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Abstract. The asymptotic stability of one-dimensional linear Bresse sys-
tems under infinite memories was proved by Guesmia and Kafini (Math
Methods Appl Sci 38:2389-2402, 2015) under three infinite memories,
Guesmia and Kirane (Z Angew Math Phys 67:1-39, 2016) under two
infinite memories, and De Lima Santos et al. (Q Appl Math 73:23-54,
2015) under one infinite memory acting on the shear angle displace-
ments. The subject of this paper is to complete these results by proving
that the asymptotic stability of Bresse systems holds also under one
infinite memory acting on the longitudinal displacements.
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1. Introduction

In this paper, we consider a Bresse system in one-dimensional open bound-
ed domain under the homogeneous Dirichlet-Neumann-Neumann boundary
conditions and with one infinite memory acting on the third equation (lon-
gitudinal displacements)

prote — ki(pe + ¢ + lw)e — lkz(we — lp) =0,

p21/)tt - kQ'lpwz + k1 (QOZ + w + lw) = 0, N

prwee — k3(wz — 1p)a + k1 (pe + 9 + lw) +/ 9(8)wzz (z,t — s)ds =0,
£(0,1) = 920, 1) = wa(0,8) = 9(L, 1) = a(11) = wa (L, ) =0, (1.1)
o(x,0) = po(x), pi(x,0) = @1(x),

1/)(1’,0) = 1/)0(55)7 wt(w70) = wl(‘r)v

w(zx, —t) = wo(z,t), we(z,0) = wi(x),

where (z,t) €]0, L[xRy, g : Ry — Ry is a given function, and L, I, p;, k; €
R .
+
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The Bresse system [3] is known as the circular arch problem, where
o, w and v represent, respectively, the vertical, longitudinal and shear angle
displacements. For more details, we refer to [15] and [16] (see also [12] and
13)).

The stability of Bresse systems with (local or global) frictional dampings
was obtained by several researchers in the last few years; see [1], [7], [19]
and [21] for the case of one frictional damping acting on the shear angle
displacements, [2], [23] and [24] for the case of two frictional dampings, and
[4], [20], [22] and [24] for the case of three frictional dampings. When each
equation is controlled by a frictional damping, the exponential stability of
Bresse systems was proved regardless to the speeds of wave propagations

given by
[k |k |k
s1=1]2L, so=4/2 and s3=[—2. (1.2)
p1 P2 P1

When at least one equation is free, the obtained stability estimate is of ex-
ponential or polynomial type depending on some relations between s;. When
only one frictional damping is considered, it was proved that the exponential
stability is equivalent to
S§1 = S92 = S3. (13)
Similar stability results were proved in [8], [17] and [18] in case where the
Bresse system is coupled with one or two heat equations in a certain manner.
The stability of Bresse systems with memories was also recently studied.
When the three equations are controlled via infinite memories of the form

+00 too
/ 91(8)@uz(z,t — s)ds, / 92(8)Vzz(z,t — s) ds and
0 0

“+o0
/ 93(8)waz(,t — 8) ds,
0

where g; : Ry — Ry are differentiable, non-increasing and integrable func-
tions on Ry, the stability was proved in [12] regardless to s;. The obtained
decay estimate in [12] depends only on the arbitrary growth at infinity of
s +— gi(s). When only two memories are considered, the stability of Bresse
systems was proved in [13], where the decay rate depends also on s; and the
smoothness of initial data.

As far as we know, the first stability result for Bresse systems with only
one infinite memory is the one obtained in [6] under

+oo
/0 9(8)WUga(z,t — s)ds (1.4)

acting on the shear angle displacements (the second equation in (1.1)), where
g : Ry — Ry converges esponentially to zero at infinity.

Our objective in this paper is to prove that the asymptotic stability of
Bresse systems holds also under one infinite memory acting on the longitu-
dinal displacements; that is (1.1) is stable, where the decay rate of solutions
depends on the arbitrary growth at infinity of the kernel g, the speeds of
wave propagations (1.2) and the smoothness of initial data.
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The paper is organized as follows. In Sect. 2, we present our hypotheses
and state our main results. The proof of our main results will be given in
Sect. 3.

2. Hypotheses and Main Results

Following the method of [5], we consider the functional

n(x,t,s) =w(z,t) —w(r,t —s) in]0, L[xR; x R4. (2.1)
This functional satisfies
N +ns —w =0 in ]0, L[xRy x R4,
N:(0,t,8) =0, (L,t,8) =0 in Ry xRy, (2.2)
n(x,t,0) =0 in 10, L[xRy.

T
Let 770($75) = T](JT,O,S), Ul = (¢07¢07w05§017¢17w17n0) ) U= (@awawa(pt:
Y, we,m) T and

+oo
g’ = / g(s)ds. (2.3)
0
Then the system (1.1) takes the following abstract form:
U, = AU,
’ . (2.4)
Ut=0)=U",
where A is the linear operator defined by
Pt
e
Wt
25
AU _ %@zz - lplisso + %wz + pil(kl + k3)wz
| B, B2, — By — By,
p2 7T T po WEL  py P2
+oo
— L (k1 + k) — B+ L (ks — ¢°) wea — li’jlw + o e ds
we — 773
Let
L +oo
Lo=<wv:R, — H0, L], / / gv2dsda < +o0 (2.5)
0o Jo
and

H = H3 (0, L]) x (H1(0,L])* x L2(10, L]) x (L2(J0,L)))* x Lo, ~ (2.6)

where
L2(]0,L[) = {v e L2(Jo, L)), /Lvdx = 0} (2.7)
and

H(0,L]) = {v € H'(Jo, L|), /L vdr = o} : (2.8)
0
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The domain D(A) of A is defined by

D(A)= {Vz(vl, o) TEH, AV € H, v7(0) = 0, 9,v2(0) = D,v3(0) = 0,
(2.9)
aT’UQ(L) = 630’1)3(.[/) = 0, 6931)7('70) = 8931}7(', L) = O}

Remark 2.1. As in [13], integrating on |0, L[ the second and third equations
n (1.1), and using the boundary conditions, we verify that

]C L
</ Ydo )—l—/ Ydr + — s wdx =0 (2.10)
it /Lwdx LN +”€—1/ bdz (2.11)
0 P1L Jo

Therefore, (2.10) implies that

L L 1 (r
/Owda:——matt (/o wdx>—l/0 ¥ de. (2.12)

Substituting (2.12) into (2.11), we get

L ky Z2k1 L
Ot Ydr | + Ot Ydx | =0. (2.13)
0 P2 P1 0
Let lo = /& + ER Then, solving (2.13), we find

and

L
/ 1 dx = ¢ cos (lot) + Co sin (lot) + Cat + Cq4, (214)
0
where ¢y, -+, ¢4 are real constants. By combining (2.12) and (2.14), we get
L 2 2 ~ ~
- pglo 1 - pglo 1 . C3 Cy
dz = _— - - lot _— - lot) — —t — —.
/0 wdx Cl(lkl l)cos(o)+02<lkl 7 sin (Iot) i 7
(2.15)

Let (1po(z),wo(x)) = (Yo(x), wo(x,0)). Using the initial data of ¢ and w in
(1.1), we see that

0
L L
- Ik,
~:1—’“1) do — —2 | o da.
f= (1) [ doae— 5 [Caa

1; =Y — % (51 cos (lot) + ¢o sin (lot) + 3t + 64) (2.16)

Let
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and
. L (. (pald _ [ palg C3, C4
w=w- 7 ( 1 ( " cos (lpt) + 2 1 sin (lot) ; t ;
(2.17)
Then, from (2.14) and (2.15), one can check that
L L L
1/)dx:/ zbdx:/ ndx =0, (2.18)
0 0

where
n(x,t,s) = w(z,t) — w(z,t —s) in]0, L[xRy x R,.

Therefore, Poincaré’s inequality
L L
de¢o >0 / v?dr < co/ vide, Yo e HX(0,L])UH;(J0,L]) (2.19)
0 0

is applicable for @, w and 7. In addition, (<p, w) satisfies the boundary
conditions and the first three equations in (1.1) w1th initial data

1, 5 1, . 5 1 2 1 C
o — Z(Cl +¢4), Y1 — Z(ZOCQ + ¢3), wo — 7 ( (p20 — l) — ;) and

Ik
]. - pgl% ]. 53
"o <ch° ( k1) 1

instead of g, 11, wy and wq, respectively. In the sequel, we work with 1;, w
and 77 instead of ¢, w and 7, respectively, but, for simplicity of notation, we
use ¥, w and 7.

Now, the following hypothesis guarantees the well-posedness of (2.4):

(H1) Assume that the function g : Ry — Ry is differentiable, non-
increasing and integrable on R, and there exists a positive constant kg such
that, for any

(g, 0, w)" € H(0, L[) x (H(0, L])?

we have

L
ko/ (02 +¢2 +w?) da
0

L
< / (ko2 + k1 (00 + 1 + lw)? + ks (wy — lp)® — g%w?) da.  (2.20)
0
Moreover, assume that there exists a positive constant § such that

—Be(s) <g'(s), VseR,. (2.21)
We notice that, under the hypothesis (H1), the sets Ly and H are Hilbert
spaces equipped with the inner products that generate the norms, for v € Ly
and V = (vy,---,v7)T € H,

L “+oo
o, = [ [ wtasas (2.29)
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and

L
HVH?{ = / (ka(az’l}z)z + k1 (6ZU1 + v + l’l}3)2 + k3(Ozvs — l’l}1)2 — go(az’l)g)Q) dzx
0

L
+/ (plvi + povd + plvg) dz + Hv7||2LU. (2.23)
0

Exactly as in [13] one can prove that A generates a Cp-semigroup of
contractions in H by proving that —.A4 is maximal monotone (it is enough
to neglect the second memory in the first system considered in [13], and the
proof is the same as in [13]), and deduce the following well-posedness results
of (2.4).

Theorem 2.2. Assume that (H1) holds. Let n € N and U € D(A™). Then
(2.4) has a unique solution

U € np_oC" % (Ry; D (AY)). (2.24)

To get the stability of (2.4), we consider the following additional hy-
pothesis:

(H2) Assume that ¢g(0) > 0, and there exist a positive constant « and
an increasing strictly convex function G : Ry — Ry of class C*(Ry) N
C?(]0, +o0[) satisfying

G0)=G"(0)=0 and lim G'(t) =+o0

t—+oo
such that
g'(s) < —ag(s), VseR, (2.25)
or o
[ et s s e (220)

Let us consider the energy functional E associated to (2.4) defined by
1
E(t) = SIU® 5 (2.27)
First, we consider the case (1.3).

Theorem 2.3. Assume that (H1), (H2) and (1.3) are satisfied. Let U° € 'H
be such that

oo s L 2
(2.25) holds or sup/t G—l(g()’(s))/o (n2(z,s —t))” dzds < +oo.

teR4 -9
(2.28)
Then there exist positive constants | and g (not depending neither on | nor
on g) so that, if

I<l and ¢°<g, (2.29)
then there exist positive constants ¢’ and ¢’ satisfying

E'(t) < 'G7Y(t), VteRy, (2.30)
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where

1 .
~ 1 .25) hold
G(s) = / —— dr and Go(s)=1° i (2.25) holds, ) o
s Go(1) sG'(s) if (2.26) holds.
When (1.3) does not hold and s; = s9; that is
s1 =582 and s; # s3, (2.32)
we prove the following weaker stability result.

Theorem 2.4. Assume that (H1), (H2) and (2.32) are satisfied. Let n € N*
and U° € D(A™) be such that

teo 9(s) Yok o 2
(2.25) holds or tsél]gi k:%l?»(,n/t m/o <35 m;(a:,s—t)) dzds < +oo.

(2.33)

Then there exist positive constants [ and g (not depending neither on l nor on
g) such that, if (2.29) holds, then there exists a positive constant c,, satisfying

E(t) < caGy (%”) V>0, (2.34)

where Gp,(s) = G1(8Gm_1(8)), form = 2,---.n, Gy = Gy' and Gy is
defined in (2.31).

Remark 2.5. 1. If (2.25) holds, then (2.30) and (2.34) give, respectively, for
some positive constants d; and ds,

E(t) < dje” %!, VteRy (2.35)

and
1

B(t) < ;i vt > 0. (2.36)

The particular estimates (2.35) and (2.36) (for n = 1) coincide with the ones

of [6] obtained in case (1.4) with g converging exponentially to zero at infinity.

2. Condition (2.26) (introduced in [10]) allows s — g¢(s) to have a decay

rate at infinity arbitrarily close to % For specific examples of g and U°

satisfying (2.26) and (2.33), respectively, and the corresponding decay rates
(2.30) and (2.34), see [10] and [11].

3. Proof of (2.30) and (2.34)

3.1. Preliminaries Lemmas

We will use ¢, ¢y,, ¢y, s, -+, throughout the rest of this paper, to denote
generic positive constants which depend continuously on the initial data U°
and some constants y1, yo, - - -, introduced in the proof.

First, simple computatlons see [13]), we see that

+oo
/ / g'n?dsdz. (3.1)

Recalling that ¢ is non-increasing, (3.1) implies that E is non-increasing.
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We start our lemmas by considering the following functional:

L “+oo
I(t) = fpl/o wt/o g(s)ndsdx. (3.2)

Lemma 3.1. For any dp > 0, there emwists c;, 1 40 g0y > 0 such that

L +oo
10 < - [ wtderdiB@es,pa0 [ [ (o0 - () i dsd
0 0

(3.3)
Proof. First, noticing that
+oo t
at/o g(s)nds = 8,5/00 g(t — s)(w(t) —w(s))ds t
= [ gt - wenas ([ o= sas)w
that is . .
s)nds = "(s)nds + g%w;. )
8,5/0 g(s)nd /0 g'(s)nds+g (3.4)

Second, using Young’s and Holder’s inequalities, we get the following inequal-
ity: for any A > 0, there exists ¢y > 0 such that, for any v € L?(]0, L[) and

fE{nm
<)\/ vdx+c,\g/ /+<><> s)f2dsdz. (3.5)

L L “+oco
< /\/ vide — cA7g(0)/ / g (s)f*dsdz.
0 0 0

(3.6)
Now, direct computations, using the third equation in (1.1), integrating by
parts and using the boundary conditions and (3.4), yield
2

L L “+oo
v == [Cutacs [ [ aomas) a
0 0 0

L “+o0
+ k3/ (wy — o) / g(s)n, dsdz
0 0

L “+o00
+lk1/ (@x+¢+lw)/ g(s)ndsdx

+oo +oo
fpl/ wt/ s)ndsdx — g / wT/ $)n, ds da.

Using (3.5) and (3.6) for the last four terms in the above equality, Poincaré’s
inequality (2.19) for n, and (2.20) and Hélder’s inequality to estimate

+oo
s)fdsdx

Similarly,

“+oo
'(s)fdsdx

2

L “+o0
/ w?dz and (/ 9(8)Nx ds) ,
0 0

respectively, we get (3.3). O
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Lemma 3.2. Let

L
J(t) = —pg/o (00 + 9 + lw)py dz — 2—'01/ bupy da. (3.7)

Then, for any €y, €1 > 0, there exists c.,; > 0 such that

L 5
J'(t) gkl/ (%+w+zw)2dx+lk2k5“/ (wa — lp ”‘”kd/ v2dx
0 I 2k1L 0 Qk €1
k
+ (—p2 + €0) ¢fdx+c€011/ w?dx+( 2101 7}02)/ Vet da.
0 0
(3.8)

Proof. By exploiting the first two equations in (1.1), integrating by parts and
using the boundary conditions, we get

L k
J’(t):kl/ (@x+¢+lw)2dx—|—< 2P )/ 1/Jtcpxtdx—p2/ 1/1t dz
0
L
lkok
_pgl/ Yywy da — ;3/ (wy — 1p)thy d.
0 1 Jo

Applying Young’s inequality for the last two terms in the above equality, we

find (3.8). O
Lemma 3.3. Let
L kspr [*
K(t) = p / (pz + 0 + lw)w; " (wy — 1) da
0
p L “+oc0o
7—1/ @t/ g(s)w,(t — s)ds dz. (3.9)
k1 Jo 0

Then, for any 0o, €0 > 0, there exist s, 1,40,4(0)5 Ceo,t > 0 such that

K'(t) < —lkl/ (P + 1 + lw)* dz +@/ (we — 1p)? dz + S0 E(t)

k1
_lk L
/ — lp)ws dz + / (cepwi + €o¥?) da I:pl / ©F da
1
+oo 0
+ p1 (173 - 1> / Watpr AT + ¢5, 1. g0 g(O)/ / 5))77925 ds de.
0
(3.10)

Proof. First, we notice that

too t
875/0 g(s)w,(t —s)ds = 8t/ g(t — s)w,(s)ds

—00

that is
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Now, using the first and third equations in (1.1), integrating by parts, recall-
ing (3.11) and using the boundary conditions, we find

, L lk)2 L 5 ks L
K'(t) = —lk1 (o + 9+ lw)? dz + =2 "t Jo (we — lp)*dz + p1 e 1 A prwy do
L

Ik L lksg® L
+lp1/ w2 dz _37/)1/ 02 da — ]:g / (wg —lgo)wzdx-i-/n/ PYrws do
ki Jo 0

“+ oo
+ zi/ <pt/ nxdsdw-i-—/ lgo)/ $)ng dsdz.

By applying (3.5), (3.6) and Young’s inequality for the last three terms in
the above equality and exploiting (2.20), we deduce (3.10). O

Lemma 3.4. Let
L x L
PO = ik [ (w:=19) [y t)dyds—piks [
0 0 0

X /z(% + ¢+ lw)(y,t) dy da. (3.12)
0

Then, for any g, dg, €2 > 0, there exist ¢y, cs5y.q0 > 0 such that

L
P'(t) < k2/ (npz+1p+lw)2dx—k3/ (we — l)? dax + S0 E(t)
0

L k
+ ( plkl + p1k1€2 + EO)/ Sot dz +Ce l/ wt dz T+ — Copl ! / wt dz
0

+oo
+ kag® / (we — lw)wzdx-l-csng/ / g(s)n? dsdz.
(3.13)

Proof. By exploiting the first and third equations in (1.1), integrating by
parts and using (2.18) and the boundary conditions, we get

L L L
P/(t):plkig/ wfdm—plkl/ ¢§dm—k§/ (W, — lp)? dz
0 0 0

L
+k%/ (¢ + ¥+ lw)?dz
0

L L T
g [ = tounds = [ [ inton)
0 0 0
+ (k1 — k3)w(y, 1)) dy da
L +oo
fk3/ (wmflgo)/ g(s)n, dsdz. (3.14)
0 0
Noticing that the functions
xH/ Ur(y,t)dy  and xH/ w(y,t) dy
0 0

vanish at 0 and L (because of (2.18)), then, applying (2.19), we have

L T 2 L
/ (/ Vi (y, 1) dy) de < Co/ Y2 dz (3.15)
0 0 0
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and

2 L
dz < co/ w? d. (3.16)
0

[ ([ o)

By applying Young’s inequality and (3.5) for the last two terms in (3.14),
and recalling (2.20), (3.15) and (3.16), we conclude (3.13). O

Lemma 3.5. Let

L
R(t) = /0 (prppr + pabiy + prwwy) da. (3.17)

Then, for any 6y > 0, there exists c5, go > 0 such that
L
R(t) < / (P17 + 2t} + 1w} — k2l — k1w + 9 + lw)? — ks(ws — lp)?) da
0
L L “+oo
+4° / w2 dz + o E(t) + Cs4,g° / / g(s)n? dsdz. (3.18)
0 o Jo

Proof. By exploiting the first three equations in (1.1), integrating by parts
and using the boundary conditions, we get

L
RO = [ (o1t + pavi + prud = kot = (o + 9+ 10)? — k(s — 1)) da

0 L L +oo
+g0/ w2 dz —/ wx/ g(s)ng dsdzx.
0 0 0

Applying (2.20) and (3.5) for the last term in the above equality, we arrive
at (3.18). 0

Let N, N1, Ny, N3, Ny > 0 and

N.
F = NE+N11+N2P+T3K+N4R+J. (3.19)
Then, by combining (3.3), (3.8), (3.10), (3.13) and (3.18), and exploiting (3.1)
to estimate the integral of —g'n2, we obtain

L lkok lkok
F'(t) < /0 <l190? + 1297 + l3w] + <l4 + ﬁ) P2+ <l5 + ;le) (we — l@)2> dx

L
—|—/ (l6(pa + % + lw)? + " Naw?2 + ¢°l7(we — lp)ws) dz + doci N, ... N, E(t)
0
L “+ oo 5
+(N_050,1,90,9(0),N1,Ng)E/(t)+c5oyl,go,g(0),N1,“‘,N4/ / g(s)nmdsdx
o Jo

k L
+ <2—p1 — p2> / Yzt d
k’l 0

N. k L L
+ ‘7)1 <k73 - 1) / Wetor AT + €0t N, N, / (97 +17) dz
1 0 J0O

L
+Clv€u’N'z,N3/ wt2 dz, (320)
0
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where
ks N k1N
=ik (5= 1) No = P22 g Nyl = B2 Ny —
k1 2€2
2 k3 N3
I3 =—p1goN1 + p1Na, ls=—kaNy, Is=—k3sNo+ o k3 Ny,

N-
le = k1 + k%NQ — k1N3 —k1Ny and Il; =k3 (NQ — kg)
1

At this point, we choose carefully the constants N, N;, ¢; and &g to get suit-
able values of [;. We choose €5 € }O, 2(%71%3) { After we pick No > 0 small
enough so that

Cop1k1 N2 < 1, <I€1 (* — 1) Coplkl — k3> N2 < 1,

2p262 2 29262
k ki +k k
( s | kit B(Copll—k3>>Ng<1and COPL () 4 ky) N < 1.
2 k1 2p2€2 ,026

Next we fix N3 > 0 such that

N3 < —k (1 + (kz — Copﬂﬁ) Ng)
kg 2[)262
and

CopP1 kl k k162
N3 > ki1 N. ——1) N 1 N: .
3 rnax{ 1( +2p2€2> 2’k3< ) 2’k1+k3< + 5 V2

Noticing that N3 exists according to the choice of Ny. Then we choose Ny > 0
so that

Ny <min< 1 — coplklNz,k3N3+k‘1( 2)N2
2/)262 k 2

and
ks
N4 > max —k3N2+ka3,1+k‘1N2—N3 .
1

The constant Ny exists thanks to the choice of N3, Ny and €. By virtue of
the choice of €3, Ny, N3 and Ny, we see that

maX{ll,lg,l4,l5,l6} < 0. (3.21)

At this step, we choose €1 = 4/ l5 and we put [= k k l4l5 (€1 and [ are well
defined from (3.21)). Then, if [ satlsﬁes the first inequality in (2.29), we get

ks 0 and 1, 4 F2hsa

l
4t 2k161 le

<0. (3.22)
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On the other hand, from (2.20) and Young’s inequality, we find that

L
/ (gON4wi + %7 (wy — l(p)wm) dz
0

L ksl
[ (s )+ )
JO

2
<g° (i (N T ) L ) / (k22 + ki (0 + ¢ + lw)? + kz(we — 1p)?) dz
2k3 Jo
(3.23)
Let

_ 2ko . 1 lkoks 1 lkokser 1

g:= min< —— | lg + ,—— | s+ ,——ls
2 (N4 + 27}@3) + kol% ko 2k1e1 k3 2k1 k1

(g > 0 according to (3.21) and (3.22)). Because €1, lg, l5, lg and I7 do not

depend neither on [ nor on g, then [ and g do not depend neither on [ nor on
g- So, if ¥ satisfies the second inequality in (2.29), then

2
Ly + 522 + g%k (L(N4+ﬁ)+%),l5+%

Ao = max 2
+9%ks (& (N4 o)+ 5),
0 1 17
le +9 k1 k’ Ny + % + 5 <0, (324)

and therefore, using (3.23),

L
lkgkg 2 lkokzeq 2

l l e — 1
/0 << 2ky€ >¢ (5+ 2k >(w #)

+16(px + ¢ +w)? 4+ g Nyw? + ¢°l7 (w, — lo)w ) dz

L
< /\0/ (V2 + (wy — 1) + (9o + ¥ + w)?) da. (3.25)
0

After, because [, [, l2, N2 and N3 do not depend on €y, we can choose €5 > 0
small enough such that

l1 + €ocin, Ny <0 and Iz + eocp Ny Ny < 0, (3.26)
and then we fix N; large enough so that
I3 4 Cleg, Ny, Ny < 0. (3.27)
Therefore, from (3.24), (3.26) and (3.27) we see that

1 1 1 Ao Ao Ao
max {E(ll + €0CI,Na N3 )5 5(12 + €0CI,Na N3 )5 E(ZS + ¢ No N30 ), T ks ?1} < 0.

Finally, we choose §p > 0 small enough such that

N 1 1
€1 '= —2max {(11 + €oc1, N, N3 ) — (2 + €0ci, N, N,),
P1 P2

1 Ao Ao A
X —(ls 4 €1, Ny N3 e0)s 20 20 20

— 0 > 0.
1 ) k kg k } 0CI,Ny,-++ ,Ny
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Then, using (2.23) and (2.27), and recalling that k;‘;—fl p2 = 0 (because
s1 = sg thanks to (1.3) or (2.32)), we deduce from (3.20) and (3.25) that

+oo
F'(t) < —¢1E(t)+ (N —c¢)E'(t —|—c/ / s)nzdsdx
o Jo

+ Napy (ks 1 / Warpe da. (3.28)
l kl 0

Now, we estimate the integral of gn? in (3.28). When (2.25) holds, we see
that, by virtue of (3.1),

/ /+°° s)n2dsdx < ——E (t). (3.29)

When (2.26) holds, we apply Lemma 3.6 [11] (in the particular case B = —0,,
and [| - || = || - [lz2qo,zp) to get the following inequality.

Lemma 3.6. There exists a positive constant ¢ such that, for any 79 > 0, we
have

+oo
G (rE (1)) /0 /O g(s)n2 dsdz < —cE'(t) + ero B G (o E(1)).  (3.30)

Proof. See Lemma 3.6 [11]. O

Using (3.29) and (3.30), we get, for the two cases (2.25) and (2.26) and
for any 79 > 0,

Go(ToE Feo / GO(TOE(t)) /
—_— dsdx<cG E(t B c————FE'(t
08O 17 [ sz asar < cutmoo)-c8 (-2
(3.31)
where G is defined in (2.31). By multiplying (3.28) by % and com-
bining with (3.31), we obtain, for any 75 > 0,

Go(rE (1)) . Go(rE(t)) '
%F (t) < —(c1—cm)Go(ToE(t))+ ((N—C)OEO(t)_CTO> E(t)
L
+Go(;o(tE)(t))N?2P1 (’Zj _ 1)/0 Waror da. (3.32)

On the other hand, from (2.20), (2.23) and (2.27), we deduce that there exists
a positive constant v (independent of N) satisfying

N.
N11+N2P+T3K+N4R+J < E,

which, combined with (3.19), implies that
(N—1)E < F < (N +~)E. (3.33)

Choosing N so that N > max{~,c} (c is the constant in (3.32)) and using
(3.32), (3.33) and E' <0, we deduce that F' ~ E and

%g(t))}w(t) < —(&1 — ¢10)Go(ToE(t)) — croE'(t)

L (3.34)
+ %% (% - 1) /O Wy pr da.
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Let 7> 0 and

- (Go(roE(t
F=7 (WF + CT()E(If)) . (3.35)
Because % is non-increasing, then, thanks to (3.33),

Go(10E(0))

cFroE<F <7 ((N+7) E0)

+ cm) E. (3.36)

We have, using (3.34), (3.35) and the fact that % is non-increasing,

L
F(t) < —7(e1 — CTO)GO(TOE(t))+%G°(;°f)(t)) ijl (Zj - 1) /0 Wwarpy da.

(3.37)

3.2. Proof of (2.30)
Let us choose 7 > 0 such that
F<mE and F(0) <1, (3.38)

According to (1.3), the coefficient of the integral in (3.37) vanishes, and hence,
by choosing 79 > 0 small enough such that ¢; — ¢y > 0 and using the first
inequality in (3.38), we get, for ¢ = 7(¢ — ¢79),

F' < —dGo(F), (3.39)
whereupon
(G(F)) =, (3.40)
where G is defined in (2.31). Integrating (3.40) over [0, ] yields
G(F(t)) > 't + G(F(0)). (3.41)

Because F(0) < 1 (from (3.38)), G(1) = 0 and G is decreasing, we obtain
from (3.41) that G(F(t)) > ct, which implies that F(t) < G~1(c/t). Then
(3.36) gives (2.30).

3.3. Proof of (2.34)

In this section, we treat the case when (2.32) holds. We need to estimate the
last integral in (3.37) using the following systems resulting from differentiat-
ing (1.1) with respect to time t:

P1@eet — k1 (@at + U +lwy)y — lkg(wee — lpg) =0,
P2t — koWaar + k1 (ot + U +lwe) =0,

P1 Wit I£3(wwt —lpt)z + Uh1(Pat + Yr + L) (3.42)

+/ 9(8)Wegt(x,t — 5)ds =0,
sat(O,tO) = (0, 1) = s (0,8) = 04 (L, 1) =y (L, 1) = war (L, 1) = 0.

Thanks to Theorem 2.2, we have, for any initial data U° € D(A), the system
(3.42) has a unique solution U satisfying

U € C(Ro; H).
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Let U° € D(A) and E be the energy of (3.42) defined by

B(#) = ST} (3.43)

Similarly to (3.1), we have

1 L —+oo
= 7/ / g (s)n?, dsdx < 0; (3.44)
2Jo Jo

so E is non-increasing. We use an idea introduced in [9] to get this lemma.

Lemma 3.7. For any € > 0, there exists c. > 0 such that
N. k: L
3P (83 1 / Wappr do
l kl 0

Proof. We have, by the definition of 7,

L
N%(%fQ/“w%mx

+oo
= Ndl)l ITB / <Pt/ 77126 dsdzx (346)
“+ o0
+ N3p1 kg / gpt/ S)wge(t — s) dsdax.

Using (3.5) (for f = ng and v = ;) and (2.27), we get, for all € > 0,

N. oo
3'01 ( — >/ @t/ $)wgn ds da
0

+oo
)+ ce/ / s)n2, dsdu. (3.47)

On the other hand, by integrating with respect to s and using the definition
of 1, we obtain

L “+oo L +oo
/0 got/o g(s)wat(t — s)dsdx = —/0 cpt/O 9(8)0s(wg(t — s))dsdz

L

:/ @@w@+/ Tt - 9)ds) s

+oo
/ 4,02/ g'(s)ns dsdz.

Therefore, using (3.6) (for f =n, and v = ¢;) and (3.1),
E(t) — cE'(1).

“+o0
|N3p1 <—1>/ gpt/ ($)wye(t — s)dsdx
(3.48)

Inserting (3.47) and (3.48) into (3.46), we obtain (3.45). O

L +oo
< ce/ / g(s)n?, dsdz+eE(t)—c E'(t).
o Jo
(3.45)

”\

l\.’)\m

<

l\:)\m
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Now, by combining (3.45), (3.37) with # = 1 and choosing € = &, we
get

() < - (5 - en) Gatm() - R
T L +oo
+CGO(E?(f;(t))/O /0 g(s)n?, dsdu. (3.49)
Similarly to (3.29) and (3.30), using (3.44), we find
L “+o0 9 .
/O /0 g3z dsdo < 2 (1) (3.50)

when (2.25) holds. When (2.26) holds, there exists a positive constant ¢ such
that, for any 79 > 0, we have as for (3.30) (see the proof of Lemma 3.6 [11])

+o0 -
& (o E(1)) /O /0 g(s)n2, dsda < —cE'(t) + ery ()G (1 E(K)).  (3.51)

From (3.50) and (3.51), we find that, in both cases (2.25) and (2.26),

Go T()E Foo
T()E / / s)n2, dsdx

Go(roE(1))
ToE(t)

Inserting (3.52) in (3.49), choosing 7 > 0 small enough such that & —cr > 0,
G[)(TOE)

< cGo(ToE(t)) — ¢ E'(t) — cE'(t). (3.52)

is non-increasing, we find, for some ¢; > 0,

Go(ToE(t)) < —&F'(t) — ¢ (1 + W) (E’(t) + E’(t)) . (3.53)

By integration with respect to ¢ and using (3.36), we get, for some ¢35 > 0,

T
/ Go(roE(t)) dt < & <1 + GO(“’E(O))> <E(S) + E(S)) . VT >S>0.
s E(0)
(3.54)
Choosing S = 0 in (3.54) and using the fact that Go(7oE) is non-increasing,
we obtain

and using the fact that

T
Go(roE(T))T < /0 Go(E(t))dt < & (1 + G()(Jgo(f)(o))) (E(o) + E(o)) .

(3.55)
Because Gy ! is increasing, (2.34) for n = 1 is deduced from (3.55) with

o= maX{TlO, A (1 + CW) <E(O) + E(O))} :

By induction on n, one can prove that (2.34) holds, for n = 2,3,---; see [11]
and [13].

Remark 3.8. We give in this remark some general comments and open prob-
lems.
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1. Our stability results (2.30) and (2.34) hold under the smallness con-
ditions (2.29) on [ and ¢°, and the boundedness conditions (2.28) and
(2.33) on the initial data n". It is interesting to drop these conditions
or determine the biggest values of [ and § in (2.29) for which (2.30) and
(2.34) hold.

2. Another interesting question concerns the stability of (1.1) when s; #
S2.

3. The case where only one infinity memory is considered in the vertical
displacements; that is the integral in (1.1) is replaced by

+oo
/ 9(8)Pua(w,t — 5)ds
0

and considered on the first equation in (1.1), seems very delicate. The
particular case of Timoshenko systems ((1.1) with [ = 0) under infinity
memory and/or frictional damping in the vertical displacements was
studied in [14] and some stability estimates were proved.
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