|)�|h(s)|�h−1
0 (|s|) if |s|��′

for a function h0 :R+ →R+ satisfying h′
0(0)=0 and h ′

0>0 on (0,
√

�′/2] or h0 is linear on
[0,√�′/2], and such that the function s �→√

sh0(
√
s), s�0, is convex, increasing and of class

C1(R+)∩C2((0,∞)), then condition (H2) is satisfied for H(s)=√
s/2h0(

√
s/2). On the

other hand, h satisfies (H2) for any �′′ ∈ (0,�′] instead of �′, with some c′
1 and c′

2>0 instead
of c1 and c2, respectively. This kind of hypotheses, with �′ =1, was considered by Komornik
[14], Martinez [15], Liu and Zuazua [20] and Alabau-Boussouira [21].

3. The condition (H2), with �′ =1, was introduced and employed by Lasiecka and co-workers
[16–19, 28, 29] in their study of the asymptotic behavior of solutions of nonlinear wave
equations with nonlinear boundary damping where they obtained decay estimates that depend
on the solution of an explicit nonlinear ordinary differential equation. On the other hand,
using the method developed by Lasiecka and co-workers [16–19], we can also consider
general growth conditions on h at infinity and prove similar general decay estimates for
uniformly bounded solutions.

4. The condition (H4) was considered by Messaoudi and Mustafa [10] to study the stability of
(10) in the (particular) case b=0 and a=1.

For completeness we state, without proof, an existence and regularity result.

Proposition 2.1
Let (�0,�1), (�0,�1)∈H1

0 (0,1)×L2(0,1) be given. Assume that (H1)–(H3) are satisfied, then
problem (5) has a unique global (weak) solution

�,�∈C(R+;H1
0 (0,1))∩C1(R+; L2(0,1)) (6)
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Moreover,

1. If

(�0,�1), (�0,�1)∈ (H2(0,1)∩H1
0 (0,1))×H1

0 (0,1)

then the (strong) solution satisfies

�,�∈ L∞(R+;H2(0,1)∩H1
0 (0,1))∩W 1,∞(R+;H1

0 (0,1))∩W 2,∞(R+; L2(0,1)) (7)

2. If h is linear and

(�0,�1), (�0,�1)∈ (H2(0,1)∩H1
0 (0,1))×H1

0 (0,1)

then the (classical) solution satisfies

�,�∈C(R+;H2(0,1)∩H1
0 (0,1))∩C1(R+;H1

0 (0,1))∩C2(R+; L2(0,1))

Remark
This result can be proved using standard arguments such as the Galerkin method.

Now, we introduce the energy functional

E(t) := 1

2

∫ 1

0

(
�2
t +�2

t +
(
1−a(x)

∫ t

0
g(s)ds

)
�2
x +(�x +�)2

)
dx+ 1

2
(g◦�x) (8)

where, for all v∈ L2(0,1),

(g◦v)(t)=
∫ 1

0
a(x)

∫ t

0
g(t−s)(v(t)−v(s))2 ds dx (9)

We are now ready to state our main stability result.

Theorem 2.2
Let (�0,�1), (�0,�1)∈H1

0 (0,1)×L2(0,1) be given. Assume that (H1)–(H4) are satisfied, then
there exist positive constants c′, c′′ and �0 for which the (weak) solution of problem (5) satisfies

E(t)�c′′H−1
1

(
c′
∫ t

0
�(s)ds

)
∀t�0 (10)

where H1(t)=
∫ 1
t (1/H2(s))ds,

H2(t)=
{
t if H is linear on [0,�′]
t H ′(�0t) if H ′(0)=0 and H ′′>0 on (0,�′]

and �=1 if a=0.

Remarks

1. Because H2 is convex (thanks to the fact that H is convex), then limt→0 H1(t)=+∞ and,
then, if

∫ +∞
0 �(t) dt=+∞, we have the strong stability of (5); that is,

lim
t→+∞E(t)=0
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2. If −g′/g is differentiable and nonincreasing, we can take �=−g′/g, and then our estimate
(10) becomes

E(t)�c′′H−1
1

(
c′ ln g(0)

g(t)

)
∀t�0

Examples
We now present several illustrating examples of growth on h at the origin and the corresponding
decay estimates. This kind of growth conditions on h was considered, in less general form, by
Komornik [14], Matinez [15], Lasiecka and co-workers [16–19], Liu and Zuazua [20] and Alabau-
Boussouira [21] for the wave equation and Eller et al. [22] for the Maxwell system.

1. Polynomial growth of h: If

c′
1|s|q�|h(s)|�c′

2|s|1/q on [−�′,�′]
for some c′

1, c
′
2>0 and q�1 (then (H2) is satisfied for H(s)=cs(q+1)/2 with c>0), then there exist

c′, c′′>0 such that for all t�0

E(t) � c′′e−c′ ∫ t
0 �(s)ds if q=1

E(t) �
(
c′
∫ t

0
�(s)ds+c′′

)−(2/(q−1))

if q>1

2. Exponential growth of h: If

h0(|s|)�|h(s)|�h−1
0 (|s|) on [−�′,�′]

where h0(s)= (1/s)e−s−	
and 	>0 (then (H2) is satisfied for H(s)=e−c′

1s
−	/2

when s is near 0,
and hence H2(s)=cs−	/2e−c′

1s
−	/2

when s is near 0 and H1(s)�c′′
2e

c′′
1s

−	/2
on (0,1] for some c,

c′
1, c

′′
1 , c

′′
2>0), then there exist c′, c′′, c′′′>0 such that

E(t)�c′′′
(
ln

(
c′
∫ t

0
�(s)ds+c′′

))−2/	

∀t�0

3. Faster than exponential growth of h: If

h0(|s|)�|h(s)|�h−1
0 (|s|) on [−�′,�′]

where h0(s)= (1/s)hn(s), 	>0 and

h1(s)=e−s−	
and hn(s)=e−1/hn−1(s), n=2,3, . . .

then (as in example 2) there exist c′, c′′, c′′′>0 such that

E(t)�c′′′
(
h̄n

(∫ t

0
�(s)ds

))−2/	

∀t�0

where

h̄1(t)= ln(c′t+c′′) and h̄n(t)= ln(h̄n−1(t)), n=2,3, . . .
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4. Between polynomial and exponential growth of h: If

h0(|s|)�|h(s)|�h−1
0 (|s|) on [−�′,�′]

where h0(s)= (1/s)e−(hn(s))	 , 	>1 and

h1(s)=− lns and hn(s)= ln(hn−1(s)), n=2,3, . . .

(then (H2) is satisfied for H(s)=e−(hn(
√
s/2))	 when s is near 0, and hence

H2(s)=−cs1/2(hn(c
′
1s

1/2))	−1h′
n(c

′
1s

1/2)e−(hn(c′
1s

1/2))	

when s is near 0 and

H1(s)�c′′
1e

(hn (c′
1s

1/2))	

on (0,1] for some c, c′
1, c

′′
1>0), then there exist c′, c′′, c′′′>0 such that

E(t)�c′′′e−2h̄n (
∫ t
0 �(s)ds) ∀t�0

where

h̄1(t)= (ln(c′t+c′′))1/	 and h̄n(t)=eh̄n−1(t), n=2,3, . . .

3. PROOF OF THE MAIN RESULT

In this section we prove our main stability result. The key point to show the general decay estimate
(10) is to construct a Lyapunov functional F , equivalent to E , which satisfies, for positive constants
c′ and t0,

F ′(t)�−c′�(t)H2(F(t)) ∀t�t0

where H2 is defined in Theorem 2.2. For this purpose, we define several functionals that allow us
to obtain the desired estimates and establish several lemmas.

Lemma 3.1
Let (�,�) be the (weak) solution of (5). Then the energy functional satisfies

E ′(t) = −1

2
g(t)

∫ 1

0
a(x)�2

x dx−
∫ 1

0
b(x)�t h(�t )dx+ 1

2
(g′ ◦�x)

� −
∫ 1

0
b(x)�t h(�t )dx+ 1

2
(g′ ◦�x)�0 (11)

Proof
By multiplying equations in (5) by �t and �t , respectively, and integrating over (0,1), using
integration by parts, hypotheses (H1)–(H4) and some manipulations as in [9], we obtain (11)
for any strong solution. This equality remains valid for weak solutions by a simple density
argument. �
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Next, we use a function � introduced by Cavalcanti and Oquendo [27], which helps in establishing
some desired estimates in the case where a �=0. By using the fact that a(0)>0 and a is continuous,
then there exists �>0 such that infx∈[0,�] a(x)��. Set

d=min

{
�, inf

x∈[0,1]{a(x)+b(x)}
}

>0

and let �∈C1([0,1]) be such that 0���a and

�(x)=0 if a(x)�d

4

�(x)=a(x) if a(x)�d

2

To simplify the computations we set

g�v=
∫ 1

0
�(x)

∫ t

0
g(t−s)(v(t)−v(s))dsdx

for all v∈ L2(0,1) and use c, throughout this paper, to denote a generic positive constant.

Lemma 3.2 (Cavalcanti and Oquendo [27])
The function � is not identically zero and satisfies

inf
x∈[0,1]{�(x)+b(x)}�d

2

Proof
For all x ∈[0,�], we have a(x)���d>d/2; therefore, by definition, �(x)=a(x)��; hence, � is not
identically zero over [0,1].

On the other hand, if a(x)�d/2, then �(x)�d/2, which implies that �(x)+b(x)�d/2. If
a(x)<d/2, then, by (H1), b(x)>d/2. Consequently, �(x)+b(x)�d/2. Therefore, infx∈[0,1]{�(x)+
b(x)}�d/2. �

Lemma 3.3 (Cavalcanti and Oquendo [27])
There exists a positive constant c such that

(g�v)2�cg◦vx

for all v∈H1
0 (0,1).

Proof
Let Sa ={x∈[0,1] :a(x)>d/4}. We should note that, by definition of d, 0∈ Sa; hence, �Sa∩
�(0,1) �=∅ and supp�⊂ Sa:

(g�v)2=
(∫

supp�
�(x)

∫ t

0
g1/2(t−s)g1/2(t−s)(v(t)−v(s))ds dx

)2
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By using Hölder’s inequality, a variant of Poincaré’s inequality (see [27]), we get

(g�v)2 � c

(∫ t

0
g(s)ds

)(∫
supp�

∫ t

0
g(t−s)(v(t)−v(s))2 ds dx

)

� c
∫
Sa

∫ t

0
g(t−s)(vx (t)−vx(s))

2 ds dx

Recalling the definition of Sa, we arrive at

(g�v)2�c
∫
Sa
a(x)

∫ t

0
g(t−s)(vx(t)−vx(s))

2 ds dx�cg◦vx �

Lemma 3.4
Under the assumptions (H1)–(H4), the functional I1 defined by

I1(t) :=−
∫ 1

0
�(x)�t

∫ t

0
g(t−s)(�(t)−�(s))ds dx

satisfies, along the (weak) solution, the estimate

I ′
1(t) � −

(∫ t

0
g(s)ds−


)∫ 1

0
�(x)�2

t dx+

∫ 1

0
(�x +�)2 dx+c


∫ 1

0
�2
x dx

− c



g′ ◦�x +c

(

+ 1




)
g◦�x + c




∫ 1

0
b(x)h2(�(t))dx (12)

for all 
>0.

Proof
By using equations in (5), we get

I ′
1(t) = −

∫ 1

0
��t

∫ t

0
g′(t−s)(�(t)−�(s))ds dx−

∫ 1

0
��2

t

(∫ t

0
g(s)ds

)
dx

−
∫ 1

0
�

[
�xx−

∫ t

0
g(t−s)(a(x)�x (s))x ds−�x−�−b(x)h(�t )

]

×
∫ t

0
g(t−s)(�(t)−�(s))ds dx

= −
∫ 1

0
��t

∫ t

0
g′(t−s)(�(t)−�(s))ds dx−

∫ 1

0
��2

t

(∫ t

0
g(s)ds

)
dx

+
∫ 1

0
��x

∫ t

0
g(t−s)(�x(t)−�x(s))ds dx+

∫ 1

0
�(�x +�)

∫ t

0
g(t−s)(�(t)−�(s))ds dx

−
∫ 1

0
�a

(∫ t

0
g(t−s)�x(s)ds

)(∫ t

0
g(t−s)(�x (t)−�x (s))ds

)
dx
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+
∫ 1

0
�′
(

�x −a
∫ t

0
g(t−s)�x(s)ds

)(∫ t

0
g(t−s)(�(t)−�(s))ds

)
dx

+
∫ 1

0
b(x)h(�t )

∫ t

0
g(t−s)(�(t)−�(s))ds dx

We now estimate the terms in the right side of the above equality as follows:
By using Young’s inequality and Lemma 3.3 (for g′) we obtain, for all 
>0,

−
∫ 1

0
��t

∫ t

0
g′(t−s)(�(t)−�(s))ds dx�


∫ 1

0
�(x)�2

t dx− c



g′ ◦�x

Similarly, we have

−
∫ 1

0
��x

∫ t

0
g(t−s)(�x (t)−�x (s))ds dx � 


∫ 1

0
�2
x dx+ c



g◦�x

−
∫ 1

0
�(�x +�)

∫ t

0
g(t−s)(�(t)−�(s))ds dx � 


∫ 1

0
(�x +�)2 dx+ c



g◦�x

−
∫ 1

0
�a

(∫ t

0
g(t−s)�x (s)ds

)(∫ t

0
g(t−s)(�x (t)−�x(s))ds

)
dx

�
′
∫ 1

0
a

(∫ t

0
g(t−s)(�x (s)−�x (t)+�x(t))ds

)2

dx

+ c


′
∫ 1

0
a

(∫ t

0
g(t−s)(�x (t)−�x(s))ds

)2

dx

�2
′
∫ 1

0
a�2

x

(∫ t

0
g(s)ds

)2

dx+
(
2
′+ c


′
)∫ 1

0
a

(∫ t

0
g(t−s)(�x(t)−�x(s))ds

)2

dx

�c
′
∫ 1

0
�2
x dx+c

(

′+ 1


′
)
g◦�x�


∫ 1

0
�2
x dx+c

(

+ 1




)
g◦�x

∫ 1

0
�′
(

�x −a
∫ t

0
g(t−s)�x(s)ds

)(∫ t

0
g(t−s)(�(t)−�(s))ds

)
dx

�

∫ 1

0
�2
x dx+c

(

+ 1




)
g◦�x

and ∫ 1

0
b(x)h(�t )

∫ t

0
g(t−s)(�(t)−�(s))ds dx�


∫ 1

0
b(x)h2(�t )dx+c

(

+ 1




)
g◦�x

By combining all the above estimates, the assertion of Lemma 3.4 is proved. �
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Lemma 3.5
Under the assumptions (H1)–(H4), the functional I2 defined by

I2(t) :=−
∫ 1

0
(��t +��t )dx

satisfies, along the (weak) solution, the estimate

I ′
2(t)�−

∫ 1

0
(�2

t +�2
t )dx+

∫ 1

0
(�x +�)2 dx+c

∫ 1

0
�2
x dx+cg◦�x +c

∫ 1

0
b(x)h2(�t )dx (13)

Proof
By exploiting Equations (5) and repeating the same procedure as in the above, we have

I ′
2(t) = −

∫ 1

0
(�2

t +�2
t )dx−

∫ 1

0
�(�x +�xx )dx

−
∫ 1

0
�

[
�xx −

∫ t

0
g(t−s)(a(x)�x (s))x ds−�x −�−b(x)h(�t )

]
dx

= −
∫ 1

0
(�2

t +�2
t )dx+

∫ 1

0
�2
x dx−

∫ 1

0
a(x)�x

(∫ t

0
g(t−s)�x (s)ds

)
dx

+
∫ 1

0
(�x +�)2 dx+

∫ 1

0
b(x)�h(�t )dx

� −
∫ 1

0
(�2

t +�2
t )dx+

∫ 1

0
(�x +�)2+c

∫ 1

0
�2
x dx+cg◦�x +c

∫ 1

0
b(x)h2(�t )dx

This completes the proof of Lemma 3.5. �

Lemma 3.6
Assume that (H1)–(H4) hold. Then, the functional I3 defined by

I3(t) :=−
∫ 1

0
�t (�x +�)dx+

∫ 1

0
�x�t dx−

∫ 1

0
a(x)�t

∫ t

0
g(t−s)�x (s)ds dx

satisfies, along the (weak) solution, the estimate

I ′
3(t) �

[(
�x −a(x)

∫ t

0
g(t−s)�x(s)ds

)
�x

]x=1

x=0
−(1−ε)

∫ 1

0
(�x +�)2 dx

+ε

∫ 1

0
�2
t dx− c

ε
g′ ◦�x + c

ε

∫ 1

0
�2
x dx+

∫ 1

0
�2
t dx+ c

ε

∫ 1

0
b(x)h2(�t )dx (14)

for any 0<ε<1.
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Proof
By exploiting Equations (5) and repeating the same procedure as in the above, we have

I ′
3(t) =

∫ 1

0
(�x +�)

[
�xx −

∫ t

0
g(t−s)(a(x)�x(s))x ds−�x −�−b(x)h(�t )

]
dx

+
∫ 1

0
(�xt +�t )�t dx+

∫ 1

0
�xt�t dx+

∫ 1

0
�x (�x +�)x dx

−
∫ 1

0
a(x)(�x+�)x

∫ t

0
g(t−s)�x(s)ds dx−

∫ 1

0
a(x)�t

(
g(0)�x+

∫ t

0
g′(t−s)�x (s)ds

)
dx

=
[
�x −a(x)

∫ t

0
g(t−s)�x (s)ds�x

]x=1

x=0

−
∫ 1

0
(�x +�)2 dx−

∫ 1

0
b(x)(�x +�)h(�t )dx+

∫ 1

0
�2
t dx

+g(t)
∫ 1

0
a(x)�x�t dx−

∫ 1

0
a(x)�t

∫ t

0
g′(t−s)(�x (s)−�x(t))ds dx

By using Young’s inequality, (14) is established. �

Lemma 3.7
Assume that (H1)–(H4) hold. Let m∈C1([0,1]) be a function satisfying m(0)=−m(1)=2. Then
there exists c>0 such that for any ε>0 the functionals I4 and I5 defined by

I4=
∫ 1

0
m(x)�t

(
�x −a(x)

∫ t

0
g(t−s)�x(s)ds

)
dx, I5 =

∫ 1

0
m(x)�t�x dx

satisfy, along the (weak) solution,

I ′
4(t) � −

((
�x(1, t)−a(1)

∫ t

0
g(t−s)�x (1,s)ds

)2

+
(

�x (0, t)−a(0)
∫ t

0
g(t−s)�x(0,s)ds

)2
)

+ε

∫ 1

0
(�x +�)2 dx+ c

ε

(∫ 1

0
�2
x dx+g◦�x

)
+c

(∫ 1

0
(�2

t +b(x)h2(�t ))dx−g′ ◦�x

)

and

I ′
5(t)�−(�2

x(1, t)+�2
x (0, t))+c

∫ 1

0
(�2

t +�2
x +�2

x)dx
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Proof
By exploiting Equations (5) and repeating the same procedure as in the above, we have

I ′
4(t) =

∫ 1

0
m

(
�x −a(x)

∫ t

0
g(t−s)�x (s)ds

)
x

(
�x −a(x)

∫ t

0
g(t−s)�x(s)ds

)
dx

−
∫ 1

0
m

(
�x −a(x)

∫ t

0
g(t−s)�x (s)ds

)
(�x +�+b(x)h(�t ))dx

+
∫ 1

0
m(x)�t

(
�xt −a(x)g(0)�x −a(x)

∫ t

0
g′(t−s)�x(s)ds

)
dx

= −
((

�x (1, t)−a(1)
∫ t

0
g(t−s)�x (1,s)ds

)2

+
(

�x(0, t)−a(0)
∫ t

0
g(t−s)�x(0,s)ds

)2
)

−1

2

∫ 1

0
m′(x)

(
�x −a(x)

∫ t

0
g(t−s)�x (s)ds

)2

dx

−
∫ 1

0
m(x)

(
�x −a(x)

∫ t

0
g(t−s)�x (s)ds

)
(�x +�+b(x)h(�t ))dx− 1

2

∫ 1

0
m′(x)�2

t dx

+
∫ 1

0
m(x)a(x)�t

(∫ t

0
g′(t−s)(�x(t)−�x (s))ds

)
dx+g(t)

∫ 1

0
m(x)a(x)�x�t dx

By using Young’s inequality and Lemma 3.3, the first estimate of Lemma 3.7 is established.
Similarly, we can prove the second estimate of Lemma 3.7. �

Lemma 3.8
Assume that (H1)–(H4) hold. Then, the functional I6 defined by

I6(t) := I3(t)+ 1

4ε
I4(t)+ε I5(t)

satisfies, along the (weak) solution, the estimate

I ′
6(t) � −

(
3

4
−cε

)∫ 1

0
(�x +�)2 dx+cε

∫ 1

0
�2
t dx+ c

ε

∫ 1

0
�2
t dx

+c

ε

∫ 1

0
b(x)h2(�t )dx+ c

ε

∫ 1

0
�2
x dx− c

ε
g′ ◦�x + c

ε
g◦�x (15)

for any 0<ε<1.

Proof
By using Lemmas 3.6 and 3.7, Young’s and Poincaré’s inequalities and the fact that

�2
x�2(�+�x)

2+2�2
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and (
�x −a(x)

∫ t

0
g(t−s)�x (s)ds

)
�x�ε�2

x + 1

4ε

(
�x −a(x)

∫ t

0
g(t−s)�x(s)ds

)2

we obtain (15). �

Let I7(t) := I6(t)+2cε I2(t). By using Lemmas 3.5 and 3.8, and fixing ε small enough, we obtain

I ′
7(t) � −1

2

∫ 1

0
(�x +�)2 dx−�

∫ 1

0
�2
t dx+c

∫ 1

0
�2
t dx+c

∫ 1

0
�2
x dx

+c
∫ 1

0
b(x)h2(�t )dx+cg◦�x −cg′ ◦�x (16)

where �=cε.
As in [9], we use the multiplier w given by the solution of

−wxx =�x , w(0)=w(1)=0 (17)

Lemma 3.9
The (weak) solution of (17) satisfies ∫ 1

0
w2

x dx�
∫ 1

0
�2 dx

and ∫ 1

0
w2
t dx�

∫ 1

0
�2
t dx

Proof
We multiply Equation (17) by w, integrate by parts and use the Cauchy–Schwarz inequality to get∫ 1

0
w2

x dx�
∫ 1

0
�2 dx

Next, we differentiate (17) with respect to t to obtain, by similar calculations,∫ 1

0
w2

xt dx�
∫ 1

0
�2
t dx

Poincaré’s inequality then yields ∫ 1

0
w2
t dx�

∫ 1

0
�2
t dx

This completes the proof of Lemma 3.9. �
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Lemma 3.10
Under the assumptions (H1)–(H4), the functional I8 defined by

I8(t) :=
∫ 1

0
(��t +w�t )dx

satisfies, along the (weak) solution, the estimate

I ′
8(t)�− l

2

∫ 1

0
�2
x dx+ c

ε

∫ 1

0
�2
t dx+ε

∫ 1

0
�2
t dx+c

(∫ 1

0
b(x)h2(�t )dx+g◦�x

)
(18)

for any 0<ε<l (l is defined in (H3)).

Proof
By exploiting Equations (5) and integrating by parts, we have

I ′
8(t) =

∫ 1

0
(�2

t −�2
x )dx+

∫ 1

0
a(x)�x

∫ t

0
g(t−s)�x(s)ds dx

−
∫ 1

0
�(�x +�+b(x)h(�t ))dx−

∫ 1

0
wx(�x +�)dx+

∫ 1

0
wt�t dx

�
∫ 1

0
�2
t dx− l

2

∫ 1

0
�2
x dx+c

(∫ 1

0
b(x)h2(�t )dx+g◦�x

)

+
∫ 1

0
(w2

x −�2)dx+ c

�

∫ 1

0
�2
t dx+ε

∫ 1

0
w2
t

Lemma 3.9 gives the desired result. �

For N1,N2,N3>1, let

I9(t) :=N1E(t)+N2 I1(t)+N3 I8(t)+ I7(t)

and let t0>0 and g0=∫ t00 g(s)ds>0. By combining (11), (12), (16), (18) and taking 
=1/4N2,
we arrive at

I ′
9(t) � −

(
N2g0− 1

4

)∫ 1

0
(�(x)+b(x))�2

t dx+c
N3

ε

∫ 1

0
�2
t dx

−N1

∫ 1

0
b(x)�t h(�t )dx+

(
N2g0− 1

4

)∫ 1

0
b(x)�2

t dx+c(N2
2 +N3)

∫ 1

0
b(x)h2(�t )dx

−
(
l N3

2
−c− c

N2

)∫ 1

0
�2
x dx−(c−N3ε)

∫ 1

0
�2
t dx− 1

4

∫ 1

0
(�x +�)2 dx

+
(
N1

2
−cN2

2 −c

)
g′ ◦�x +c(N2

2 +N3)g◦�x (19)

for all t�t0 and 0<ε<l.
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Now, if a �=0, we choose N3 large enough so that

l N3

2
>c

and then ε small enough so that

ε<
c

N3

Next, we choose N2 large enough so that

N2g0− 1

4
>
2cN3

dε
,

l N3

2
−c− c

N2
>0

Finally, we choose N1 large enough so that

N1

2
−cN2

2 −c�0

By using (H3), we arrive at

I ′
9(t) � −c

∫ 1

0
(�(x)+b(x))�2

t dx+c
∫ 1

0
b(x)(�2

t +h2(�t ))dx

−c
∫ 1

0
(�2

x +�2
t )dx− 1

4

∫ 1

0
(�x +�)2 dx+cg◦�x (20)

Lemma 3.2 and estimate (8) then lead to

I ′
9(t)�−cE(t)+cg◦�x +c

∫ 1

0
b(x)(�2

t +h2(�t ))dx (21)

for all t�t0.
If a=0, then I1 =0 and I9(t) :=N1E(t)+N3 I8(t)+ I7(t). Then (19) takes the form

I ′
9(t) � c

N3

ε

∫ 1

0
�2
t dx−N1

∫ 1

0
b(x)�t h(�t )dx+cN3

∫ 1

0
b(x)h2(�t )dx

−
(
N3

2
−c

)∫ 1

0
�2
x dx−(c−N3ε)

∫ 1

0
�2
t dx− 1

4

∫ 1

0
(�x +�)2 dx

This implies (21) by repeating the above procedure of choosing the constants and taking into
account the fact that infx∈[0,1]{b(x)}�0.

On the other hand, we can choose N1 even larger (if needed) so that

I9(t)∼ E(t) (22)

Now we estimate the last integral of (21). For this reason, we consider the following partition
of (0,1) (where �′ is defined in (H2)):

�+ ={x∈ (0,1) : |�t |>�′} and �− ={x∈ (0,1) : |�t |��′} (23)
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From (H2) and (11), we easily show that∫
�+

b(x)(�2
t +h2(�t ))dx � c

∫
�+

b(x)�t h(�t )dx

� c
∫ 1

0
b(x)�t h(�t )dx�−cE ′(t) (24)

Case 1: H is linear on [0,�′]: Then there exist c′
1, c

′
2>0 such that c′

1|s|�|h(s)|�c′
2|s| for all

s∈R+, and then (24) is satisfied on all (0,1). Using (21) and (24), we deduce that

(I9(t)+cE(t))′�−cH2(E(t))+cg◦�x (25)

Case 2: H ′(0)=0 and H ′′>0 on (0,�′]: In this case, let H∗ denote the dual function of the
convex function H in the sense of Young (for the definition, see [30, p. 64]). Because H ′′>0 on
(0,�1] and H ′(0)=0 and (H2) is still satisfied for any �′′ ∈ (0,�′], we can assume, without loss of
generality, that H ′ defines a bijection from R+ to R+. Then H∗ is the Legendre transform of H ,
which is given by

H∗(s)= s(H ′)(s)−H [(H ′)−1(s)] ∀s∈R+

see Arnold [30, pp. 61–62] and Liu and Zuazua [20] for this matter.
By using Jensen’s inequality (see [31]) and (11), we deduce that∫

�−
b(x)(�2

t +h2(�t ))dx � c
∫

�−
b(x)H−1(�t h(�t ))dx

� c
∫

�−
H−1(b(x)�t h(�t ))dx�cH−1

(∫ 1

0
b(x)�t h(�t )dx

)

� cH−1(−cE ′(t)) (26)

Therefore, we deduce from (21), (24) and (26) that

I ′
9(t)�−cE(t)+cH−1(−cE ′(t))−cE ′(t)+cg◦�x ∀t�t0 (27)

Using Young’s inequality (see [30, p. 64]) and the fact that

H∗�s(H ′)(s), E ′�0, H ′′�0

and choosing �0>0 small enough, we obtain, for c0>0 large enough,

(H ′(�0E(t))(I9(t)+cE(t))+c0E(t))′ = �0E
′(t)H ′′(�0E(t))(I9(t)+cE(t))

+H ′(�0E(t))(I ′
9(t)+cE ′(t))+c0E

′(t)

� −cH ′(�0E(t))E(t)+cH ′(�0E(t))H−1(−cE ′(t))
+c0E

′(t)+cH ′(�0E(t))g◦�x

� −cH ′(�0E(t))E(t)+cH∗(H ′(�0E(t)))−cE ′(t)
+c0E

′(t)+cg◦�x
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� −cH ′(�0E(t))E(t)+c�0H
′(�0E(t))E(t)+cg◦�x

� −cH ′(�0E(t))E(t)+cg◦�x =−cH2(E(t))+cg◦�x

Let

I10(t)=
{
I9(t)+cE(t) if H is linear on [0,�′]
H ′(�0E(t))(I9(t)+cE(t))+c0E(t) if H ′(0)=0 and H ′′>0 on (0,�′]

Using (22), we have

I10(t)∼ E(t)

and exploiting (25), we easily deduce that

I ′
10(t)�−cH2(E(t))+cg◦�x ∀t�t0

As in [10], taking in account (11) and (H4), we obtain

(�(t)I10(t))
′ = �′(t)I10(t)+�(t)I ′

10(t)

� −c�(t)H2(E(t))+c�(t)g◦�x

� −c�(t)H2(E(t))+c(�g)◦�x

� −c�(t)H2(E(t))−cg′ ◦�x

� −c�(t)H2(E(t))−cE ′

Let F(t)= �(�(t)I10(t)+cE(t)), where 0<�<�̄ and �̄ is a positive constant satisfying

�(t)I10(t)+cE(t)�1

�̄
E(t) ∀t�0

We also have F∼ E and

F ′(t) � −c��(t)H2(E(t))�−c��(t)H2(�̄(�(t)I10(t)+cE(t)))

� −c��(t)H2(�(�(t)I10(t)+cE(t)))=−c��(t)H2(F(t))

A simple integration over (t0, t) then yields

F(t)�H−1
1

(
c�
∫ t

0
�(s)ds+H1(F(t0))−c�

∫ t0

0
�(s)ds

)

where H1(t)=
∫ 1
t (1/H2(s))ds.

Since limt→0 H1(t)=+∞ and

0�F(t0)�
�

�̄
E(t0)�

�

�̄
E(0)

we may choose � small enough so that

H1(F(t0))−c�
∫ t0

0
�(s)ds�0
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consequently, F(t)�H−1
1 (c�

∫ t
0 �(s)ds). Therefore, there exist constants c′, c′′>0 for which

E(t)�c′′H−1
1

(
c′
∫ t

0
�(s)ds

)
∀t�0

which gives (10). This completes the proof of the theorem.

Remarks

1. By taking a≡1 and b≡0, (5) reduces to the system studied in [9]. In this case our result
is established under weaker conditions on g. Precisely, we do not require anything on g′′ as
in (1.6) and (1.7) of [9]. We only need g to be differentiable satisfying (H3) and (H4) (see
also [32]).

2. Our results are still true if we consider variable coefficients (depending only on space
variable): �1(x), �2(x), k1(x) and k2(x) such that �1, �2, k1, k2∈C1(0, L), k1/�1=k2/�2,
inf k1/�1>0 and sup k1/�1<+∞.

4. COMMENTS AND OPEN QUESTIONS

In this paper, we considered a model of Timoshenko beams with frictional and viscoelastic damp-
ings in the case of same speeds of propagation and proved a general decay estimate, which led to
precise decay rates of the energy. Many interesting questions are still open and have to be studied.
Some of them are the following:

1. The optimality of our estimate (10).
2. The case of different speeds of propagation. The only known results in this case were proved

in the case of a damping h satisfying (H2) with H linear. See [6–8].
3. The semilinear case; that is, we add f1(�) and f2(�) to the first two equations of (5),

respectively, where f1 and f2 are given functions.
4. The case of function g satisfying (H3) and (H4) with arbitrary function � (not necessarily

nonincreasing).
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