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Abstract. In this work, we consider the Lamé system in 3-dimension bounded
domain with infinite memories. We prove, under some appropriate assump-

tions, that this system is well-posed and stable, and we get a general and

precise estimate on the convergence of solutions to zero at infinity in terms of
the growth of the infinite memories.

1. Introduction and position of the problem. Let Ω be a bounded domain
in R3 with smooth boundary ∂Ω. Let us consider the following Lamé system with
infinite memories: u′′ −∆eu+

∫ +∞

0

g(s)∆u(t− s)ds = 0, in Ω× R+,

u = 0, on ∂Ω× R+

(1)

with initial conditions{
u (x,−t) = u0(x, t), in Ω× R+,
u′(x, 0) = u1(x), in Ω,

(2)

where ′ = ∂
∂t and u0 and u1 are given history and initial data. Here ∆ denotes

the Laplacian operator and ∆e denotes the elasticity operator, which is the 3 × 3
matrix-valued differential operator defined by

∆eu = µ∆u+ (λ+ µ)∇ div u, u = (u1, u2, u3)T
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and λ and µ are the Lamé constants which satisfy the conditions

µ > 0, λ+ µ ≥ 0. (3)

Moreover,

g (s) =

 g1 (s) 0 0
0 g2 (s) 0
0 0 g3 (s)

 ,

where gi : R+ → R+ are given functions which represent the dissipative terms.
In the particular case λ + µ = 0, ∆e = µ∆ gives a vector Laplacian; that is (1)
describes the vector wave equation.

The problem of well-posedness and stability and/or the obtention of bounded
estimates for elasticity systems in general, and the Lamé system in particular, has
attracted considerable attention in recent years, where diverse types of dissipative
mechanisms have been introduced and several stability and boundedness results
have been obtained. The main problem concerning the stability and/or bounded-
ness of estimates of solutions in the presence of finite or infinite memory is to deter-
mine the largest class of memory functions which guarantees the stability and/or
boundedness of estimates for the system, and the best estimate on the decay rate
and/or the bound for solutions in terms of the memory function. Let us recall here
some known results in this direction related to our goals, addressing problems of
existence, uniqueness and asymptotic behavior of solutions.

1. Damping controls. Real progress has been realized during the last three
decades, in particular, in the works of Lagnese [19, 20], Komornik [18], Martinez
[21], Aassila [1], Alabau and Komornik [2], Horn [14, 15], Guesmia [8, 9], and
Bchatnia and Daoulatli [4]. In [19], Lagnese proved some uniform stability results of
elasticity systems with linear feedback and under some technical assumptions on the
elasticity tensor. In particular, these results do not hold in the linear homogeneous
isotropic case for which the elasticity tensor depends on two parameters called
Lamé constants. In [20], Lagnese obtained uniform stability estimates for linear
homogeneous isotropic and bidimensional elasticity systems under a linear boundary
feedback. Komornik [18] proved the same estimates for the homogeneous isotropic
system in 1-dimension and 2-dimension and under a linear boundary feedback.
The estimates of Komornik [18] are even optimal when the domain is a ball from
R3. Martinez [21] generalized the results of Komornik [18] to the case of elasticity
systems of cubic crystals under a nonlinear boundary feedback. For these systems,
the elasticity tensor depends on three parameters.

Aassila [1] proved the strong stability of a homogeneous isotropic elasticity system
with an internal nonlinear feedback in domains of finite Lebesgue measure, but no
stability estimate on the decay rate of solutions was given. Alabau and Komornik
[2] studied an anisotropic elasticity system with constant coefficients and linear
boundary feedback. Under certain geometric conditions, they obtained some exact
controllability and uniform stability results, where the decay rate of solutions is
given explicitly in terms of the parameters of the system. The proof of [2] is based
on the multipliers method and some new identities. Horn [14, 15] obtained some
stability results for homogeneous isotropic elasticity systems under weaker geometric
conditions. The key of the proof in [14, 15] is a combination of the multipliers
method and the microlocal analysis. Guesmia [8, 9] considered the problem of
observability, exact controllability and stability of general elasticity systems with
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variable coefficients depending on both time and space variables in bounded domains
or of a finite Lebesgue measure.

The results of [8, 9] hold under linear or nonlinear, global or local feedbacks, and
they generalize and improve, in some cases, the decay rate obtained by Alabau and
Komornik [2]. Recently, Bchatnia and Daoulatli [4] considered the case of the Lamé
system in a three-dimensional bounded domain with local nonlinear damping and
external force, and obtained several boundedness and stability estimates depending
on the growth of the damping and the external forces. The control region considered
in [4] satisfies the famous geometric optical condition (GOC).

For the stability of other kind of coupled hyperbolic systems, let us mention the
following results. Guesmia [7] considered a coupled wave-Petrovsky system with two
nonlinear internal dampings, and showed some polynomial and exponential stabil-
ity estimates. Alabau, Cannarsa and Komornik [3] considered a coupled system of
two abstract hyperbolic equations with linear weak coupling of order zero and only
one damping acting on the first equation, and proved that this system is not expo-
nentially stable and the asymptotic behavior of solutions is at least of polynomial
type with decay rates depending on the smoothness of initial data. The method
introduced and developed in [3] is based on a general estimate on the asymptotic
behavior of solutions in terms of higher order initial energies. Some extensions of
the results of [3] to the nonlinear and nondissipative cases are given by Guesmia
[10] in the particular case of coupled wave equations. Recently, the stability of a
coupled Euler-Bernoulli and wave equations with linear weak coupling and clamped
boundary conditions for the Euler-Bernoulli equation was considered in Tebou [23].
The decay estimates obtained in [23] are of polynomial type with decay rates smaller
than the ones obtained in [3], but the abstract framework introduced in [3] does
not include the case considered in [23]. See also the references of [3, 10, 16, 23] for
further results related to the stability of coupled hyperbolic equations.

2. Memory controls. The asymptotic stability with finite or infinite memories
of hyperbolic partial differential equations has been the subject of many works in
the last few years. Let us mention here some works in this direction.

In the case where the memory function converges exponentially to zero, it was
proved that the system is exponentially stable; that is, the solution converges ex-
ponentially to zero (see [6] and the references therein for abstract dissipative sys-
tems). When g does not converge exponentially to zero at infinity, the stability
of such systems has been proved in [11], where general decay estimates depending
on the growth of the memory function at infinity were obtained. The approach of
[11] was applied in [12, 13] to, respectively, the wave equation and different kinds
of Timoshenko systems. See [11, 12, 13] for more known results in the literature
concerning the stability with finite or infinite memory.

In all stability results with memory cited above, the coupling terms are not a part
of the principal operator but additional terms in the system. Concerning the Lamé
system with infinite memories (1)-(2) considered in this work, the unique coupling is
given in the principal operator, and as far as we know, there is no stability and/or
boundedness results in the literature. Our aim in this work is to prove that the
stability and/or boundedness of our system holds with infinite memories and to
obtain a general decay connection (exponential, polynomial, or others) between the
decay rates of the solutions and the growth of the memory functions.

The paper is organized as follows: in Section 2, we prove the global existence
and uniqueness of solutions of (1)-(2). Section 3 is devoted to state the main results
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of this work, that is, the stability of the system (1)-(2). Finally, in Section 4, we
prove the stability results.

2. Well-posedness. In this section, we prove the existence and uniqueness of so-
lutions of (1)-(2) using semigroup theory. We consider the following hypothesis:

(H1) The functions gi are nonnegative, differentiable and nonincreasing such that

µ−
∫ +∞

0

gi(s)ds > 0, i = 1, 2, 3. (4)

Following the idea of [5], we consider

η(x, t, s) = u(x, t)− u(x, t− s), in Ω× R+ × R+. (5)

Consequently, we obtain η(x, t, 0) = 0, in Ω× R+,
η(x, t, s) = 0, on ∂Ω× R+ × R+,
η0(x, s) := η(x, 0, s) = u0(x, 0)− u0(x, s), in Ω× R+.

(6)
Clearly, (5) gives

ηt(x, t, s) + ηs(x, t, s) = u′(x, t), in Ω× R+ × R+, (7)

where ηt =
∂η

∂t
and ηs =

∂η

∂s
. By combining (1) and (5), we obtain the following

equation:

u′′ −
(
µId−

∫ +∞

0

g(s)ds

)
4u− (λ+ µ)∇div u

−
∫ +∞

0

g(s)∆η(x, t, s)ds = 0, in Ω× R+,

(8)

where Id =

 1 0 0
0 1 0
0 0 1

 .

Let H = (H1
0 (Ω))3 × (L2(Ω))3 × Lg, where

Lg =
{
v = (v1, v2, v3)

T
: R+ −→

(
H1

0 (Ω)
)3
,∫ +∞

0

gi(s)

∫
Ω

|∇vi(s)|2dxds < +∞, i = 1, 2, 3.

}
The set Lg is a Hilbert space endowed with the inner product, for v = (v1, v2, v3)

T

and w = (w1, w2, w3)
T

in Lg,

〈v, w〉Lg
=

3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

∇vi(s) · ∇wi(s)dxds.

Thanks to (3) and (4), the set H is also a Hilbert space endowed with the inner
product defined, for v = (v1, v2, v3)T ∈ H and w = (w1, w2, w3)T ∈ H, by

〈v, w〉H =∫
Ω

[
3∑
i=1

(
(µ− αi)∇vi1 · ∇wi1 + vi2 · wi2

)
+ (λ+ µ) div v1 divw1

]
dx+ 〈v3, w3〉Lg

,

where we denote vi = (v1
i , v

2
i , v

3
i ), wi = (w1

i , w
2
i , w

3
i ) and αi =

∫ +∞

0

gi(s)ds.
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Now, let U = (u, u′, η)T and U0 = (u0(·, 0), u1, η0)T . Thanks to (7) and (8),
(1)-(2) is equivalent to the abstract linear first-order Cauchy problem{

U ′(t) = AU(t), on R+,
U(0) = U0,

(9)

where A is the linear operator defined by

A =


0 1 0

∆e −
(∫ +∞

0

g(s)ds

)
∆ 0

∫ +∞

0

g(s)∆ds

0 1 −∂s

 ,

where ∂s = ∂
∂s . The domain D(A) of A is given by

D(A) =
{
V = (v1, v2, v3)

T ∈ H, AV ∈ H and v3(0) = 0
}

and endowed with the graph norm

‖V ‖D(A) = ‖V ‖H + ‖AV ‖H .

Now, we prove that A : D(A) −→ H is a maximal monotone operator; that is, A is
dissipative and Id − A is surjective. Indeed, a simple calculation implies that, for
any V = (v1, v2, v3)T ∈ D(A),

〈AV, V 〉H (10)

=

〈
v2

∆ev1 −
(∫ +∞

0

g(s)ds

)
∆v1 +

∫ +∞

0

g(s)∆v3ds

v2 − ∂sv3

 ,

 v1

v2

v3

〉
H

=

∫
Ω

[

3∑
i=1

(µ− αi)∇vi2 · ∇vi1 +

(
∆ev

i
1 −

(∫ +∞

0

gi(s)ds

)
∆vi1

+

3∑
i=1

∫ +∞

0

gi(s)∆v
i
3ds

)
· vi2 + (λ+ µ) div v2 div v1]dx

+

3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

∇(vi2 − ∂svi3)∇vi3(s)dxds

= −
3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

∂s
(
∇vi3

)
∇vi3(s)dxds

=
1

2

3∑
i=1

∫ +∞

0

g′i(s)

∫
Ω

|∇vi3|2dxds ≤ 0,

since gi is nonincreasing. This implies that A is dissipative. On the other hand, we
prove that Id−A is surjective; that is, for any W = (w1, w2, w3) ∈ H, there exists
V = (v1, v2, v3) ∈ D(A) satisfying

(Id−A)V = W. (11)

The first and last equations of (11) are equivalent to

v2 = v1 − w1 (12)

and
v3 + ∂sv3 = v1 − w1 + w3. (13)
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By integrating the equation (13) with respect to s and noting that v3(0) = 0, we
obtain

v3(s) =

(∫ s

0

(v1 − w1 + w3(τ)) eτdτ

)
e−s. (14)

Using (12) and (14), the second equation of (11) becomes

v1 −
[
∆e −

(∫ +∞

0

e−sg(s)ds

)
∆

]
v1 (15)

= w1 + w2 +

∫ +∞

0

e−sg(s)∆

(∫ s

0

eτ (w3(τ)− w1)dτ

)
ds.

It is sufficient to prove that (15) has a solution v1 in
(
H2 (Ω) ∩H1

0 (Ω)
)3
, and

then we replace in (12) and (14) to conclude that (11) has a solution V ∈ D(A).

So we multiply (15) by a test function ϕ1 ∈
(
H1

0 (Ω)
)3

and we integrate by parts,
obtaining the following variational formulation of (15):

a(v1, ϕ1) = l(ϕ1), ∀ϕ1 ∈
(
H1

0 (Ω)
)3
, (16)

where

a(v1, ϕ1) =

∫
Ω

[
v1ϕ1 +

3∑
i=1

(
(µ− αi)∇vi1 · ∇ϕi1

)
+ (λ+ µ) div v1 divϕ1

]
dx

and

l(ϕ1) =

∫
Ω

(w1 + w2) ·ϕ1−
(∫ +∞

0

e−sg(s)

(∫ s

0

eτ∇(w3(τ)− w1)dτ

)
ds

)
·∇ϕ1dx.

It is clear that a is a bilinear and continuous form on
(
H1

0 (Ω)
)3 × (H1

0 (Ω)
)3
, and

l is a linear and continuous form on
(
H1

0 (Ω)
)3
. On the other hand, (3) and (4)

imply that there exists a positive constant a0 such that

a(v1, v1) =

∫
Ω

[
|v1|2 +

3∑
i=1

(µ− αi) |∇vi|2dx+ (λ+ µ) |div v1|2
]
dx

≥ a0 ‖v1‖2(H1
0 (Ω))

3 , ∀v1 ∈
(
H1

0 (Ω)
)3
,

which implies that a is coercive. Therefore, using the Lax-Milgram Theorem, we

conclude that (16) has a unique solution v1 in
(
H1

0 (Ω)
)3
. By classical regularity

arguments, we conclude that the solution v1 of (16) belongs into
(
H2 (Ω) ∩H1

0 (Ω)
)3

and satisfies (15). Consequently, using (12) and (14), we deduce that (11) has a
unique solution V ∈ D(A). This proves that Id−A is surjective.

Finally, using the Lummer-Phillips Theorem (see [22]), we find that A is an
infinitesimal generator of a linear C0−semigroup on H. Consequently, applying
semigroup theory to (9) (see [17, 22]), we get the following well-posedness results
of (1)-(2):

Theorem 2.1. Assume that (3) and (H1) are satisfied. Then, for any

(u0(·, 0), u1) ∈
(
H1

0 (Ω)
)3 × (L2 (Ω)

)3
,

the system (1)-(2) has a unique weak solution

u ∈ C
(
R+,

(
H1

0 (Ω)
)3) ∩ C1

(
R+,

(
L2 (Ω)

)3)
.
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Moreover, if (u0(·, 0), u1) ∈
(
H2 (Ω) ∩H1

0 (Ω)
)3×(H1

0 (Ω)
)3
, the solution of (1)-(2)

is classical; that is

u ∈ C
(
R+,

(
H2 (Ω) ∩H1

0 (Ω)
)3) ∩ C1

(
R+,

(
H1

0 (Ω)
)3) ∩ C2

(
R+,

(
L2 (Ω)

)3)
.

3. Stability. In this section, we state our stability results for problem (1)-(2). For
this purpose, we start with the following hypotheses:

(H2)

αi :=

∫ +∞

0

gi(s)ds > 0, i = 1, 2, 3. (17)

(H3) For any i = 1, 2, 3,

∃γi > 0, g′i(s) ≤ −γigi(s), ∀s ∈ R+ (18)

or there exists an increasing strictly convex function G : R+ → R+ of class
C1(R+) ∩ C2(]0,+∞[) satisfying

G(0) = G′(0) = 0 and lim
t→+∞

G′(t) = +∞,

and ∫ +∞

0

gi(s)

G−1(−g′i(s))
ds+ sup

s∈R+

gi(s)

G−1(−g′i(s))
< +∞. (19)

Remark 1. The condition (19) introduced in [11] is satisfied by any positive func-
tion gi of class C1(R+) with g′i < 0 and gi is integrable on R+ (see [11, 12, 13] for
explicit examples).

The classical energy of any weak solution u of (1)-(2) at time t is defined by

Eu (t) =
1

2

∫
Ω

(

3∑
k=1

(µ− αk) |∇uk|2 + (λ+ µ) |div u|2 + |u′|2)dx. (20)

We define the “modified” energy functional of the weak solution u by

E(t) = Eu (t) +
1

2
g ◦ ∇η,

where

g ◦ ∇η =

∫
Ω

∫ +∞

0

Tr (g(s)∇η · ∇η) dsdx

=

3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

|∇ui(x, t)−∇ui(x, t− s)|2dxds. (21)

Now, we give our main stability results.

Theorem 3.1. Assume that (3) and (H1)-(H3) are satisfied such that (18) holds
or there exists a positive constant mi satisfying∫

Ω

∣∣∇ηi0∣∣2 dx ≤ mi, ∀s ∈ R+. (22)

Then there exist positive constants c′, c′′ and ε0 for which E satisfies

E(t) ≤ c′′e−c
′t, ∀t ∈ R+ (23)

if (18) is satisfied, for any i = 1, 2, 3, and

E(t) ≤ c′′G−1
1 (c′t), ∀t ∈ R+ (24)
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otherwise, where

G1(s) =

∫ 1

s

1

τG′(ε0τ)
dτ (s ∈]0, 1]). (25)

Remark 2. Theorem 3.1 shows that the exponential stability (23) of (1)-(2) holds
when each function gi satisfies (18) (which implies that gi converges exponentially
to zero at infinity). Otherwise, the weak stability (24) holds. For precise examples
illustrating (24), see [11, 12, 13].

4. Proof of Theorem 3.1. First, we prove Lemmas 4.1-4.3 for classical solutions
and we note that these results remain valid for any weak solution by simple density
arguments. These Lemmas are well known in the case of the wave equation or
Timoshenko systems, see, for example, [11, 12, 13] and the references therein. On
the other hand, we can assume that E(t) > 0, for any t ∈ R+, without loss of
generality. Otherwise, if E(t0) = 0, for some t0 ∈ R+, then E(t) = 0, for all t ≥ t0,
because E is positive and nonincreasing, and then (23) and (24) are satisfied.

Lemma 4.1. The “modified” energy functional satisfies, along the solution u of
(1)-(2),

E′(t) =
1

2
g′ ◦ ∇η ≤ 0, (26)

where

g′ ◦ ∇η =

3∑
i=1

∫ +∞

0

g′i(s)

∫
Ω

|∇ui(x, t)−∇ui(x, t− s)|2dxds.

Proof. By multiplying (1) by u′, integrating over Ω and using integration by parts,
we get easily (26) (as in (10)). �

Lemma 4.2. The functional

Φ(t) =

∫
Ω

u · u′dx (27)

satisfies, along the solution u of (1)-(2) and for any ε > 0 and for some positive
constant c1,

Φ′(t) ≤
∫

Ω

|u′|2dx−
3∑
i=1

(µ− ε− αi)
∫

Ω

|∇ui|2dx (28)

−
∫

Ω

(λ+ µ) |div u|2 dx+
c1
ε
g ◦ ∇η, ∀t ≥ 0.

Proof. By differentiating (27) and using (8), Young’s inequality and (21), we obtain

Φ′(t) =

∫
Ω

|u′|2dx− µ
∫

Ω

|∇ui|2dx−
∫

Ω

(λ+ µ)|div u|2dx

+

∫ +∞

0

g(s)

∫
Ω

∇u · (∇u−∇η)dxds

=

∫
Ω

|u′|2dx−
3∑
i=1

(µ− αi)
∫

Ω

|∇ui|2dx−
∫

Ω

(λ+ µ)|div u|2dx
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−
3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

∇ui · ∇ηidxds

≤
∫

Ω

|u′|2dx−
3∑
i=1

(µ− αi)
∫

Ω

|∇ui|2dx−
∫

Ω

(λ+ µ)|div u|2dx

+ε

∫
Ω

|∇u|2dx+
c1
ε
g ◦ ∇η,

which gives (28). �

Lemma 4.3. The functional

Ψ(t) = −
3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

u′iηidxds (29)

satisfies, along the solution u of (1)-(2), for any ε1, ε2 > 0 and for some positive
constant c2 > 0,

Ψ′(t) ≤ −
3∑
i=1

(αi − ε1)

∫
Ω

|u′i|2dx (30)

+ε2

(∫
Ω

|∇u|2dx+

∫
Ω

|div u|2dx
)
− c2
ε1
g′ ◦ ∇η +

c2
ε2
g ◦ ∇η, ∀t ≥ 0.

Proof. Multiplying (1) by

∫ +∞

0

g(s)η(t, s)ds and integrating over Ω, we get

0 =

3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

u′′i ηidxds (31)

−
3∑
i=1

∫
Ω

(µ∆ui + (λ+ µ)∇div ui)

(∫ +∞

0

gi(s)ηids

)
dx

+

3∑
i=1

∫
Ω

(∫ +∞

0

gi(s)∆ui(t− s)ds
)(∫ +∞

0

gi(s)ηids

)
dx.

Using (7), we get

Ψ′(t) = −
3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

u′′i ηidxds−
3∑
i=1

∫
Ω

u′i

∫ +∞

0

gi(s)∂tηidsdx

= −
3∑
i=1

∫ +∞

0

gi(s)

∫
Ω

u′′i ηidxds−
3∑
i=1

αi

∫
Ω

|u′i|2dx

+

3∑
i=1

∫
Ω

u′i

∫ +∞

0

gi(s)∂sηidsdx.

By integrating by parts with respect to s in the last term of this equality, we obtain
(note that ηi(x, t, 0) = 0 and lim

s→+∞
gi(s)ηi(x, t, s) = 0 thanks to (6) and because ηs
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∈ Lg)

Ψ′(t) = −
3∑
i=1

∫
Ω

u′′i

∫ +∞

0

gi(s)ηidsdx−
3∑
i=1

αi

∫
Ω

|u′i|2dx (32)

−
3∑
i=1

∫
Ω

u′i

∫ +∞

0

g′i(s)ηidsdx.

Combining (31) and (32), we obtain

Ψ′(t) = −
3∑
i=1

αi

∫
Ω

|u′i|2dx−
3∑
i=1

∫
Ω

u′i

∫ +∞

0

g′i(s)ηidsdx

+

3∑
i=1

∫
Ω

(µ∇ui + (λ+ µ) div ui)

(∫ +∞

0

gi(s)∇ηids
)
dx

−
3∑
i=1

∫
Ω

(
αi∇ui −

∫ +∞

0

gi(s)∇ηids
)(∫ +∞

0

gi(s)∇ηids
)
dx.

By applying Cauchy-Schwarz inequality, Young’s inequality and Poincaré inequality
(allowed by the boundary condition in (6)) for the last three terms of this equality
and using (4), we obtain (30). �

Now, we prove our main stability results (23) and (24).

Proof of Theorem 3.1. Let L = NE +MΦ + Ψ, for M, N > 0. By definition of Φ,
Ψ and E, there exist two constants d1 and d2 such that |Φ| ≤ d1E and |Ψ| ≤ d2E.
Therefore,

(N −Md1 − d2)E ≤ L ≤ (N +Md1 + d2)E.

Then, for

N > Md1 + d2, (33)

we get L ∼ E. On the other hand, (26), (28) and (30) imply that

L′(t)

≤
(
N

2
− c2
ε1

)
g′ ◦ ∇η −

3∑
i=1

(αi − ε1 −M)

∫
Ω

|u′i|2dx+

(
c2
ε2

+
Mc1
ε

)
g ◦ ∇η

−
3∑
i=1

(M (µ− αi − ε)− (1 + ĉ)ε2)

∫
Ω

|∇ui|2dx− (λ+ µ)M

∫
Ω

|div u|2dx,

where ĉ > 0 satisfies ∫
Ω

|div u|2dx ≤ ĉ
∫

Ω

|∇u|2dx.

We choose 0 < ε < µ − max
1≤i≤3

{αi} and 0 < ε1 < min
1≤i≤3

{αi} (this is possible thanks

to (4) and (17 )). Next, we choose M and ε2 such that 0 < M < min
1≤i≤3

{αi} − ε1

and 0 < ε2 <
M

1 + ĉ
(µ− max

1≤i≤3
{αi} − ε). These choices imply that αi − ε1 −M and

M(µ−αi − ε)− (1 + ĉ)ε2 are positive constants. Therefore, we obtain, for some β,
c3, c4 > 0,

L′(t) ≤ −βE(t) +

(
N

2
− c3

)
g′ ◦ ∇η + c4g ◦ ∇η, ∀t ≥ 0.
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Finally, we choose N large enough so that N > max{2c3,Md1 + d2}, which implies

that
N

2
− c3 ≥ 0 and (33) holds; and we get

L′(t) ≤ −βE(t) + c4g ◦ ∇η, ∀t ∈ R+. (34)

To estimate g ◦∇η we follow the approach introduced by the second author in [11].
If (18) is satisfied, then

gi ◦ ∇ηi ≤
−1

γi
g′i ◦ ∇ηi. (35)

If (18) does not hold, we follow the approach of [11]. Let us consider G∗(t) =
sup
s∈R+

{ts−G(s)} , for t ∈ R+, the dual function of G. Thanks to (H3), G′ is increas-

ing and defines a bijection from R+ to R+, and then, for any t ∈ R+, the function

s 7−→ ts − G(s) reaches its maximum on R+ at the unique point s = (G′)
−1

(t).
Therefore

G∗(t) = t(G′)−1(t)−G
(
(G′)−1(t)

)
,∀t ∈ R+.

Let δ, τ1, τ2 > 0 (will be fixed later on). Using the generalized Young’s inequality:
t1t2 ≤ G(t1) +G∗(t2), we get

gi ◦ ∇ηi

=
1

τ1G′ (δE(t))

∫ +∞

0

G−1(−τ2g′i(s)
∫

Ω

|∇ηi|2dx)
τ1G

′ (δE(t)) gi(s)
∫

Ω
|∇ηi|2dx

G−1
(
−τ2g′i(s)

∫
Ω
|∇ηi|2dx

) ds

≤ 1

τ1G′ (δE(t))

∫ +∞

0

[−τ2g′i(s)
∫

Ω

|∇ηi|2dx+G∗(
τ1G

′ (δE(t)) gi(s)
∫

Ω
|∇ηi|2dx

G−1
(
−τ2g′i(s)

∫
Ω
|∇ηi|2dx

) )]ds.

Because s 7−→ s
G−1(s) and G∗ are increasing functions and thanks to the fact that∫

Ω

|∇ηi|2 ≤ c5 for some positive constant c5 and all s ≥ 0 (since E is nonincreasing,

see (22) and (26)), we get

gi◦∇ηi ≤ −
τ2

τ1G′ (δE(t))
g′i◦∇ηi+

1

τ1G′ (δE(t))

∫ +∞

0

G∗
(
c5τ1G

′ (δE(t)) gi(s)

G−1 (−c5τ2g′i(s))

)
ds.

By exploiting (26) and G∗(t) ≤ t(G′)−1(t), we get

gi ◦ ∇ηi ≤ − 2τ2
τ1G′ (δE(t))

E′(t)

+c5

∫ +∞

0

gi(s)

G−1 (−c5τ2g′i(s))
(G′)−1

(
c5τ1G

′ (δE(t)) gi(s)

G−1 (−c5τ2g′i(s))

)
ds.

Choosing τ2 = 1
c5

and using (H3), we obtain

gi ◦∇ηi ≤ −
2

c5τ1G′ (δE(t))
E′(t) + c5(G′)−1 (c6τ1G

′ (δE(t)))

∫ +∞

0

gi(s)

G−1 (−g′i(s))
ds,

for c6 = c5 sup
s∈R+

gi(s)

G−1 (−g′i(s))
. Choosing τ1 = 1

c6
and using again (H3), we get, for

any δ > 0,

G′ (δE(t)) gi ◦ ∇ηi ≤ −c7E′(t) + c8δE(t)G′ (δE(t)) , ∀t ∈ R+, (36)
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where c7 =
2c6
c5

and c8 = c5

∫ +∞

0

gi(s)

G−1 (−g′i(s))
ds.

Case 1. If (18) is satisfied, for any i = 1, 2, 3, then (34) and (35) imply that

L′(t) ≤ −βE(t)− c9g′ ◦ ∇η, ∀t ∈ R+,

where c9 = c4 max
i=1,2,3

{
1
γi

}
.

Let F = L+ 2c9E. Using (26), we get

F ′(t) ≤ −βE(t), ∀t ∈ R+. (37)

Because L ∼ E, then F ∼ E. Therefore, (37) implies that

F ′(t) ≤ −c′F (t), ∀t ∈ R+,

for some c′ > 0. By integrating this differential inequality, we get

F (t) ≤ F (0)e−c
′t, ∀t ∈ R+.

Thus, thanks to F ∼ E, we get (23).

Case 2. If (18) is not satisfied at least for one i ∈ {1, 2, 3}, then, multiplying (34)
by G′ (δE(t)) and using (35) and (36), we obtain

G′(δE(t))L′(t) + c7c4(β1 + β2 + β3)E′(t)

≤ −(β − c4c8δ(β1 + β2 + β3))E(t)G′(δE(t))

−c10 ((1− β1) + (1− β2) + (1− β3))E′(t)G′(δE(t)),

where c10 = 2c4 max
i=1,2,3

{
1
γi

}
and

βi =

{
0 if (18) holds,
1 if (18) does not hold.

Choosing δ small enough so that 0 < δ <
β

c4c8 (β1 + β2 + β3)
, and letting

F = τ (G′(δE(t))L+ c7c4 (β1 + β2 + β3)E + c10 (3− β1 − β2 − β3)EG′ (δE))

with τ > 0, we deduce, for β0 = β − c4c8 (β1 + β2 + β3) δ,

F ′(t) ≤ −τβ0E(t)G′(δE(t)), ∀t ∈ R+, (38)

since E′G′′(δE) ≤ 0. As L ∼ E and G′ (δE) is nonnegative and nonincreasing, we
easily deduce that F ∼ E. On the other hand, we choose τ > 0 small enough so
that F ≤ E and F (0) ≤ 1. Thus, we deduce from (38) that

F ′ (t) ≤ −τβ0F (t)G′ (δF (t)) , ∀t ∈ R+. (39)

Inequality (39) implies that (G1(F ))
′ ≥ τβ0, where G1(t) =

∫ 1

t

1

sG′(δs)
ds, for

t ∈]0, 1]. Consequently, we get, for c′ = τβ0,

F (t) ≤ G−1
1 (c′t), ∀t ∈ R+.

Finally, recalling that F ∼ E, we obtain the desired result (24). �
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D’évolution, Ph.D. Thesis, Louis Pasteur University, France, 2000.
[10] A. Guesmia, Quelques résultats de stabilisation indirecte des systèmes couplés non dissipatifs,
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