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1. Introduction and statement of the results

Let 2 be a non-empty bounded open set in R"(n = 1,2, ...) having a boundary T"
of class C* and let a;ju1, i, j, k,I = 1,..., n, be functions in W>* (€2 x R) such that

a,'jkl = Qklij = Gjikl and aijk,eijek, > QEjjEjj in 2 xR (1.1)

for some o > 0 and for every symmetric tensor &;;. (Here and in the sequel we
shall use the summation convention for repeated indices.)
For a given function u = (uy, ..., u,) : 2 x R — R", we shall use the notation

1 .
&ij = 3 j +uji), 0ij = ajjuen, in Q2 xR,

where u; j = du;/dx; and u;; = du;/dx;. If it is necessary to be more precise, we
shall write &;;(u) and o;;(u) instead of ¢;;, 0;;.
Consider the problem

uﬁ’—aij,jz() in Q xR,
u; =0 onTl xR,
u;(0)=u? and u(0)=u! ing,

i=1,...,n,

(1.2)

where ' denotes 8/dt, 0y ; = 90;;/3x; and u;(0), u}(0) denote, respectively, the
functions x —— u;(x, 0), x —> u(x, 0).

In order to formulate the definition of a solution to (1.2) we introduce three real
Hilbert spaces H, V and W by setting

H= LX), vl =/Qv,-v,-dx,

V= (H®Q), [ = /Q 61 (V)64 (v) dx,
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where H, () = {v € H'(Q) : v = 0 on I'} (by the Korn inequality, it is clear that
this expression defines a norm on V), and

W = (H*(Q) N Hy ()", [vl|% = fn (Av; Av; + & ()& () dx.

Identifying H with its dual H’ we have
WCVCH=H cV cw

with dense and compact imbedings.
Setting

z:=u, U:i=@u,z), AWMU :=(z, Au),
A =[Ailiz1,..n and  Aju; = oyj j(u),

we may write problem (1.2) in the following form:

U'(t)—ANOU@) =0 inR,
U©) = u° ul).

It is natural to introduce the Hilbert space H := V x H and to consider A(¢) as an
operator acting in H:
DA@®) =W xV

is independent of ¢.
For all ¢ € R, the bounded linear operator .A(¢) is the infinitesimal generator of
a strongly continuous semigroup of contractions and its domain is clearly densely
and continuously imbeding in H (cf. Lagnese [9]). On the other hand, from the
assumption a;j; € W>*(Q x R) we have for any U € W x V that the mapping
t — A(t)U is continuously differentiable in H. Then we recall (cf. Pazy [12; ch. 5]
and note that (1.2) is a time-reversible problem) that problem (1.2) is well-posed in
the following sense.
1. For every (u®, u') € V x H, system (1.2) has a unique solution (defined in a
suitable weak sense) satisfying

u e CR; V)NCYR; H).
2. If (u° u') € W x V then the solution (called a strong solution) is more regular:

ueCR; W)NCYR; V)N C*R; H).
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3. The energy of the (weak) solution, defined by the formula
1 1!
E@®) = 5 Q(uiui +O’,'j8,'j)dx, t eR, (1.3)
is a non-negative function and satisfies the identity
!/ 1 !/
E'(t) = 5 Qaijklgklsij dx, VteR. (1.4)

Fix a point x* = (x9, ..., x0) € R", let m(x) = x — x°, R = ||m||=(q) and fix
a measurable partition Iy, I'; of I" such that

To={xel:(x—x% v(x) <0} and Ty =T\Ty, (1.5)

where v denotes the outward unit normal vector to I'. (For example, we may always
choose 'y =@ and I'; =T'.) Let y €]—00, 2[ and A > 0 be two constants satisfying

(xp — XD (Bpaiju)eijen < yaijutijcn  in xR, (1.6)

and
Ialfjkla,-jskll =< Aa,’jklé‘,‘jakl in Q xR (1.7)

for every symmetric tensor &;;, where d,a;j, = 9a;ju/dx,. Assume that

40.J/CJOR B

y>2(1—-n) and 1. (1.8)
2—-y
Let T be a real number such that
1 41/ (2/)R
T > —Xlog (1 — #) . (1.9)
4

If A =0, then we take T > 4./2/a)R/(2 — y).
Then we have the following results.

THEOREM 1.1. Assume (1.1), (1.5)—(1.9). Then there exist two positive constants c;
and ¢, such that every strong solution of (1.2) satisfies the inequalities

T
caE@) < / / oijijdIdt < ¢, E(0). (1.10)
o Jr
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Remark 1.1. The first inequality in (1.10) cannot hold for arbitrarily small 7. The
condition T > 2,/(2/a)R is the best possible if the system is isotropic; i.e. when

Qijr = A8ijbp + (8ixdjr + idjr),

where A and p are the positive Lamé constants (see Komornik [7] and note that, in
this case, y = A = 0).

Remark 1.2. By a simple density argument, the second estimate in (1.10) allows us
to define the trace of ojj&;; on I'y X R as an element of leoc(l“l x R), for every weak
solution of (1.2).

Remark 1.3. Theorem 1.1 means that in some sense the observation of the solution
in a neighbourhood of the boundary during a sufficiently large time allows one to
determine the initial data. Indeed, for sufficiently large time 7, if two solutions
of (1.2) coincide in I';, then the boundary integral in (1.10), for their difference,
vanishes and therefore the energy initial of their difference is equal to zero by the
first inequality in (1.10). From the unicity of solution, this implies that the two
solutions are identical.

Applying the Hilbert uniqueness method (HUM) introduced by Lions [11]
we shall deduce from Theorem 1.1 an exact controllability result for the non-
homogeneous system '

y{’—a,»j,j(y)=0 inQXR,
yi=1 onl xR,

yi(0) =y and y/(0)=y! inQ,
i=1,...,n.

(1.11)

THEOREM 1.2. Assume (1.1), (1.5)(1.9). Then for any given y°, 3° € (L*())" and
y',3' € (HY(Q)" there exists © € L% (R; (L*X(I"))") such that the solution of
(1.11) satisfies

yWT)=3° and y(T)=73' inQ.

Moreover, we may assume that v+ vanishes outside of I'1 x (0, T).

Concerning the observability and the controllability for system (1.2), we
note that the case ag;jx; = constant was studied by Alabau and Komornik [1].
Theorems 1.1 and 1.2 extend the results of [1] to the case where a;jy are functions
of class W2°(Q2 x R).
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In the second half of this paper we shall study the uniform stabilizability of
elasticity systems by applying suitable dissipative boundary feedbacks. Consider the
problem

u;’ — 0Oij,j = 0 inQx R+,
u; =0 onTyxRF,

o;jvj +au; +bu; =0 onT; xR, (1.12)
ui(0) =u) and u/(0)=u! inQ,
i=1,...,n,

where a and b are given non-negative numbers. (It is easy to generalize our results
to the case where a and b are non-negative functions of class C (T} ).) Indeed,
define the energy of the solutions of (1.12) by

1 1
E(t) = ~/ (u;u; +U,'j8i,')dx + —/ au;u; dTl", (1.13)
2J)e ’ 2Jr

for all # € R*. The energy E is non-negative and we have
1
E'(t) = —/ e sij dx —/ buju;dl" <0, Vt>0.
2 Jq r,
We assume that
ajieucij <0 in Q x R* (1.14) .

for every symmetric tensor ¢;;. Then the energy E is non-increasing for t € R,
We shall consider system (1.12) under conditions (1.1), (1.5) and

Ix —xo| = R forall x e I';. (1.15)

Condition (1.15) is satisfied for all domain €2 having a part I'; of its boundary which
is a sphere; for example

Q={xeR":r <|x —x9| <R},
where 0 <r < Rand Tg={x el :|x —xo| =r} or r =0 and [y is empty.

THEOREM 1.3. Assume (1.1), (1.5), (1.6), (1.14), (1.15) and a < (2 — y)a/4R. Then
there exists a positive number w such that all (weak) solutions of (1.12) satisfy the
energy estimate

E(t) < E(0)e!=, forallt > 0. (1.16)

If Ty has a positive measure, then the result also holds for a = 0.
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Remark 1.4. The proof of Theorem 1.3 will be obtained by applying a Liapunov-type
method based on an integral inequality applied earlier in Komornik [7, 8].

Remark 1.5. If a;jy = constant (i.e. A = y = 0) then the condition on a reduces to
a < a/2R. In this case we obtain a better condition on a than the one given by
Alabau and Komornik [2].

2. Observability: proof of Theorem 1.1

First we prove the following lemma.
LEMMA 2.1. Assume (1.7). Then we have

—AE(@) < E'(t) <AE(t) VteRH, 2.1
e ME() < E(t) < eME(0) VteR™. (2.2)

Proof. From (1.7) we have
A6 s < —| / i€ < ! .. < A€
—AGijk€ijEkl = G €ijEkil = Oijy€ijEki = AQijki€ijEkl-

Then by (1.3) and (1.4) we obtain (2.1). By Gronwall’s inequality we deduce (2.2)
from (2.1). The proof of Lemma 2.1 follows. O

Now, fix a number T which satisfies (1.9) and an arbitrary function A €
(Whee(Q))". We deduce from (1.2) that

T
0 = / /(hmui,m)(u;'—G,:,-,j)dxdt
o Jao

T T
[/hmui,mu;dxi' —/ /hmu,-,maijvjdl“dt
Q 0 0 r

T
+/ /(hm,ja,-ju,;m + hmcr,-ju,;jm — %hm(uiu:)m) dxdt.
0 Q

Since

Oijli jm = OijEijm = %(Uij&'j)m - %(amaijkz)é‘kl«sij, (2.3)
integrating by parts the last two terms in the last integral and then multiplying by 2,
we obtain the following identity:

T
/ /(2hmu,’,ma,-jvj +(h- v)(u;u:. — U[j&‘,’j)) dr dt
0 r



On linear elasticity systems with variable coefficients 233

T T
= [/thu,mufdx] —f /hm(amaijkl)akleijdxdt
Q 0 0 Q

T
+ / f Qb j0ijthim + (div h)uiu] — o356:;)) dx dt. (2.4)
0 Q

Note that in the proof of identity (2.4) we did not use the boundary conditions
in (1.2).

Using the assumption h,, € W(Q), a;ju € W>*(Q x R), estimate (2.2) and
the Korn inequality, the right-hand side of (2.4) can be easily majorized by cE(0),
where ¢ is a positive constant. Furthermore, we deduce from the homogeneous
Dirichlet boundary condition in (1.2) that

u; =0 and u;mV; = Ui,VuVj = UiV, onT,

and hence
hmtti moijv; = (h - v)ojju; j = (h - v)oj;g;).

Therefore, the left-hand side of (2.4) reduces to

T
/ /(h . U)O’ijE,'j dr dt.
0 r

Choosing & such that & = v on I" (cf. [6, Lemma 2.1, p. 18]) the second inequality
in (1.10) follows with ¢; = c.
Now choosing h(x) = x — xo, the identity (2.4) reduces to

T
/ /(h-U)O','jSijdrdt
o Jr
T T
= [/‘thui‘mu;dx} +/ /((2—n)0ij8ij+nu§u§)dxdt
Q 0 0 Q

T
_f '/hm(amaijkl)gkl&'jdxdt.
0 Q

Furthermore, we also deduce from (1.2) that

T
0 = / /u,-(u;'—a,'j,j)a'xdt
= [/ uiu; a’x] / /ua,jvjdl"dt+/ /(a,je,, uiu;)dx dt
I:f Uil a’x:l +/ /(aijsij —uiu;)dx dt.
Q 0 o Ja
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Multiplying this equality by n — 1 + y /2 and combining with the preceding identity
we obtain that

/OT‘/r(h -v)oi;je; dI' dt
= I:,/g (thui,m + (n — 14 %) u,') u;dx]: _ /()T/th(amaijkl)é‘kw,‘j dx dt
+foT/Q ((1 + %) oij€ij + (1 - g) u§u§) dx dt

since, by (1.6), we have

T T
—/ /hm(ama[jkl)aklaij dxdt > —)// /a,-js,-jdxdt,
0 Q 0 Q
whence

T
R/ / a,;,-a,»de“dt 2.5)
0 ry

2(2—y)/OTE(t)dt—‘[/;2(2hmui,m+(n—l+%> ) u;dxdt]T

Let us majorize the last integral. For each fixed i we have

0

y 2
“2hmu,-,m + (n -1+ —) u;
2 L(

,/;2((n—1+§>2u,-2+4(n—1+%>hmui,mui> dx
[ =25 o

Y
+/r2(n - 14 E) hmvmu?dl‘

- = 12hmtim ”%Z(Q)

= Q _nz+%,,(y_4))/ uldx <0
Q

(cf. (1.8)). Therefore, for any fixed § > 0 we have

/ (thui,m + (n -1+ Z) u,~) u.dx
Q 2
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n 172 172
2RY (/Q [Vu,»lzdx) (/Q(u;)zdx)
i=1

=
< RS/ UimUimdx + RS / uu;dx. (2.6)
Q Q
Furthermore, applying the Green formula and using the boundary condition in (1.2)
we have
/u,-,mu,;m dx = /ZSimui,m dx —/ Um,ilhim dx
Q Q Q
= /(zeimgim — Um,mli,i) dX,
Q

ie.

f 28imEim dx = f Ui mUim dX + / | divu|*dx. 2.7
Q Q Q

It follows from (1.1) and (2.7) that

2
/ UimUim dx < — OimEimdx.
Q o Ja

Substituting into (2.6), choosing § = +/«/2 and using definition (1.3) of the energy

we obtain
14 , 2
/ (2hmu,~,m + (n 14 —) u,~> W, dx| <2,/ ZRE().
Q 2 o

Therefore, we deduce from (2.5) the inequality

T T
R/ / oijeijdldt > (2 — y)/ E(t)dt — Z@R(E(O) + E(T)).
o Jr, 0

Suppose E(T) > E(0). Now from (2.1) we have

E@t) > %((1 —eME®@)).

(1(2 -y —e?) - 4\/3 R) E(T)
_ 2
(— 2— )1 —e Ty — 4\/; R) E(0)

Then we obtain

T
R[ / U,'jé‘,‘jdrdt
0 I

[\
>

v
> | =
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and the first estimate of (1.10) follows with

R __n_\ﬁ
cl—Rk(2 vyl —e™) 4a.

(From assumption (1.9) we have ¢; > 0.) With the same reasoning we can argue
the case E(T) < E(0), and the proof is thus complete.

In the next section we give an equivalent form of the integral in (1.10).

LEMMA 2.2. Assume (1.1) and put

2
B = Z ||aijkl||Loo(rx]R)-

i,jkl
Then every strong solution of (1.2) satisfies on I' x R the inequalities

n
o p
2
—50',']'8,']' < E |0','jVj| < —0ijé&ij- (28)
i=1 o

Applying the density argument, estimate (2.8) also remains valid for weak
solution.

Proof. The proof of the second inequality of (2.8) does not use the boundary
conditions:

Z loijvj1?
i

IA

2 2
> loiil? = laijueul
iJj iJj
2 2 p
Z (Z Naijei 7o - <) Z le&ij | ) = Bentn < —0ijEij.
ol Kl o

i,j

IA

For the proof of the first inequality of (2.8), without the boundary conditions in
(1.2) we have

1
2
Ui jlij = 52 (wij + uji)” — uijuji
i,j
: 2
= 28,']'8,'_,' — Ui VjlUjyVi = 28,‘j€ij - |d1vu| ,

ie.
25ij3ij = Uj jUi;j + ldivu|2 onTI. 2.9
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(Compare with (2.7).) Therefore,

1/2
2 12
0ij€ij = OijlU; j = OjjVjllj, < ( E lojvjl ) (uipuin)"

i
1/2

1/2
=< (Z |Ui.,'l{,'12> (28,’1‘8,‘1‘)1/2 < (Z |GijVj|2) (za_ldijsij)]/z
i i
and the first inequality in (2.8) follows. O

3. Controllability: proof of Theorem 1.2

Let us first study the well-posedness of the non-homogeneous problem (1.11). Let
us multiply the equation in (1.11) by an arbitrary solution of problem (1.2) and
integrate by parts formally. Then we obtain that

T
0 = //u,’(y,-"~0ij,j(}’))dx‘it
o Ja
T

T
= / /(u;’—cr,-j,j(u))y,- dx dt + [/ uiy; — u;y dx]
o Ja Q 0

T
+ / / (=103 (y)v; + 3 (w)vy ) T dt
0 r

T T
I:/(u[y{—u;yi)dx] +/ /aij(u)vjﬂidf‘dt.
Q o Jo Jr

H=H"(Q)" x (L*Q)" and H = (Hy(2)" x (L*(Q))"

Hence, putting

for simplicity, we have
(), =y(T)), W(T), W' (T)) 1,1
T
= (i1, —Yio), Wio, i), 1 —/0 /rdij(u)vjl?,- dr dt. 3.1

This leads to the following.

Definition. A solution y of (1.11) is a continuous function such that (y’, —y) : R —
H satisfies identity (3.1) for all T € R and for all (weak) solutions of problem (1.2).



238 A. Guesmia
This definition is justified by the following.

THEOREM 3.1. Assume (1.1). Then for any given

YW e (LX), y' e H'(Q)" and v e L} (R; (LXT))")

loc

the problem (1.11) has a unique solution satisfying
y € C(R; (L*(2))") N C'(R; (H™'(2)").

Furthermore, the linear map (y°, y', %) + y is continuous with respect to these
topologies.

Proof. We apply Theorem 1.1. Thanks to the second estimate in (1.10) the right-
hand side of equality (3.1) defines a bounded linear form of (y°,y') € H’ for
each T. Since the linear map (4%, u') — (u(T), u/(T)) is an automorphism of H’
(because problem (1.2) is reversible), the right-hand side of equality (3.1) can also
be considered as a bounded linear form of (y(T), y'(T)) € H'(= H"), and we
conclude the existence of a unique element (y'(T), —y(T)) € H satisfying (3.1).
Since the bounded linear form used in this proof depends continuously on T € R,
the solution y has the regularity required in the theorem. Finally, the bounded linear
form clearly depends continuously on (y°, y', #), hence y also has this property. ]

We now turn to the proof of Theorem 1.2.

The main idea is to seek a control in the form ¥; = o;;(u)v;, where u is the
solution of (1.2) for some suitable initial data. (Thanks to Theorem 1.1 and to
Lemma 2.2 these controls have the required regularity for the well-posedness of

(1.11).)

Case 1: 3° = 3! = 0. Let (u®, u') € H' arbitrarily, first solve problem (1.2), then
solve the problem

yl{l — 0ij,j (y) =0 inQx R,

yi=0 onTyxR,

yi = 0ij(w)v; onT; xR, (3.2)
Yi(T) =y{(T)=0 inQ,
i=1,...,n,

and set
AW, u'y = (y'(0), —y(0)).



On linear elasticity systems with variable coefficients 239

(Problem (3.2) is well-posed in an analogous sense as (1.11) in Theorem 3.1:
Iy € CR; (L2(Q2))") N C'(R; (H~1(R))") satisfies (3.2); because it is a time-
reversible problem.) Obviously, A : H' — H is a bounded linear map. Applying
the HUM, it is sufficient to show that A is onto. Indeed, then for any given
0%y e (LXQ))" x (H~'(2))" it will suffice to choose the control ¥ defined
by ¥ = 0 on I’y x R* and ¥; = 0;;(u)v; on I'y x R*, where u is the solution of
(1.2) corresponding to (u°, u') = A~ (y!, —y°).
We shall prove that A is in fact an isomorphism. We have

T
/ ] ui(y; — 03, j () dx dt
o Ja

T T
= [/(ui)’f - uﬁyi)dx} +/ V/("E’ —0yj,j(w))yi dx dt
Q o Jo Ja

T
+/ /(—uiUij()’)Vj + 0 (w)v;y;)dr dt,
o Jr

using the definition of A, the system (1.2) and (3.2). We obtain
T
i), 6w = [ [ Cloywyparar 33
o Jr 5

Applying the first estimate of (1.10) in Theorem 1.1 and Lemma 2.2, we
conclude from the identity (3.3) that A is coercive. Applying the Lax-Milgram
theorem we conclude that A is an isomorphism.

Case 2: 30 or ' # 0. We take y = z + w, where z is the solution of the problem

Zl{l_aij,j(Z)=O inQXR,

zi=0 onI xR,

w(T)=73° and Z/(T)=3' inQ,
i=1,...,n

and w is the solution of the problem

w] — o j(w) =0 on Q xR,

w; =19 inl xR,

w;(0) = y? —z;(0) and w;(0) = yi1 —2z;(0) on £,
wi(T) =wi(T) =0 on <,

i=1,...,n.

The proof of Theorem 1.2 is now complete.
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4. Stabilizability: proof of Theorem 1.3

The well-posedness of problem (1.12) can be established by standard methods of
evolution systems (cf. Pazy [12, ch. 5]) as in the study of system (1.2). We have
the following.

THEOREM 4.1. Assume (1.1). Then for every given (u°,u') € (Hp ()" x H,
problem (1.12) has a unique (weak) solution satisfying

u € C(R*; (Hp, ()" N C'(R*; H),

where HII‘O(Q) ={ve H(Q) :v=0o0n Ty}
If W% u') € W x V, then the corresponding strong solution is more regular:

ue CRT; W)yNnC'(R*; V) NC*R*; H).

Let us turn to the proof of Theorem 1.3. All the computations which follow
will be justified for a strong solution. Since the constant  in (1.16) will not depend
on E(0), once estimates (1.16) are established for regular solutions, they will also
be satisfied for all weak solutions by an easy density argument. For this, we shall
prove that fooo E(t)dt < (1/w)E(0), with @ the positive constant not depending on
E(0), and by [5, Theorem 8.1] we deduce estimate (1.16).

First we show the dissipativity of problem (1.12).

LEMMA 4.1. The function E : Rt — R™ is non-increasing and

E0) — E(T)

1 T T
= _5,/ fa{jk,akleijdxdt+/ / buju;dT'dt, 0<T <oo. (4.1)
0o Ja o Jr

Proof. We have

E = /(u;u:»’+oi_,-e{j+%a{jk,eklsij)dx—F'/ au;u;dl’

Q Iy

1 /
/(uza,-jyj+a,»ju;,j)dx+§/a,{jklskls,-j dx+f auiuidl"
Q Q ry
1

/ uﬁa,-l,-vde‘+§/alfjk,eklsijdx+/ auju; dl’
]"1 Q I—‘1

1 7
E/a{jk,sk,a,-jdx—/ buiu;dl’ <0;
Q I
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integrating between 0 and T we obtain (4.1).
Let 0 < T < oo arbitrarily. We have

T
0 = / /u,—(u;’-—a,-j,j)dxdt
= [/uu dx] [ /ua,jvjdl"dt-i-f /(a,,s,j uiu;)dx dt,

whence

T T T
f f Ujoj;jv;j dldt = [/ uiu; dx] + / /(O'ijé‘,'j - u:u:)dx dt. “4.2)
0 r Q 0 0 Q

Multiply (4.2) by n—1+y /24+2a R/« and combine with (2.4) such that A(x) = x—xp.
Writing
2aR
Mi = 2(xm —xy(:l)ui,m + <n -1+ ')2: -+ —“1—) U;
’ o

for simplicity, we have

(1—1—2"—R>/ f(a,,a,,+u )dxdt+[fMudx]T

f f(Ma,jv]+(h v)(u 0,18,1))d1‘dt——/ fa,ja,dedt

+/ /(Xm —xﬂ)(ama,»jkl)ekle,-j dx dt — )/f /a,-jaij dxdt,
0 Q 0 Q

by (1.6). The last part of this equality is negative; taking into account definition
(1.13) of the energy, we can rewrite it in the following form:

4aR\ [T 7"
2—y — — E(t)dt + M,-uidx
o 0 Q
2aR 4 R
< (I—Z—a—>// au;u; dl"dx——a—-/ fa,je,,dxdt
r

+/ /(M,-a,-jvj + (h- v)(u:ui — o,-js,-j))dI‘dt.
0 r

Now using the boundary conditions in (1.12) we obtain

T

T
(2—y—4—a£>/ E(t)dt+[/M,-u;dx:|
o 0 Q 0
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T 4aR T
< / (h - V)O','jé‘,'j dl"dt — a—/ / 0ij€ij dx dt
0 0 Q

Iy o
T 2aR
+/ / ((1 _r_ a_) au;u; — M;(au; + bu})
0 r 2 o
+ - V)(M;u; — O','jE,j)) drdz. 4.3)

(The term on I'y is obtained in the same way as in the proof of Theorem 1.1.)
Next we transform the integral over I';. Applying the Green formula twice and
using the boundary condition on Iy we have

/ Um,ihimdX = /(um,iuivm — Ummtiv;)dl +/ Um,mUi; dx
Q r Q
= emitiVm — Ui UiV — Emmu;vi) dl +f EmmEii dx.
Iy Q

On the other hand
f Um ilim dx = / (28miui,m - ui,mui,m)d)c = /(28mi8mi - ui,mui,m) dx
Q Q Q
and therefore

/(zgmigmi_ui,mui,m_emmgit’)dx = (25miuivm_ui,muivm_gmmviui)dr' 4.4)
Q ry

Multiplying (4.4) by 2aR and using the relation # = Rv on I'; we deduce the
following equality:

T
/ (—2ahp,u;mu;)dl dt
0 ]"1
T
= / /(4aRsm,-ami —2aRu; it; m — 2aR| divu|?) dx dt
0 Q
T
+/ (RaR(divu)(v - u) — 4aRep;u;vy) dT dt. (4.5)
0 1"1

Next we obtain by a similar computation that

T
/ f U it ,, dx dt
0o Ja '
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= [ f(um,u U — u,,,,w,u)dl‘dt—i—/ ‘/um,mu;’idxdt

T
= / (28m,u Vm —u,mu Vm — EmmVild; dr dt + |: / | div u| dx] .
0o Jr 0
Furthermore,
T T
f / Up iU}, dxdt = / /(2€mi8;ni — UimlU; ) dx dt
0o Ja ' 0o Ja '

T
1
I:/(Emigmi - fui,mui,m)dx] :
Q 0

Again using the relation A = Rv on Iy, it follows that

T
/ / (—2bhyu;mu.)dl dt
o Jr,

T
[ / (2bRémiemi — bRU; iy — bR| div u|?) a’x}
Q 0
T
+ [ / (2bR(divu)(v - u') — 4bRepiu}vy) dT dt. (4.6)
0 I

Substituting equalities (4.5) and (4.6) into (4.3) and using the equality 4 -v = R on
I'y and A - v < 0 on 'y, we obtain

T
(2 y—ijR)fo E(t)dt

T
[ / (—M;u + 2bRep;emi — bRU; iy — bR| div u|?) dx:|
Q

0

T ., 4aR
+/ / <4aRs,,,,-am,- —2aRu;imim — 2aR|divu|* — —ojj€;; | dxdt
o

2aR 2aR
[ / (( —Z— 4 )au,-ui—(n—1+z+—a—)u,-(au,~+bu;)
r o 2 o

+R(uiui — o,le,j) +2aR(divu)(v - u) — 4aRe,iu;v,

+2bR(divu)(v - u') — 4bR£miu;vm> dr" dt. 4.7

Let us majorize the right-hand side of this identity. Using the definition of the
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energy and the Korn inequality,

<aE@

/ (—Mju, + 2bRepmi&mi — bRU; miti m — bR|divul?) dx
Q

and

< E(@)

b 4aR g
~<2n—2+y+a—>[[ u,»u,-:l
4 o r 0

with some constants ¢; and ¢, independent of E(0) and of T.
By condition (1.1) we have

., 4aR
4aRs;jeij — 2aRu; mut; m — 2aR| divu|” — ——o0;;8;; | dx
Q @

4aR 4aR
< A (T(Iijgij — -a—O',‘jS,‘j> dx =0.

Applying Lemma 4.1 and using (1.14) we deduce that

T ., R R
R/ / wlu! dT dt < —(E(0) — E(T)) < —E(0).
o Jr b b

Then we deduce from identity (4.7) (also using (1.1) on —Rojj¢;;) the following
inequality:

4aR r
(2—;/——0[—)/0 E(t)dt

4aR\ [T
< C3E(0)+(2—n—y~~%—-)f /auiuidx
o Jr

T
+/ f (—Roaeg;jeij + 2aR(divu)(u - v) —4aRepiuivy,
o Jr
+2bR(divu)(u' - v) — 4bRey;uv,) dT dt. 4.8)
Here, c3 = 2¢; + 2¢; + R/b. For any fixed § > 0 we have

2aR(divi)u -v < 8|divul* + a®>R*5 ul?,
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2bR(divu)u’ - v 8| divul® + b*R*7|u'|?,
—4aRemiUiVy < 8Emi&mi +4a*R287ul?,

—4bREpitVy < SEmitmi + 4D R* U2,

IA

Substituting them into (4.8) and using the inequality |divu|?> < &,;&mi, We obtain

4aR r
(2 —y - —) /0 E@)dt < c3E(0)

o
T 4aR

+f / ((Z—n—y —a—-+-5aR2(S_1>a|u[2
0 Jry o

+ (48 — aR)emi&mi + 5bR26_1b|u’|2> drdt.
Using (1.14) and (4.1) we have
T
5bR%57! f / blu'|*dT" dt < 5bR*6™'(E(0) — E(T)) < 5bR*6™'E(0).
0 r

Substituting into the preceding inequality and choosing § = @R /4, we conclude that

4aR\ [T R\ (T
(2—y——"—-)f E(t)dtSC4E(0)+<2—n—y+16a—)/ /a|u|2dl"dt
o 0 (04 0 I‘l

(4.9)

with ¢4 = ¢3 + 20bR /.
Applying a method of Conrad and Rao [3] we shall prove the following lemma.

LEMMA 4.2. For any given € > 0, there exists a constant cs > 0 such that

T T
f /lulzdI‘dtSC5E(O)+e/ E(t)dt
o Jny 0

forall T > 0.

Assuming this lemma, choosing € > 0 such that (2 —n — y + 16aR/a)ae <
2—y —4aR/a if n <2 —y + 16aR/a, we deduce from (4.9) the inequality

T
f E(t)dt <cE(0), forall T >0,
0
where ¢ is a constant independent of E(0) and of 7. Then we conclude that
(e8]
/ E(t)dt < cE(0)
0

and obtain (1.16) with w = 1/c.
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It remains to prove Lemma 4.2. For every ¢+ > 0 let us denote by n(z) the

solution of the problem
—0ij,j = 0 in Q,
n=u onl.

Then we have
Inllc2@y < clulleamy < eV E@), (4.10)

where c is a positive constant not depending on u. Applying (4.10) with u’ instead
of u we also obtain

17" 2y < clle'll 2y < eV IE'|. (4.11)

Let us also observe that

/ oij(meij(u —n)dx = —/ 0i,j(m)(u; — ;) dx + f oij(mvj(u; —n;)dl’ = 0;
¢ “ s 4.12)
hence

/Qaij(ﬂ)??ij(u)dx = / oij(meij(m)dx = 0. (4.13)
Q

Integrating by parts on € x [0, T] and using the boundary conditions on u and on
n we deduce the following inequality:

T
0 = / /n,-(u;'—a,-j,j(u))dxdt
0o Ja

T T
|:/ niu; dx:' +/ /(—n,{u;+aij(u)sij(n))dxdt
Q 0 0 Q

T
+/ /u,v(aui + bu;)dT dt.
o Jr

Using (4.13) we obtain

T b T T
a/ /lulzdl"a’ts—[/ n,~u§dx+—/ |u|2d1"] +f /n;u;dxdt. (4.14)
o Jr Q 2 Jr o Jo Ja

By the definition of the energy and inequality (4.10) we have

b T
'[/ n,~u§dx+§f|u|2d1"]
Q r 0

< cE(0).
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Furthermore, using (4.11) and applying the Poincaré inequality we obtain

T T
/fﬂ,{uﬁdde < / 7"l 2y 1 L2y dt
o Ja 0
T T 2
c/ ,/|E'|«/Edt5/ (aeE+—(—E')) dt
0 0 4ae
T

ae / E(t)dt + ¢'E(0).
0

IA

IA

Substituting these inequalities into (4.14), then the lemma follows.
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