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Abstract. — In this paper we prove an abstract KAM theorem for infinite
dimensional Hamiltonians systems. This result extends previous works of S.B.
Kuksin and J. Pöschel and uses recent techniques of H. Eliasson and S.B.
Kuksin. As an application we show that some 1D nonlinear Schrödinger equa-
tions with harmonic potential admits many quasi-periodic solutions. In a
second application we prove the reducibility of the 1D Schrödinger equations
with the harmonic potential and a quasi periodic in time potential.
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1. Introduction

Let Ψ : N −→ [0,+∞[ so that Ψ(j) ≥ j for all j ≥ 1. We consider the
(complex) Hilbert space `2Ψ defined by the norm

‖w‖2Ψ =
∑
j≥1

|wj |2Ψ2(j).

We define the symplectic phase space P = PΨ as

P = Tn × Rn × `2Ψ × `2Ψ,
equipped with the canonic symplectic structure:

n∑
j=1

dθj ∧ dyj +
∑
j≥1

duj ∧ dvj .

For (θ, y, u, v) ∈ P we introduce the following Hamiltonian in normal form

(1.1) N =
n∑
j=1

ωj(ξ)yj +
1
2

∑
j≥1

Ωj(ξ)(u2
j + v2

j ),

where ξ ∈ Rn is an external parameter.
In [7], (see also [8] and a slightly generalised version in [11]) S.B. Kuksin has
shown the persistence of n−dimensional tori for the perturbed Hamiltonians
H = N+P with general conditions on the frequencies ωj ,Ωj and perturbation
P which essentially are the following : Firstly the frequencies satisfy some
Melnikov conditions and the external frequencies Ωj have to be well separated
in the sense that there exists d ≥ 1 so that roughly speaking (see Assumption
2 below)

(1.2) Ωj(ξ) ≈ jd.

Denote by Pa,p the phase space given by the weight Ψ(j) = jp/2eaj where p ≥ 0
and a ≥ 0. Secondly, the perturbation is real analytic and the corresponding
Hamiltonian vector field is so that

(1.3) XP : Pa,p −→ Pa,p with

{
p ≥ p for d > 1,

p > p for d = 1,

where d is the constant which appears in (1.2). For instance, the Schrödinger
and the wave equation on [0, π] with Dirichlet boundary conditions satisfy the
previous conditions, see respectively the KAM results of Kuksin-Pöschel [10]
and Pöschel [13]. Indeed the result in [10] is stronger because there is no
external parameter ξ in the equation.
Now, if we consider the nonlinear harmonic oscillator

(1.4) i∂tu = −∂2
xu+ x2u+ V (x)u+ |u|2mu, (t, x) ∈ R× R,
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with real and bounded potential V , we have Ωj ∼ 2j + 1, hence d = 1 but the
Hamiltonian perturbation which is here

(1.5) P =
∫

R
(uū)m+1dx,

does not satisfy the strict smoothing condition (1.3) (see Section 6 for more
details). The aim of this paper is to prove a KAM theorem (Theorem 2.3)
in the case d = 1 and p = p in (1.2) and (1.3). To compensate the lack of
smoothing effect of XP we need some additional conditions (see Assumption
4) on the decay of the P derivatives (in the spirit of the so-called Töplitz-
Lipschitz condition used by Eliasson & Kuksin in [4]) which will be satisfied
by the perturbation (1.5). The general strategy is explained with more details
in Section 2.3.
Notice that S.B. Kuksin has already considered in [8] the harmonic oscillator

with a smoothing nonlinearity of type P =
∫

R
ϕ(|u ? ξ|)dx where ξ is a fixed

smooth function.

We present two applications of our abstract result concerning the harmonic
oscillator T = −∂2

x+x2. Let p ≥ 2 and denote by `2p the space `2Ψ with Ψ(j) =
jp/2. The operator T has eigenfunctions (hj)j≥1 (the Hermite functions) which
satisfy Thj = (2j − 1)hj , j ≥ 1 and form a Hilbertian basis of L2(R). Let
u =

∑
j≥1 ujhj be a typical element of L2(R). Then (uj)j≥1 ∈ `2p if and only

if u ∈ Hp := D(T p/2) = {u ∈ L2(R) | T p/2u ∈ L2(R)}. Indeed Hp is a Sobolev
space based on T and we can check that

Hp = D(T p/2) = {u ∈ L2(R) | xα∂βu ∈ L2(R) for α+ β ≤ p}.
In this context, we are able to apply our KAM result to (1.4) and we obtain
(see Theorem 6.6 for a more precise statement)

Theorem 1.1. — Let m ≥ 1 be an integer. For typical potential V and for
ε > 0 small enough, the nonlinear Schrödinger equation

(1.6) i∂tu = −∂2
xu+ x2u+ V (x)u± ε|u|2mu

has many quasi-periodic solutions in H2.

The generalisation of such a result in a multidimensional setting is not ev-
ident for a spectral reason: the spectrum of the linear part is no more well
separated. We could expect to adapt the tools introduced in [4] but the arith-
metic properties of the corresponding spectra are not the same: in [4] the free
frequencies are j2

1 + j2
2 + · · ·+ j2

d for all j1, · · · , jd ∈ Z, while in our case they
are 2(j1 + j2 + · · · + jd) + d for all j1, · · · , jd ∈ N. Nevertheless we mention
that it is still possible to obtain a Birkhoff normal form for (1.4) as recently
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proved in [6].
A consequence of Theorem 1.1 is the existence of periodic solutions to (1.6).
There are other approaches to construct periodic solutions of this equation.
For instance, the gain of compacity yielded by the confining potential x2 allows
the use of variational methods. We develop this point of view in the appendix.

The second application concerns the reducibility of a linear harmonic oscil-
lator, T = −∂2

x+x2, on L2(R) perturbed by a quasi periodic in time potential.
Such kind of reducibility result for PDE using KAM machinery was first ob-
tained by Bambusi & Graffi (see [1]) for Schrödinger equation with an xβ

potential, β being strictly larger than 2 (notice that in that case d > 1 in the
asymptotic of the frequencies (1.2)). Here we follow the more recent approach
developed by Eliasson & Kuksin (see [5]) for the Schrödinger equation on the
multidimensional torus. Namely we consider the linear equation

i∂tu = −∂2
xu+ x2u+ εV (tω, x)u, u = u(t, x), x ∈ R,

where ε > 0 is a small parameter and the frequency vector ω of forced oscil-
lations is regarded as a parameter in U ⊂ Rn. We assume that the potential
V : Tn × R 3 (θ, x) 7→ R is analytic in θ on |Im θ| < s for some s > 0, and
C2 in x, and we suppose that there exists δ > 0 and C > 0 so that for all
θ ∈ [0, 2π)n and x ∈ R

(1.7) |V (θ, x)| ≤ C(1 + x2)−δ, |∂xV (θ, x)| ≤ C, |∂xxV (θ, x)| ≤ C.
In Section 7 we consider the previous equation as a linear non-autonomous
equation in the complex Hilbert space L2(R) and we prove (see Theorem 7.1
for a more precise statement)

Theorem 1.2. — Assume that V satisfies (1.7). Then there exists ε0 such
that for all 0 ≤ ε < ε0 there exists Λε ⊂ [0, 2π)n of positive measure and
asymptotically full measure: Meas(Λε) → (2π)n as ε → 0, such that for all
ω ∈ Λε, the linear Schrödinger equation

(1.8) i∂tu = −∂2
xu+ x2u+ εV (tω, x)u

reduces, in L2(R), to a linear equation with constant coefficients.

In particular, we prove the following result concerning the solutions of (1.8).

Corollary 1.3. — Assume that V is C∞ in x with all its derivatives bounded
and satisfying (1.7). Let p ≥ 0 and u0 ∈ Hp. Then there exists ε0 > 0 so that
for all 0 < ε < ε0 and ω ∈ Λε, there exists a unique solution u ∈ C

(
R ; Hp

)
of

(1.8) so that u(0) = u0. Moreover, u is almost-periodic in time and we have
the bounds

(1.9) (1− εC)‖u0‖Hp ≤ ‖u(t)‖Hp ≤ (1 + εC)‖u0‖Hp , ∀ t ∈ R,
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for some C = C(p, ω).

Another way to understand the result of Theorem 1.2 is in term of Floquet
operator (see [3] or [17]). Consider on L2(R)⊗L2(Tn) the Floquet Hamiltonian
operator

(1.10) K := i
n∑
k=1

ωk
∂

∂θk
− ∂2

x + x2 + εV (θ, x),

then we have

Corollary 1.4. — Assume that V satisfies (1.7). There exists ε0 > 0 so that
for all 0 < ε < ε0 and ω ∈ Λε, the spectrum of the Floquet operator K is pure
point.

A similar result, using a different KAM strategy, was obtained by W.M.
Wang in [17] in the case where

V (tω, x) = |h1(x)|2
n∑
k=1

cos(ωkt+ ϕk)

where h1 is the first Hermite function.

At the end of Section 7 we make explicit computations in the case of a
potential which is independent of the space variable. This example shows that
one can not avoid to restrict the choice of parameters ω to a Cantor type set
in Theorem 1.2.

Acknowledgements. — The first author thanks Hakan Eliasson and Serguei
Kuksin for helpful suggestions at the principle of this work. Both authors thank
Didier Robert for many clarifications in spectral theory.

2. Statement of the abstract result

We give in this section our abstract KAM result.

2.1. The assumptions on the Hamiltonian and its perturbation. —

Let Π ∈ Rn be a bounded closed set so that Meas(Π) > 0, where Meas denote
the Lebesgue measure in Rn. The set Π is the space of the external parameters
ξ. Denote by ∆ξη the difference operator in the variable ξ :

∆ξηf = f(·, ξ)− f(·, η).
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For l = (l1, . . . , lk) ∈ Zk, we denote by |l| =
k∑
j=1

|lj | its length, and 〈l〉 =

1 + |
k∑
j=1

jlj |. We set Z = {(k, l) 6= 0, |l| ≤ 2} ⊂ Zn × Z∞.

The first two assumptions we make, concern the frequencies of the Hamil-
tonian in normal form (1.1)

Assumption 1 (Nondegeneracy). — Denote by ω = (ω1, . . . , ωn) the in-
ternal frequencies. We assume that the map ξ 7→ ω(ξ) is an homeomorphism
from Π to its image which is Lipschitz continuous and its inverse also.
Moreover we assume that for all (k, l) ∈ Z

(2.1) Meas
({

ξ : k · ω(ξ) + l · Ω(ξ) = 0
})

= 0,

and for all ξ ∈ Π
l · Ω(ξ) 6= 0, ∀ 1 ≤ |l| ≤ 2.

Assumption 2 (Spectral asymptotics). — Set Ω0 = 0. We assume that
there exists m > 0 so that for all i, j ≥ 0 and uniformly on Π

|Ωi − Ωj | ≥ m|i− j|.

Moreover we assume that there exists β > 0 such that the functions

ξ 7−→ j2βΩj(ξ),

are uniformly Lipschitz on Π for j ≥ 1.

If the previous assumptions are satisfied, without (2.1), J. Pöschel [11]
proves that there exist a finite set X ⊂ Z and Π̃α ⊂ Π with Meas(Π\Π̃α) −→ 0
when α −→ 0, such that for all ω ∈ Π̃α

(2.2)
∣∣k · ω(ξ) + l · Ω(ξ)

∣∣ ≥ α 〈l〉
1 + |k|τ

, (k, l) ∈ Z\X ,

for some large τ depending on n and β.
If (2.1) is also satisfied, we can prove [11, Corollary C and its proof] that one
can ensure on Π̃α that

(2.3)
∣∣k · ω(ξ) + l · Ω(ξ)

∣∣ ≥ α 〈l〉
1 + |k|τ

, (k, l) ∈ Z.

In the sequel, we will need the distance

|Ω− Ω′|2β,Π = sup
ξ∈Π

sup
j≥1

j2β |Ωj(ξ)− Ω′j(ξ)|
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and the semi-norm

|Ω|L2β,Π = sup
ξ,η∈Π
ξ 6=η

sup
j≥1

j2β |∆ξη Ωj |
|ξ − η|

.

Finally, we set
|ω|LΠ + |Ω|L2β,Π = M.

Remark 2.1. — The proof of (2.2) crucially uses the control of the Lipschitz
semi-norm |Ω|L2β,Π (see [11, Lemma 5]). For this reason in assumptions 3 and 4
below we have to control the Lipschitz version of each semi-norms introduced
on P or XP .

As in [11], for s, r > 0 we define the (complex) neighbourhood of Tn ×{
0, 0, 0

}
.

(2.4) D(s, r) =
{

(θ, y, u, v) ∈ P s.t. |Im θ| < s, |y| < r2, ‖u‖Ψ + ‖v‖Ψ < r
}
.

Let r > 0. Then for W = (X,Y, U, V ) we define

|W |r = |X|+ 1
r2
|Y |+ 1

r

(
‖U‖Ψ + ‖V ‖Ψ

)
.

The next assumption concerns the regularity of the vector field associated to
P . Denote by XP = ( ∂yP, −∂θP, ∂vP, −∂uP ). Then

Assumption 3 (Regularity). — We assume that there exist s, r > 0 so
that

XP : D(s, r)×Π −→ P .
Moreover we assume that for all ξ ∈ Π, XP (·, ξ) is analytic in D(s, r) and that
for all w ∈ D(s, r), P (w, ·) and XP (w, ·) are Lipschitz continuous on Π.

We then define the norms

‖P‖D(s,r) := sup
D(s,r)×Π

|P | < +∞,

and

‖P‖LD(s,r) = sup
ξ,η∈Π
ξ 6=η

sup
D(s,r)

|∆ξη P |
|ξ − η|

,

where ∆ξη P = P (·, ξ)− P (·, η) and we define the semi-norms

‖XP ‖r,D(s,r) := sup
D(s,r)×Π

|XP |r < +∞,

and

‖XP ‖Lr,D(s,r) := sup
ξ,η∈Π
ξ 6=η

sup
D(s,r)

|∆ξηXP |r
|ξ − η|

< +∞.
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where ∆ξηXP = XP (·, ξ)−XP (·, η).
In the sequel, we will often work in the complex coordinates

z =
1√
2

(u− iv), z =
1√
2

(u+ iv).

Notice that this is not a canonical change of variables and in the variables
(θ, y, z, z̄) ∈ P the symplectic structure reads

n∑
j=1

dθj ∧ dyj + i
∑
j≥1

dzj ∧ dz̄j ,

and the Hamiltonian in normal form is

(2.5) N =
n∑
j=1

ωj(ξ)yj +
∑
j≥1

Ωj(ξ)zjzj .

As we mentioned previously we need some decay on the derivatives of P . We
first introduce the space Γβr,D(s,r): Let β > 0, we say that P ∈ Γβr,D(s,r) if
〈P 〉r,D(s,r) + 〈P 〉Lr,D(s,r) <∞ where :
• The norm 〈 · 〉r,D(s,r) is defined by the conditions∥∥P∥∥

D(s,r)
≤ r2〈P 〉r,D(s,r),

max
1≤j≤n

∥∥∥ ∂P
∂yj

∥∥∥
D(s,r)

≤ 〈P 〉r,D(s,r),

∥∥∥ ∂P
∂wj

∥∥∥
D(s,r)

≤ r

jβ
〈P 〉r,D(s,r), ∀ j ≥ 1 and wj = zj , zj ,∥∥∥ ∂2P

∂wj∂wl

∥∥∥
D(s,r)

≤ 1
(jl)β

〈P 〉r,D(s,r), ∀ j, l ≥ 1 and wj = zj , zj .

• The semi-norm 〈 · 〉Lr,D(s,r) is defined by the conditions∥∥P∥∥L
D(s,r)

≤ r2〈P 〉Lr,D(s,r),

max
1≤j≤n

∥∥∥ ∂P
∂yj

∥∥∥L
D(s,r)

≤ 〈P 〉Lr,D(s,r),

∥∥∥ ∂P
∂wj

∥∥∥L
D(s,r)

≤ r

jβ
〈P 〉Lr,D(s,r), ∀ j ≥ 1 and wj = zj , zj ,∥∥∥ ∂2P

∂wj∂wl

∥∥∥L
D(s,r)

≤ 1
(jl)β

〈P 〉Lr,D(s,r), ∀ j, l ≥ 1 and wj = zj , zj .

The last assumption is then the following

Assumption 4 (Decay). — P ∈ Γβr,D(s,r) for some β > 0.
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Remark 2.2. — The control of the second derivative is the most important
condition. The other ones are imposed so that we are able to recover the last
one after the KAM iteration (see Lemma 3.4). Furthermore the assumptions
on the first derivatives are already contained in Assumption 3 as soon as p > 0.

2.2. Statement of the abstract KAM Theorem. —

Recall that M = |ω|LΠ + |Ω|L2β,Π.

Theorem 2.3. — Suppose that N is a family of Hamiltonians of the form
(2.5) on the phase space P depending on parameters ξ ∈ Π so that Assump-
tions 1 and 2 are satisfied. Then there exist ε0 > 0 and s > 0 so that every
perturbation H = N + P of N which satisfies Assumptions 3 and 4 and the
smallness condition

ε =
(
‖XP ‖r,D(s,r) + 〈P 〉r,D(s,r)

)
+

α

M

(
‖XP ‖Lr,D(s,r) + 〈P 〉Lr,D(s,r)

)
≤ ε0α,

for some r > 0 and 0 < α ≤ 1, the following holds. There exist

(i) a Cantor set Πα ⊂ Π with Meas(Π\Πα)→ 0 as α→ 0 ;
(ii) a Lipschitz family of real analytic, symplectic coordinate transformations

Φ : D(s/2, r/2)×Πα → D(s, r) ;
(iii) a Lipschitz family of new normal forms

N? =
n∑
j=1

ω?j (ξ)yj +
∑
j≥1

Ω?
j (ξ)zj z̄j

defined on D(s/2, r/2)×Πα ;

such that
H ◦ Φ = N? +R?

where R? is analytic on D(s/2, r/2) and globally of order 3 at Tn × {0, 0, 0}.
That is the Taylor expansion of R? only contains monomials ymzq z̄q̄ with
2|m|+ |q + q̄| ≥ 3.
Moreover each symplectic coordinate transformation is close to the identity

(2.6) ‖Φ− Id‖r,D(s/2,r/2) ≤ cε,

the new frequencies are close to the original ones

(2.7) |ω? − ω|Πα + |Ω? − Ω|2β,Πα ≤ cε,

and the new frequencies satisfy a non resonant condition

(2.8)
∣∣k · ω?(ξ) + l · Ω?(ξ)

∣∣ ≥ α

2
〈l〉

1 + |k|τ
, (k, l) ∈ Z, ξ ∈ Πα.



10 BENOÎT GRÉBERT & LAURENT THOMANN

As the consequence, for each ξ ∈ Πα the torus Tn×{0, 0, 0} is still invariant
under the flow of the perturbed Hamiltonian H = N + P , the flow is linear (
in the new variables) on these tori and furthermore all these tori are linearly
stable.

2.3. General strategy. —

The general strategy is the classical one used for instance in [7, 8, 11]. For
convenience of the reader we recall it. Let H = N+P be a Hamiltonian, where
N is given by (2.5) and P a perturbation which satisfies the assumptions of
the previous section. We then consider the second order Taylor approximation
of P which is

(2.9) R =
∑

2|m|+|q+q|≤2

∑
k∈Zn

Rkmqq eik·θymzqzq,

and we define its mean value by

[R] =
∑

|m|+|q|=1

R0mqqy
mzqzq.

Recall that in this setting z, z have homogeneity 1, whereas y has homogeneity
2.
Let F be a function of the form (2.9) and denote by Xt

F the flow at time t
associated to the vector field of F . We can then define a new Hamiltonian by
H◦X1

F := N++P+, and the Hamiltonian structure is preserved, because X1
F is

a symplectic transformation. The idea of the KAM step is to find, iteratively,
an adequate function F so that the new error term has a small quadratic part.
Namely, thanks to the Taylor formula we can write

H ◦X1
F = N ◦X1

F + (P −R) ◦X1
F +R ◦X1

F

= N +
{
N,F

}
+
∫ 1

0
(1− t)

{{
N,F

}
, F
}
◦Xt

F dt+

+(P −R) ◦X1
F +R+

∫ 1

0

{
R,F

}
◦Xt

F dt.

In view of the previous equation, we define the new normal form by N+ =
N + N̂ , where N̂ satisfies the so-called homological equation (the unknown
are F and N̂)

(2.10)
{
F,N

}
+ N̂ = R.

The new normal form N+ has the form (2.5) with new frequencies given by

ω+(ξ) = ω(ξ) + ω̂(ξ) and Ω+(ξ) = Ω(ξ) + Ω̂(ξ)
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where

(2.11) ω̂(ξ) =
∂N̂

∂yj
(0, 0, 0, 0, ξ)) and Ω̂(ξ) =

∂2N̂

∂zj∂zj
(0, 0, 0, 0, ξ).

Once the homological equation is solved, we define the new perturbation term
P+ by

(2.12) P+ = (P −R) ◦X1
F +

∫ 1

0

{
R(t), F

}
◦Xt

F dt,

where R(t) = (1− t)N̂ + tR in such a way that

H ◦X1
F = N+ + P+ .

Notice that if P was initially of size ε, then R and F are of size ε, and the
quadratic part of P+ is formally of size ε2. That is, the formal iterative scheme
is exponentially convergent.

Without any smoothing effect on the regularity, there is no decreasing prop-
erty in the correction term added to the external frequencies (2.11). In that
case it would be impossible to control the small divisors (see (2.3)) at the next
step. In this work the smoothing condition (1.3) on XP is replaced by As-
sumption 4 (see also Remark 4.3). The difficulty is to verify the conservation
of this assumption at each step.

Plan of the proof of Theorem 2.3. — In Section 3 we solve the homo-
logical equation and give estimates on the solutions. Then we study precisely
the flow map Xt

F and the composition H ◦X1
F . In Section 4 we estimate the

new error term and the new frequencies after the KAM step, and Section 5
is devoted to the convergence of the KAM method and the proof of Theorem
2.3.

Notations. — In this paper c, C denote constants the value of which may
change from line to line. These constants will always be universal, or depend
on fixed quantities (n, β,Π, . . . ).
We denote by N the set of the non negative integers, and N∗ = N\{0}. For l =

(l1, . . . , lk) ∈ Zk, we denote by |l| =
k∑
j=1

|lj | its length, and 〈l〉 = 1 + |
k∑
j=1

jlj |.

We define the space Z =
{

(k, l) 6= 0, |l| ≤ 2
}

. The notation Meas stands for
the Lebesgue measure in Rn.

In the sequel, we will state without proof some intermediate results of [11]
which still hold under our conditions ; hence the reader should refer to [11] for
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the details. For the convenience of the reader we decided to remain as close
as possible to the notations of J. Pöschel.

3. The linear step

In this section, we solve equation (2.10) and study the Lie transform Xt
F .

Following [11], ‖ · ‖∗ (respectively 〈 · 〉∗ ) stands either for ‖ · ‖ or ‖ · ‖L (respec-
tively 〈 · 〉 or 〈 · 〉L ) and ‖ · ‖λ stands for ‖ · ‖+ λ‖ · ‖L.

3.1. The homological equation. —

The following result shows that it is possible to solve equation (2.10) under
the Diophantine condition (2.3).

Lemma 3.1 ([11]). — Assume that the frequencies satisfy, uniformly on Π̃α,
for some α > 0 the condition (2.3). Then the homological equation (2.10) has
a solution F , N̂ which is normalised by [F ] = 0, [N̂ ] = N̂ , and satisfies for
all 0 < σ < s, and 0 ≤ λ ≤ α/M

‖X bN‖∗r,D(s,r) ≤ ‖XR‖∗r,D(s,r), ‖XF ‖λr,D(s−σ,r) ≤
C

ασt
‖XR‖λr,D(s,r),

where t only depends on n and τ .

The space Γβr,D(s,r) is not stable under the Poisson bracket. Therefore

we need to introduce the space Γβ,+r,D(s,r) ⊂ Γβr,D(s,r) endowed with the norm

〈 · 〉+r,D(s,r) + 〈 · 〉+,Lr,D(s,r) defined by the following conditions.

∥∥F∥∥∗
D(s,r)

≤ r2〈F 〉+,∗r,D(s,r), max
1≤j≤n

∥∥∥ ∂F
∂yj

∥∥∥∗
D(s,r)

≤ 〈F 〉+,∗r,D(s,r),

∥∥∥ ∂F
∂wj

∥∥∥∗
D(s,r)

≤ r

jβ+1
〈F 〉+,∗r,D(s,r), ∀ j ≥ 1 and wj = zj , zj ,∥∥∥ ∂2F

∂wj∂wl

∥∥∥∗
D(s,r)

≤ 1
(jl)β(1 + |j − l|)

〈F 〉+,∗r,D(s,r) ∀ j, l ≥ 1 and wj = zj , zj .

This definition is motivated by the following result, which can be understood
as a smoothing property of the homological equation

Lemma 3.2. — Assume that the frequencies satisfy (2.3), uniformly on Π̃α.
Let F, N̂ be given by Lemma 3.1. Assume moreover that R ∈ Γβr,D(s,r), then
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there exists C > 0 so that for any 0 < σ < s, we have F ∈ Γβ,+r,D(s−σ,r),

N̂ ∈ Γβr,D(s−σ,r) and

〈F 〉+r,D(s−σ,r) ≤
C

ασt
〈R〉r,D(s,r),

(3.1) 〈F 〉+,Lr,D(s−σ,r) ≤
C

ασt

(
〈R〉r,D(s,r) +

M

α
〈R〉Lr,D(s,r)

)
,

and
〈N̂〉r,D(s−σ,r) ≤ 〈R〉r,D(s,r), 〈N̂〉Lr,D(s−σ,r) ≤ 〈R〉

L
r,D(s,r),

where t only depends on n and τ .

For the proof of this result, we need the classical lemma

Lemma 3.3. — Let f : R −→ C be a periodic function and assume that f
is holomorphic in the domain |Im θ| < s, and continuous on |Im θ| ≤ s. Then
there exists C > 0 so that its Fourier coefficients satisfy

|f̂(k)| ≤ Ce−|k|s sup
|Im θ|<s

|f(θ)|.

Proof of Lemma 3.2. — In [11], the author looks for a solution F of (2.10) of
the form of (2.9), i.e.

(3.2) F =
∑

2|m|+|q+q|≤2

∑
k∈Zn

Fkmqq eik·θymzqzq.

A direct computation then shows that the coefficients in (3.2) are given by

(3.3) iFkmqq =


Rkmqq

k · ω + (q − q) · Ω
, if |k|+ |q − q| 6= 0,

0, otherwise,

and that we can set N̂ = [R].
In the following we will use the notation qj = (0, · · · , 0, 1, 0, · · · ), where the 1
is at the jth position, and qjl = qj + ql.
The variables z and z exactly play the same role, therefore it is enough to
study the derivatives in the variable z.

In the sequel we write Ak = 1 + |k|τ . Then it easy to check that for any j ≥ 1
and σ > 0, ∑

k∈Zn
Ajke

−|k|σ ≤ C

σt
,

for some C > 0 and t = 2jτ + n + 1. In the sequel, t may vary from line to
line, but will remain independent of σ.
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♠ We first prove that 〈F 〉+r,D(s−σ,r) ≤
C

ασt
〈R〉r,D(s,r).

• Observe that
∂2R

∂zj∂zl
=
∑
k∈Zn

Rk 0 qjl 0 eik·θ, then according to Lemma 3.3,

there exists C > 0 so that |Rk 0 qjl 0| ≤ C
〈R〉r,D(s,r)e−|k|s

(jl)β
, and thus by (3.3)

and (2.3)

(3.4) |Fk 0 qjl 0| ≤ C
Ak
α

〈R〉r,D(s,r)e−|k|s

(jl)β(1 + |j − l|)
.

Therefore, as we also have

(3.5)
∂2F

∂zj∂zl
=
∑
k∈Zn

Fk 0 qjl 0 eik·θ,

we deduce that∥∥∥ ∂2F

∂zj∂zl

∥∥∥
D(s−σ,r)

≤
∑
k∈Zn

|Fk 0 qjl0|e
|k|(s−σ)

≤
C〈R〉r,D(s,r)

α(jl)β(1 + |j − l|)
∑
k∈Zn

Ake−|k|σ

≤
C〈R〉r,D(s,r)

ασt(jl)β(1 + |j − l|)
.(3.6)

• We compute

(3.7)
∂F

∂zj
=
∑
k∈Zn

Fk 0 qj 0eik·θ +
∑

k∈Zn, l≥1

Fk 0 qjqle
ik·θzl + 2

∑
k∈Zn

Fk 0 2qj 0eik·θzj .

Now observe that
( ∂R
∂zj

)
|z=z=0

=
∑
k∈Zn

Rk 0 qj 0 eik·θ, then by Lemma 3.3,

|Rk 0 qj 0| ≤ Ce−|k|s sup
|Im θ|<s

∣∣∣( ∂R
∂zj

)
|z=z=0

∣∣∣
≤ C e−|k|s

∥∥∥ ∂R
∂zj

∥∥∥
D(s,r)

≤ Cr e−|k|s

jβ
〈R〉r,D(s,r).

From the previous estimate, (3.3) and (2.3) we get

|Fk 0 qj 0| ≤
Ak

α(1 + j)
|Rk 0 qj 0| ≤

CrAk e−|k|s

αjβ(1 + j)
〈R〉r,D(s,r)
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and thus ∥∥∥ ∑
k∈Zn

Fk 0 qj0eik·θ
∥∥∥
D(s−σ,r)

≤
∑
k∈Zn

|Fk 0 qj0|e
|k|(s−σ)

≤ Cr
〈R〉r,D(s,r)

αjβ(1 + j)

∑
k∈Zn

Ake−|k|σ

≤
Cr〈R〉r,D(s,r)

ασtjβ(1 + j)
.(3.8)

Similarly, we have |Fk 0 2qj0| ≤
CrAk e−|k|s

αjβ(1 + j)
〈R〉r,D(s,r), which leads to

(3.9)
∥∥∥ ∑
k∈Zn

Fk 0 2qj0eik·θ
∥∥∥
D(s−σ,r)

≤
Cr〈R〉r,D(s,r)

ασtjβ(1 + j)
.

By Cauchy-Schwarz in the variable l and (3.5), (3.6)∥∥∥ ∑
k∈Zn, l≥1

Fk 0 qjqle
ik·θzl

∥∥∥
D(s−σ,r)

≤
(∑
l≥1

Ψ−2(l)|
∑
k∈Zn

Fk 0 qjqle
ik·θ|2

) 1
2
(∑
l≥1

|zl|2Ψ2(l)
) 1

2

≤ Cr

ασtjβ

(∑
l≥1

1
l2βΨ2(l)(1 + |j − l|)2

) 1
2 〈R〉r,D(s,r)

≤
Cr〈R〉r,D(s,r)

ασtjβ(1 + j)
,(3.10)

since Ψ(l) ≥ l.
Finally, inserting (3.8), (3.9) and (3.10) in (3.7) we obtain

(3.11)
∥∥∥∂F
∂zj

∥∥∥
D(s−σ,r)

≤
Cr〈R〉r,D(s,r)

ασtjβ(1 + j)
.

• We can write
∂F

∂yj
=
∑
k∈Zn

Fkmj0 0eik·θ. Hence by (3.3) and (2.3), |Fkmj0 0| ≤

Ak
α
|Rkmj0 0|, and thanks to Lemma 3.3 applied to the series

∂R

∂yj
=
∑
k∈Zn

Rkmj0 0eik·θ,

(3.12) |Fkmj0 0| ≤ C
Ak
α

e−|k|s〈R〉r,D(s,r),

and we obtain

(3.13)
∥∥∥ ∂F
∂yj

∥∥∥
D(s−σ,r)

≤
∑
k∈Zn

|Fkmj0 0|e|k|(s−σ) ≤ C

ασt
〈R〉r,D(s,r).
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• To obtain the bound for ‖F‖D(s−σ,r) write

(3.14) F =
∑
k∈Zn

Fk 0 0 0eik·θ +
∑

k∈Zn,1≤j≤n
Fkmj 0 0eik·θyj+∑

k∈Zn,j,l≥1

Fk 0 qjl 0eik·θzjzl+
∑

k∈Zn,j,l≥1

Fk 00 qjle
ik·θzjzl+

∑
k∈Zn,j,l≥1

Fk 0qjqle
ik·θzjzl.

Since R|y=z=z=0 =
∑
k∈Zn

Rk 0 0 0eik·θ, by Lemmas 3.3 and 3.1 we deduce that

(3.15)
∣∣Fk0 0 0

∣∣ ≤ Cr2Ak
α

e−|k|s〈R〉r,D(s,r),

hence, thanks to (3.12) and (3.15) we can bound the sums of the first line in
(3.14) as in the previous point.
Now thanks to (3.4) and to the Cauchy-Schwarz inequality we have∥∥∥ ∑
k∈Zn, j,l≥1

Fk 0 qjl0eik·θzjzl
∥∥∥
D(s−σ,r)

≤
C〈R〉r,D(s,r)

ασt

∑
j,l≥1

|zjzl|
(jl)β(1 + |j − l|)

≤
C〈R〉r,D(s,r)

ασt

(∑
j≥1

|zj |
jβ

)2

≤
C〈R〉r,D(s,r)

ασt

(∑
j≥1

Ψ2(j)|zj |2
)(∑

j≥1

1
j2βΨ2(j)

)
≤

Cr2〈R〉r,D(s,r)

ασt
.

Therefore we proved that ‖F‖D(s−σ,r) ≤
Cr2〈R〉r,D(s,r)

ασt
.

This latter estimate together with the estimates (3.6), (3.11) and (3.13) shows
that

〈F 〉+r,D(s−σ,r) ≤
C

ασt
〈R〉r,D(s,r).

♠ We now show that

(3.16) 〈N̂〉r,D(s−σ,r) ≤ 〈R〉r,D(s,r).

Since N̂ = [R] we have

(3.17) N̂ =
n∑
j=1

R0mj00 yj +
∑
j≥1

R00qjqj zjzj ,
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and we can observe that
(3.18)

R0mj00 =
1

(2π)n

∫
θ∈Tn

∂R

∂yj
(θ, 0, 0, 0)dθ, R00qjqj =

1
(2π)n

∫
θ∈Tn

∂2R

∂zj∂zj
(θ, 0, 0, 0)dθ,

which imply the bounds |R0mj00| ≤ 〈R〉r,D(s,r) and |R00qjqj | ≤ 〈R〉r,D(s,r)/j
2β

and thus (3.16).

♠ It remains to check the estimates with the Lipschitz semi norms.
As in [11], for |k|+ |qj − ql| 6= 0 define δk,jl = k · ω + Ωj −Ωl. Then by (3.3),

i∆ξηFkmqjql = δ−1
k,jl(η)∆ξηRkmqjql +Rkmqjql(ξ)∆ξηδ

−1
k,jl.

By (2.3), |δ−1
k,jl| ≤ Ak/α and thus

|∆ξηδ
−1
k,jl| ≤

A2
k

α2

(
|k||∆ξηω|+ |∆ξηΩj |+ |∆ξηΩl|

)
,

hence
|∆ξηδ

−1
k,jl|

|ξ − η|
≤ C

kA2
k

α2

(
|ω|LΠ + |Ω|L2β,Π

)
≤ CM

kA2
k

α2
,

and we have

(3.19)
|∆ξηFkmqjql |
|ξ − η|

≤ CkAk
α

( |∆ξηRkmqjql |
|ξ − η|

+
M

α

∣∣Rkmqjql(ξ)∣∣).
Thanks to the estimate (3.19) it is easy to obtain (3.1).

Finally, the estimate 〈N̂〉Lr,D(s−σ,r) ≤ 〈R〉
L
r,D(s,r) is a straightforward conse-

quence of (3.17) and (3.18).

3.2. Estimates on the Poisson bracket. —

Lemma 3.4. — Let R ∈ Γβr,D(s,r) and F ∈ Γβ,+r,D(s,r) be both of degree 2, i.e.
of the form (2.9). Then there exists C > 0 so that for any 0 < σ < s

(3.20) 〈
{
R,F

}
〉r,D(s−σ,r) ≤

C

σ
〈R〉r,D(s,r)〈F 〉+r,D(s,r),

and

〈
{
R,F

}
〉Lβ,D(s−σ,r) ≤

C

σ

(
〈R〉r,D(s,r)〈F 〉

+,L
r,D(s,r) + 〈F 〉+r,D(s,r)〈R〉

L
r,D(s,r)

)
.

Proof. — The expansion of
{
R,F

}
reads{

R,F
}

=
n∑
k=1

( ∂R
∂θk

∂F

∂yk
− ∂R

∂yk

∂F

∂θk

)
+ i
∑
k≥1

( ∂R
∂zk

∂F

∂zk
− ∂R

∂zk

∂F

∂zk

)
.
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It remains to estimate each term of this expansion and its derivatives. We will
control the derivative with respect to θk thanks to the Cauchy formula :

(3.21)
∥∥∥ ∂P
∂θk

∥∥∥
D(s−σ,r)

≤ C

σ

∥∥P∥∥
D(s,r)

,

which explains the loss of σ.
Notice that if P is of degree 2 (and that is the case for F and R) we have

(3.22)
∂2P

∂z∂y
=
∂2P

∂y2
=
∂3P

∂z3
= 0,

fact which will be crucially used in the sequel. Finally observe that z and z

exactly play the same role, hence we will only take
∂

∂z
into consideration.

♠ We first prove (3.20).

• Since ‖P Q‖D(s,r) ≤ ‖P‖D(s,r)‖Q‖D(s,r) we have by Cauchy formula∥∥{R,F }∥∥
D(s−σ,r) ≤

Cr2

σ
(2n+

∑
k≥1

1
k2β+1

)〈R〉r,D(s,r)〈F 〉+r,D(s,r)

≤ Cr2

σ
〈R〉r,D(s,r)〈F 〉+r,D(s,r).(3.23)

• With (3.21) we have∥∥∥ ∂

∂yj

( ∂R
∂θk

∂F

∂yk

)∥∥∥
D(s−σ,r)

≤
∥∥∥ ∂

∂θk

( ∂R
∂yj

)∥∥∥
D(s−σ,r)

∥∥∥ ∂F
∂yk

∥∥∥
D(s,r)

≤ C

σ

∥∥∥ ∂R
∂yj

∥∥∥
D(s,r)

∥∥∥ ∂F
∂yk

∥∥∥
D(s,r)

≤ C

σ
〈R〉r,D(s,r)〈F 〉+r,D(s,r),

and the same estimate holds interchanging R and F . In view of (3.22) we
deduce

(3.24) max
1≤y≤n

∥∥∥ ∂

∂yj

{
R,F

}∥∥∥
D(s,r)

≤ C

σ
〈R〉r,D(s,r)〈F 〉+r,D(s,r).

• By (3.22),
∂

∂zj

( ∂R
∂yk

∂F

∂θk

)
=
∂R

∂yk

∂2F

∂zj∂θk
, and by (3.21)

∥∥∥ ∂R
∂yk

∂2F

∂zj∂θk

∥∥∥
D(s−σ,r)

≤ C

σ

∥∥∥ ∂R
∂yk

∥∥∥
D(s,r)

∥∥∥∂F
∂zj

∥∥∥
D(s,r)

≤ Cr

jβσ
〈R〉r,D(s,r)〈F 〉+r,D(s,r).
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Similarly
∥∥∥ ∂

∂zj

( ∂R
∂θk

∂F

∂yk

)∥∥∥
D(s−σ,r)

≤ Cr

jβσ
〈R〉r,D(s,r)〈F 〉+r,D(s,r). By the Leibniz

rule∥∥∥ ∂

∂zj

( ∂R
∂zk

∂F

∂zk

)∥∥∥
D(s,r)

≤

≤
∥∥∥ ∂2R

∂zk∂zj

∥∥∥
D(s,r)

∥∥∥ ∂F
∂zk

∥∥∥
D(s,r)

+
∥∥∥ ∂2F

∂zj∂zk

∥∥∥
D(s,r)

∥∥∥ ∂R
∂zk

∥∥∥
D(s,r)

≤ Cr

jβ

( 1
k2β+1

+
1

k2β(1 + |j − k|)

)
〈R〉r,D(s,r)〈F 〉+r,D(s,r),

and taking the sum in k yields∑
k≥1

∥∥∥ ∂

∂zj

( ∂R
∂zk

∂F

∂zk

)∥∥∥
D(s,r)

≤ Cr

jβσ
〈R〉r,D(s,r)〈F 〉+r,D(s,r).

The previous estimates imply that

(3.25)
∥∥∥ ∂

∂zj

{
R,F

}∥∥∥
D(s−σ,r)

≤ Cr

jβσ
〈R〉r,D(s,r)〈F 〉+r,D(s,r).

• Thanks to (3.22),
∂2

∂zj∂zl

( ∂R
∂yk

∂F

∂θk

)
=

∂R

∂yk

∂3F

∂zj∂zl∂θk
, and by (3.21) we

obtain∥∥∥ ∂2

∂zj∂zl

( ∂R
∂yk

∂F

∂θk

)∥∥∥
D(s−σ,r)

≤
∥∥∥ ∂R
∂yk

∥∥∥
D(s,r)

∥∥∥ ∂3F

∂zj∂zl∂θk

∥∥∥
D(s−σ,r)

≤ C

(jl)βσ
〈R〉r,D(s,r)〈F 〉+r,D(s,r),(3.26)

and the same estimate holds interchanging R and F .
On the other hand,

∂2

∂zj∂zl

( ∂R
∂zk

∂F

∂zk

)
=

∂2R

∂zj∂zk

∂2F

∂zl∂zk
+

∂2R

∂zl∂zk

∂2F

∂zj∂zk
,

and∥∥∥ ∂2R

∂zj∂zk

∂2F

∂zl∂zk

∥∥∥
D(s−σ,r)

≤
∥∥∥ ∂2R

∂zj∂zk

∥∥∥
D(s,r)

∥∥∥ ∂2F

∂zl∂zk

∥∥∥
D(s,r)

≤ C

(jlk2)β(1 + |l − k|)
〈R〉r,D(s,r)〈F 〉+r,D(s,r).

Hence, with (3.26) we conclude that

(3.27)
∥∥∥ ∂2

∂zj∂zl

{
R,F

}∥∥∥
D(s−σ,r)

≤ C

(jl)βσ
〈R〉r,D(s,r)〈F 〉+r,D(s,r),
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as the series
∑
k≥1

1
k2β(1 + |l − k|)

converges.

Finally, the estimates (3.23), (3.24), (3.25) and (3.27) yield the estimate (3.20).

♠ To prove the estimate with the Lipschitz norms, we can use the previous
analysis and the two following facts.
Firstly, since ∆ξη(fg) = f(ξ)∆ξηg + g(η)∆ξηf , hence

‖fg‖LD(s,r) ≤ ‖f‖D(s,r)‖g‖LD(s,r) + ‖g‖D(s,r)‖f‖LD(s,r).

Secondly, the operator ∆ξη commutes with the derivative in any variable.

3.3. The canonical transform. —

In this Section we study the Hamiltonian flow generated by a function F ∈
Γβ,+r,D(s−σ,r) globally of degree 2, i.e. of degree 2 in the variables z, z and of
degree 1 in the variable y. Namely, we consider the system

(3.28)

{(
θ̇(t), ẏ(t), ż(t), ż(t)

)
= XF

((
θ(t), y(t), z(t), z(t)

))
,(

θ(0), y(0), z(0), z(0)
)

=
(
θ0, y0, z0, z0

)
.

Lemma 3.5. — Let 0 < σ < s and F ∈ Γβ,+r,D(s−σ,r) with F of degree 2.
Assume that 〈F 〉+r,D(s−σ,r) < Cσ. Then the solution of the equation (3.28) with
initial condition

(
θ0, y0, z0, z0

)
∈ D(s−3σ, r4), satisfies

(
θ(t), y(t), z(t), z(t)

)
∈

D(s− 2σ, r2) for all 0 ≤ t ≤ 1, and we have the estimates

(3.29) sup
0≤t≤1

∣∣∣∂yk(t)
∂w0

j

∣∣∣ ≤ Cr〈F 〉+r,D(s−σ,r)

σjβ
with w0

j = z0
j or z0

j ,

(3.30)

sup
0≤t≤1

∣∣∣∂wk(t)
∂w0

j

∣∣∣ ≤ C〈F 〉+r,D(s−σ,r)

(jk)β(1 + |j − k|)
+δjk with wk = zk or zk, w0

j = z0
j or z0

j ,

(3.31) sup
0≤t≤1

∣∣∣∂yk(t)
∂y0

j

∣∣∣ ≤ C〈F 〉+r,D(s−σ,r)

σ
+ δjk,

(3.32)

sup
0≤t≤1

∣∣∣ ∂2yk(t)
∂w0

j∂w
0
i

∣∣∣ ≤ C〈F 〉+r,D(s−σ,r)

σ(ij)β(1 + |i− j|)
with w0

i = z0
i or z0

i , w0
j = z0

j or z0
j .

Before we turn to the proof of Lemma 3.5, we introduce a space of infinite
dimensional matrices, with decaying coefficients.



KAM FOR THE QUANTUM HARMONIC OSCILLATOR 21

Let ‖ · ‖ be any submultiplicative norm on M2,2(C), the space of the 2 × 2
complex matrices. For β > 0, we say that B ∈ Mβ,+

s if 〈〈B 〉〉+β,s <∞, where
the norm 〈〈 · 〉〉+β,s is given by the condition

sup
ξ∈Π

sup
|Im θ|<s

‖Bjl‖ ≤
〈〈B 〉〉+β,s

(jl)β(1 + |j − l|)
, ∀ j, l ≥ 1.

Then we have the following result

Lemma 3.6. — Let A,B ∈Mβ,+
s . Then AB ∈Mβ,+

s and

〈〈AB 〉〉+β,s ≤ C〈〈A 〉〉
+
β,s〈〈B 〉〉

+
β,s.

Proof. — For all j, l ≥ 1,
(
AB
)
jl

=
∑
k≥1

AjkBkl. Since ‖ ·‖ is submultiplicative

‖
(
AB
)
jl
‖ ≤

∑
k≥1

‖Ajk‖‖Bkl‖

≤
〈〈A 〉〉+β,s〈〈B 〉〉

+
β,s

(jl)β
∑
k≥1

1
k2β(1 + |j − k|)(1 + |l − k|)

.(3.33)

Thanks to the triangle inequality, for all j, l ≥ 1,{
k ≥ 1

}
⊂
{
k ≥ 1 : |j − k| ≥ 1

3
|j − l|

}⋃{
k ≥ 1 : |l − k| ≥ 1

3
|j − l|

}
,

thus, by splitting the sum in (3.33) we obtain the desired result.

Proof of Lemma 3.5. — Here we introduce the notations Zj = (zj , zj) and
Z = (Zj)j≥1. Then F reads

(3.34) F (θ, y, Z) = b0(θ) + b1(θ) · y + a(θ) · Z +
1
2
(
A(θ)Z

)
· Z,

with

b0(θ) = F (θ, 0, 0), b1(θ) = ∇yF (θ, 0, 0), a(θ) = ∇ZF (θ, 0, 0),

and A = (Ai,j) is the infinite matrix so that

(3.35) Ai,j(θ) =


∂2F

∂zi∂zj
(θ, 0, 0)

∂2F

∂zi∂zj
(theta, 0, 0)

∂2F

∂zi∂zj
(θ, 0, 0)

∂2F

∂zi∂zj
(θ, 0, 0)

 .

Observe that A is symmetric.

By [11, Estimate (9)], the flow Xt
F exists for 0 ≤ t ≤ 1 and maps D(s− 3σ, r4)

into D(s − 2σ, r2). Here we have to give a precise description of Xt
F for 0 ≤



22 BENOÎT GRÉBERT & LAURENT THOMANN

t ≤ 1. This is possible thanks to the particular structure (3.34) of F.
In the sequel we write (θ(t), y(t), Z(t)) = Xt

F (θ0, y0, Z0).

♠ To begin with, the equation for θ reads

(3.36) θ̇(t) = ∇yF (θ, 0, 0) = b1(θ), θ(0) = θ0.

Since b1 is a smooth function (see (3.2)), the n-dimensional system (3.36)
admits a unique (smooth) local solution θ(t). By the work of J. Pöschel, this
solution exists until time t = 1, and we have the bound

(3.37) sup
0≤t≤1

|Im θ(t)| < s− 2σ,

(this can here be recovered by the usual bootstrap argument, using the small-
ness assumption on F ).

♠ We now turn to the equation in Z. We have to solve

(3.38) Ż(t) = J∇ZF (θ, y, Z)(t), Z(0) = Z0,

where

J = diag
{( 0 1
−1 0

)}
j≥1

.

Notice that by [11, Estimate (9)] we already know that

(3.39) sup
0≤t≤1

‖Z(t)‖`2Ψ <
r

2

but we need to precise the behavior of Z(t).
Since θ = θ(t) is known by the previous step, in view of (3.34), equation (3.38)
reads

(3.40) Ż(t) = b(t) +B(t) · Z(t), Z(0) = Z0,

where b(t) = Ja(θ(t)) and B(t) = JA(θ(t)).
We now iterate the integral formulation of the problem

Z(t) = Z0 +
∫ t

0

(
b(t1) +B(t1) · Z(t1)

)
dt1,

and formally obtain

(3.41) Z(t) = b∞(t) +
(
1 +B∞(t)

)
Z0,

where

(3.42) b∞(t) =
∑
k≥1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k−1∏
j=1

B(tj)b(tk)dtk · · · dt2 dt1,
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and

(3.43) B∞(t) =
∑
k≥1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k∏
j=1

B(tj)dtk · · · dt2 dt1.

By (3.35) and (3.37), there exists C > 0 so that

sup
0≤t≤1

‖B(t)‖`2Ψ→`2Ψ ≤ C,

and thus, for all 0 ≤ t ≤ 1 the series (3.42) converges and

‖b∞(t)‖`2Ψ ≤ sup
0≤t≤1

‖b(t)‖`2Ψ
∑
k≥1

Ck−1

∫ 1

0

∫ t1

0
· · ·
∫ tk−1

0
dtk · · · dt2 dt1

≤ sup
0≤t≤1

‖b(t)‖`2Ψ
∑
k≥1

Ck−1

k !

≤ sup
0≤t≤1

‖b(t)‖`2Ψ
eC − 1
C

≤ C sup
0≤t≤1

‖b(t)‖`2Ψ .(3.44)

Similarly we have uniformly in 0 ≤ t ≤ 1

‖B∞(t)‖`2Ψ→`2Ψ ≤ C.

As a conclusion, the formula (3.41) makes sense.
Indeed, we need more precise estimates on B∞. Recall that B(t) = A(θ(t)),

where A is defined by (3.35). Then by (3.35) and (3.37), for all 0 ≤ t ≤ 1,
B(t) ∈ Mβ,+

s−σ and sup
0≤t≤1

〈〈B(t) 〉〉+β,s−σ ≤ C〈F 〉+r,D(s−σ,r). Hence by Lemma

3.6 and (3.43)

(3.45) 〈〈B∞ 〉〉+β,s−σ ≤ eC〈F 〉
+
r,D(s−σ,r) − 1 ≤ C〈F 〉+r,D(s−σ,r).

♠ Finally we turn to the equation in y

ẏ(t) = −∇θF (θ, y, Z)(t), y(0) = y0.

We already know the functions θ(t) and Z(t). Moreover as the function F
(3.34) is linear in y, the previous n−dimensional system reads

(3.46) ẏ(t) = f(t) + g(t)y(t), y(0) = y0,

with

f(t) = −∇θb0(θ(t)) +∇θa(θ(t)) · Z(t) +
1
2
(
∇θA(θ(t))Z(t)

)
· Z(t),

and
g(t) = −∇θb1(θ(t)) = −∇θ∇yF (θ, 0, 0).
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We can solve the equation (3.46) with the same techniques as the equation
(3.38). In fact we have formally

(3.47) y(t) = f∞(t) +
(
1 + g∞(t)

)
y0,

where

(3.48) f∞(t) =
∑
k≥1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k−1∏
j=1

g(tj)f(tk)dtk · · · dt2 dt1,

and

g∞(t) =
∑
k≥1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k∏
j=1

g(tj)dtk · · · dt2 dt1.

By (3.37) and the Cauchy formula

sup
0≤t≤1

‖g(t)‖ ≤ C

σ
max

1≤j≤n

∥∥∥ ∂F
∂yj

∥∥∥
D(s−σ,r)

≤
C〈F 〉+r,D(s−σ,r)

σ
,

and similarly to (3.44) we have for all 0 ≤ t ≤ 1

|f∞(t)| ≤ C sup
0≤t≤1

|f(t)|,

and

(3.49) ‖g∞(t)‖ ≤
C〈F 〉+r,D(s−σ,r)

σ
,

which shows the convergence of the series defining (3.47).

♠ It remains to show the estimates on the solutions of (3.28).

• First we prove (3.30). By (3.40),

∇Z0
j
Zk(t) =

(
1 0
0 1

)
δkj +B∞kj (t),

therefore by (3.45), for k 6= j we have

(3.50) ‖∇Z0
j
Zk(t)‖ ≤

C〈F 〉+r,D(s−σ,r)

(jk)β(1 + |j − k|)
, and ‖∇Z0

j
Zj(t)‖ ≤ 1,

which was the claim.
• We prove (3.31). By (3.47) we have

yk(t) = f∞k (t) + y0
k +

∑
1≤j≤n

g∞jk(t)y0
j ,

hence
∂yk
∂y0

j

= δjk + g∞jk(t) and the claim follows from (3.49) (f∞ does not

depend on y0).
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•We prove (3.29). Since g and g∞ do not depend on Z, from (3.47) we deduce

that
∂y

∂z0
j

=
∂f∞

∂z0
j

.

Now by definition (3.48) of f∞, we get that for all 0 ≤ t ≤ 1

(3.51)
∣∣∣∂y(t)
∂z0

j

∣∣∣ =
∣∣∣∂f∞(t)
∂z0

j

∣∣∣ ≤ ∣∣∇Z0
j
f∞(t)

∣∣ ≤ C sup
0≤t≤1

|∇Z0
j
f(t)|.

For all 1 ≤ l ≤ n, we compute

(3.52) ∇Zkfl(t) = ∂θlak(θ(t)) +
∑
i≥1

∂θlAki(θ(t))Zi(t).

As ak(θ) = ∇ZkF (θ, 0, 0), with the Cauchy formula we deduce

sup
0≤t≤1

∣∣∂θlak(θ(t))∣∣ ≤ C

σ

∥∥∇ZkF∥∥D(s−σ,r) ≤
Cr〈F 〉+r,D(s−σ,r)

σk1+β
.

Similarly with (3.35),

sup
0≤t≤1

∣∣∂θlAki(θ(t))∣∣ ≤ C〈F 〉+r,D(s−σ,r)

σ(ik)β(1 + |i− k|)
.

Inserting the two previous estimates in (3.52), we obtain using (3.39) and the
Cauchy-Schwarz inequality

|∇Zkfl(t)| ≤
C

σ

〈F 〉+r,D(s−σ,r)

kβ

(
r +

∑
i≥1

|Zi|
iβ(1 + |k − i|)

)

≤
Cr〈F 〉+r,D(s−σ,r)

σkβ
.(3.53)

Since ∇Z0
j
fl(t) =

∑
k≥1

(
∇Z0

j
Zk(t)

)
∇Zkfl(t), from (3.50) and (3.53) we deduce

|∇Z0
j
fl(t)| ≤

∑
k≥1

‖∇Z0
j
Zk(t)‖‖∇Zkfl(t)‖

≤
Cr〈F 〉+r,D(s−σ,r)

σjβ

(∑
k≥1

1
k2β(1 + |j − k|)

+ 1
)

≤
Cr〈F 〉+r,D(s−σ,r)

σjβ
,

and together with (3.51), we get that for all j ≥ 1

sup
0≤t≤1

∣∣∣∂y(t)
∂z0

j

∣∣∣ ≤ Cr〈F 〉+r,D(s−σ,r)

σjβ
.
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• It remains to show (3.32). first we have∣∣∣ ∂y(t)
∂z0

i ∂z
0
j

∣∣∣ ≤ ∣∣∣∇Z0
i
∇Z0

j
f∞(t)

∣∣∣ ≤ C sup
0≤t≤1

∣∣∣∇Z0
i
∇Z0

j
f(t)

∣∣∣.
Then from the very definition of f , ∇Z0

i
∇Z0

j
f(t) = ∇θAij(θ(t)), and using the

Cauchy estimate in θ we get,∣∣∣ ∂y(t)
∂z0

i ∂z
0
j

∣∣∣ ≤ C〈F 〉+r,D(s−σ,r)

σ(ij)β(1 + |i− j|)
,

which was the claim.

In the next result, we denote by | · |L the Lipschitz norm

|f |L = sup
ξ,η∈Π
ξ 6=η

|f(ξ)− f(η)|
|ξ − η|

.

We have an analogous result to Lemma 3.5 with Lipschitz norms.

Lemma 3.7. — Under the assumptions of Lemma 3.5 and the condition
〈F 〉+,Lr,D(s−σ,r) ≤ Cσ the solution of (3.28) satisfies moreover

sup
0≤t≤1

∣∣∣∂yk(t)
∂w0

j

∣∣∣L ≤
Cr〈F 〉+,Lr,D(s−σ,r)

σjβ
with w0

j = z0
j or z0

j ,

sup
0≤t≤1

∣∣∣∂wk(t)
∂w0

j

∣∣∣L ≤
C〈F 〉+,Lr,D(s−σ,r)

(jk)β(1 + |j − k|)
with wk = zk or zk, w0

j = z0
j or z0

j ,

sup
0≤t≤1

∣∣∣∂yk(t)
∂y0

j

∣∣∣L ≤
C〈F 〉+,Lr,D(s−σ,r)

σ
,

sup
0≤t≤1

∣∣∣ ∂2yk(t)
∂w0

j∂w
0
i

∣∣∣L ≤
C〈F 〉+,Lr,D(s−σ,r)

σ(ij)β(1 + |i− j|)
with w0

i = z0
i or z0

i , w0
j = z0

j or z0
j .

Proof. — We won’t detail the proof, since it is tedious and similar to the
proof of Lemma 3.5. First we define the space Mβ,+,L

s with norm 〈〈 · 〉〉+,Lβ,s
similarly toMβ,+

s , but with a Lipschitz norm in ξ. Then we have 〈〈AB〉〉+,L ≤
C
(
〈〈A〉〉+,L〈〈B〉〉++〈〈B〉〉+,L〈〈A〉〉+

)
. Then one can follow the proof of Lemma

3.5 and use that the different norms (say ‖ · ‖) which appear satisfy ‖fg‖L ≤
C
(
‖f‖L‖g‖+ ‖f‖‖g‖L

)
.

To conclude this section, we state a result which shows that the Lie trans-
form associated to a quadratic function, is also quadratic. This will be crucial
in the proof of Theorem 2.3 (see Section 5.2).
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Corollary 3.8. — The symplectic application X1
F reads θ

y
Z

 7−→
 K(θ)

L(θ, Z) +M(θ)Z + S(θ)y
T (θ) + U(θ)Z


where L(θ, Z) is quadratic in Z, M(θ) and U(θ) are bounded linear operators
from `2Ψ × `2Ψ into itself and S(θ) is a bounded linear map from Rn to Rn.

Proof. — The claim follows from the proof of Lemma 3.5. The structure of
Z(1) follows from (3.40), while the structure of y(1) comes from (3.47) and
(3.48).

3.4. Composition estimates. —

In this section we study the new Hamiltonian obtained after composition with
the canonical transformation X1

F .

Proposition 3.9. — Let 0 < η < 1/8 and 0 < σ < s, R ∈ Γβηr,D(s−2σ,4ηr) and

F ∈ Γβ,+r,D(s−σ,r) with F of degree 2. Assume that 〈F 〉+r,D(s,r) + 〈F 〉+,Lr,D(s,r) < Cσ.

Then R ◦X1
F ∈ Γβηr,D(s−5σ,ηr) and we have the estimates

(3.54) 〈R ◦X1
F 〉ηr,D(s−5σ,ηr) ≤ C〈R 〉ηr,D(s−2σ,4ηr),

〈R ◦X1
F 〉Lηr,D(s−5σ,ηr) ≤ C

(
〈R 〉ηr,D(s−2σ,4ηr) + 〈R 〉Lηr,D(s−2σ,4ηr)

)
.

Proof. — The proof of the first estimate relies on Lemma 3.5. We omit the
proof of the second, which is similar using the estimates of Lemma 3.7 instead.
In the sequel, we use the notation (θ, y, z, z̄) = X1

F (θ0, y0, z0, z̄0).
♠ Since X1

F maps D(s− 3σ, r4) into D(s− 2σ, r2), it is clear that

(3.55) ‖R ◦X1
F ‖D(s−5σ,ηr) ≤ C〈R〉ηr,D(s−2σ,4ηr).

♠ By the Leibniz rule, for all 1 ≤ j ≤ n

∂(R ◦X1
F )

∂y0
j

=
n∑
k=1

∂R(X1
F )

∂yk

∂yk
∂y0

j

,

and by (3.31) we deduce

(3.56)
∥∥∥∂(R ◦X1

F )
∂y0

j

∥∥∥
D(s−5σ,ηr)

≤ C〈R〉ηr,D(s−2σ,4ηr).
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♠ For j ≥ 1, the derivative in z0
j reads

∂(R ◦X1
F )

∂z0
j

=

n∑
k=1

∂R(X1
F )

∂yk

∂yk
∂z0

j

+
∑
k≥1

(∂R(X1
F )

∂zk

∂zk
∂z0

j

+
∂R(X1

F )
∂zk

∂zk
∂z0

j

)
.

Therefore, thanks to (3.29) and (3.32) we get

(3.57)
∥∥∥∂(R ◦X1

F )
∂z0

j

∥∥∥
D(s−5σ,ηr)

≤

≤
n∑
k=1

∥∥∥∂R(X1
F )

∂yk

∥∥∥
D(s−5σ,ηr)

∣∣∣∂yk
∂z0

j

∣∣∣+
∑
k≥1

∥∥∥∇ZkR(X1
F )
∥∥∥
D(s−5σ,r)

∣∣∣∂Zk
∂z0

j

∣∣∣
≤ C

jβ
〈R〉ηr,D(s−2σ,4ηr)

(
1 +

∑
k≥1

1
k2β(1 + |j − k|)

)
≤ C

jβ
〈R〉ηr,D(s−2σ,4ηr).

♠ We now estimate
∥∥∥∂2(R ◦X1

F )
∂z0

i ∂z
0
j

∥∥∥
D(s−5σ,ηr)

for i, j ≥ 1. By the Leibniz rule,

the result will follow from the next estimations.

• Using the Cauchy estimate in yl and (3.29)∥∥∥ ∑
1≤k,l≤n

∂2R(X1
F )

∂yk∂yl

∂yk
∂z0

i

∂yl
∂z0

j

∥∥∥
D(s−5σ,ηr)

≤
C〈R〉ηr,D(s−2σ,4ηr)

(ij)β
.

• By (3.32)∥∥∥ ∑
1≤k≤n

∂R(X1
F )

∂yk

∂2yk
∂z0

i ∂z
0
j

∥∥∥
D(s−5σ,ηr)

≤
C〈R〉ηr,D(s−2σ,4ηr)

(ij)β
.

• By (3.30)∥∥∥ ∑
k,l≥1

∂2R(X1
F )

∂zk(t)∂zl

∂zk
∂z0

i

∂zl
∂z0

j

∥∥∥
D(s−5σ,ηr)

≤
C〈R〉ηr,D(s−2σ,4ηr)

(ij)β
.

• Using the Cauchy estimate in zk, (3.29) and (3.30) we get∥∥∥ ∑
k≥1

1≤l≤n

∂2R(X1
F )

∂zk∂yl

∂yl
∂z0

i

∂zk
∂z0

j

∥∥∥
D(s−5σ,ηr)

≤
C〈R〉ηr,D(s−2σ,4ηr)

(ij)β
.
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All these estimates yield

(3.58)
∥∥∥∂2(R ◦X1

F )
∂z0

i ∂z
0
j

∥∥∥
D(s−5σ,ηr)

≤
C〈R〉ηr,D(s−2σ,4ηr)

(ij)β
.

Finally, (3.54) follows from (3.55), (3.56), (3.57) and (3.58).

3.5. Approximation estimates. —

Recall that the notation ‖ ·‖∗ (respectively 〈 · 〉∗ ) stands either for ‖ ·‖ or ‖ ·‖L
(respectively 〈 · 〉 or 〈 · 〉L ).

First we recall some approximation results [11, Estimate (7)], which show that
the second order approximation of P can be controlled by P , and that P −R
is small when we contract the domain (this contraction is governed by the new
parameter η):

Lemma 3.10 ([11]). — Let P satisfy Assumption 3 and consider its Taylor
approximation R of the form (2.9). Then there exists C > 0 so that for all
η > 0

‖XR‖∗r,D(s,r) ≤ C‖XP ‖∗r,D(s,r), and ‖XP−XR‖∗ηr,D(s,4ηr) ≤ Cη‖XP ‖∗r,D(s,r).

We have an analogous result for the norm 〈 · 〉r,D(s,r).

Lemma 3.11. — Let P ∈ Γβr,D(s,r) and consider its Taylor approximation R

of the form (2.9). Then there exists C > 0 so that for all η > 0

〈R〉∗r,D(s,r) ≤ C〈P 〉
∗
r,D(s,r),

and
〈P −R〉∗ηr,D(s,4ηr) ≤ Cη〈P 〉

∗
r,D(s,r).

Proof. — • We first prove the second estimate. Define the one variable func-
tion f(t) = P (θ, t2y, tz, tz). Then by the Taylor formula, there exists 0 < t0 <
1 so that

f(1) = f(0) + f ′(0) +
1
2
f ′′(0) +

1
6
f (3)(t0),

which reads

P (θ, y, z, z)−R(θ, y, z, z) =
1
6
f (3)(t0)

= O
(
z3∂

3P

∂z3
, yz

∂2P

∂y∂z
, y2∂

2P

∂y2

)
.

Using the Cauchy estimates in z or in y, we obtain

‖P −R‖D(s,4ηr) ≤ Cη (ηr)2〈P 〉r,D(s,r).
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The estimates of the derivatives are obtained by the same method, with the
adequate choice of the function f . A derivative in z costs η and a derivative
in y costs η2.
It is then also clear that we have 〈P −R〉Lηr,D(s,4ηr) ≤ Cη〈P 〉

L
r,D(s,r).

• The inequality 〈R〉∗r,D(s,r) ≤ C〈P 〉∗r,D(s,r) is a consequence of the previous
point with η = 1.

4. The KAM step

Let N be a Hamiltonian in normal form as in (1.1), which reads in the variables
(θ, y, z, z),

N =
∑

1≤j≤n
ωj(ξ) +

∑
j≥1

Ω(ξ)zjzj ,

and suppose that the Assumptions 1 and 2 are satisfied.
Consider a perturbation P which satisfies Assumptions 3 and 4 for some r, s >
0. Then chose 0 < η < 1/8, 0 < σ < s, and assume that

(4.1) 〈P 〉r,D(s,r) + ‖XP ‖r,D(s,r) +
α

M

(
〈P 〉Lr,D(s,r) + ‖XP ‖Lr,D(s,r)

)
≤ ασt+1η2

c0
,

where t is given by Lemmas 3.1 and 3.2, c0 is a large constant depending only
on n and τ (see [11, Estimate (6)].)
Thus, by Lemmas 3.1 and 3.10, the solution F of the homological equation
(2.10) satisfies

‖XF ‖∗r,D(s−σ,r) ≤
C

ασt
‖XP ‖Lr,D(s−σ,r) ≤ ση

2.

Similarly, by Lemmas 3.2 and 3.11

〈F 〉+,∗r,D(s−σ,r) ≤
C

ασt
〈P 〉Lr,D(s,r) ≤ ση

2,

so that the hypothesis Lemma 3.5 are fulfilled.
We use the notations of Section 2.3.

4.1. Estimates on the new error term. —

We estimate the new error term P+ given by (2.12).
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Lemma 4.1. — Assume (4.1). Then there exists C > 0 (independent of η
and σ) so that for all 0 ≤ λ ≤ α

M

〈P+〉ληr,D(s−5σ,ηr) + ‖XP+‖ληr,D(s−5σ,ηr) ≤
C

ασtη2

(
〈P 〉λr,D(s,r) + ‖XP ‖λr,D(s,r)

)2
+ Cη

(
〈P 〉λr,D(s,r) + ‖XP ‖λr,D(s,r)

)
Proof. — By [11, Estimate (13)], we already have

(4.2) ‖XP+‖ληr,D(s−5σ,ηr) ≤
C

ασtη2

(
‖XP ‖λr,D(s,r)

)2 + Cη‖XP ‖λr,D(s,r).

It remains to prove a similar estimate for the 〈, 〉 norm.
By Lemmas 3.5 and 3.11

〈(P −R) ◦X1
F 〉ληr,D(s−5σ,ηr) ≤ C〈P −R〉

λ
ηr,D(s−2σ,4ηr) ≤ Cη〈P 〉

λ
r,D(s,r).

Then by Lemma 3.5 again

〈
∫ 1

0

{
R(t), F

}
◦Xt

F dt〉ληr,D(s−5σ,ηr) ≤ C

∫ 1

0
〈
{
R(t), F

}
◦Xt

F 〉ληr,D(s−5σ,ηr)dt

≤ C〈
{
R(t), F

}
〉ληr,D(s−2σ,4ηr).

Since R ∈ Γβr,D(s,r) and F ∈ Γβ,+r,D(s−σ,r) are both of degree 2 we can apply
Lemma 3.4 and write

〈
∫ 1

0

{
R(t), F

}
◦Xt

F dt〉ληr,D(s−5σ,ηr) ≤
C

σ
〈R〉ληr,D(s,ηr) 〈F 〉

+,λ
ηr,D(s−σ,ηr).

Finally by Lemmas 3.2 and 3.11

〈R〉ληr,D(s,ηr) 〈F 〉
+,λ
ηr,D(s−σ,ηr) ≤

C

ασt

(
〈R〉ληr,D(s,ηr)

)2
≤ C

ασtη2

(
〈P 〉λr,D(s,r)

)2
,

where we used that 〈 · 〉ηr,D(s,ηr) ≤ η−2〈 · 〉r,D(s,r). Putting the previous esti-
mates together, we complete the proof.

4.2. Estimates on the frequencies. —

We turn to the new frequencies given by (2.11).

Lemma 4.2. — There exists K > 10 and α+ > 0 so that∣∣k · ω+(ξ) + l · Ω+(ξ)
∣∣ ≥ α+

〈l〉
Ak

, |k| ≤ K, |l| ≤ 2.

In fact K can be made explicit, it depends on n, τ, c0 and on all the constants
C.
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Proof. — On the one hand, since ω̂j(ξ) =
∂N̂

∂yj
(0, 0, 0, 0, ξ), by Lemma 3.10 we

deduce that

|ω̂|Π ≤ sup
D(s,r)×Π

|∂N̂
∂y
| ≤ ‖X bN‖r,D(s,r) ≤ C‖XR‖r,D(s,r) ≤ C‖XP ‖r,D(s,r).

On the other hand, Ω̂j(ξ) =
∂2N̂

∂zj∂zj
(0, 0, 0, 0, ξ), thus

(4.3)

|Ω̂|2β,Π ≤ sup
D(s,r)×Π

| ∂
2N̂

∂zj∂zj
|j2β ≤ 〈N̂〉r,D(s−σ,r) ≤ C〈R〉r,D(s,r) ≤ C〈P 〉r,D(s,r),

hence by the two previous estimates

(4.4) |ω̂|Π + |Ω̂|2β,Π ≤ C
(
‖XP ‖r,D(s,r) + 〈P 〉r,D(s,r)

)
.

Similarly, for the Lipschitz norms we obtain

|ω̂|LΠ + |Ω̂|L2β,Π ≤ C
(
‖XP ‖Lr,D(s,r) + 〈P 〉Lr,D(s,r)

)
.

We follow the analysis done in [11] to bound the small divisors and thanks to
(4.4)

| k · ω̂ + l · Ω̂ | ≤ |k|〈l〉
(
|ω̂|Π + |Ω̂|2β,Π

)
≤ C|k|〈l〉

(
‖XP ‖r,D(s,r) + 〈P 〉r,D(s,r)

)
.

We now choose α̂ ≥ C0K max
|k|≤K

Ak(‖XP ‖r,D(s,r) + 〈P 〉r,D(s,r)) where C0 is a

large universal constant, and thanks to the estimate given by the frequencies
before the iteration we get

|k · ω+(ξ) + l · Ω+(ξ)| ≥ α+ 〈l〉
Ak

, |k| ≤ K,

with α+ = α− α̂. It remains to show that α+ > 0. This is done in [11, Section
4], and the proof still holds with the new norms.

Remark 4.3. — The key point in the previous proof is the estimate (4.3),
which shows that the perturbations of the external frequencies can be con-
trolled by 〈P 〉r,D(s,r). In the case of a smoothing perturbation P (case p > p
in (1.3)), the norm 〈·〉r,D(s,r) is not needed (more precisely, the decay of the
derivatives of P is not needed), because we then have |Ω̂|2β,Π ≤ ‖XP ‖r,D(s,r)

with β = (p− p)/2.
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5. Iteration and convergence

In this section we are exactly in the setting of [11], and we can make the
same choice of the parameters in the iteration. We reproduce here the argu-
ment of J. Pöschel.

5.1. The iterative lemma. —

Denote P0 = P and N0 = N . Then at the ν−th step of the Newton scheme,
we have a Hamiltonian Hν = Nν + Pν , so that the new error term Pν+1 is
given by the formula (2.12) and the new normal form Nν+1 is associated with
the new frequencies given by (2.11).

Let c1 be twice the maximum of all constants obtained during the KAM step.
Set r0 = r, s0 = s, α0 = α and M0 = M . For ν ≥ 0 and κ = 4/3 set

αν =
α0

2
(1 + 2−ν), Mν = M0(2− 2−ν), λν =

αν
Mν

,

εν+1 =
c1ε

κ
ν

(ανσtν)κ−1
, σν+1 =

σν
2
, η3

ν =
εν
ανσtν

,

and
sν+1 = sν − 5σν , rν+1 = ηνrν .

The initial conditions are chosen in the following way : σ0 = s0/40 ≤ 1/4 so
that s0 > s1 > · · · ≥ s0/2,

ε0 = γ0α0σ
t
0 and γ0 =

(
c0 + 2t+3c1

)−3
,

where c0 is the constant which appears in (4.1). We also define Kν = K02ν

with Kτ+1
0 = 1/(c1γ0).

With the notation Dν = D(sν , rν) we have

Lemma 5.1 (Iterative lemma, [11]). — Suppose that Hν = Nν + Pν is
given on Dν×Πν , where Nν = ων(ξ) ·y+Ων(ξ) ·zz is a normal form satisfying
|ων |LΠν + |Ων |L2β,Πν ≤Mν ,

|k · ων(ξ) + l · Ων(ξ)| ≥ αν
〈l〉
Ak

, (k, l) ∈ Z,

on Πν and
〈P 〉λνrν ,Dν + ‖XP ‖λνrν ,Dν ≤ εν .

Then there exists a Lipschitz family of real analytic symplectic coordinate
transformations Φν+1 : Dν+1 ×Πν −→ Dν and a closed subset

Πν+1 = Πν\
⋃
|k|>Kν

Rν+1
kl (αν+1),
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of Πν , where

Rν+1
kl (αν+1) =

{
ξ ∈ Πν : |k · ων+1 + l · Ων+1| < αν+1

〈l〉
Ak

}
,

such that for Hν+1 = Hν ◦ Φν+1 = Nν+1 + Pν+1, the same assumptions are
satisfied with ν + 1 in place of ν.

We don’t give the details of the proof of this result, since it is entirely done
in [11] : it is of course an induction on ν ∈ N which essentially relies on the
results of the Section 4.

5.2. Proof of Theorem 2.3. —

The result of Theorem 2.3 is the convergence of the sequence Hν to a Hamil-
tonian in normal form, for parameters ξ in a set Πα, which is the limit of the
sets Πν .
We again follow the proof of Pöschel and we recall the following Lemma

Lemma 5.2 (Estimates, [11]). — For ν ≥ 0,
1
σν
‖Φν+1 − id‖λνrν ,Dν+1

, ‖DΦν+1 − I‖λνrν ,rν ,Dν+1
≤ Cεν
ανσtν

,

|ων+1 − ων |λνΠν
, |Ων+1 − Ων |λν2β,Πν

≤ Cεν .

Set Π0 = Π\
⋃
k,lR

α0
kl and Πα = ∩ν≥1Πν . The proof that Meas(Π\Πα) −→ 0

when α −→ 0 is done in [11, Section 5] and we do not repeat it here.
For ν ≥ 1 we define the map

Φν = Φ1 ◦ · · · ◦ Φν : Dν ×Πν−1 −→ Dν−1,

and thus we have Hν = H ◦ Φν . With the Lemma 5.2 and since(1) ∩ν≥1Dν ×
Πν = D(s/2)×Πα, we are then able to show, as in [11], that Φν is a Cauchy
sequence for the supremum norm on D(s/2)×Πα. Thus it converges uniformly
on D(s/2)×Πα and its limit Φ is real analytic on D(s/2). Further, the estimate
(2.6) holds on D(s/2)×Πα.
It remains to prove that Φ is indeed defined on D(s/2, r/2)×Πα with the same
estimate. By Corollary 3.8 all the transforms Φν are linear in y and quadratic
in z, z̄ and thus the same is true for the transform Φ (this fact was also used
in[12] or [4]). This specific form is stable by composition and thus all the Φν

have this form and in particular they are linear in y and quadratic in z, z̄.
Therefore it suffices to verify that the first derivatives with respect to y, z, z̄
and the second derivatives with respect to z, z̄ of Φν are uniformly convergent

(1)here we use the notation D(s/2) = D(s/2, 0).
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on D(s/2)×Πα to conclude that Φν convergences to Φ (actually an extension of
the previously defined Φ) uniformly on D(s/2, ρ)×Πα for any ρ. In particular,
for r small enough,

Φ : D(s/2, r/2)×Πα → D(s, r)

and Φ still satisfies estimate (2.6).
So it remains to analyse the convergence of the derivatives. Using Lemma 5.2
we obtain successively ‖DΦν‖rν ,rν ,Dν ≤ 2 and then uniformly on D(s/2)×Πα

‖DΦν+1 −DΦν‖rν ,rν ,Dν ≤ ‖DΦν‖rν ,rν ,Dν‖DΦν − I|‖rν ,rν ,Dν
and we deduce that uniformly on D(s/2)×Πα

‖DΦν+1 −DΦν‖rν ,rν ,Dν ≤ cε1/2ν .

So again DΦν converges uniformly on D(s/2) × Πα. Similarly we obtain the
convergence of the second derivatives using the formula

D2Φν+1 = D2Φν · (DΦν)2 + Φν ·D2Φν .

On the other hand, again using Lemma 5.2, the frequencies functions ων and
Ων converge uniformly on Πα to Lipschitz functions ω? and Ω? satisfying (2.7)
and thus (2.8) in view of Lemma 5.1.
We then deduce that, uniformly on D(s/2, r/2)×Πα,

Rν := H ◦ Φν −Nν −→ H ◦ Φ−N? =: R?

and since for all ν the Taylor expansion of Rν contains only monomials ymzq z̄q̄

with 2|m|+ |q + q̄| ≥ 3 the same property holds true for R?.

6. Application to the nonlinear Schrödinger equation

Let n ≥ 1 be an integer and ν, ε > 0 be two small parameters. Set
Π = [−1, 1]n. We consider a perturbation of the one dimensional Schrödinger
equation with harmonic potential

(6.1) i∂tu+ ∂2
xu− x2u− νV (ξ, x)u = ε|u|2mu, (t, x) ∈ R× R,

where m ≥ 1 is an integer and
(
V (ξ, ·)

)
ξ∈Π

is family of a real analytic bounded
potentials with V (0, ·) = 0 which will be made explicit below.
Recall that T = −∂2

x + x2 denotes the harmonic oscillator. Its eigenfunctions
are the Hermite functions (hj)j≥1, associated to the eigenvalues (2j − 1)j≥1.
Now consider the linear operator A = A(ν, ξ) = −∂2

x + x2 + νV (ξ, x). Under
the previous assumptions, A is self-adjoint and has pure point spectrum with
simple eigenvalues (λj(ν, ξ))j≥1 satisfying λj(ν, ξ) ∼ 2j− 1. Its eigenfunctions(
ϕj(ξ, ·)

)
j≥1

form an orthonormal basis of L2(R), and ϕ(ξ, ·) ∼ hj as ν → 0 in

L2 norm. As a consequence A and T have the same domain and D(Ap/2) = Hp.
We will prove these facts for the particular class of potentials we will consider
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(see Lemmas 6.2 and 6.3 below).

The parameter ε > 0 will be small so that we can apply Theorem 2.3 and
ν > 0 will be small too, so that we have a suitable perturbation theory for
the operator A. The most interesting regime, is when ν is very small so that
equation (6.1) becomes closer to the case V ≡ 0, which is the most relevant
equation. Notice that the parameter ε, ν are independent.

We fix a finite subset J of N of cardinal n. Without loss of generality and
in order to simplify the presentation, we assume J = {1, · · · , n}. We then
expend u and ū in the basis of eigenfunctions using the phase space structure
of the introduction, namely we write

u(x) =
n∑
j=1

(yj + Ij)
1
2 eiθjϕj(ξ, x) +

∑
j≥1

zjϕj+n(ξ, x),

ū(x) =
n∑
j=1

(yj + Ij)
1
2 e−iθjϕj(ξ, x) +

∑
j≥1

zjϕj+n(ξ, x),

where (θ, y, z, z̄) ∈ Pp = Tn ×Rn × `2p × `2p (recall that `2p is the space `2Ψ with
Ψ(j) = jp/2) are regarded as variables and I ∈ Rn

+ are regarded as parame-
ters (here R+ denotes the set of non negative real numbers). In this setting
equation (6.1) reads as the Hamilton equations associated to the Hamiltonian
function H = N + P where

N =
n∑
j=1

λj(ν, ξ)yj +
∑
j≥1

Λj(ν, ξ)zj z̄j ,

Λj(ν, ξ) = λj+n(ν, ξ), G(u, ū) = (u ū)m+1 and

P (θ, y, z, z) = ε

∫
R
G
( n∑
j=1

(yj + Ij)
1
2 eiθjϕj(ξ, x) +

∑
j≥1

zjϕj+n(ξ, x),

n∑
j=1

(yj + Ij)
1
2 e−iθjϕj(ξ, x) +

∑
j≥1

zjϕj+n(ξ, x)
)

dx.

(6.2)

For the sequel we fix (Ij)1≤j≤n. We assume that (θ, y, z, z̄) ∈ D(s, r) for some
fixed s, r > 0 (recall the definition (2.4) of D(s, r)). There is no particular
smallness assumption on s, r, we only have to take r > 0 with r < min1≤j≤n Ij
so that (yj + Ij)1/2 is well-defined.

We now show that we can construct a class of potentials V so that Theorem
2.3 applies.
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6.1. Definition of the family of potentials V . —

Let (fj)1≤j≤n be the dual basis of (h2
j )1≤j≤n, i.e. (fj) ∈ SpanR(h2

1, . . . , h
2
n)

and
∫

R fjh
2
k = δjk for all 1 ≤ j, k ≤ n.

We say that α = (αk)k≥n+1 ∈ Zn if −1
2 ≤ αk ≤

1
2 for all k ≥ n+ 1. We endow

the set of such sequences by the probability measure define as the infinite
product (k ≥ n+ 1) of the Lebesgue measure on [−1/2, 1/2]. Then define

g(x) =
∑

k≥n+1

αke−kh2k−1(
√

2x),

and for ξ = (ξ1, . . . , ξn) ∈ Π = [−1, 1]n and

(6.3) V (ξ, x) =
n∑
k=1

ξkfk(x) + ξ1g(x).

The objects ϕj and λj are defined by the equation

(6.4)
(
− ∂2

x + x2 + νV (ξ, x)
)
ϕj(ξ, x) = λj(νξ)ϕj(ξ, x),

and we assume that the (ϕj) are L2−normalised (‖ϕj(ξ, ·)‖L2 = 1 for all ξ ∈ Π
and j ≥ 1). Moreover, in order to define ϕj uniquely, we impose 〈ϕj , hj〉 > 0.

In the sequel we need a particular case of estimates proved by K. Yajima &
G. Zhang [16]

Lemma 6.1 ([16]). — For all 2 < p < ∞ there exists α > 0 and C > 0 so
that for all ξ ∈ Π and j ≥ 1

(6.5) ‖ϕj(ξ, ·)‖Lp(R) ≤ Cj−α.

The next result is the key estimate in our perturbation theory.

Lemma 6.2. — There exist α > 0 and C > 0 so that for all ξ ∈ Π, ν > 0
and j ≥ 1

(6.6) ‖ϕj(ξ, ·)− ϕj(η, ·)‖L2 ≤ Cν|ξ − η|j−α.

In particular ‖ϕj(ξ, ·) − hj‖L2 ≤ Cν|ξ|j−α, which shows that the ϕj are
close to the Hermite functions in L2 norm.

Proof. — In the sequel, we write ϕj(ξ) instead of ϕj(ξ, ·). For ξ, η ∈ Π, we
compute

A(ν ξ)ϕj(η) =
(
−∂2

x+x2+νV (ξ, x)
)
ϕj(η) = λj(ν η)ϕj(η)+ν(V (ξ, x)−V (η, x))ϕj(η).

Thus by (6.3) and (6.5) there exists α > 0 such that∥∥(A(ν ξ)− λj(ν η)
)
ϕj(η)

∥∥
L2 = ν‖(V (ξ)− V (η))ϕj(η)‖L2

≤ ν‖V (ξ)− V (η)‖L4‖ϕj(η)‖L4

≤ Cν|ξ − η|j−α.(6.7)
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Choosing η = 0 in (6.7), and as ϕj(0) = hj and λj(0) = 2j − 1, we get

1 = ‖hj‖L2 ≤
∥∥(A(ν ξ)− (2j − 1)

)−1∥∥
L2→L2

∥∥(A(ν ξ)− (2j − 1)
)
hj
∥∥
L2

≤ Cνj−α
∥∥(A(ν ξ)− (2j − 1)

)−1∥∥
L2→L2 .

The previous estimate together with the general formula which holds for any
self-adjoint operator ‖

(
A(ν ξ)− (2j−1)

)−1‖L2→L2 = dist
(
2j−1, σ(A(ν ξ))

)−1

gives dist
(
2j − 1, σ(A(ν ξ))

)
≤ Cνj−α, where σ(A(ν ξ)) denotes the spectrum

ofA(ν ξ). A similar argument, taking ξ = 0 in (6.7), leads to dist
(
λj(νη), σ(T )

)
≤

Cνj−α. Thus for all j ≥ 1

(6.8) λj(νξ) = 2j − 1 + ν O(j−α).

Using that (ϕk(ξ))k≥1 is a Hilbertian basis of L2(R), we deduce∥∥ϕj(η)− 〈ϕj(ξ), ϕj(η)〉ϕj(ξ)
∥∥2

L2 =
∑
k≥1

|〈ϕj(η)− 〈ϕj(ξ), ϕj(η)〉ϕj(ξ), ϕk(ξ)〉|2

=
∑

k≥1,k 6=j
|〈ϕj(η), ϕk(ξ)〉|2.(6.9)

With the same decomposition, we can also write

‖
(
A(ν ξ)− λj(ν η)

)
ϕj(η)‖2L2 =

∑
k≥1

|〈
(
A(ν ξ)− λj(ν η)

)
ϕj(η), ϕk(ξ)〉|2

=
∑
k≥1

|〈
(
λk(ν ξ)− λj(ν η)

)
ϕk(ξ), ϕj(η)〉|2

=
∑
k≥1

|λk(ν ξ)− λj(ν η)|2|〈ϕk(ξ), ϕj(η)〉|2

≥
∑

k≥1,k 6=j
|〈ϕk(ξ), ϕj(η)〉|2,(6.10)

because by (6.8) |λk(ν ξ) − λj(ν η)| ≥ 1 for k 6= j uniformly in ξ, η and uni-
formly in ν small enough. Now by (6.7), (6.9) and (6.10) we deduce that∥∥ϕj(η)− 〈ϕj(ξ), ϕj(η)〉ϕj(ξ)

∥∥2

L2 ≤ Cν|ξ − η|j−α.

In particular, taking the scalar product of ϕj(η) with ϕj(η)−〈ϕj(ξ), ϕj(η)〉ϕj(ξ),
we obtain ∣∣1− 〈ϕj(ξ), ϕj(η)〉2

∣∣ ≤ Cν|ξ − η|j−α.
The last two estimates imply ‖ϕj(ξ)−ϕj(η)‖L2 ≤ Cν|ξ−η|j−α which was the
claim.

Lemma 6.3. — We have the following asymptotics when ν −→ 0

(6.11) λj(ν ξ) = 2j − 1 + νξj + o(ν), ∀ 1 ≤ j ≤ n,
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(6.12) Λj(ν ξ) = 2j − 1 + ν
∑
k≥1

ξk

∫
R

(fk + δ1kg)h2
n+j + o(ν), ∀ j ≥ 1.

Proof. — We first prove (6.11). We differentiate equation (6.4) in ξk

A(ν ξ)
ϕj(ξ)
∂ξk

+ ν(fk + δ1kg)ϕj(ξ) = λj(ν ξ)
ϕj(ξ)
∂ξk

+
∂λj(ν ξ)
∂ξk

ϕj(ξ),

take the scalar product with ϕj(ξ) and the selfadjointness of A(ν ξ) gives

(6.13)
∂λj(ν ξ)
∂ξk

= ν

∫
R

(fk + δ1kg)ϕ2
j (ξ).

Now by (6.6)

|
∫

R
(fk + δ1kg)(ϕ2

j (ξ)− h2
j )| ≤ ‖fk + δ1kg‖L∞‖ϕj(ξ) + hj‖L2‖ϕj(ξ)− hj‖L2

≤ C‖ϕj(ξ)− hj‖L2 −→ 0

when ν −→ 0. Thus by definition of the fk and g and by estimate (6.13), we
obtain that for all 1 ≤ j ≤ n

λj(ν ξ) = 2j − 1 + ν
n∑
k=1

ξk

∫
R

(fk + δ1kg)h2
j + o(ν)

= 2j − 1 + νξj + o(ν),

which is (6.11).
The asymptotic of (6.12) is proved in the same way. Observe that we can
prove a better estimate on the error term using (6.8), but we do not need it
here.

6.2. Verification of Assumptions 1 and 2. —

Lemma 6.4. — There exists a null measure set N ⊂ Zn such that for all
α ∈ Zn\N we have for all 1 ≤ p, q.

(6.14)
∫

R
(f1 + g)h2

n+p /∈ Z,

and

(6.15)
∫

R
(f1 + g)(h2

n+p ± h2
n+q) /∈ Z,

Proof. — For j ≥ 1, the Hermite function hj reads hj(x) = Pj(x)e−x
2/2, where

Pj is a polynomial of degree exactly (j − 1), and Pj is even (resp. odd) when
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(j − 1) is even (resp. odd). We have SpanR(h1, . . . , hn) = e−x
2/2Rn−1[X].

Thus we deduce that there exist (µkj) so that

(6.16) h2
j (x) =

j∑
k=1

µkjh2k−1(
√

2x),

with µjj 6= 0.
We assume that q < p. The application

(αn, αn+1, . . . ) 7−→
∫

R
(f1 + g)(h2

n+p ± h2
n+q)

is a linear form. In order to prove (6.15), it suffices to check that this linear
form is nontrivial. According to (6.16) and to the definition of f1 and g, the
coefficient of αn+p is

e−(n+p)µn+p,n+p

∫
R
h2

2(n+p)−1(
√

2x)dx = e−(n+p)µn+p,n+p/
√

2 6= 0.

Therefore for fixed p, q (6.15) is satisfied on the complementary of a null mea-
sure set Np,q. Finally, (6.15) is satisfied on Zn\N where N = ∪p,q≥1Np,q. The
proof of (6.14) is similar.

In the sequel we fix α ∈ Zn\N so that Lemma 6.4 holds true. We are now
able to show that Assumption 1 is satisfied. Recall that in our setting, the
internal frequencies are λ(νξ) = (λj(νξ))1≤j≤n and the external frequencies
are Λ(νξ) = (Λj(νξ))j≥1 with Λj(νξ) = λn+j(νξ).

Lemma 6.5. — There exists ν0 > 0 so that for all 0 < ν < ν0 we have

(6.17) Meas
({

ξ ∈ Π : k · λ(ν ξ) + l · Λ(ν ξ) = 0
})

= 0, ∀ (k, l) ∈ Z,

and for all ξ ∈ Π

(6.18) l · Λ(ν ξ) 6= 0, ∀ 1 ≤ |l| ≤ 2.

Proof. — We prove (6.17) by contradiction. Let (k, l) ∈ Z. In the case |l| = 2
in (6.17) we can write

k · λ(ν ξ) + l · Λ(ν ξ) =
n∑
j=1

kjλj(ν ξ) + λn+p(ν ξ)− λn+q(ν ξ) := F (ν ξ),

for some p, q ≥ 1. Now if (6.17) does not hold, F : Rn −→ R is a C1 function
which vanishes on a set of positive measure in any neighbourhood of 0, thus
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F (0) = 0 and for all 1 ≤ k ≤ n, ∂F
∂ξk

(0) = 0. By Lemma 6.3 these conditions
read

n∑
j=1

(2j − 1)kj + 2(p− q) = 0 and

kj +
∫

R
(fj + δijg)(h2

n+p − h2
n+q) = 0, ∀ 1 ≤ j ≤ n(6.19)

In particular for j = 1, (6.19) is in contradiction with (6.15).
The case |l| = 1 is similar, using (6.14).
It remains to prove (6.18). For all j ≥ 1, Ωj(ν ξ) −→ 2j − 1 when ν −→ 0.
Hence (6.18) holds true if ν is small enough.

We now check Assumption 2. Firstly, thanks to (6.8) we have that for
j, k ≥ 1, |Λj(νξ) − Λk(νξ)| ≥ |j − k| and |Λj(νξ)| ≥ j. Then by (6.13) and
(6.5)

|Λj(νξ)− Λj(νη)| ≤ ν|ξ − η| sup
ξ∈Π

∫
R

∣∣(fk + δ1kg)ϕ2
j+n(ξ, ·)

∣∣
≤ ν|ξ − η|

∥∥fk + δ1kg
∥∥
L2 sup

ξ∈Π
‖ϕj+n(ξ, ·)‖2L4

≤ Cν|ξ − η|j−α,

and Assumption 2 is fulfilled.

6.3. Verification of Assumptions 3 and 4. —

Recall that for p ≥ 0, Hp = D(T p/2) is the Sobolev space based on the har-
monic oscillator. Thanks to (6.6) and (6.8), we also have Hp = D(Ap/2(ν ξ))
for all ν > 0 small enough and ξ ∈ Π. Observe that Hp is an algebra and the
Sobolev embeddings which hold for the usual Sobolev space Hp are also true
here, since Hp ⊂ Hp.
Let u =

∑
j≥1 αjϕj . Then u ∈ Hp if and only if αj ∈ `2p.

We now check the smoothness of P and the decay of the vector field XP .
Let p ≥ 2 so that we are in the framework of Theorem 2.3. Since G(u, u) =
(uu)m+1 in (6.2), we have

(6.20) P = ε

∫
R
|u|2(m+1).

We first show that ∂P
∂zj
∈ `2p. We have

(6.21)
∂P

∂zj
= ε(m+ 1)

∫
R
ϕj+nu

m um+1,
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thus ∂P
∂zj

is (up to a constant factor) the (j + n)th coefficient of the decompo-
sition of um um+1, and this latter term is in Hp (because Hp is an algebra),
hence the result. The other components of XP can be handled in the same
way, and we get XP ∈ Pp.
By (6.20) and Sobolev embeddings

(6.22) sup
D(s,r)×Π

|P | ≤ ε‖u‖2(m+1)

L2(m+1) ≤ ε‖u‖
2(m+1)
Hp .

Similarly, using (6.21) and
∂P

∂θj
= εi(m+ 1)(yj + Ij)

1
2

[
eiθj

∫
R
ϕju

m um+1 + e−iθj
∫

R
ϕju

m+1 um
]

∂P

∂yj
= ε

m+ 1
2

(yj + Ij)−
1
2

[
eiθj

∫
R
ϕju

m um+1 + e−iθj
∫

R
ϕju

m+1 um
]

it is easy to see that supD(s,r)×Π |XP |r ≤ Cε. We now turn to the Lipschitz
norms. Let ξ, η ∈ Π

|P (ξ)− P (η)| ≤ Cε‖u(ξ)− u(η)‖L2(‖u(ξ)‖2m+1
L4(2m+1) + ‖u(η)‖2m+1

L4(2m+1))

≤ Cε‖u(ξ)− u(η)‖L2‖u‖2m+1
Hp .(6.23)

Now by (6.6)

‖u(ξ)− u(η)‖L2 ≤ C
n∑
j=1

‖ϕj(ξ)− ϕj(η)‖L2 +
∑
j≥1

jp|zj |‖ϕj+n(ξ)− ϕj+n(η)‖L2

≤ C|ξ − η|,(6.24)

where in the last line we used Cauchy-Schwarz and the fact that (zj)j≥1 ∈ l2p
with p ≥ 2. Then (6.23) and (6.24) show the Lipschitz regularity of P . We
can proceed similarly for XP .
It remains to prove the decay estimates of Assumption 4. Using (6.21), (6.5)
and the Sobolev embeddings, we obtain∣∣∣∂P

∂zj

∣∣∣ ≤ ε(m+ 1)‖ϕj+n‖L∞(R)‖u‖2m+1
L2m+1 ≤ Cεj−α‖u‖2m+1

Hp ,

and similarly, from

∂2P

∂zj∂zl
= εm(m+ 1)

∫
R
ϕj+nϕl+nu

m−1 um+1,

we deduce∣∣∣ ∂2P

∂zj∂zl

∣∣∣ ≤ Cε‖ϕj+n‖L∞(R)‖ϕl+n‖L∞(R)‖u‖2m−2
L2m−2 ≤ εC(jl)−α‖u‖2m−2

Hp .

The estimates of the Lipschitz norms are obtained as in (6.23), (6.24) and
using (6.6).
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As a conclusion Assumptions 1 - 4 are satisfied and we can apply Theorem
2.3 with some β > 0 if ε > 0 is small enough to obtain:

Theorem 6.6. — Let m ≥ 1 and n ≥ 1 be two integers. Let V (ξ, ·) be the n
parameters family of potentials defined by (6.3). There exist ε0 > 0, ν0 > 0
and a Cantor set Π ⊂ [−1, 1]n of full measure such that for each ξ ∈ Π, for
each ε < ε0 and for each ν < ν0, the solution of

(6.25) i∂tu+ ∂2
xu− x2u− νV (ξ, x)u = ε|u|2mu, (t, x) ∈ R× R

with initial datum

(6.26) u0(x) =
n∑
j=1

I
1/2
j eiθjϕj(ξ, x),

with (I1, · · · , In) ⊂ (0, 1]n and θ ∈ Tn, is quasi periodic with a quasi period ω∗

close to ω0 = (2j − 1)nj=1: |ω∗ − ω0| < C(ε+ ν).
More precisely, when θ covers Tn, the set of solutions of (6.25) with initial
datum (6.26) covers a n dimensional torus which is invariant by (6.25). Fur-
thermore this torus is linearly stable.

Remark 6.7. — From the proof it is clear that our result also applies to any
non linearity which is a linear combination of |u|2mu. Moreover, under ad hoc
conditions on the derivatives of G, we can admit some non linearities of the
form ∂G

∂u (x, u, u) (i.e. depending on x) in (6.1). Also we can replace the set
{1, · · · , n} by any finite set of N of cardinality n.

7. Application to the linear Schrödinger equation

In this section we prove Theorem 1.2 following the scheme developed by H.
Eliasson and S. Kuksin in [5] for the linear Schrödinger equation on the torus
with quasi-periodic in time potentials.
The setting differs slightly from Section 6 since now we are not considering
a perturbation around a finite dimensional torus but we want to construct a
linear change of variable defined on all the phase space. Consider the equation

(7.1) i∂tu = −∂2
xu+ x2u+ εV (tω, x)u

where V satisfies the condition (1.7). Recall the definition of the phase space
Pp = Tn × Rn × `2p × `2p. Recall also that hj , j ≥ 1 denote the eigenfunctions
of the quantum harmonic oscillator T = −∂2

x + x2 and that we have Thj =
(2j − 1)hj , j ≥ 1. Expanding u and ū on the Hermite basis, u =

∑
j≥1 zjhj ,

ū =
∑

j≥1 z̄jhj , equation (7.1) reads as a non autonomous Hamiltonian system

(7.2)

{
żj = −i(2j − 1)zj − iε ∂

∂z̄j
Q̃(t, z, z̄), j ≥ 1

˙̄zj = i(2j − 1)z̄j + iε ∂
∂zj
Q̃(t, z, z̄), j ≥ 1
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where

Q̃(t, z, z̄) =
∫

R
V (ωt, x)

(∑
j≥1

zjhj(x)
)(∑

j≥1

z̄jhj(x)
)
dx

and(2) (z, z̄) ∈ `22 × `22. We then re-interpret (7.2) as an autonomous Hamilto-
nian system in an extended phase space

(7.3)


żj = −i(2j − 1)zj − iε ∂

∂z̄j
Q(θ, z, z̄) j ≥ 1

˙̄zj = i(2j − 1)z̄j + iε ∂
∂zj
Q(θ, z, z̄) j ≥ 1

θ̇j = ωj j = 1, · · · , n
ẏj = −ε ∂

∂θj
Q(θ, z, z̄) j = 1, · · · , n

where

Q(θ, z, z̄) =
∫

R
V (θ, x)

(∑
j≥1

zjhj(x)
)(∑

j≥1

z̄jhj(x)
)
dx

is quadratic in (z, z̄) and (θ, y, z, z̄) ∈ P2. We notice that the first three equa-
tions of (7.3) are independent of y and are equivalent to (7.2). Furthermore
(7.3) reads as the Hamiltonian equations associated with the Hamiltonian
function H = N +Q where

N(ω) =
n∑
j=1

ωjyj +
∑
j≥1

(2j − 1)zj z̄j .

Here the external parameters are directly the frequencies ω = (ωj)1≤j≤n ∈
[0, 2π)n =: Π and the normal frequencies Ωj = 2j − 1 are constant.

7.1. Statement of the results and proof. —

Theorem 7.1. — There exist ε0 > 0 such that if 0 < ε < ε0, there exist

(i) a Cantor set Πε ⊂ Π with Meas(Π\Πε)→ 0 as ε→ 0 ;
(ii) a Lipschitz family of real analytic, symplectic, linear coordinate transfor-

mation Φ : Πε × P0 → P0 of the form

(7.4) Φω(y, θ, Z) = (y +
1
2
Z ·Mω(θ)Z, θ, Lω(θ)Z)

where Z = (z, z̄), Lω(θ) and Mω(θ) are linear bounded operators from
`2p × `2p into itself for all p ≥ 0 and Lω(θ) is invertible ;

(2)For the moment we work in `2
2 × `2

2, the largest phase space in which our abstract result
applies.
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(iii) a Lipschitz family of new normal forms

N?(ω) =
n∑
j=1

ωjyj +
∑
j≥1

Ω?
j (ω)zj z̄j ;

such that
H ◦ Φ = N?.

Moreover the new external frequencies are close to the original ones

|Ω? − Ω|2β,Πε ≤ cε,

and the new frequencies satisfy a non resonant condition, there exists α > 0
such that ∣∣k · ω + l · Ω?(ω)

∣∣ ≥ α 〈l〉
1 + |k|τ

, (k, l) ∈ Z.

Notice that in the new coordinates, (y′, θ′, z′, z̄′) = Φ−1(y, θ, z, z̄), the dy-
namic is linear with y′ invariant :

(7.5)


ż′j = iΩ?

jz
′
j j ≥ 1

˙̄z′j = −iΩ?
j z̄
′
j j ≥ 1

θ̇′j = ωj j = 1, · · · , n
ẏ′j = 0 j = 1, · · · , n.

As (7.1) is equivalent to (7.3), this theorem implies Theorem 1.2. In particular
the solutions u(t, x) of (7.1) with initial datum u0(x) =

∑
j≥1 zj(0)hj(x) read

u(t, x) =
∑

j≥1 zj(t)hj(x) with

(z, z̄)(t) = Lω(ωt)(z′(0)eiΩ
?t, z̄′(0)e−iΩ

?t)

and (z′(0), z̄′(0)) = L−1
ω (0)(z(0), z̄(0)).

Thus
u(t, x) =

∑
j≥1

ψj(ωt, x)eiΩ
?
j t

where ψj(θ, x) =
∑

`≥1[Lω(θ)L−1
ω (0)(z(0), z̄(0))]`h`(x).

In particular the solutions are all almost periodic in time with a non resonant
frequencies vector (ω,Ω?). Furthermore we observe that ψj(ωt, x)eiΩ

?
j t solves

(7.1) if and only if Ω?
j + k · ω is an eigenvalue of (1.10) (with eigenfunction

ψj(θ, x)eiθ·k). This shows that the spectrum of the Floquet operator (1.10)
equals {Ω?

j + k · ω | k ∈ Zn, j ≥ 1} and thus Corollary 1.4 is proved.

Remark 7.2. — Although Φ is defined on P0, the normal forms N and N?

are well defined on Pp only when p ≥ 1/2. Nevertheless their flows are well
defined and continuous from P0 into itself (cf. (7.5)).
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Proof. — Let Π̃ ⊂ Π be the subset of Diophantine vector of frequencies ω, i.e.
having the property that there exists 0 < α ≤ 1 such that

(7.6)
∣∣k · ω − b∣∣ ≥ 2πα

|k|τ−1
, k ∈ Zn \ {0}, b ∈ Z

for some τ > n + 2. It is well known that Meas(Π\Π̃) = 0. Further this
Diophantine condition implies that∣∣k · ω + l · Ω

∣∣ ≥ α 〈l〉
1 + |k|τ

, (k, l) ∈ Z,

since l ·Ω ∈ Z and if 〈l〉 ≤ 2π|k| then 2πα
|k|τ−1 ≥ α 〈l〉

1+|k|τ while if 〈l〉 ≥ 2π|k| then∣∣k · ω + l ·Ω
∣∣ ≥ 2〈l〉 − 2π|k| ≥ 〈l〉 ≥ α 〈l〉

1+|k|τ . Thus Assumptions 1 holds true.
Further as the normal frequencies Ωj = 2j − 1 are constant, 2 is satisfied.
We now show that Assumption 3 holds. Because of the assumptions on the
smoothness of V , the only condition which needs some care is that ( ∂Q∂zk )k≥1 ∈
`2p. We have

∂Q

∂zk
=
∫

R
V (θ, x)hkudx,

which is the kth coefficient of the decomposition of V (θ, x)u in the Hermite
basis. Thus ( ∂Q∂zk )k≥1 ∈ `22 if and only if V (θ, x)u ∈ H2 which is true since
ū ∈ H2 and V and ∂xV are bounded.
We turn to Assumption 4. Recall that by (6.5), for all 2 < r ≤ +∞, there
exists β > 0 so that ‖hj‖Lr(R) ≤ Cj−β. On the other hand, by assumption V
is real analytic in θ and Lq in x for some 1 ≤ q < +∞. Consider 1 < q ≤ +∞
so that 1

q + 1
q = 1, then with Hölder, we compute∣∣∣ ∂Q

∂zk

∣∣∣ =
∣∣ ∫

R
V (θ, x)hkudx

∣∣ ≤ sup
θ∈[0,2π]n

‖V (θ, ·)‖Lq(R)‖hk u‖Lq(R)

≤ sup
θ∈[0,2π]n

‖V (θ, ·)‖Lq(R)‖hk‖L2q(R)‖u‖L2q(R)

≤ Ck−β.

Similarly,∣∣∣ ∂2Q

∂zk∂zl

∣∣∣ =
∣∣ ∫

R
V (θ, x)hkhl dx

∣∣ ≤ sup
θ∈[0,2π]n

‖V (θ, ·)‖Lq(R)‖hk‖L2q(R)‖hl‖L2q(R)

≤ C(jl)−β.

Therefore, Theorem 2.3 applies (with p = 2) and we almost obtain the con-
clusions of Theorem 7.1. Indeed, comparing with Theorem 2.3, we have to
prove:
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(i) the symplectic coordinate transformation Φ is linear (and thus it is de-
fined on the whole phase space) and have the specific form (7.4) ;

(ii) the new normal form still have the same frequencies vector ω ;
(iii) the new Hamiltonian reduces to the new normal form, i.e. R? = 0 ;
(iv) the symplectic coordinate transformation Φ, which is defined by Theorem

7.1 on each P2, extends to P0 = Tn × Rn × `22 × `22.
Actually, at the principle Q is homogeneous of degree 2 in Z and independent
of y and the same is true for F the solution of the first homological equation

{F,N}+ N̂ = εQ.

As a first consequence, N̂ does not contain linear terms in y and thus ω re-
mains unchanged by the first iterative step (cf. (2.11)). Now going to Lemma
3.5 we notice that following notations (3.34), b0 = b1 = a = 0. Therefore θ
remains unchanged (θ̇ = 0) and the equation for Z reads Ż = JA(θ)Z which
leads to Z(τ) = eτJA(θ)Z(0) (see (3.40)). Thus Z(1) = L

(1)
ω (θ)Z(0) where

L
(1)
ω (θ) = eJA(θ) is invertible from P2 onto itself.

In the same way, ẏ(τ) = −1
2∇θA(θ)Z(τ) · Z(τ) (see (3.46)) which leads to

y(1) = y(0) + 1
2Z(0) ·Mω(θ)Z(0) for some linear operator Mω(θ). Finally the

new error term (cf. (2.12)) Q+ =
∫ 1

0
{Q(t), F} ◦Xt

F dt is still homogeneous of

degree 2 in Z and independent of y. Thus properties (i), (ii) are satisfied after
the first step and the new error term conserves the same form. Therefore we
can iterate the process and the limiting transformation Φ = Φ1 ◦Φ2 ◦ · · · also
satisfies (i) and (ii). Furthermore the transformed Hamiltonian as well as the
original one is linear in y and quadratic in Z and thus (iii) holds true.
It remains to check (iv). This follows from the fact that Φ is a linear symplec-
tomorphism and thus, as remarked in [9, Proposition 1.3’], extends by duality
on `2p × `2p for all p ∈ [−2, 2] and in particular for p = 0.

Proof of Corollary 1.3. — The point is that, when V is smooth with bounded
derivatives, the perturbation Q satisfies Assumption 3 for all p ≥ 0. That
is XQ maps smoothly Pp into itself. Therefore Theorem 2.3 applies for all
p ≥ 2 and by (2.6), the canonical transformation Φ is close to the identity in
the Pp-norm. Since in the new variables, (y′, θ′, z′, z̄′) = Φ−1(y, θ, z, z̄), the
modulus of z′j is invariant, we deduce that there exist a constant C such that

(1− Cε)‖z(0)‖p ≤ ‖z(t)‖p ≤ (1 + Cε)‖z(0)‖p
which in turn implies

(1− εC)‖u0‖Hp ≤ ‖u(t)‖Hp ≤ (1 + εC)‖u0‖Hp , ∀ t ∈ R.
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7.2. An explicit example. —

Consider the linear equation

(7.7) i∂tu = −∂2
xu+ x2u+ εV (tω)u

where V : Tn −→ R is real analytic and independent of x ∈ R. Up to a
translation of the spectrum, we can assume that V (0) = 0. Notice that this
case is not in the scope of Theorem 7.1, since V does not satisfy (1.7).
We suppose moreover that

∫
Tn V = 0 and that ω ∈ [0, 2π)n is Diophantine

(see (7.6)).
Define v(t, x) = e−iε

R t
0 V (ωs)dsu(t, x). The function u satisfies (7.7) iff v

satisfies i∂tv = −∂2
xv + x2v. This latter equation is explicitly solvable using

the Hermite basis, and the solution of (7.7) with initial condition u0(x) =∑∞
j=1 αjhj(x) then reads

u(t, x) = eiε
R t
0 V (ωs)ds

∞∑
j=1

αjhj(x)ei(2j−1)t.

Write V (θ) =
∑

k∈Zn,k 6=0

akeik·θ. Then, as ω is Diophantine, we can com-

pute
∫ t

0
V (ωs)ds = −i

∑
k∈Zn,k 6=0

ak
k · ω

(eik·ωt − 1), and W defined by W (θ) =

exp
(
ε

∑
k∈Zn,k 6=0

ak
k · ω

(eik·θ−1)
)

is a periodic and analytic function in θ. Finally,

u(t, x) =
∞∑
j=1

αjW (ωt)hj(x)ei(2j−1)t is an almost periodic function in time (as

an infinite sum of quasi-periodic functions).

We can explicitly compute the transformation Φ in (7.4). Here the Hamil-
tonian reads H = N + Q with Q = V (θ)

∑
k≥1 |zk|2. Set Φ(y′, θ′, z′, z′) =

(y, θ, z, z) where
zj = W (θ) z′j , z̄j = W (θ) z̄′j , j ≥ 1

θj = θ′j , yj = y′j − εkj
∑

k∈Zn,k 6=0

ak
k · ω

eik·θ
∑
l≥1

|zl|2, 1 ≤ j ≤ n.

Then a straightforward computation gives

H ◦ Φ(y′, θ′, z′, z′) =
n∑
j=1

ωjy
′
j +

∑
j≥1

(2j − 1)z′j z̄
′
j .
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Therefore in this case Ω?
j (ω) = 2j − 1.

Finally we study the spectrum of the Floquet operator associated to the
equation (7.7). Observe that W (ωt)hj(x)ei(2j−1)t solves (7.7) if and only if
any 2j − 1 + k · ω (with j ≥ 1 and k ∈ Zn) is an eigenvalue of (1.10) (with
eigenfunction W (θ)hj(x)eiθ·k). This shows that the Floquet spectrum is pure
point, since linear combinations of W (θ)hj(x)eiθ·k are dense in L2(R)⊗L2(Tn)
and the set {2j − 1 + k · ω | j ≥ 1, k ∈ Zn} does not accumulate anywhere.

,

A

Appendix

We show here how we can construct periodic solutions to the equation

(A.1)

{
i∂tu+ ∂2

xu− x2u = |u|p−1u, p ≥ 1 (t, x) ∈ R× R,
u(0, x) = f(x),

thanks to variational methods. This is classical, see e.g. [15] and [2] for more
details. Recall that for s ≥ 0 we have defined the Sobolev space Hs(R) =
D(T s/2), where T = −∂2

x + x2 is the harmonic oscillator. We also define
H∞(R) = ∩s>0Hs(R). We then have the following result.

Proposition A.1. — Let µ > 0. Then there exists an L2(R)-orthogonal fam-
ily (ϕj)j≥1 ∈ H∞(R) with ‖ϕj‖L2(R) = µ and a sequence of positives numbers
(λj)j≥1 so that for all j ≥ 1, u(t, x) = e−iλjtϕj(x) is a solution of (A.1).

Proof. — We look for a solution of (A.1) of the form u(t, x) = e−iλtϕ(x),
hence ϕ has to satisfy

(A.2)
(
− ∂2

x + x2
)
ϕ = λϕ− |ϕ|p−1ϕ.

Let µ > 0, denote by Eµ the set

Eµ =
{
ϕ ∈ H1(R), s.t. ‖ϕ‖L2(R) = µ

}
,

and define the functional

J(ϕ) =
∫

1
2
(
(∂xϕ)2 + x2ϕ2

)
+

1
p+ 1

|ϕ|p+1
)
dx,

which is C1 on Eµ.
Then the problem min

ϕ∈Eµ
J(ϕ) admits a solution ϕ1, and ϕ1 solves (A.2) for
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some λ = λ1 > 0.
Indeed, by Rellich’s theorem (see e.g. [14, page 247]), for all C > 0, the set{

ϕ ∈ H1(R), s.t. ‖ϕ‖L2(R) = µ,∫
1
2
(
(∂xϕ)2 + x2ϕ2

)
+

1
p+ 1

|ϕ|p+1 ≤ C
}
,

is compact in L2(R) (observe that we have used the Sobolev embedding H1 ⊂
Lp+1 which holds for any p ≥ 1). Then, if ϕn is a minimising sequence of J ,
up to a sub-sequence, we can assume that ϕn −→ ϕ1 ∈ Eµ in L2(R). Finally,
the lower semicontinuity of J ensures that ϕ1 is a minimum of J in Eµ, and
the claim follows. Moreover, λ1 is given by

λ1 =
1
µ

∫
(∂xϕ1)2 + x2(ϕ1)2 + |ϕ1|p+1.

Now we define the set E1
µ = Eµ ∩

{
〈ϕ,ϕ1〉L2(R) = 0

}
. Similarly, we may

construct ϕ2 ∈ E1
µ so that J(ϕ2) = min

ϕ∈E1
µ

J(ϕ). The orthogonality condition

implies in particular that ϕ2 6= ϕ1. Let k ≥ 1, and assume that we have
constructed (ϕj)1≤j≤k so that 〈ϕi, ϕj〉L2 = µ2δij for all 1 ≤ i, j ≤ k. Define
the set

Ekµ = Eµ ∩
{
〈ϕ,ϕj〉L2 = 0, 1 ≤ j ≤ k

}
.

By Rellich’s theorem, the set{
ϕ ∈ H1(R), s.t. ‖ϕ‖L2(R) = µ,∫

1
2
(
(∂xϕ)2 + x2ϕ2

)
+

1
p+ 1

|ϕ|p+1 ≤ C, 〈ϕ,ϕj〉L2 = 0, 1 ≤ j ≤ k
}
,

is compact in L2(R) and we can construct ϕk+1 ∈ Ekµ so that J(ϕk+1) =
min
ϕ∈Ekµ

J(ϕ). Then ϕk+1 is a nontrivial solution of (A.2) with

λk+1 =
1
µ

∫
(∂xϕk+1)2 + x2(ϕk+1)2 + |ϕk+1|p+1.

The regularity ϕj ∈ H∞ is a direct consequence of the ellipticity of the operator
−∂2

x + x2.

Remark A.2. — Of course, the proof can be generalised to a larger class
of nonlinearities in (A.1). In particular, we can deal with the nonlinearity
−ε|u|p−1u with ε > 0 provided that p < 5 and that εµ

p+3
2 > 0 is small enough.

Indeed in that case, thanks to the Gagliardo-Nirenberg inequality we have
ε

p+ 1

∫
|ϕ|p+1 ≤ Cεµ

p+3
2

(∫
(∂xϕ)2 + x2ϕ2

)(p−1)/4
,
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and the nonlinear part of the energy can be controlled by the linear part,
which enables us the perform the same arguments as previously.
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