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Abstract. — In this paper we prove an abstract KAM theorem for infinite
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1. Introduction

Let ¥ : N — [0, +oo[ so that ¥(j) > j for all j > 1. We consider the
(complex) Hilbert space £2, defined by the norm

el =D [w;PU2(5).
Jj>1
We define the symplectic phase space P = P¥ as
P=T"xR" x (% x (3,

equipped with the canonic symplectic structure:

D do; Ady; + > duj Advj.
j=1 j>1

For (0,y,u,v) € P we introduce the following Hamiltonian in normal form

(11) N =3 0O+ 5 0 (€)0E +03),
j=1

Jj=1
where £ € R” is an external parameter.

In [7], (see also [8] and a slightly generalised version in [11]) S.B. Kuksin has
shown the persistence of n—dimensional tori for the perturbed Hamiltonians
H = N+ P with general conditions on the frequencies wj, {2; and perturbation
P which essentially are the following : Firstly the frequencies satisfy some
Melnikov conditions and the external frequencies £2; have to be well separated
in the sense that there exists d > 1 so that roughly speaking (see Assumption

below)
(1.2 Q;(6) ~ .

Denote by P®P the phase space given by the weight U(j) = j7/2e% where p > 0
and a > 0. Secondly, the perturbation is real analytic and the corresponding
Hamiltonian vector field is so that

_ { p>p for d>1,
(1.3) Xp: PYP — PP with

p>p for d=1,

where d is the constant which appears in . For instance, the Schrédinger
and the wave equation on [0, 7] with Dirichlet boundary conditions satisfy the
previous conditions, see respectively the KAM results of Kuksin-Poschel [10]
and Poschel [13]. Indeed the result in [10] is stronger because there is no
external parameter £ in the equation.

Now, if we consider the nonlinear harmonic oscillator

(1.4) 10 = —0%u + 2u + V(x)u + |[u|*™u, (t,r) € R xR,



KAM FOR THE QUANTUM HARMONIC OSCILLATOR 3

with real and bounded potential V', we have €; ~ 25+ 1, hence d = 1 but the
Hamiltonian perturbation which is here

(1.5) P = /}R(uﬁ)mﬂdx,

does not satisfy the strict smoothing condition ([1.3)) (see Section |§| for more
details). The aim of this paper is to prove a KAM theorem (Theorem
in the case d = 1 and p = p in and . To compensate the lack of
smoothing effect of Xp we need some additional conditions (see Assumption
on the decay of the P derivatives (in the spirit of the so-called T6plitz-
Lipschitz condition used by Eliasson & Kuksin in [4]) which will be satisfied
by the perturbation . The general strategy is explained with more details
in Section

Notice that S.B. Kuksin has already considered in [8] the harmonic oscillator

with a smoothing nonlinearity of type P = / o(Jux &|)dx where & is a fixed
R

smooth function.

We present two applications of our abstract result concerning the harmonic
oscillator T = —92 + 2. Let p > 2 and denote by 612) the space E?I, with ¥(j) =
4P/2. The operator T has eigenfunctions (hj)j>1 (the Hermite functions) which
satisfy Th; = (2j — 1)h;, j > 1 and form a Hilbertian basis of L?(R). Let
u =) ;51 ujh; be a typical element of L%(R). Then (u;);>1 € EZ% if and only
if u € HP := D(T?/?) = {u € L*(R) | TP/?>u € L*(R)}. Indeed HP is a Sobolev
space based on 1" and we can check that

HP = D(T?'?) = {u € L*R) | 2°0%u € L*(R) for a + (3 < p}.

In this context, we are able to apply our KAM result to (1.4) and we obtain
(see Theorem for a more precise statement)

Theorem 1.1. — Let m > 1 be an integer. For typical potential V and for
e > 0 small enough, the nonlinear Schrédinger equation

(1.6) 10 = —0%u + x?u + V(2)u £ elu*u
has many quasi-periodic solutions in H?.

The generalisation of such a result in a multidimensional setting is not ev-
ident for a spectral reason: the spectrum of the linear part is no more well
separated. We could expect to adapt the tools introduced in [4] but the arith-
metic properties of the corresponding spectra are not the same: in [4] the free
frequencies are j7 + j2 + -+ + jfl for all j1,---,jq € Z, while in our case they
are 2(j1 + jo2 + -+ + ja) + d for all ji,--- ,j4 € N. Nevertheless we mention
that it is still possible to obtain a Birkhoff normal form for as recently
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proved in [6].

A consequence of Theorem is the existence of periodic solutions to (|1.6)).
There are other approaches to construct periodic solutions of this equation.
For instance, the gain of compacity yielded by the confining potential z? allows
the use of variational methods. We develop this point of view in the appendix.

The second application concerns the reducibility of a linear harmonic oscil-
lator, T = —0%+ 22, on L?(R) perturbed by a quasi periodic in time potential.
Such kind of reducibility result for PDE using KAM machinery was first ob-
tained by Bambusi & Graffi (see [1]) for Schrodinger equation with an 2
potential, 3 being strictly larger than 2 (notice that in that case d > 1 in the
asymptotic of the frequencies ) Here we follow the more recent approach
developed by Eliasson & Kuksin (see [5]) for the Schrédinger equation on the
multidimensional torus. Namely we consider the linear equation

0 = —0%u + 2?u + €V (tw, x)u, u=u(t,z), = € R,
where € > 0 is a small parameter and the frequency vector w of forced oscil-
lations is regarded as a parameter in 4 C R™. We assume that the potential
V: T'xR> (#,z) — R is analytic in § on |Im#| < s for some s > 0, and

C? in x, and we suppose that there exists § > 0 and C > 0 so that for all
0 €0,2m)" and x € R

(L7 VO <CA+2%)70,  [0.V(0.0)<C, |0V (0.2)| <C.

In Section [7| we consider the previous equation as a linear non-autonomous
equation in the complex Hilbert space L?(R) and we prove (see Theorem
for a more precise statement)

Theorem 1.2. — Assume that V' satisfies (1.7)). Then there exists €y such
that for all 0 < € < €y there exists Ac C [0,2m)" of positive measure and
asymptotically full measure: Meas(A;) — (2m)" as € — 0, such that for all
w € Ag, the linear Schridinger equation

(1.8) 10 = —0%u + 2?u + €V (tw, x)u
reduces, in L*(R), to a linear equation with constant coefficients.

In particular, we prove the following result concerning the solutions of ([1.8)).

Corollary 1.3. — Assume that V is C* in x with all its derivatives bounded
and satisfying . Let p > 0 and ug € HP. Then there exists €y > 0 so that
for all0 < e < ey and w € A, there exists a unique solution u € C(R; Hp) of
(1.8) so that u(0) = ug. Moreover, u is almost-periodic in time and we have
the bounds

(1.9) (1 —eO)|Juollme < ||u(t)||me < (1 +C)||uo||np, VEteR,
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for some C = C(p,w).

Another way to understand the result of Theorem is in term of Floquet
operator (see [3] or [17]). Consider on L?(R)®L?(T") the Floquet Hamiltonian
operator

< 9 2 2
(1.10) K ::zkz:lwk%c — 0, + 2" +eV(0, 1),

then we have

Corollary 1.4. — Assume that V satisfies (1.7]). There exists eg > 0 so that
for all0 < e < ey and w € A, the spectrum of the Floquet operator K is pure
point.

A similar result, using a different KAM strategy, was obtained by W.M.
Wang in [17] in the case where

V(tw, ) = |hy(2)]* ) cos(wit + ©x)
k=1

where hi is the first Hermite function.

At the end of Section [7] we make explicit computations in the case of a
potential which is independent of the space variable. This example shows that
one can not avoid to restrict the choice of parameters w to a Cantor type set
in Theorem [1.2]

Acknowledgements. — The first author thanks Hakan Eliasson and Serquei
Kuksin for helpful suggestions at the principle of this work. Both authors thank
Didier Robert for many clarifications in spectral theory.

2. Statement of the abstract result

We give in this section our abstract KAM result.

2.1. The assumptions on the Hamiltonian and its perturbation. —

Let IT € R™ be a bounded closed set so that Meas(II) > 0, where Meas denote
the Lebesgue measure in R™. The set 11 is the space of the external parameters
§. Denote by Ag, the difference operator in the variable § :

Af”]f = f(vg) - f(ﬂl)
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k
For | = (Iy,...,l;) € ZF, we denote by |I| = Z\lﬂ its length, and (I) =
j=1
k
L) 4Ll Weset 2 = {(k,1) #£0, || <2} CZ" x Z*.
j=1
The first two assumptions we make, concern the frequencies of the Hamil-

tonian in normal form ([1.1)

Assumption 1 (Nondegeneracy). — Denote by w = (w1,...,w,) the in-
ternal frequencies. We assume that the map § — w(&) is an homeomorphism
from 11 to its image which is Lipschitz continuous and its inverse also.
Moreover we assume that for all (k,l) € Z

(2.1) Meas({§ tkew()+1-QE) = 0}) =0,
and for all £ € 11
1-Q&) #0, vV1I<J|l|<2.

Assumption 2 (Spectral asymptotics). — Set Qy = 0. We assume that
there exists m > 0 so that for all i,j > 0 and uniformly on 11

12— ] > mli— .
Moreover we assume that there exists § > 0 such that the functions
& — j279;(¢),
are uniformly Lipschitz on Il for j > 1.
If the previous assumptions are satisﬁed,NWithout , J. P('js~chel [11]

proves that there exist a finite set X C Z and I, C II with Meas(IT\Il,) — 0
when o — 0, such that for all w € II,

{0)
(2.2) k-w(@)+1-2| > am, (k,1) € 2\ X,

for some large 7 depending on n and (.
If (2.1)) is also satisfied, we can prove [11] Corollary C and its proof] that one
can ensure on II, that

l
(2.3) k- w(&)+1-Q)| > a1+<|>k|7, (k1) € Z.

In the sequel, we will need the distance

|9 — ')agm = sup sup ;27 [Q;() — (&)
gell j>1
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and the semi-norm

05 [Aen
Q550 = sup sup 27 1L
P e 21 1€ —n
§#n

Finally, we set
L L
|lwlt + Qg0 = M.

Remark 2.1. — The proof of crucially uses the control of the Lipschitz
semi-norm |Q|§ﬂ 1 (see [11, Lemma 5]). For this reason in assumptions 3 and 4
below we have to control the Lipschitz version of each semi-norms introduced
on P or Xp.

As in [I1], for s, > 0 we define the (complex) neighbourhood of T™ x
{0,0,0}.
(24) D(s,r) = {(0,y,u,v) € P s.t. [Imb] < s, |y <72 [fully + [Jv]|w <7}
Let r > 0. Then for W = (X,Y,U, V) we define
1 1
Wi, = IX]+ 511+ (10 + Vo).

The next assumption concerns the regularity of the vector field associated to
P. Denote by Xp = (0,P, —0gP, 0,P, —0,F ). Then

Assumption 3 (Regularity). — We assume that there exist s,r > 0 so
that

Xp : D(s,r) xII — P.
Moreover we assume that for all § € II, Xp(-,§) is analytic in D(s,r) and that
for allw € D(s,r), P(w,-) and Xp(w,-) are Lipschitz continuous on II.

We then define the norms

HPHD(S,’I‘) ‘= Sup |P‘ < +o0,
D(s,r)xII
and A |
P
HPHZLD(S,T) = Sup Ssup & )
En€ll D(s,r) ’§ - 77|
£#n
where Ag, P = P(-,§) — P(-,n) and we define the semi-norms
||XP”'I’,D(S,7‘) = Sup |XP|7“ < 00,
D(s,r)xII
and
’ASWXP’T

||Xp||f7D(S7T) ‘= sup sup ——— < +00
enell D(s,r) 1§ =1

§#n
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where Agy Xp = Xp(+,§) — Xp(-,n).
In the sequel, we will often work in the complex coordinates

z=—u—1iv), z= L(u+iv).

V2

Notice that this is not a canonical change of variables and in the variables
(0,y,2,z) € P the symplectic structure reads

> dojndy; + iy dz Adz,
J=1 jz1

and the Hamiltonian in normal form is

n
(2.5) N =3 wil€y+ Y 2(6)z%;.
Jj=1 Jj=1
As we mentioned prev1ously we need some decay on the derivatives of P. We
first introduce the space r? D(s.)’ Let 8 > 0, we say that P € FT D(sr) if
<P>r,D(s,r) + <P>£D(S7T) < 0o where :
e The norm (- ), p(sr) is defined by the conditions

HPHD (s,r) < T2<P>T1D(577’)7

121]a§n 6y] H D(s,r) <P>T,D(s,r)’
r . B
Hawj H (s.7) 3Py, Viz 1 and wj =z, 2,
9P 1
< ——(P Vil>1 and w; = 2. Z:.
H@wjﬁwl HD(S,r) - (ﬂ)5< JrD(sr)y Vi l21 and w; =27
e The semi-norm (- )< (s, 18 defined by the conditions
£ 2/p\L
HPHD (s,r) < r <P>7”,D(s,r)’
L
1123a<xn 8yj H (s,7) <P>T,D(s7r)7
T , B
Hawj H (s,7) ji[@<P>7l’:,D(s7r)’ \V/j > 1 and Wi = Zj, Zj,
‘ < L(p Vil>1 and w; =z, %
Hawjawl H D(s;r) (j[)ﬁ< VD@ VhlZ1 and wj =z, ;.

The last assumption is then the following

Assumption 4 (Decay). — P € FED(S ") for some 3 > 0.
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Remark 2.2. — The control of the second derivative is the most important
condition. The other ones are imposed so that we are able to recover the last
one after the KAM iteration (see Lemma [3.4). Furthermore the assumptions
on the first derivatives are already contained in Assumption [3|as soon as p > 0.

2.2. Statement of the abstract KAM Theorem. —
Recall that M = |w|5 + |Q’§ﬂ,n-

Theorem 2.3. — Suppose that N is a family of Hamiltonians of the form
(2.5) on the phase space P depending on parameters £ € 11 so that Assump-
tions [1 and [3 are satisfied. Then there exist eg > 0 and s > 0 so that every
perturbation H = N + P of N which satisfies Assumptions[3 and [ and the
smallness condition

e=(Ixp ‘

(6%
rD(s,r) T <P>T7D(s,r)) + M(HXPHf":,D(s,r) + <P>T,D(s,7«)) < goq,

for some r >0 and 0 < a < 1, the following holds. There exist

(i) a Cantor set 11, C IT with Meas(II\II,) — 0 as & — 0 ;
(ii) a Lipschitz family of real analytic, symplectic coordinate transformations
®:D(s/2,r/2) x I, — D(s,r) ;
(#ii) a Lipschitz family of new normal forms

N*=>"wi Oy + Y ()%
=1 i>1
defined on D(s/2,7/2) x I, ;
such that
Hod®=N*"+R"

where R* is analytic on D(s/2,7/2) and globally of order 3 at T™ x {0,0,0}.
That is the Taylor expansion of R* only contains monomials y™ 2929 with
2[m|+ |g+q| = 3.

Moreover each symplectic coordinate transformation is close to the identity

(2.6) | — Idl|;,p(s/2,r/2) < ce,
the new frequencies are close to the original ones
(2.7) w* = wln, + 2 = Qlagn, < ce,

and the new frequencies satisfy a non resonant condition

Ui (k1) € Z, £ €1l,.

@8 et @+ 1002 §
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As the consequence, for each £ € I1, the torus T" x {0, 0, 0} is still invariant
under the flow of the perturbed Hamiltonian H = N + P, the flow is linear (
in the new variables) on these tori and furthermore all these tori are linearly
stable.

2.3. General strategy. —

The general strategy is the classical one used for instance in [7), 8, 11]. For
convenience of the reader we recall it. Let H = N+ P be a Hamiltonian, where
N is given by and P a perturbation which satisfies the assumptions of
the previous section. We then consider the second order Taylor approximation
of P which is

(2.9) R= Z Z Rimgg etk Oym azd
2|m|+|g+g|<2 keZn
and we define its mean value by
[Rl= Y Romgqy™2"z".
[m|+|q|=1

Recall that in this setting z,Z have homogeneity 1, whereas y has homogeneity
2.

Let F' be a function of the form and denote by X% the flow at time ¢
associated to the vector field of F. We can then define a new Hamiltonian by
HoX} := Ni+ Py, and the Hamiltonian structure is preserved, because X1 is
a symplectic transformation. The idea of the KAM step is to find, iteratively,
an adequate function F' so that the new error term has a small quadratic part.
Namely, thanks to the Taylor formula we can write

HoX;r = NoXr+(P-R)oX}+RoXh

= N+{N,F}+/1(1—t){{N,F},F}oX}dt+
0

1
+(P_R)OX},+R+/ {R,F}oX}dt
0

In view of the previous equation, we define the new normal form by N, =

~

N+ N , where N satisfies the so-called homological equation (the unknown
are I and N)

(2.10) {F,N} +N=R.
The new normal form N, has the form ({2.5) with new frequencies given by
W (&) = w(€) + B(€) and QF(€) = Q(€) + Q)
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where

ON ~ 2N
2.11 w(§) =—=—(0,0,0,0 d Q) =
Q1) B(E) = 5 (0,0,0.0.6) and 06) = 5
Once the homological equation is solved, we define the new perturbation term
P+ by

(O) 07 Oa 07 5)

(2.12) P+:(P—R)oX}m—k/l{R(t),F}oX}dt,
0

where R(t) = (1 — t)N + tR in such a way that
H (¢] X}]:“ = N+ + P+ .

Notice that if P was initially of size e, then R and F' are of size €, and the
quadratic part of P, is formally of size 2. That is, the formal iterative scheme
is exponentially convergent.

Without any smoothing effect on the regularity, there is no decreasing prop-
erty in the correction term added to the external frequencies (2.11]). In that
case it would be impossible to control the small divisors (see (2.3])) at the next
step. In this work the smoothing condition on Xp is replaced by As-
sumption [ (see also Remark . The difficulty is to verify the conservation
of this assumption at each step.

Plan of the proof of Theorem — In Section [3] we solve the homo-
logical equation and give estimates on the solutions. Then we study precisely
the flow map X% and the composition H o X};. In Section (| we estimate the
new error term and the new frequencies after the KAM step, and Section
is devoted to the convergence of the KAM method and the proof of Theorem

23

Notations. — In this paper ¢, C' denote constants the value of which may

change from line to line. These constants will always be universal, or depend

on fized quantities (n, 3,11, ...).

We denote by N the set of the non negative integers, and N* = N\{0}. Forl =
k

k

(... lk) € ZF, we denote by [I| = |l] its length, and (I) =1+ jl;|.
j=1 j=1

We define the space Z = {(k,1) # 0, |I| < 2}. The notation Meas stands for

the Lebesgue measure in R™.

In the sequel, we will state without proof some intermediate results of [11]
which still hold under our conditions ; hence the reader should refer to [11] for
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the details. For the convenience of the reader we decided to remain as close
as possible to the notations of J. Pdschel.

3. The linear step

In this section, we solve equation (2.10) and study the Lie transform X%.
Following [T1], || - ||* (respectively (-)*) stands either for || - || or || - ||~ (respec-
tively (-) or (-)£) and || - ||* stands for || - || + A - ||~

3.1. The homological equation. —

The following result shows that it is possible to solve equation (2.10) under
the Diophantine condition ([2.3)).

Lemma 3.1 ([11]). — Assume that the frequencies satisfy, uniformly on Ty,
for some a > 0 the condition . Then the homologzcal equatwn ) has
a solution F, N which is normalzsed by [F] =0, [N] = N, and satzsﬁes for
ald<o<s,and 0 <A< a/M

c A
HX]\A/ :,D(s,r) < ||XRH:,D(S,T)7 ||XFHT‘D (s—ao,r) < JHXRHT,D(S,T‘)’

where t only depends on n and T.

The space Ff D(s.r) is not stable under the Poisson bracket. Therefore
we need to introduce the space Fﬁ +(s n C I‘T D(s,
(- );FD(S n T (- )j’g(s r) defined by the following conditions.

r) endowed with the norm

* 2 +,% +,%
HFHD(S»T) =T <F>7’7D(5:7“)’ 1<j<n H 33/] D(s,r) >T1D(877‘)’
r +% . o
Haw] by = Dy YiZ 1 and wj=z, 7
O’F |* 1 .
< ’ il > 1 d = T
H Bwjawl D(s,r) (]l)ﬁ(l +1j— l|)< >T,D(s,r) Vil > an w5 = zj, Zj

This definition is motivated by the following result, which can be understood
as a smoothing property of the homological equation

Lemma 3.2. — Assume that the frequencies satisfy (2.3] ., uniformly on I,.

Let F, N be given by Lemma Assume moreover that R € FT D(s,r)’ then
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there exists C' > 0 so that for any 0 < o < s, we have F € I‘f’;(sfar),

—~ 3
N € FTﬁD(sig,T) and
°

<
— aot

<F>’I—‘:D(S—O',T) <R>T,D(S,T‘)7

C M
(31) <F>::i§(sfo,r) < <<R>T,D(s,r) + ;<R>7€,D(s,r)>7

aot
<N>7‘,D(s—a,r) < <R>T,D(s,7‘)’ <N>7€D(5—a,r) < <R>1€;D(s7r)’
where t only depends on n and T.

For the proof of this result, we need the classical lemma

Lemma 3.3. — Let f : R — C be a periodic function and assume that f
is holomorphic in the domain |Im6| < s, and continuous on |[Im6| < s. Then
there exists C > 0 so that its Fourier coefficients satisfy

1F(k) < Ce s sup |£(0)].

[ImO|<s

Proof of Lemma — In [11], the author looks for a solution F' of (2.10)) of
the form of (2.9), i.e.

(3.2) F = Z Z Flmgg €*0ym 2977,
2|m|+|g+g|<2 keZ™
A direct computation then shows that the coefficients in are given by
kaq@
(3.3) iFymgg =< k-w+(g—79) - -Q
0, otherwise,

it |kl +lg—1ql#0,

and that we can set N = [R)].

In the following we will use the notation ¢; = (0,---,0,1,0,---), where the 1
is at the j** position, and g1 = qj + q.-

The variables z and Z exactly play the same role, therefore it is enough to
study the derivatives in the variable z.

In the sequel we write Ay, = 1+ |k|”. Then it easy to check that for any 7 > 1
and o > 0,
Al e~ IHo < g,
kg k i
for some C' > 0 and t = 2j7 +n + 1. In the sequel, ¢ may vary from line to
line, but will remain independent of o.
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& We first prove that (F)’ Dis—or) < act (R)r,D(s,r)-
o
2 .
e Observe that O°R = Z Rkoq.loe’k'e, then according to Lemma |3.3
8Zjazl Pyt J
. <R>r D(s r)ei‘k‘s
there exists C' > 0 so that ]Rkoqjlg| <C 7('l’)ﬂ , and thus by (3.3))
J
and (2.3)
A <R>T,D s,r e—|k|s
(3.4) ‘FkO(Ijl0| < ka (&)

a (OPA+15 1)

Therefore, as we also have

I*F ‘
3.5 = § Fro, oe®?
kezn

we deduce that

< Foo. olelkl(s=o)
H(‘)z](?le (s—or) Z‘ k‘Oq]lO’e

kezZn
C(R)r,n( 3
< T, S’I" A e ‘klo-
= /3 —
a(G)P(L+15 =) 5.
C<R>TD (s,r)

(3.6) act(jU)P(L+ 1[5 = 1)’

e We compute

ik-0 k-0 ik-6
5’2 Z Fog;00™" + Z FkOqul 21+ 2 Z Flo2g;00™ " 2.
j

kezn kezn,i>1 kezr
OR
Now observe that (a Z Riog;0 e™™0 then by Lemma (3.3
% kezn
OR
Ruogal < 0 sup [(28)__|
qj Im 0] < aZj |z=2z=0
OR e Ikls
< oo 28| Ry
> 82’] D(sr) = r ]ﬁ >7",D(s,r)
From the previous estimate, and ( . we get
Ay CrAy e lkls
Froo.ol < ———|Rroa. _—
| kOq]0| = Oé(l—i—j)‘ k0q30| = Oé]ﬁ(l—F]) < r,D(s,r)
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and thus
H Z Fk:Oqueik.eHD < Z ’Fk[)qj0|e|k|(s_a)
kezn (=) keZn
rDsr) —|k|o
Ape
ot 2
(Xj 1+ '] kezm
Cr R T S,
(3.8) Crtf)rpan)
actjP(1 + j)
CrAy eIkl
Similarly, we have |Fjo24;0] < %(R%’D(M), which leads to
i CT<R>T D(s,r)
3.9 H Frozg ”H < ———mDln),
( ) Z #02;0€ D(s—o,r) OéO'tjﬁ(l +])

kezm

By Cauchy-Schwarz in the variable [ and (3.5)), (3.6))

H Z Fkoq]qle leD(sﬂyr) < (qu_2(l)|ZFkoqqueik'QIQ)é(Z|zl|2‘l’2(l)>é

keZ™,1>1 >1 kezm >1
1
< 2 R
> Oéth'@ (Z l?,@\IjQ 14+ ’,7 _ l’) ) < >7“,D(s,7”)
Cr(R), (s,
(3.10) < M

ac'j?(1+j)’
since W(l) > 1.
Finally, inserting (3.8)), (3.9) and (3.10)) in (3.7 we obtain

Cr(R), p(sr
(3.11) HazJH D(s—oyr) = M'

oF
e We can write Yo = Z Fm, 00e™*?. Hence by ([3.3) and (2-3). | Flmjo00] <
Yj

kezZn
Ay
|ka]0 0|, and thanks to Lemma 3.3{applied to the series — 8 Z Rim;o oe'”
Yi kezn
Ak ks
(3.12) | Fkmjool < C £k (B)r,D(sr);
and we obtain
S— 0' C
313 5l = 3 om0l < ZR), e
gl S— O'T'

kezn
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e To obtain the bound for ||F| p(s—g,) Write

(3.14) F = Z Fkoooeikle + Z kaj ooeik'eyj—i—

kezZn kezZ™1<j<n
ik-0 ik-0= — ik-0—
Z Frog; 0" zjz+ Z Fkooqﬂe’ ZjZ1+ Z Frogqe" " Zj21

kezZn j1>1 kezZn j,1>1 keZn j,1>1
Since R\y:z:E:O = Z Rkoooeikﬂ7 by Lemmas and we deduce that

kezn

A
24k |k

(3.15) | Frooo| < Cr = ° S (RY,. pis.rys

hence, thanks to (3.12)) and (3.15) we can bound the sums of the first line in
(3.14) as in the previous point.
Now thanks to (3.4) and to the Cauchy-Schwarz inequality we have

. C<R>T’D(ST‘) |Z‘Zl‘
Froo 0ek02; H < e ’
| 2 Fowe im0 < T X Gpa s

kezr, j,l>1 4,i>1

C(R)p(s,r) 2]\ 2
aot (Z ﬁ)

Jj=1

W(ZWQ(j)’Zj’2><ZM>

j>1 j>1

CTQ <R>7‘,D(S,T’)
I E—

IN

IN

<
ao

CTZ <R>T,D(S,T’)

act '
This latter estimate together with the estimates (3.6)), (3.11)) and (3.13]) shows
that

Therefore we proved that || F||p(s—s,) <

C
<F>:D(S—O’,T‘) < @<R>T,D(S,T)'

& We now show that

(316) <N>T,D(Sfa',r) < <R>T,D(s,r)‘
Since N = [R] we have

n
(3.17) N = Z Rom,00y; + Z Roog;q; 2i%55
=1 i>1
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and we can observe that
(3.18)

1 OR 1 9’R
Rom.00 = ——— ——(6,0,0,0)d0, Roog.q. = —— +———(0,0,0,0)d0,
om0 = G ey, O 000 Rav = o [ 00,00

which imply the bounds |Rom ;00| < (R)r. p(s,r) and |[Roogq,| < <R>T’D(S’r)/j2ﬁ
and thus (3.16)).

& It remains to check the estimates with the Lipschitz semi norms.
As in [11], for |k| + |gj — @] # 0 define 6y j; = k- w + ; — ;. Then by (3.3)),

. —1 —1
1A£anmqﬂl = 5k,jl(77)A£anmqﬂl + kaqﬂl (f)A@?(Sk,jl'
By (2.3), ]6]:]1” < Ap/a and thus

_ AZ
|A§775k,31'l| < ﬁ(\kllﬁanI + |A§an‘ + ’AEanD’

hence )
|A£n5]; i kA2 kA2
il < A i ) <
and we have
| AenFroma,q,| kA /|AenRimgq,| M
3.19 4l < o ( nhmadl g )
(319 e=al =Ca Ulemyl o Fenam©)

Thanks to the estimate (3.19) it is easy to obtain (3.1)).
Finally, the estimate (N )fD(S_U 5 < (R)fD(s ») is a straightforward conse-

quence of (3.17) and (3.18]). O

3.2. Estimates on the Poisson bracket. —

Lemma 3.4. — Let R € FED(S r) and F € ng(s r) be both of degree 2, i.e.
of the form (2.9)). Then there exists C > 0 so that for any 0 < o < s
C
(320) <{R7F} >T7D(S—O',’r‘) < ;<R>T’,D(8,T) <F>2D(S’r)a
and

C
L +,L L
< {R7 F} >ﬂ,D(sfa,r) < ; <<R>7"7D(577”) <F>T,D(S,T) + <F>7—“’:D(s,r) <R>T,D(57T)> ’

Proof. — The expansion of { R, F } reads

n

OR OF OR OF . OR OF OR OF
(R Py =3 (G, oy~ oy on0) "1 (oo, 93, 0m1)
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It remains to estimate each term of this expansion and its derivatives. We will
control the derivative with respect to 6; thanks to the Cauchy formula :

(3.21) Haeku (s—o,r) *H s,y

which explains the loss of o.
Notice that if P is of degree 2 (and that is the case for F' and R) we have

2 2 3
52 PP 0P PP
020y  0y? 923

fact which will be crucially used in the sequel. Finally observe that z and z

exactly play the same role, hence we will only take g into consideration.
z

& We first prove ({3.20).

e Since [P Qllps,) < 1Pl pes,ry QI p(s,r) we have by Cauchy formula

R F Yy < S 2n+g>:lkm (R s () ey
(323) < CRoen Py
e With we have
I3 G, o5 oy < erk(gj)ﬂ% o
s e T - P

+
< E(R%«D(sMF )r.D(s,r)

and the same estimate holds interchanging R and F. In view of (3.22)) we
deduce
<%r

(3.24) max
D(s,r) — O

2 gy 12 P

OR OF\ _OR 0°F
* By 22, 7(8% ae,) oy 2,00, 4 by B2D

2
Hi%”p(sw,r) = 7“8ka D(sr)

>r ,D(s,r) <F>::D(s,r) :

82] D(s,r)

IN

jﬁO' <R>T ,D(s, 7”)< >7—“~_D(s,r)'
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OR OF Cr n -
)HD(S o) < (R)r.D(s,r) <F>r,D(s,r)' By the Leibniz

Similarly H % <
J

1 961, Dy = jfo
rule
0 (0RO
lo (G2 ) <
0’R oF 0’F OR
s ‘ 02,0z I D(s,r) 0%y ‘D(s,'r’) ’ 0207z, ‘D(s,r) 02k ‘D(s,r)
> %(kﬂ;-ﬁ-l + k2ﬁ(1 _:U — k|)><R>T,D(S,T‘)<F>::D(s’r)7

and taking the sum in % yields

0 (OR OF Cr
o EACEATINE

92\ 921
The previous estimates imply that

@) g,

) — jﬂ70_<R>7',D(S,T’) <F>:D(57r)'

Cr

) < 335 Bhnnen (F ) D

92 (OROF\ OR O°F
Thanks to (3.22 = 27 and by B2
* Thanks to (3.2, 92,07 (8yk ae,) Oy 02,0200, " we

obtain
0? OR OF PF
’ a]al(aymek)H (s—0r) Hayk H a]azaekH D(s—o.r)
(3'26) (]l) <R>r ,D(s,r) <F>::D(s,r)7

and the same estimate holds interchanging R and F'.
On the other hand,

0? (8R 6F>_ 0’R  O*F 0’R  O*F

8zj8zl 872%87% - 8z]8zk 020%y, + 02,0z szazk’
and
‘ 0’R  O°F ’ - ‘ 0’R H 0’F ’
aZjaZk 02,0z |D(s—or)  — 8Zj82k D(s,r) 11 02,0%y, D(s,r)

c +
(jlk;g)g(l + |l — k_D <R>T‘,D(S,7') <F>T,D(S,T)'

Hence, with (3.26)) we conclude that

(3.27) | az(j;zl Fl < ?ﬂg (R)r, 0o (F) ey

D(s—o,r)
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1
as the series ; Ty converges.

Finally, the estimates (3.23)), (3.24]), (3.25) and (3.27]) yield the estimate (3.20)).

& To prove the estimate with the Lipschitz norms, we can use the previous
analysis and the two following facts.

Firstly, since Ag,(fg) = f(§)Aeng + 9(n)Agy f, hence

||ng£D(s,'r) < ||f||D(s,r)||g||§(s,'r) + ||g||D(s,r)||f||lD:(s,'r)‘

Secondly, the operator Ag, commutes with the derivative in any variable. [

3.3. The canonical transform. —

In this Section we study the Hamiltonian flow generated by a function F' €

Ff, ’Z)F(S_J’T) globally of degree 2, i.e. of degree 2 in the variables z,Z and of

degree 1 in the variable y. Namely, we consider the system

(3.28) { (0(8),9(1), 2(8), (1)) = Xr((0(1), y(2), 2(1), 2(1))),
' (6(0),9(0),2(0),2(0)) = (6°,4°, 2°,2°).
Lemma 3.5. — Let 0 < 0 < s and F € T?7 with F of degree 2.

r,D(s—o,r)
Assume that (F):D(s_am) < Co. Then the solution of the equation (3.28)) with
initial condition (Go,yo, ZO,EO) € D(s—30,7), satisfies (H(t), y(t), z(t),E(t)) S
D(s — 20, %) for all 0 <t <1, and we have the estimates

+
32/1:@)‘ < Cr(F); ps—om)

~ 0_ .0 =0
(3.29) 0221 8w? s with  wj = z; or z;,
(3.30)
Dy (t C(F) ps—
W )’ < rD(s—oyr) +01  with wy = 2, or Z, w? = z? or Zg,

o<t<t! Ow) 1= (jk)P(1+[j — k)

+
ayk(t)‘ < C<F>T,D(sfcr,r)
B o

3.31 sup ik,
( ) 0<t<1 6y]0- ’
(3.32)
82 t C<F>+ —
sup | 20 ’ < PO with wd = 20 or 7D, w =20 or 2.

Before we turn to the proof of Lemma [3.5] we introduce a space of infinite
dimensional matrices, with decaying coefficients.
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Let || - || be any submultiplicative norm on M 2(C), the space of the 2 x 2
complex matrices. For 8 > 0, we say that B € M2 if <<B>>§s < 00, where
the norm ((- )>E ¢ s given by the condition

(B}
sup sup ||Bjl < — . ;
€€l [Im 0]<s Byl GOPA+15 —1])
Then we have the following result
Lemma 3.6. — Let A,B € M?’Jr. Then AB & M§’+ and
((AB))i, < C{ANS (B)j

Proof. — For all j,1 > 1, (AB)].Z = ZAjkBkl- Since || -|| is submultiplicative

Vi 1> 1.

k>1
1(AB), < 3 I4selliBul
k>1
(AN LB, !
(3:33) S 5 DY T [

Thanks to the triangle inequality, for all 5,1 > 1,

1 1
kz1pclbz1clj-kzli-pUE=1: -k > 5l -1},
thus, by splitting the sum in (3.33|) we obtain the desired result.

O
Proof of Lemma — Here we introduce the notations Z; = (z;,%;) and
7z = (Zj)jZI' Then F reads
1
(3.34) F(0,9,7) = bo(6) + b1(0) -y +a(6) - Z + S (A(0)2) - Z
with

bo(0) = F'(6,0,0), bi1(0) = V,F(6,0,0), a(f) =VzF(6,0,0),
and A = (A, ;) is the infinite matrix so that

O*F O*F
m(G, 07 O) 8%6@] (theta, 0, O)
(3.35) A ;(0) =
852'82]‘ T 832'853' T

Observe that A is symmetric.

By [11, Estimate (9)], the flow X, exists for 0 < ¢ < 1 and maps D(s — 30, %)
into D(s — 20, %). Here we have to give a precise description of X}, for 0 <
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t < 1. This is possible thanks to the particular structure (3.34)) of F.
In the sequel we write (6(t),y(t), Z(t)) = X4(6°, 4%, Z9).

& To begin with, the equation for # reads

(3.36) 0(t) = V,F(0,0,0) = b1 (), 6(0) =6".

Since b; is a smooth function (see (3.2))), the n-dimensional system (3.36))
admits a unique (smooth) local solution 6(t). By the work of J. Poschel, this
solution exists until time ¢ = 1, and we have the bound

(3.37) sup |Im 0(t)| < s — 20,
0<t<1

(this can here be recovered by the usual bootstrap argument, using the small-
ness assumption on F').

& We now turn to the equation in Z. We have to solve

(3.38) Z(t) = JVzF(0,y,2)(t), Z(0)= 2",

J = diag{ (_01 (1)> }]21.

Notice that by [11, Estimate (9)] we already know that

where

(3.39) sup || Z(t)]|;2 < =
0<t<1 voo2

but we need to precise the behavior of Z(t).

Since 6 = 6(t) is known by the previous step, in view of (3.34)), equation (3.38))
reads

(3.40) Z(t) = b(t) + B(t) - Z(t), Z(0)= 2",
where b(t) = Ja(0(t)) and B(t) = JA(O(t)).

We now iterate the integral formulation of the problem

Z(t)=2"+ /Ot (b(t1) + B(t1) - Z(t1))dt,
and formally obtain
(3.41) Z(t) =b>(t) + (1+ B>®(t)) 2°,

where

t rt1 tp—q k1
(3.42) b>°(t) :Z/O /O /0 1 B(tj)b(t)dty - - - Atz dts,
j=1

k>1
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and

t rt1 te_1 K
(3.43) Bm(t):Z/o/o /0 jzl—llB(tj)dtk---dthtl.

k>1
By (3.35) and (3.37)), there exists C' > 0 so that

sup |[|B(t)||p2 2 <C,
s 1B

and thus, for all 0 <t <1 the series (3.42)) converges and
1 t1 th_1
@l < swp ol S0 [ [ [ an
0o Jo 0

0<t<1 k>1

Ck—l

k!
k>1
C

e” —1

sup ||b(t)]|,2 ———

swp [4(0)lg,

IN

< swp [b®)lg
0<t<1

IN

0<
(3.44) < C sup Hb(t)He%I,-
0<t<1

Similarly we have uniformly in 0 <¢ <1
(o9}
IB=(t)llg ez < C.

As a conclusion, the formula (3.41)) makes sense.
Indeed, we need more precise estimates on B>. Recall that B(t) = A(6(t)),

where A is defined by (3.35). Then by (3.35) and (3.37)), for all 0 < ¢ < 1,

B(t) € M and sup ((B()))}, , < C{F)/p,_,,) Hence by Lemma
0<t<1 ? ’ ’
and (3.43)
.
(3.45) (B0, < e Fnpeon —1<0f F) ooy

& Finally we turn to the equation in y

We already know the functions 0(¢) and Z(t). Moreover as the function F
(3.34) is linear in y, the previous n—dimensional system reads

(3.16) §(0) = 1) + o)D), y(0) =4
with
£(£) = ~abo0(0) + Voal0(0) - Z(0) + 5 (Vo AB(1)2(1)) - Z(0),

and
g(t) = =Vabi(0(t)) = —VeV,F(6,0,0).
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We can solve the equation (3.46)) with the same techniques as the equation
(3.38]). In fact we have formally

(3.47) y(t) = f2) + (1 +9°0)y",
where
(3.48) D ) F(b)dty - - - by dt,
=X [ [ [ T,
and
1 o (t;)dty - --dta dt
gggu/ﬁu/" j/ I]:g 3 )dUk 2diy.

By (3.37) and the Cauchy formula

¢ C<F>TD(S o,r)
su < — max H < ’ ,
Ogtglug( )H 0 1<j<n ay] D(s—o,r) o
and similarly to (3.44) we have for all 0 <t <1
()] < C sup |f(B)],
0<t<1
and
C<F>;LD s—o,r
(3.49) lg>(t)]| < ———2e=2,

which shows the convergence of the series defining (3.47)).
@& It remains to show the estimates on the solutions of (3.28)).

e First we prove . By (3.40),

10 00
v@@@—(OI)%+Bmm
therefore by (3.45)), for k& # j we have
Jr
C<F>T,D(S—U,r)
(k)L + |5 — KI)’

(350)  [VpZl)] < and [V Z(0)] <1,

which was the claim.

e We prove . By (3.47)) we have
ue(t) = F) +up + > gy,

1<j<n
hence gyg = 0k + gj;(t) and the claim follows from (3.49) (f* does not
y.

depend on 7).
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e We prove . Since g and g™ do not depend on Z, from (3 we deduce
O [e7e]

0
that —2 =

82 sz
Now by definition of f°°, we get that for all 0 <t <1
Ay(t 6f°° o
(3.51) a(o)} —\ D) < v r)] < € sup 19050
Z; o<t<1t Y
Forall 1 <[ <n, we compute
(3.52) V2, filt) = 9p,ax(0(2) + > 0o, Ari(0(t)) Zi(t).
i>1
As ap(0) = V7, F(0,0,0), with the Cauchy formula we deduce
C CT<F>::D(570,7")
02;21 |90,k (0(1))] < ;HvZkFHD(sfo,r) < okl
Similarly with (3.35)),
0<F>+D(
sup |9, Ari(0(1))| < rD(e=0.r)
0921‘ ouAki (8 ))‘ o(ik)P(1+ i —k|)

Inserting the two previous estimates in (3.52)), we obtain using (3.39) and the
Cauchy-Schwarz inequality

C <F>:_D (s—a,r ’Z ‘
wasn) = C
CT(F)JrD
r,D(s—o,r)
. < .
(3.53) < G
Since VZ;_)fl(t) = Z (VZ;_) Zi(t))V z, fi(t), from (3.50) and (3.53) we deduce
k>1
Vofi®) < IV Zk®)IIVz 0]
k>1
CT<F>:D(S—U,T‘) (Z 1 4 1)
o\ A
CT<F>7J“FD(5—0' r)
< : : )

and together with (3.51)), we get that for all j > 1

8y(t)‘ < CT< >rD(s o,r)
ajP '

sup
o<t<1| 029
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e It remains to show . first we have

NE \vzovzof“’( )| < C s V20V /().

6z082

Then from the very definition of f, V0V 40 f(t) = V§A;;(0(t)), and using the
i J
Cauchy estimate in 6 we get,

+
8y(t) ‘ < C<F>T,D(s—a,r)

9200291 = o (ig)P(1 + |i — j|)’
which was the claim. O
In the next result, we denote by | - |~ the Lipschitz norm
f(&) = f(n
e s O = F
&,nell |£ - 77|
£#n

We have an analogous result to Lemma with Lipschitz norms.

Lemma 3.7. — Under the assumptions of Lemma and the condition
<F>:—i§(sfo y < Co the solution of (3.28|) satisfies moreover

+,L
Ay (t) £ Cr(F), ps—
yk(o) < r’,[;(s o) with w? = z? or 597
o<t<1! Owy; aj
+.L
6wk(t) £ C<F>r D(s—a,r) . 0 0 0
up < — e with wg = z or Z, W; = z; 0T Z;,
o<t<1| Ow} (k)P (1 +1j — kI) s ’
+,£
‘0yk(t) £ O Do
o<t<1! Oy - o ’
+,L
02 c C(F), Dis—o
sup 7%( ) < — T’D(s, ’T), with  w) = 22 or 27, w? = z? or Z?.
0<t<1 Ow owy o(ig)P(1+ |i — j)
Proof. — We won’t detail the proof, since it is tedious and similar to the
3 ﬁ7+7£ 3 +7£
proof of Lemma, First we define the space M. with norm ((-)) s

similarly to M2, but with a Lipschitz norm in €. Then we have ((AB)) T <
C(((ANTEUBY)T+((B))T*((A))T). Then one can follow the proof of Lemma
and use that the different norms (say || - ||) which appear satisfy || fg||* <

CUIFI= gl + 1 gl1<).- o

To conclude this section, we state a result which shows that the Lie trans-
form associated to a quadratic function, is also quadratic. This will be crucial
in the proof of Theorem (see Section |5.2)).
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Corollary 3.8. — The symplectic application X%ﬂ reads

0 K(0)
y | — | L0, 2)+M©O)Z+ S0y
A T(0) +U(0)Z

where L(6,Z) is quadratic in Z, M(0) and U(0) are bounded linear operators
from 52\1/ X 52\1/ into itself and S(0) is a bounded linear map from R™ to R™.

Proof. — The claim follows from the proof of Lemma [3.5] The structure of
Z(1) follows from (3.40)), while the structure of y(1) comes from (3.47) and
(3.18). O

3.4. Composition estimates. —

In this section we study the new Hamiltonian obtained after composition with
the canonical transformation X }..

B
nr,D(s—20,4nr

with F of degree 2. Assume that (F)* (YL < COo.
r,D(s,r) r,D(s,r)

and we have the estimates

Proposition 3.9. — Let0<n<1/8and0<o<s, ReTl
ﬁ7+
Fe FT,D(S*O’,T‘)

Then R o X}: € Fgr,D(s—Evo,m“)

) and

(3'54) < Ro Xll«“ >77T,D(S—50’,777‘) < C< R >nr,D(s—2o,4nr)7

<R © X117 >§r,D(sf5cr,m") < C(< R >17r,D(5720,4m") + <R >§T‘,D(S*20’,477T)) :

Proof. — The proof of the first estimate relies on Lemma We omit the
proof of the second, which is similar using the estimates of Lemma [3.7]instead.
In the sequel, we use the notation (6,y, z,z) = X 1(6°,4°, 20, 29).
# Since X}, maps D(s — 30, %) into D(s — 20, %), it is clear that

(355) ||R © X}17’||D(s—50,777") < C<R>’rrr,D(s—2o,477r)'

& By the Leibniz rule, for all 1 < j <n

n

O(RoX}) Z OR(X}) dyr.
0y yr Oy’
and by (3.31)) we deduce

H O(Ro X}) H
83/;) D(s—50,nr)

(3.56) < C<R>nr7D(s—20,4nr)'
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& For j > 1, the derivative in z? reads

O(Ro X})
82?

F) Ok OR(X}) 0z | OR(X}) 0%
Z Oyk 82 2( 0z, 8z?+ 0Z 62].)'

Therefore, thanks to (3.29) and (3.32) we get

O(Ro X})
. _ <
(3 57) H 8,20 H D(s=50m7)
8yk 8Zk
OB g0y 320
- Z H 8yk H (s—50,mr) | 0 ‘ + Z HVZk F) D(s—50,r) 82’?
C 1
< —
- 35<R>"’“D(5 2"4"”( * Z < KP(1+]j - k|)>
C
< ﬁ<R>nr D(s—20,4nr)-
oW ti tH82ROX1 | for i,j > 1. By the Leibniz rul
— T . 10117z rule,
€ NOw estimate 82082 D(s—50r) ori,37 =~ y e Le

the result will follow from the next estimations.

e Using the Cauchy estimate in y; and (3.29)

H Z 0’R ( )8yk 8yl < O<R>nrD(s 204177")

\iTen Y0y, 820 ('3,2 H (s—5amr) (15)P

* By (3.32)

8R(X1) 82yk C<R> r,D(s—20,4nr)
H Z 8ku Bzgﬁz?HD(s—&?mm) = n(ij)ﬁ .

1<k<n

By (550)

Xl 0z, 07 C<R> r,D(s—20,4nr)
H Z (9Zk 8Zl &zo 82 H (s—50,mr) = n(ij)ﬁ -

e Using the Cauchy estimate in zx, (3.29) and (3.30) we get

r) Oy Oz
H Z 8zk8yl 82:0 aZ

‘ < C<R>nr,D(s—2U,4n7")
D(s=5ar) ~ (i5)" '
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All these estimates yield

H az(R 0 X}17‘) H < C<R>777',D(s—2a,4nr)
6220829 D(s—50,nr) (’Lj)ﬁ '

Finally, (3.54)) follows from (3.55)), (3.56)), (3.57) and (3.58).

(3.58)

3.5. Approximation estimates. —

Recall that the notation || - ||* (respectively (-)*) stands either for ||-|| or || - ||*
(respectively (-) or (-)£).

First we recall some approximation results [11], Estimate (7)], which show that
the second order approximation of P can be controlled by P, and that P — R

is small when we contract the domain (this contraction is governed by the new
parameter 7):

Lemma 3.10 ([I1]). — Let P satisfy Assumption[5 and consider its Taylor
approximation R of the form (2.9). Then there exists C > 0 so that for all
n>0

| Xr

:,D(s,r) < CHXP

rD(sry @ [ Xp=XRl5, pis gy < CllXPI7 D -

We have an analogous result for the norm (- ),. p(sr)-

Lemma 3.11. — Let P € FfD(s ) and consider its Taylor approrimation R

of the form (2.9). Then there exists C > 0 so that for alln >0
<R>:7D(s,r) < C<P>i,D(s,r)’

and

(P — R>:<)r,D(s,4m") < C77<P>:,D(s,r)'

Proof. — e We first prove the second estimate. Define the one variable func-
tion f(t) = P(0,t*y,tz,tz). Then by the Taylor formula, there exists 0 < ¢y <
1 so that

1 1
F(1) = F(0) + £/(0) + 5 £"(0) + = fP (ko)
which reads
1
P(ev Y, Z,E) - R(ea Y, Z,Z) = gf(g) (tO)
03P 9°P  ,9%°P
y Yz Y )
023 OyOz Oy?
Using the Cauchy estimates in z or in y, we obtain

HP - RHD(S,47]T) < 07] (nr)2<P>r,D(s,r)~

- o(=
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The estimates of the derivatives are obtained by the same method, with the
adequate choice of the function f. A derivative in z costs n and a derivative
in y costs n?.

It is then also clear that we have (P — R>7§7'7D(574777') < Cn(P)ﬁD(M).

e The inequality (R); pery = C (P);. D(s,) 18 @ consequence of the previous

point with n = 1. O

4. The KAM step

Let N be a Hamiltonian in normal form as in (|1.1]), which reads in the variables
(6,y,2,%),

N= > wi®)+> 6z,

1<j<n j>1

and suppose that the Assumptions [I] and [2] are satisfied.
Consider a perturbation P which satisfies Assumptions [3]and [4] for some r, s >
0. Then chose 0 <7 < 1/8,0 < 0 < s, and assume that

a ao.t-‘rl 2

Ui
M(<P>£D(s,r) + HXPvaD(S:T)) S

€0

(4'1) <P>T,D(s,r) + H’XP”T‘,D(S,T') +

where ¢ is given by Lemmas and co is a large constant depending only
on n and 7 (see [11), Estimate (6)].)

Thus, by Lemmas and the solution F' of the homological equation
(2.10)) satisfies

C L 2
||XF||:7D(3_U77=) < QHXPHT,D(S—U,T‘) <o

Similarly, by Lemmas and
C
+,% L 2
<F>7«7D(570-,r) < $<P>7’7D(S7T‘) <o,

so that the hypothesis Lemma [3.5] are fulfilled.
We use the notations of Section

4.1. Estimates on the new error term. —

We estimate the new error term Py given by (2.12)).
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Lemma 4.1. — Assume ({4.1). Then there exists C > 0 (independent of n
and o) so that for all 0 < X\ < %

A A

<P+>m",D(sf5o,m“) + ”XP+ Hm",D(sf50',m“) <
c A A 2 A A

W<<P>T,D(S,T) + HXPHT,D(S,T)) + Cn<<P>r,D(s,T) + HXPHT,D(S,T))
Proof. — By [11], Estimate (13)], we already have
v
aotn?
It remains to prove a similar estimate for the (,) norm.

By Lemmas [3.5 and
<(P - R) © X}?>?]T,D(875O’,UT’) < C<P - R>?]T,D(S*2O’,4ﬂ7’) < Cv?(P)?\',D(S,T)'
Then by Lemma [3.5] again

1
(/0 {R(t), F} © Xlt:' dt>7>7\r,D(575o',77r)

2
(42) ||XP+H7>7\T,D(S—5O',T7’F) < (HXP‘|7>“\,D(S,T)) + CnHXP”;\,D(s,r)'

IN

1
C/O <{ R<t)7 F } °© X%'>7)7\r,D(3750,777“)dt

C<{ R(t)’ F }>;\]7”,D(s—20,4777“)‘

and F € Ff”;(s_oﬁr) are both of degree 2 we can apply

IN

Since R € Ff’D(S’T)
Lemma [3.4] and write

1
</O {R(t)7F} © X% dt>7>7\r,D(s—507nr) <
Finally by Lemmas [3.2] and

C 2 C 2
A +,A A A
<R>777‘,D(s,77r) <F>nr,D(s—J,77r) < J<<R>77T7D(S7T]T‘)) < OéJt772 (<P>7~,D(s,r)> )

C o A
; <R>nr,D(s,7]7") <F>nr,D(s—U,nr) )

where we used that (-),. p(syr) < n=2(- )r,D(s,r)- Putting the previous esti-
mates together, we complete the proof. O

4.2. Estimates on the frequencies. —

We turn to the new frequencies given by ([2.11]).

Lemma 4.2. — There exists K > 10 and a4 > 0 so that
l
k- wh () +1-Q7 ()] > a+1<4>, k| <K, |I|<2
k

In fact K can be made explicit, it depends on n, 7, ¢y and on all the constants

C.
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ON

Proof. — On the one hand, since @;(§) = Ay ——
j

0,0,0,0,¢), by Lemma|3.10, we

deduce that

N ON
|W|H < sup ‘67y| < ||Xﬁ||r,D(s,r >

7).

D(s,r)xII
5 9N
On the other hand, Q;(&) = ——(0,0,0,0,&), thus
02;0%;
(4.3)
0N 72 <

Qlop < sup |5

N < < C(P
D(s.ryx11 0%0%; < ANhrDia=or) < CB)rp(sr) < C{P)rD(ar);

hence by the two previous estimates

(4.4) Gl + Qa1 < C(IXPllrDsr) + (Phrbisr))-

Similarly, for the Lipschitz norms we obtain

B + ‘Q’2B,H < C(HXPHT‘D (sr) T <P>£,D(s,r))'

We follow the analysis done in [11] to bound the small divisors and thanks to

)

’k'@+l‘§| |k‘|<l>(|@‘ﬂ+|§’2@n)

<
< C’Ma)(HXPHr,D(s,T) + <P>T,D(s,r))-
We now choose & > CoK max Ap(|[Xp|l,.pesr) + (P)r.Ds,r)) Where Cp is a

k| <K
large universal constant, and thanks to the estimate given by the frequencies

before the iteration we get
kowt(©) +1- 05O 20 < K,
k

with ay = a—a. It remains to show that a* > 0. This is done in [11], Section
4], and the proof still holds with the new norms. O

Remark 4.3. — The key point in the previous proof is the estimate ,
which shows that the perturbations of the external frequencies can be con-
trolled by (P), p(sr)- In the case of a smoothing perturbation P (case p > p
in ), the norm (-), p(s,) is not needed (more precisely, the decay of the

derivatives of P is not needed), because we then have ]§|25,H < [|XPllrDs,r)
with 8= (p —p)/2.
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5. Iteration and convergence

In this section we are exactly in the setting of [11], and we can make the
same choice of the parameters in the iteration. We reproduce here the argu-
ment of J. Pbschel.

5.1. The iterative lemma. —

Denote Py = P and Ny = N. Then at the v—th step of the Newton scheme,
we have a Hamiltonian H,, = N, 4+ P,, so that the new error term P, is
given by the formula (2.12) and the new normal form N, is associated with

the new frequencies given by (2.11)).

Let ¢; be twice the maximum of all constants obtained during the KAM step.
Set ro =1, s =38, a9 =« and My =M. For v > 0 and k = 4/3 set

= 21427, My=My2-27), A=,
14
. cley oy 3 gy
= T N _1 g = 5 v = T g
VLT (ot T g T ot

and
Sy+1 = Sy — 090y, Tyl = MTy.
The initial conditions are chosen in the following way : op = s9/40 < 1/4 so
that sp > s1 > -+ > s0/2,
-3

g0 = ’yoaoaf) and 7= (co + 2t+3cl) ,
where ¢q is the constant which appears in (4.1). We also define K, = K2
with K7™ = 1/(c170)-
With the notation D, = D(s,,r,) we have

Lemma 5.1 (Iterative lemma, [11]). — Suppose that H, = N, + P, is
given on Dy, x11,,, where N, = w,(§)-y+ Q. (§) - 2Z is a normal form satisfying
|WV|ﬁ,, + |QV|QLﬁ,HV < M,,

l
k() + 100 2 0 L (kD ez,
k
on II,, and
(PY b+ IXpIY b, < e

Then there exists a Lipschitz family of real analytic symplectic coordinate
transformations ®,41 : Dy41 X I, — D, and a closed subset

I, 41 = 10,\ U RZfl(O‘VJrl)a
|k|>K,
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of 11,,, where

l
RZfl(Oéqul) - {E €y : [k wpr+1- Q] < 051/+11<4]Z}a
such that for Hy, 11 = Hy, o ®,.1 = Nyi1 + P,41, the same assumptions are

satisfied with v + 1 in place of v.

We don’t give the details of the proof of this result, since it is entirely done
in [11] : it is of course an induction on v € N which essentially relies on the
results of the Section [l

5.2. Proof of Theorem 2.3l —

The result of Theorem [2.3]is the convergence of the sequence H,, to a Hamil-
tonian in normal form, for parameters £ in a set I, which is the limit of the
sets II,, .

We again follow the proof of Péschel and we recall the following Lemma

Lemma 5.2 (Estimates, [11]). — Forv >0,

1 , Ce
— [ Py11 _1dH7>~\:D [D®y 41 _IH)\V < .

oy Dyp1? TIJ7TIJ7DI./+1 - CYVO'Z’

|w1/+1 - Wu|1>\—[’;a |Qu+1 - QVB,E’,HV < Ce,.

Set Ilp = IT\ Uy, R and Iy = Ny>111,. The proof that Meas(IT\Il,) — 0
when o« — 0 is done in [11], Section 5] and we do not repeat it here.
For v > 1 we define the map

(I)V:q)lo"-O@l, ZDVXHV_1—>DV_1,

and thus we have H, = H o ®”. With the Lemma and Sinc Nu>1D, %
IT, = D(s/2) x I, we are then able to show, as in [11]], that ®” is a Cauchy
sequence for the supremum norm on D(s/2) xI1,. Thus it converges uniformly
on D(s/2)xII, and its limit ® is real analytic on D(s/2). Further, the estimate
holds on D(s/2) x I1,.

It remains to prove that @ is indeed defined on D(s/2,7/2) x I, with the same
estimate. By Corollary [3.8]all the transforms ®” are linear in y and quadratic
in z,z and thus the same is true for the transform ® (this fact was also used
in[12] or [4]). This specific form is stable by composition and thus all the ®”
have this form and in particular they are linear in y and quadratic in z, Z.
Therefore it suffices to verify that the first derivatives with respect to y, z, 2
and the second derivatives with respect to z, Z of ®¥ are uniformly convergent

Mhere we use the notation D(s/2) = D(s/2,0).
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on D(s/2)x1II, to conclude that ®” convergences to ® (actually an extension of
the previously defined ®) uniformly on D(s/2, p) x I1,, for any p. In particular,
for r small enough,

O :D(s/2,r/2) x I, — D(s,r)

and ® still satisfies estimate (2.06]).
So it remains to analyse the convergence of the derivatives. Using Lemma [5.2]
we obtain successively || D®, ||, r,.p, < 2 and then uniformly on D(s/2) x Il

HD(pV‘i’l - D(PVHTV)TV»DV S ||D(DV||TV7TV7DV||D(DV - I’”rllyrlfyDV
and we deduce that uniformly on D(s/2) x I,
HD(I)V-i_l - D(I)VHTV7TV7DV S CEI]/-/2'

So again D®¥ converges uniformly on D(s/2) x Il,. Similarly we obtain the
convergence of the second derivatives using the formula

D?ov+l = D2oY . (D®Y)% + @V - D?".
On the other hand, again using Lemma the frequencies functions w, and
), converge uniformly on II, to Lipschitz functions w* and Q* satisfying (12.7))
and thus (2.8) in view of Lemma
We then deduce that, uniformly on D(s/2,7/2) x I1,,
R,=Ho® —-N, — Hod®d-N'=R*

and since for all v the Taylor expansion of R, contains only monomials 3™ 2927
with 2|m| + |¢ + q| > 3 the same property holds true for R*. O

6. Application to the nonlinear Schrédinger equation

Let n > 1 be an integer and v,e > 0 be two small parameters. Set
IT = [-1,1]". We consider a perturbation of the one dimensional Schrédinger
equation with harmonic potential

(6.1) i0pu 4 0%u — 2?u — vV (&, 2)u = elul*"u, (t,x) ER xR,

where m > 1 is an integer and (V(f, -))£€H is family of a real analytic bounded
potentials with V(0,-) = 0 which will be made explicit below.

Recall that T = —0? + 22 denotes the harmonic oscillator. Its eigenfunctions
are the Hermite functions (h;);>1, associated to the eigenvalues (25 — 1);>1.
Now consider the linear operator A = A(v,¢) = —0% + 2% + vV (&, 7). Under
the previous assumptions, A is self-adjoint and has pure point spectrum with
simple eigenvalues (\;(v, §)); >1 satisfying \;(v,§) ~ 2j — 1. Its eigenfunctions
(;5(&, -))j>1 form an orthonormal basis of L?(R), and (€, ) ~ hj as v — 0 in
L? norm. As a consequence A and T have the same domain and D(AP/?) = HP.
We will prove these facts for the particular class of potentials we will consider
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(see Lemmas [6.2) and [6.3| below).

The parameter ¢ > 0 will be small so that we can apply Theorem and
v > 0 will be small too, so that we have a suitable perturbation theory for
the operator A. The most interesting regime, is when v is very small so that
equation becomes closer to the case V' = 0, which is the most relevant
equation. Notice that the parameter €, v are independent.

We fix a finite subset J of N of cardinal n. Without loss of generality and
in order to simplify the presentation, we assume J = {1,--- ,n}. We then
expend u and @ in the basis of eigenfunctions using the phase space structure
of the introduction, namely we write

n

U(I‘) Z(y] +I )Qe ](P] 57 +szgoj+n 57 ))

Jj=1 j=1
n

u(x) :Z(yj + Ij) “PJ (& )+ ZZJSOJJrn £, ),
Jj=1 j=>1

where (0,y,z,2) € PP =T" x R" x 612, X EJQD (recall that 812) is the space (2, with
W(j) = jP/?) are regarded as variables and I € R" are regarded as parame-
ters (here R4 denotes the set of non negative real numbers). In this setting

equation ([6.1)) reads as the Hamilton equations associated to the Hamiltonian
function H = N + P where

N = Z)\ V§y]+ZA (v,8)zZ;,

7>1
Aj(yaé.) = )‘j+n(y7 5)1 (u,ﬂ) (u u)erl and
(6.2)
(9 y7ZZ 5/ <Z y]+I 26 J‘PJ fv sz¢j+n§7
j>1
Z y] +I ]90 57 +ZZ]‘P]+7L fv ))
—1 i>1

For the sequel we fix (I )1<]<n We assume that (6,y, z,z) € D(s,r) for some
fixed s, > 0 (recall the definition of D(s,r)). There is no particular
smallness assumption on s, r, we only have to take r > 0 with r < minj<j<y I;
so that (y; + I;)'/? is well-defined.

We now show that we can construct a class of potentials V' so that Theorem

applies.
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6.1. Definition of the family of potentials V. —

Let (fj)i1<j<n be the dual basis of (h Ji<j<n, ie. (fj) € SpanR(h%,...,h%)
and [, fihi = 0;; for all 1 < j,k < n.

We say that a = (o )k>nt+1 € 2y if —% < < % for all k > n+1. We endow

the set of such sequences by the probability measure define as the infinite
product (k > n + 1) of the Lebesgue measure on [—1/2,1/2]. Then define

Z ake_khzk—1(\/§$)’

k>n+1
and for £ = (&1,...,&,) € I =[—1,1]" and

(6.3) Zikfk )+ &1g(@).

The objects ¢; and A; are deﬁned by the equation

(6.4) (=2 +2” +vV(E2))pi(€ 7) = N\ (vE)p; (€, ),

and we assume that the (;) are L?—normalised (||p;(&,)||z2 = 1 for all £ € 1T
and j > 1). Moreover, in order to define ¢; uniquely, we impose (¢;, h;) > 0.

In the sequel we need a particular case of estimates proved by K. Yajima &
G. Zhang [16]

Lemma 6.1 ([16]). — For all 2 < p < oo there exists a« > 0 and C > 0 so
that for all £ €11 and j > 1

(6.5) 10 (&, M rrw) < C37
The next result is the key estimate in our perturbation theory.

Lemma 6.2. — There exist a > 0 and C' > 0 so that for all £ € 11, v > 0
and j > 1

(6.6) i (€5 ) = wi(n, )l < OV —nlj™

In particular ||¢;(§,-) — hjllz2 < Cv|€]j~, which shows that the ¢; are
close to the Hermite functions in L2 norm.

Proof. — In the sequel, we write ¢;(§) instead of ¢;(&,-). For ,n € II, we
compute

Ay 5)903'(77) = (=03 +a? vV (E, 7)) pi(n) = Xj(vn)e;(m)+v(V(E,2) =V (0, 2))p;(n).
Thus by (6.3]) and (6.5 . ) there exists a > 0 such that

H( )i, = vIVE) = Vm)e;m)lLe
< V) = V)llpalles ()l 4
(6.7) < Cvlg—nli™.
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Choosing n = 0 in (6.7), and as ¢;(0) = h; and A;(0) = 25 — 1, we get

L=l < (A& = (25 = V) | o ol (AW E) = (25 = 1)) 1

< Cvj “H( v€) = (2= 1) e

The previous estimate together with the general formula which holds for any
self-adjoint operator || (A(v &) — (25 — 1))71||L2_>L2 = dist(2j — 1, 0(A(v 5)))71
gives dist(2j — 1,0(A(v€))) < Crj~®, where o(A(v§)) denotes the spectrum
of A(v€). A similar argument, taking ¢ = 01in (6.7)), leads to dist(X;(vn), o (T)) <
Cvj=®. Thus for all j > 1

(6.8) N(vE) =2j — 1+v 03,
Using that (pr(€))k>1 is a Hilbertian basis of LQ(]R) we deduce
le3(m) = (@5(©), 0 mMes N7 = > i (©), 05 (m))p (€), (€N
k>1
(6.9) = > o), en©)
k>1,k#j

With the same decomposition, we can also write

(AW E) = Aj(wn)e;()l7: = ;! (v )i (), ou(©)
_ Z;quMyg)—Axunnwk@%wxn»P
= ’;IM v &) = X wn)P(er©), o5(m)
(6.10) > > Hew©),em),
KLk

because by IAe(v€) — Aj(vn)| > 1 for k # j uniformly in &, n and uni-
formly in v small enough. Now by (6.7)), and (/6.10) we deduce that

i () — (23(€), 05V ()| 72 < Cl€ —nlj~

In particular, taking the scalar product of ¢;(n) with ¢;(n)—(¢;(£), ¢;(n))¢; (&),
we obtain

1= (5(9), 05| < CvlE —nli ™

The last two estimates imply ||, (&) —¢;(n)| 2 < Cv|{ —n|j~* which was the
claim. O

Lemma 6.3. — We have the following asymptotics when v — 0

(6.11) Ai(w€) =2j—1+vg +o(v), V1I<j<n,



KAM FOR THE QUANTUM HARMONIC OSCILLATOR 39

(6.12)  A;(wg)=27-1+ ’/ka/(fk + 51k9)h721+j +o(v), Vj=1.
1 UR

Proof. — We first prove (6.11)). We differentiate equation (6.4]) in &

©; (&) vy @i ONwE)
AT (it bughos(©) = B + P )
take the scalar product with ¢;(§) and the selfadjointness of A(v &) gives
O\
(6.13) S8 [ (it )6
Now by
| /R(fk +0ug) (5 (€) — B3| < |Ifk + Owkgllnoe o (©) + hyllrzlle; (€) — byl
< Cligi(€) = hjllz2 — 0

when v — 0. Thus by definition of the f; and g and by estimate (6.13]), we
obtain that for all 1 < j<mn

A = 2.7—1+Vka:/(fk+51kg)h?+0(V)
k=1 R

= 2j— 1+ v+ o(v),

which is (6.11)).
The asymptotic of (6.12) is proved in the same way. Observe that we can
prove a better estimate on the error term using , but we do not need it

here. O

6.2. Verification of Assumptions [1 and [2 —

Lemma 6.4. — There exists a null measure set N' C Z, such that for all
a € Z,\N we have for all 1 < p,q.

(6.1 J R

and

(6.15) [+, £, ¢z

Proof. — For j > 1, the Hermite function h; reads h;(z) = ]-_’j(az)e_”"Q/Q, where
P;j is a polynomial of degree exactly (j — 1), and P; is even (resp. odd) when
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(j — 1) is even (resp. odd). We have Spang(hi,...,h,) = e*xz/QRn_l[X].
Thus we deduce that there exist (f4;) so that

J
(6.16) h3(@) = pushor—1(V2z),
k=1

with Hjj 75 0.
We assume that ¢ < p. The application

(G Qs ) /R (fi+g)(h2,, £ h2,)

is a linear form. In order to prove (/6.15)), it suffices to check that this linear
form is nontrivial. According to (6.16)) and to the definition of f; and g, the
coefficient of a4 is

e—(n+P)un+p,n+P /R hg(nﬂ))fl(\/iiﬁ)dl' = e_(nﬂ?)erp,ner/\/§ # 0.

Therefore for fixed p, ¢ (6.15]) is satisfied on the complementary of a null mea-
sure set V), ;. Finally, (6.15]) is satisfied on Z,,\\V where N' = U, ;>1N, 4. The

proof of (6.14]) is similar. O

In the sequel we fix o € Z,\V so that Lemma holds true. We are now
able to show that Assumption [1] is satisfied. Recall that in our setting, the
internal frequencies are A\(v€) = (\;(v€))1<j<n and the external frequencies

are A(v€) = (A;(v€));j>1 with Aj(v€) = Any;(vE).

Lemma 6.5. — There exists vy > 0 so that for all 0 < v < vy we have
(6.17) Meas({§ T : k- AvE) +1-Awe) = 0}) =0, V (kI ez,
and for all £ € 11

(6.18) L AwE) £0, Y1<||<2

Proof. — We prove by contradiction. Let (k,l) € Z. In the case |I| = 2
in we can write

kAW +1-AWwE) =) kiAW) + Anyp(v &) = Aniqg(v ) i= F(v€),

Jj=1

for some p,q > 1. Now if (6.17) does not hold, F : R” — R is a C! function
which vanishes on a set of positive measure in any neighbourhood of 0, thus
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F(0) =0 and for all 1 <k <n, 5—5(0) = 0. By Lemma [6.3| these conditions

read

(2 —Dkj+2(p—q) = 0 and
1

n

<

(6.19)  kj+ /]R(fj +0ij9) (hp = hiyg) = 0, ¥1<j<n

In particular for j =1, is in contradiction with .

The case |I| =1 is similar, using (6.14).

It remains to prove (6.18). For all j > 1, Q;(r&) — 2j — 1 when v — 0.
Hence holds true if v is small enough. O

We now check Assumption Firstly, thanks to we have that for
jok > 1, |A;(v€) — Ap(vE)| = |j — k| and |A;(v€)| = j. Then by (6-13) and
(6.5)

A;(v) — Aj(om)| < v|E — 1] sup / (fi + S180) @2 n (€.
Eell JR
< l/|£ - 77|ka + 51/€gHL2 sup ||<70J+n(€7 )||%4
Eell

S CV|£ - n‘j_av
and Assumption [2] is fulfilled.

6.3. Verification of Assumptions [3|and 4. —

Recall that for p > 0, HP = D(Tp/ 2) is the Sobolev space based on the har-
monic oscillator. Thanks to and (6.8)), we also have HP = D(AP2(v€))
for all v > 0 small enough and £ € II. Observe that HP is an algebra and the
Sobolev embeddings which hold for the usual Sobolev space HP are also true
here, since HP C 'HP.

Let u =35, ajp;. Then u € HP if and only if o € e.

We now check the smoothness of P and the decay of the vector field Xp.

Let p > 2 so that we are in the framework of Theorem Since G(u,u) =

(uw)™*! in (6.2)), we have

(6.20) P = 5/ || 207D,
R
We first show that g—z € E?D. We have

oP
(6.21) 5 =<m+ D [ et
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thus 2 8— is (up to a constant factor) the (j + n)th coefficient of the decompo-

sition of u™@™*!, and this latter term is in H? (because H” is an algebra),
hence the result. The other components of Xp can be handled in the same
way, and we get Xp € PP,

By and Sobolev embeddings

+1 +1
(6.22) pp | 1PI< el < el
s,r
Similarly, using (6.21)) and
oP .
% = ei(m +1)(y; + I )% [ / um Tt 4 e / gojumﬂﬂm}
j R R
8713 _ Em+ 1(yj s )7% [eiej / 0 gt 4 il / Sojuerlﬂm}
dy; 2 R R

it is easy to see that supps .y« [Xp|r < Ce. We now turn to the Lipschitz
norms. Let £, €Il

|PE) = Pm)l < Cellu(€) — w2 (@5 + lul) i)

(6.23) < Cellu(€) —un)| rollulFm™.
Now by
[u(€) —u(m)lze < CZH% Mgz + > 3712l 1951n(8) = @jn ()l 2
7j>1
(6.24) < le—n!,

where in the last line we used Cauchy-Schwarz and the fact that (z;);>1 € I2
with p > 2. Then (6.23) and (6.24) show the Lipschitz regularity of P. We
can proceed similarly for Xp.

It remains to prove the decay estimates of Assumption 4. Using ,
and the Sobolev embeddings, we obtain

b\<em+mmmmwnwﬁﬁ<0w”wwmﬁ

and similarly, from
%P
— 1 . m—1—m+1
8Zj82l Em(m + )/]RSO]-H’LQOZJrnU u Y
we deduce
82

0202 ‘ < Celljrnllpoem)llpinll Lo R)”U”Lzm 2, < eC ()~ ull3m2.

The estimates of the Lipschitz norms are obtained as in (6.23]), (6.24]) and
using .
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As a conclusion Assumptions [I] - [4] are satisfied and we can apply Theorem
2.3 with some 3 > 0 if € > 0 is small enough to obtain:

Theorem 6.6. — Let m > 1 and n > 1 be two integers. Let V(&,-) be the n
parameters family of potentials defined by . There exist eg > 0, 19 > 0
and a Cantor set II C [—1,1]" of full measure such that for each & € 11, for
each € < g9 and for each v < vy, the solution of

(6.25) i+ O%u — ?u — vV (€, 2)u = eluu, (t,z) ERxR
with initial datum
n
1/2 g,
(6.26) w(z) = Y Ie®ip)(€,2),
j=1
with (I, ,I,) C (0,1]™ and 8 € T, is quasi periodic with a quasi period w*

close to wy = (2j — 1)j_; 1 |w* —wo| < C(e +v).

More precisely, when 6 covers T", the set of solutions of with initial
datum covers a n dimensional torus which is invariant by . Fur-
thermore this torus is linearly stable.

Remark 6.7. — From the proof it is clear that our result also applies to any
non linearity which is a linear combination of |u|*™u. Moreover, under ad hoc
conditions on the derivatives of GG, we can admit some non linearities of the
form %—g(x, u,u) (i.e. depending on z) in (6.1). Also we can replace the set

{1,--- ,n} by any finite set of N of cardinality n.

7. Application to the linear Schrédinger equation

In this section we prove Theorem [I.2] following the scheme developed by H.
Eliasson and S. Kuksin in [5] for the linear Schrédinger equation on the torus
with quasi-periodic in time potentials.

The setting differs slightly from Section [6] since now we are not considering
a perturbation around a finite dimensional torus but we want to construct a
linear change of variable defined on all the phase space. Consider the equation

(7.1) 10 = —0%u + x?u + €V (tw, x)u

where V satisfies the condition ([1.7]). Recall the definition of the phase space
PP =T" x R" x EZ X 6120. Recall also that h;, j > 1 denote the eigenfunctions
of the quantum harmonic oscillator 7' = —92 + 22 and that we have Th; =
(27 — 1)hy, j > 1. Expanding v and u on the Hermite basis, u = .5 zjhy,
u=>y, i>17% hj, equation (7.1) reads as a non autonomous Hamiltonian system

{ Z] = _Z(QJ - 1)Z] - ie%@(t,z,é), ] >1

(72) - . . — -0 A _ .
Zj = 7,(2] — ].)Z] + ZSTZjQ(tvzaZ)a J 2 1
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where

Olt, 2 7) = / V(wt, 2)( 3 2ihi(@)) (3 25h5(x))de

R j>1 j>1

an (2,2) € £3 x (3. We then re-interpret (7.2) as an autonomous Hamilto-
nian system in an extended phase space
2= —i(2f — 1)z — iea%cg(e,z,z) ji>1
5 =i(2 — 1)z +ieg-Q0,2,2)  j=1
yj:_e%Q(evzag) j:]-u"'>n

(7.3)

where
Q(G,z,z)—/RV(G,QT)(szhj(x))(szhj(a:))dm

is quadratic in (z, 2) and (,y, z, 2) € P2. We notice that the first three equa-
tions of are independent of y and are equivalent to ([7.2)). Furthermore
reads as the Hamiltonian equations associated with the Hamiltonian
function H = N + Q) where

n
Nw) =Y wjy;+ > (25— 1)z%;.
=1 =1

Here the external parameters are directly the frequencies w = (wj)i<j<n €
[0,27)" =: II and the normal frequencies Q; = 2j — 1 are constant.

7.1. Statement of the results and proof. —

Theorem 7.1. — There exist €9 > 0 such that if 0 < € < g, there exist

(i) a Cantor set I1. C II with Meas(II\II.) — 0 ase — 0 ;
(ii) a Lipschitz family of real analytic, symplectic, linear coordinate transfor-
mation ® : II. x PO — PO of the form

(7.4) Du(9,6,7) = (y + 37 Mo(0)Z,0, 1.,(0)2)

where Z = (z,%), Ly,(0) and M,(0) are linear bounded operators from
02 x 02 into itself for all p > 0 and Ly, (6) is invertible ;

) For the moment we work in £3 x £2, the largest phase space in which our abstract result
applies.
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(#ii) a Lipschitz family of new normal forms

n

N*(w) =Y wiyj + Y U(w)2% ;
j=1 j>1

such that

Hod®=N*
Moreover the new external frequencies are close to the original ones

|Q* — Q|2B7H€ < ce,

and the new frequencies satisfy a non resonant condition, there exists a > 0
such that

. {0)
k-w+1-Q (WHZQW7 (k1) € 2.

Notice that in the new coordinates, (v/,6',2',2') = ®1(y,0, z, z), the dy-
namic is linear with ¢ invariant :

(7.5) R
Po=w; =1
f=0  j=l--.mn

As (7.1)) is equivalent to ([7.3)), this theorem implies Theorem In particular
7.1)

the solutions u(t, x) of (| with initial datum uo(z) = ;54 2;(0)h;(z) read
u(t, ) = 351 2j(t)hj(z) with

(2,2)(t) = Lo(wt)(2/ ()", /(0)e ")
1

u(t,x) = Zzbj(wt,a:)em;t
j=1

where 1;(0, ) = 3> [Lw(0) L, (0)(2(0), 2(0))]che(2).

In particular the solutions are all almost periodic in time with a non resonant
frequencies vector (w,{2*). Furthermore we observe that v;(wt, m)ema*' ¢ solves
(7.1) if and only if QF + k- w is an eigenvalue of (with eigenfunction
wj(ﬁ,w)eia'k). This shows that the spectrum of the Floquet operator
equals {QJ* +k-w|keZ" j>1} and thus Corollary 1.4 is proved.

Remark 7.2. — Although @ is defined on P, the normal forms N and N*
are well defined on PP only when p > 1/2. Nevertheless their flows are well
defined and continuous from PV into itself (cf. (7.5)).
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Proof. — Let II C II be the subset of Diophantine vector of frequencies w, i.e.
having the property that there exists 0 < o < 1 such that

Q>
|k’7’ 1|7—1°

for some 7 > n + 2. It is well known that Meas(IT\IT) = 0. Further this
Diophantine condition implies that

(7.6) |k w—b] > keZ"\ {0}, beZ

{0)
k-w+l1-Q| > , (k1)eZ,
oo |2 L+ |kl (k1)
since [ -2 € Z and if (I) < 2nw|k| then |k2|§0‘1 > O‘1+<\l>c\f while if (I) > 27|k| then

k-w+1-Q > 2(1) —2nlk| > (I) > « H('l,i‘f. Thus Assumptions |1 holds true.
Further as the normal frequencies €2; = 2j — 1 are constant, I 2| is satisfied.

We now show that Assumption [3] holds. Because of the assumptions on the
smoothness of V, the only condition which needs some care is that ( aZQ Jk>1 €

Ez We have

8zk /V (0, x)hpude,

which is the k:th coefficient of the decomposition of V(6,z)u in the Hermite
basis. Thus ( )k>1 € 03 if and only if V(0,2)u € H? which is true since
ueH?>and V and 0,V are bounded.

We turn to Assumption Recall that by . for all 2 < r < 400, there
exists 3 > 0 so that ||h;|Lr@) < Cj~ . On the other hand, by assumption V
is real analytic in 6 and L9 i 1n x for some 1 < ¢ < +00. Consider 1 < g < 400
so that l + i = 1, then with Holder, we compute

| =1 [veonaas] < sw VOl

0€l0,2n]"
< sup |V(O0,) el hrll Loaqmy lull Loa(m)
0el0,2m]™
< CkP.
Similarly,
PO =1 [veamman] < s VO e sl e
02,07 - 0€l0,2m]™

< C@n’

Therefore, Theorem applies (with p = 2) and we almost obtain the con-
clusions of Theorem Indeed, comparing with Theorem we have to
prove:
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(i) the symplectic coordinate transformation @ is linear (and thus it is de-
fined on the whole phase space) and have the specific form ;
(ii) the new normal form still have the same frequencies vector w ;
(iii) the new Hamiltonian reduces to the new normal form, i.e. R* =0 ;
(iv) the symplectic coordinate transformation ®, which is defined by Theorem
on each P2, extends to P = T" x R x 3 x ¢2.

Actually, at the principle ) is homogeneous of degree 2 in Z and independent
of y and the same is true for I’ the solution of the first homological equation

{F,N}+ N =£Q.

As a first consequence, N does not contain linear terms in y and thus w re-
mains unchanged by the first iterative step (cf. ) Now going to Lemma
3.5 we notice that following notations , bg = b1 = a = 0. Therefore 0
remains unchanged (6 = 0) and the equation for Z reads Z = JA(#)Z which
leads to Z(1) = ™A@ Z(0) (see (3:40)). Thus Z(1) = LS)(H)Z(O) where
LS)(O) = ¢/40) is invertible from P2 onto itself.

In the same way, §(7) = —3VA(0)Z(7) - Z(7) (see (3.46)) which leads to
y(1) = y(0) + $Z(0) - M,,(0)Z(0) for some linear operator M, (6). Finally the

1
new error term (cf. (2.12))) Q4 = / {Q(t), F} o X& dt is still homogeneous of

degree 2 in Z and independent of y.o Thus properties (i), (ii) are satisfied after
the first step and the new error term conserves the same form. Therefore we
can iterate the process and the limiting transformation ® = ®' o d2o--- also
satisfies (i) and (ii). Furthermore the transformed Hamiltonian as well as the
original one is linear in y and quadratic in Z and thus (iii) holds true.

It remains to check (iv). This follows from the fact that ® is a linear symplec-
tomorphism and thus, as remarked in [9, Proposition 1.3’], extends by duality
on 612, X EZQ, for all p € [-2,2] and in particular for p = 0. O

Proof of Corollary[1.3 — The point is that, when V is smooth with bounded
derivatives, the perturbation ) satisfies Assumption 3 for all p > 0. That
is Xg maps smoothly PP into itself. Therefore Theorem applies for all
p > 2 and by , the canonical transformation ® is close to the identity in
the PP-norm. Since in the new variables, (y/,¢,2',2") = ® !(y, 0, z, 2), the
modulus of zg- is invariant, we deduce that there exist a constant C' such that

(1= Ce)[[2(0)llp < [lz()[l, < (L + Ce)||z(0)]lp
which in turn implies

(1 =) luollrr < [lu(t)[lrr < (14 eC)|uollnr, VteR.
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7.2. An explicit example. —

Consider the linear equation
(7.7) 10 = —0%u + 2Pu + €V (tw)u

where V : T" — R is real analytic and independent of x € R. Up to a
translation of the spectrum, we can assume that V' (0) = 0. Notice that this
case is not in the scope of Theorem since V' does not satisfy .

We suppose moreover that an V = 0 and that w € [0,27)" is Diophantine
(see )

Define v(t,z) = e 1o Viws)dsy (¢, ). The function v satisfies iff v
satisfies i0;v = —02?v + 2%v. This latter equation is explicitly solvable using
the Hermite basis, and the solution of (7.7) with initial condition ugp(z) =
> 521 @jhj(x) then reads

u(t, x) = e Jo Viws)ds S ahy (@)1,

j=1
Write V(0) = Z are’®® Then, as w is Diophantine, we can com-
keZm k#0
¢
pute / Viws)ds = —i Y ;—’“(ezk'wt — 1), and W defined by W () =
0 kezn ko Y

a .
exp (e Z —k(elk'e —1)) is a periodic and analytic function in 6. Finally,
kEZ™ k40

oo
u(t,x) = Z a; W (wt)h; (2)e’® =1 is an almost periodic function in time (as
7j=1
an infinite sum of quasi-periodic functions).
We can explicitly compute the transformation ® in (7.4). Here the Hamil-

tonian reads H = N + Q with Q = V(0) >";> |z[*. Set @(y/,¢',2,7') =
(y,0,z,Z) where

zj=W(0)z;, Zz;=W()Z j>1
ar k. .
9j :0;, y]:y;—é'kj Z meZkOZ‘Zl‘Z, 1 S] STL
kEZn k£0 1>1

Then a straightforward computation gives

n
Ho (p(ylvelazlazl) = ij:%' + 2(2‘7 o 1)2:3 7;"
J=1 g2l
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Therefore in this case Qf(w) = 2j — 1.

Finally we study the spectrum of the Floquet operator associated to the
equation (7.7). Observe that W (wt)hj(2)e!@ Dt solves if and only if
any 2j — 1+ k-w (with j > 1 and k € Z") is an eigenvalue of (with
eigenfunction W (0)h;(x)e??*). This shows that the Floquet spectrum is pure
point, since linear combinations of W (0)h;(z)e®* are dense in L?(R)® L?(T")
and the set {2j —1+k-w|j> 1,k € Z"} does not accumulate anywhere.

)

A
Appendix
We show here how we can construct periodic solutions to the equation
(A1) 10+ O*u — 2*u = |uPtu, p>1 (t,z) ER xR,

thanks to variational methods. This is classical, see e.g. [15] and [2] for more
details. Recall that for s > 0 we have defined the Sobolev space H*(R) =
D(T%/?), where T = —02 + 2% is the harmonic oscillator. We also define
H>(R) = Ng=oH*(R). We then have the following result.

Proposition A.1. — Let > 0. Then there exists an L?(R)-orthogonal fam-
ily (¢7)j>1 € HP(R) with ¢’ | 2r) = 1 and a sequence of positives numbers
(A\j)j>1 so that for all j > 1, u(t,z) = e ilpI(x) is a solution of (A.1]).

Proof. — We look for a solution of (A1) of the form u(t,z) = e p(x),
hence ¢ has to satisfy

(A2) (=02 +2%)p=2p— P e
Let p > 0, denote by E, the set

E, = {so e H'(R), s.t. loll2@m) = “}’

and define the functional

[ 2 2 2 1 p+1
J(@)/Q((axcp) +$¢)+p+1!sol )da,
which is C! on E,.

Then the problem mgl J(p) admits a solution ¢!, and ¢! solves (A.2)) for
pELyY
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some A = A\; > 0.
Indeed, by Rellich’s theorem (see e.g. [14], page 247]), for all C' > 0, the set

p € H'(R), s.t. lell 2y = w1
{

2

is compact in L?(IR) (observe that we have used the Sobolev embedding H! C
LP*! which holds for any p > 1). Then, if ¢, is a minimising sequence of J,
up to a sub-sequence, we can assume that ¢, — ' € E, in L*(R). Finally,
the lower semicontinuity of J ensures that ¢! is a minimum of J in E,, and
the claim follows. Moreover, \; is given by

1
M / (Be0")? + 22(1)? + o P,

Now we define the set E}L =E, N {<g0,g01>L2(R) = 0}. Similarly, we may

1 2 4 2202 4 L |t
[ 3@ +3) + e <0},

construct ¢? € E}L so that J(¢?) = Inim1 J(p). The orthogonality condition
<p€EH
implies in particular that ©? # o', Let k > 1, and assume that we have

constructed (¢7)1<j<k so that (¢%, 7)o = u?d;; for all 1 < i,j < k. Define
the set ‘

E; = Bun{(p,¢’) 2 =0, 1 < j <k}
By Rellich’s theorem, the set

{pe H'R), st ¢l = u

1 1 4 ,
/2((%0)2 +220%) + m\@!p“ <O, (pp)p=0,1<j< k}

is compact in L?(R) and we can construct ¢*+1 € Eﬁ so that J(p*) =

min .J (¢). Then ¢**! is a nontrivial solution of (A.2) with
<p€Eu

1
Mt = 3 [ OugP )P a4

The regularity ¢’/ € H™ is a direct consequence of the ellipticity of the operator
—02 + 22 O
Remark A.2. — Of course, the proof can be generalised to a larger class
of nonlinearities in (A.1). In particular, we can deal with the nonlinearity

—e|u|P~1u with ¢ > 0 provided that p < 5 and that SMPTH > ( is small enough.
Indeed in that case, thanks to the Gagliardo-Nirenberg inequality we have

€ p+3 (p—1)/4
p+1/|¢\p“ < Cep’z (/(8x<p)2+x2<p2> :
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and the nonlinear part of the energy can be controlled by the linear part,
which enables us the perform the same arguments as previously.
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