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GENERAL STABILITY RESULTS FOR THE TRANSLATIONAL PROBLEM OF
MEMORY-TYPE IN POROUS THERMOELASTICITY OF TYPE III
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Abstract. A beam modelled by a Timoshenko system with a viscoelastic damping on one component
is considered. The system is coupled with a hyperbolic heat equation. One end of the structure is fixed
to a platform in a translational movement and the other one is attached to a non-negligble mass. The
well-posedness and asymptotic stability results for the system under some conditions on the initial and
the boundary data are established.
Keywords. Translational problem; Uniform and weak decay; Viscoelastic damping; Porous thermoelas-
tic system.

1. INTRODUCTION

Strings, beams and plates in translational movement have been the subject of extensive stud-
ies due to their numerous applications in industry (see, for example, [1, 2, 3, 4, 5, 6]). Unlike the
immobile case, moving structures requires more attention as they are more delicate to handle.
We refer to [7, 8, 9] and the references therein where Euler-Bernoulli beams and Timoshenko
type beams were discussed. In [10], Kafini and Tatar considered the stabilization of the system
by a thermal effect and a feedback control. Here we consider the beam of Timoshenko type cou-
pled with a thermal equation but in the context of porous thermo-elasticity. The beam is fixed
to a small platform in translational displacement at one end and a dynamic mass is attached to
the other end. This mass together with the translation of the base brings considerable compli-
cations when it comes to the stability issue. The objective is to control the structure through
the platform, which is an easily accessible location. The problem appears in many engineering
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applications as mentioned above. Namely, we investigate the problem

m(Stt(t)+ vtt(x,0))+ρ1

∫ L

0
(Stt(t)+ vtt(x, t))dx+mE (Stt(t)+ vtt(L, t)) = τ (t)

ρ1 (Stt(t)+ vtt(x, t))− k1 (vx +ψ)x +θtx = 0,

ρ2ψtt− k2ψxx + k1 (vx +ψ)−θt +
∫ +∞

0
g(s)ψxx (x, t− s)ds = 0,

ρ3θtt− k3θxx−αθxxt +βvxt +βψt = 0,

(1.1)

where x ∈ [0,L], t > 0, and L, α,β ,m,mE , ρi and ki are positive constants, for i = 1,2,3, with
the boundary conditions{

vx(0, t) = ψ (0, t) = θ (0, t) = ψ (L, t) = θ (L, t) = 0,
k1vx(L, t)+mE (Stt(t)+ vtt(L, t)) = 0,

(1.2)

and the initial data{
ψ(x,−t) = ψ0(x, t),ψt(x,0) = ψ1(x),θ (x,0) = θ0(x),θt (x,0) = θ1(x),
S(0) = S0,St(0) = S1,v(x,0) = v0(x),vt(x,0) = v1(x).

(1.3)

where ϕ is the beam transversal displacement, ψ is the rotational angle of the beam, θ is the
temperature difference, S is the base motion and τ is the control.

The models of structures fixed on a translational base have been derived in several works. In
[11], a model was derived for an Euler-Bernoulli beam. A Timoshenko beam in translational
displacement was considered in [7]. Here, it is rather a porous thermoelastic Timoshenko sys-
tem of type III which is fixed to a base in translational motion [12, 13]. The main objective of
Goodman and Cowin [14] was to extend the classical elasticity theory to porous media. This
idea was extended further to materials by involving temperature and microtemperate elements
in [12, 15, 16, 17, 18]. Timoshenko systems are by now well-known as they have been exten-
sively studied for a long time (see, for instance, [19, 20] and references therein). There exists
a well-established theory and a huge number of applications. Porous elastic problems can be
traced back to the early seventies [14]. The basic model is{

ρ0utt = µuxx +βϕx,

ρ0κϕtt = αϕxx−βux− τϕt−ξ ϕ,

where u is the displacement of the solid elastic material, ϕ is the volume fraction and all the
coefficients are positive constants.

As mentioned above, all these systems were considered with S≡ 0 and without end mass. In
our present paper, the situation is different. Both ends of the structure are dynamic. This gives
rise to some complications. The dynamic at the end points is modelled by some complex bound-
ary conditions which would to be handled carefully. In addition, searching for an appropriate
reasonable control to be implemented at the base, one needs to deal with some boundary terms.
For more ideas and results related in this regard, we refer to [7, 8, 9, 10] and the references
therein.

In this paper, we first establish an existence and uniqueness result in an appropriate space.
Then, we come up with a suitable control at the fixed end to the base. It is shown that this
control is capable of stabilizing the structure in case of equal speed of propagation as well as
the more reasonable case of non-equal speed of propagation. However, the type of stability is
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different as the latter case is less favorable from the mathematics point of view. In Section 2, we
transform the problem into a simpler one, determine a feedback control, introduce the energy
functional and compute its derivative. In Section 3, we show that the system is well posed. Our
uniform and weak stability results will be proved in the last section.

2. CONTROL AND ENERGY

We start by defining the total deflection of the beam as follows:

ϕ(x, t) = S(t)+ v(x, t).

Hence, 
ϕ(0, t) = S(t)+ v(0, t), ϕtt(0, t) = Stt(t)+ vtt(0, t),
ϕt(x, t) = St(t)+ vt(x, t), ϕtt(x, t) = Stt(t)+ vtt(x, t),
ϕx(x, t) = vx(x, t), ϕxx(x, t) = vxx(x, t).

By using the second equation in (1.1) and boundary conditions (1.2), we get

ρ1

∫ L

0
(Stt(t)+ vtt(x, t))dx+mE (Stt(t)+ vtt(L, t)) = 0.

Thus, problem (1.1) is equivalent to

mϕtt(0, t) = τ (t) ,
ρ1ϕtt− k1 (ϕx +ψ)x +θtx = 0,

ρ2ψtt− k2ψxx + k1 (ϕx +ψ)−θt +
∫ +∞

0
g(s)ψxx (x, t− s)ds = 0,

ρ3θtt− k3θxx−αθxxt +βϕxt +βψt = 0,
ϕ (x,0) = ϕ0(x),ϕt (x,0) = ϕ1(x),
ψ (x,−t) = ψ0(x, t),ψt (x,0) = ψ1(x),
θ (x,0) = θ0(x, t),θt (x,0) = θ1(x)

(2.1)

with the boundary conditions{
ϕx(0, t) = ψ (0, t) = θ (0, t) = ψ (L, t) = θ (L, t) = 0,
k1ϕx(L, t)+mEϕtt(L, t) = 0.

(2.2)

For the relaxation function g, we assume the following:
(A1) g : R+→ R+ is a C1 function satisfying

0 < g0 :=
∫ +∞

0
g(s)ds < k2. (2.3)

(A2) There exist a positive constant ξ1 and a nonincreasing differentiable function ξ0 : R+→
R+ satisfying

−ξ1g(t)≤ g′(t)≤−ξ0(t)g(t), ∀t ∈ R+. (2.4)
The associated energy E to (2.1) is given by

E(t) =
1
2

[
ϕ

2(0, t)+mϕ
2
t (0, t)+βmEϕ

2
t (L, t)+ρ3 ‖θt‖2

2 + k3 ‖θx‖2
2

]
+

β

2

[
ρ1 ‖ϕt‖2

2 +ρ2 ‖ψt‖2
2 + l ‖ψx‖2

2 + k1 ‖ϕx +ψ‖2
2 +(g◦ψx)(t)

]
,

(2.5)
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where

(g◦ v)(t) =
∫ +∞

0
g(s)‖v(t)− v(t− s)‖2

2ds,

where ‖·‖2 denotes the classical norm of L2(0,L) and l := k2−g0 (l > 0 according to (2.3)). The
expression in (2.5) consists of the total energy (kinetic and potential) of the structure modified
by a quadratic form (related to the viscoelastic term) so as to exhibit the dissipative character of
the system. The derivative of E is equal to

E ′(t) = ϕ(0, t)ϕt(0, t)+ τ(t)ϕt(0, t)−α ‖θxt‖2
2 +

β

2
(
g′ ◦ψx

)
. (2.6)

This equation can be achieved by, first, multiplying (2.1)1 by ϕt(0, t) to get

m
2

d
dt

ϕ
2
t (0, t) = τ(t)ϕt(0, t), (2.7)

and then multiplying (2.1)2 by βϕt(x, t) and integrating over [0,L] to get

β
ρ1

2
d
dt
‖ϕt‖2

2 +β

[
k1

∫ L

0
ϕxt (ϕx +ψ)dx− k1ϕt (L, t)(ϕx (L, t)+ψ (L, t))

]
+β

[
k1ϕt (0, t)(ϕx (0, t)+ψ (0, t))+ϕt (L, t)θt (L, t)−ϕt (0, t)θt (0, t)−

∫ L

0
ϕtxθtdx

]
= 0.

Using (2.2), we obtain

β
d
dt

[
ρ1

2
‖ϕt‖2

2 +
mE

2
ϕ

2
t (L, t)

]
+βk1

∫ L

0
ϕxt (ϕx +ψ)dx−β

∫ L

0
ϕtxθtdx = 0. (2.8)

Also multiplying (2.1)3 by βψt(x, t) and integrating over [0,L], we entail

β
d
dt

[
ρ2

2
‖ψt‖2

2 +
k2

2
‖ψx‖2

2

]
−β [k2ψt (L, t)ψx (L, t)− k2ψt (0, t)ψx (0, t)]

+β

[
k1

∫ L

0
ψt (ϕx +ψ)dx−

∫ L

0
ψtθtdx+

∫ L

0
ψt

∫ +∞

0
g(s)ψxx (x, t− s)dsdx

]
= 0.

Next, using (2.2), we arrive at

β
d
dt

[
ρ2

2
‖ψt‖2

2 +
k2

2
‖ψx‖2

2

]
+βk1

∫ L

0
ψt (ϕx +ψ)dx−β

∫ L

0
ψtθtdx

−β

∫ L

0
ψtx

∫ +∞

0
g(s)ψx (x, t− s)dsdx = 0.

(2.9)

Moreover, multiplying (2.1)4 by θt(x, t) and integrating over [0,L], we find

d
dt

[
ρ3

2
‖θt‖2

2 +
k3

2
‖θx‖2

2

]
− k3θt (L, t)θx (L, t)+ k3θt (0, t)θx (0, t)

+α ‖θxt‖2
2 +β

∫ L

0
θtϕxtdx+β

∫ L

0
θtψtdx = 0.

Therefore,

d
dt

[
ρ3

2
‖θt‖2

2 +
k3

2
‖θx‖2

2

]
+α ‖θxt‖2

2 +β

∫ L

0
θtϕxtdx+β

∫ L

0
θtψtdx = 0. (2.10)
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Summing up (2.7)-(2.10), taking into account the equation∫ L

0
ψtx

∫ +∞

0
g(s)ψx(x, t− s)dsdx =

1
2

d
dt

[
g0 ‖ψx‖2

2− (g◦ψx)
]
+

1
2
(
g′ ◦ψx

)
,

we obtain (2.6) immediately. Observe that the derivative of E is not readily seen to be non-
positive. It would be the case in the absence of an external force. The suggested feedback
control force τ(t) is

τ(t) =−Kϕt(0, t)−ϕ(0, t), (2.11)
where K is a positive ’control gain’. Consequently, we see that

E ′(t) = ϕ(0, t)ϕt(0, t)+ϕt(0, t) [−Kϕt(0, t)−ϕ(0, t)]−α ‖θxt‖2
2 +

β

2
(
g′ ◦ψx

)
=−Kϕ

2
t (0, t)−α ‖θxt‖2

2 +
β

2
(
g′ ◦ψx

)
.

(2.12)

This means that E ′ ≤ 0. Hence, (2.1) is dissipative.

3. WELL-POSEDNESS

In this section, we discuss the well-posedness of (2.1)-(2.2) using the semigroup approach.
Following the method in [21], we introduce the functional η by

η(x, t,s) = ψ(x, t)−ψ(x, t− s) in ]0,L[×R+×R+. (3.1)

Let η0(x,s) = η(x,0,s). The functional η satisfies
ηt +ηs−ψt = 0, in ]0,L[×R+×R+,

η(0, t,s) = η(L, t,s) = 0, in R+×R+,

η(x, t,0) = 0, in ]0,L[×R+.

(3.2)

The problem (2.1) with the feedback control (2.11) can be written in the form{
Ψt = BΨ,
Ψ(t = 0) = Ψ0,

(3.3)

for Ψ := (ϕ,w,ψ,z,θ ,σ ,ξ ,y,η)T and Ψ0 := (ϕ0,ϕ1,ψ0,ψ1,θ0,θ1,ϕ1(0, ·),ϕ1(L, ·),η0)
T with

w = ϕt , z = ψt , σ = θt , ξ = ϕt(0, ·), y = ϕt(L, ·) and

BΨ =



w
1
ρ1
[k1 (ϕx +ψ)x−σx]

z
1
ρ2

[
lψxx− k1 (ϕx +ψ)+σ +

∫ +∞

0
gηxxds

]
σ
1
ρ3
[k3θxx +ασxx−βwx−β z]

− 1
m (Kξ +ϕ(0, ·))
− k1

mE
ϕx(L, ·)

−ηs + z


.

Bearing in mind the Dirichlet boundary conditions in (2.2), we introduce the spaces

H1
0 (0,L) :=

{
f ∈ H1(0,L) : f (0) = f (L) = 0

}
,
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Lg =

{
f : R+→ H1

0 (]0,L[),
∫ +∞

0
g‖ fx‖2

2 ds <+∞

}
and

H := H1(0,L)×L2(0,L)×H1
0 (0,L)×L2(0,L)×H1

0 (0,L)×L2(0,L)×R2×Lg.

The Neumann boundary conditions in (2.2) are included in the definition of the domain of B
given by

D(B) :=
{

Ψ∈H : ϕ ∈H2(0,L),w∈H1(0,L),z∈H1
0 (0,L),σ ∈H1

0 (0,L),ηs ∈ Lg,ϕx(0) = 0,

lψ +
∫ +∞

0
gηds ∈ H2(0,L),k3θ +ασ ∈ H2(0,L),ξ = w(0, ·),y = w(L, ·),η(·,0) = 0

}
.

Thus (3.3) is an abstract formulation of (2.1)-(2.2). The space H is a Hilbert space when
endowed with the inner product

〈Ψ,Ψ̃〉H = k1β 〈ϕx +ψ, ϕ̃x + ψ̃〉+β l〈ψx, ψ̃x〉+ k3〈θx, θ̃x〉+ρ1β 〈w, w̃〉+ρ2β 〈z, z̃〉+ρ3〈θ , θ̃〉

+mξ ξ̃ +βmEyỹ+ϕ(0)ϕ̃(0)+β

∫ +∞

0
g〈ηx, η̃x〉ds,

where

Ψ = (ϕ,w,ψ,z,θ ,σ ,ξ ,y,η)T , Ψ̃ =
(

ϕ̃, w̃, ψ̃, z̃, θ̃ , σ̃ , ξ̃ , ỹ, η̃
)T

and 〈·, ·〉 is the standard inner product of L2(0,L). The associated energy (2.5) to (2.1)-(2.2) can
be written in the form

E(t) :=
1
2
‖Ψ‖2

H . (3.4)

Theorem 3.1. Assume that (A1) and (A2) are satisfied and Ψ0 ∈H . Then, there exists a unique
solution of (3.3) satisfying

Ψ ∈C
(
R+,H

)
.

In case Ψ0 ∈ D(B), the solution is strong:

Ψ ∈C
(
R+,D(B)

)
∩C1 (R+,H

)
.

Proof. The well-posedness may be derived easily by using the classical semigroup approach.
We here give a brief sketch of the proof. First, (2.12), (3.3) and (3.4) lead to

〈BΨ,Ψ〉H =−Kϕ
2
t (0, t)−α ‖θxt‖2

2 +
β

2
(
g′ ◦ψx

)
≤ 0, (3.5)

for any Ψ ∈ D(B). Hence B is a dissipative operator. Notice that the left inequality in (2.4)
guarantees the existence of (g′ ◦ψx) due to η ∈ Lg.

Second, we show that I−B is surjective, where I denotes the identity operator. Let F =
( f1, · · · , f9) ∈H . We need to prove that there exists Ψ ∈ D(B) satisfying

(I−B)Ψ = F. (3.6)
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Using the definition of B, the quations (3.6)1, (3.6)3, (3.6)5, (3.6)7 and (3.6)8 are equivalent to
w = ϕ− f1,
z = ψ− f3,
σ = θ − f5,

ξ = 1
K+m(m f7−ϕ(0)),

y = f8− k1
mE

ϕx(L).

(3.7)

Consequently, if ϕ ∈ H2(0,L) and ψ, θ ∈ H1
0 (0,L), then w, z, σ , ξ and y exist and

(w,z,σ) ∈ H1(0,L)×H1
0 (0,L)×H1

0 (0,L).

Moreover, ξ = w(0) and y = w(L) if{
ϕ(0) = 1

K+m+1 [(K +m) f1(0)+m f7] := g1,
k1
mE

ϕx(L)+ϕ(L) = f1(L)+ f8 := g2.
(3.8)

On the other hand, using (3.7)2, the last equation in (3.6) is equivalent to

ηs +η = ψ + f9− f3. (3.9)

By integrating (3.9) and using the fact that η(0) = 0 (the definition of D(B)), we get

η(·,s) = (1− e−s)(ψ− f3)+ e−s
∫ s

0
ep f9(·, p)d p. (3.10)

Using Fubini theorem, Hölder’s inequality and noticing that f9 ∈ Lg, it appears that∫ L

0

∫ +∞

0
g(s)

(
e−s

∫ s

0
ep f9x(x, p)d p

)2

dsdx

≤
∫ L

0

∫ +∞

0
e−2sg(s)

(∫ s

0
ep d p

)∫ s

0
ep f 2

9x(x, p)d pdsdx

≤
∫ L

0

∫ +∞

0
e−s(1− e−s)g(s)

∫ s

0
ep f 2

9x(x, p)d pdsdx

≤
∫ L

0

∫ +∞

0
e−sg(s)

∫ s

0
ep f 2

9x(x, p)d pdsdx

≤
∫ L

0

∫ +∞

0
ep f 2

9x(x, p)
∫ +∞

p
e−sg(s)dsd pdx

≤
∫ L

0

∫ +∞

0
epg(p) f 2

9x(x, p)
∫ +∞

p
e−s dsd pdx

≤
∫ L

0

∫ +∞

0
g(p) f 2

9x(x, p)d pdx = ‖ f9‖2
Lg

<+∞.

Hence, s 7→ e−s ∫ s
0 ep fp(p)d p ∈ Lg, and (3.10) implies that η ∈ Lg. Moreover, one has ηs ∈ Lg

by (3.9).
Now, we put ϕ̂ = ϕ − g1. We see that, if ϕ̂ ∈ H2(0,L) satsifies ϕ̂(0) = ϕ̂x(0) = 0, then

ϕ ∈ H2(0,L) satsifies ϕ(0) = g1 and ϕx(0) = 0 (notice that g1 is a constant). According to
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(3.7), we see that equations (3.6)2, (3.6)4 and (3.6)6 can be reduced to
ρ1ϕ̂− k1 (ϕ̂x +ψ)x +θx = h1,

ρ2ψ−
(

lψ +
∫ +∞

0
gη

)
xx

ds+ k1 (ϕ̂x +ψ)−θ = h2,

ρ3θ − (k3θ +ασ)xx +β (ϕ̂x +ψ) = h3,

(3.11)

where

h1 = ρ1( f1 + f2−g1)− f5x, h2 = ρ2( f3 + f4)− f5 and h3 = β ( f1x + f3)+ρ3( f5 + f6).

We deduce that (3.6) has a solution Ψ ∈ D(B) if (3.11) has a solution

(ϕ̂,ψ,θ) ∈ (H2(0,L)∩H1
∗ (0,L))×H1

0 (0,L)×H1
0 (0,L) (3.12)

satisfying (3.7)3, (3.10), {
ϕ̂x(0) = 0,
k1
mE

ϕ̂x(L)+ ϕ̂(L) = g2−g1 := g3,
(3.13)

lψ +
∫ +∞

0
gηds ∈ H2(0,L) and k3θ +ασ ∈ H2(0,L), (3.14)

where
H1
∗ (0,L) = { f ∈ H2(0,L) : f (0) = 0}.

To this end, we consider the variational formulation of (3.11) in

H̄ := H1
∗ (0,L)×H1

0 (0,L)×H1
0 (0,L)

by multiplying the equations in (3.11) by βϕ̃, βψ̃ and θ̃ , respectively, where (ϕ̃, ψ̃, θ̃) ∈ H̄ are
test functions. Using (3.7)3, (3.10) and (3.13), we integrate by parts and sum up the obtained
formulas to obtain

a1((ϕ̂,ψ,θ),(ϕ̃, ψ̃, θ̃)) = a2(ϕ̃, ψ̃, σ̃), ∀(ϕ̃, ψ̃, θ̃) ∈ H̄, (3.15)

where
a1((ϕ̂,ψ,θ),(ϕ̃, ψ̃, θ̃))

= β

∫ L

0
[k1(ϕ̂x +ψ)(ϕ̃x + ψ̃)+(k2− g̃0)ψxψ̃x +ρ1ϕ̂ϕ̃ +ρ2ψψ̃]dx

+
∫ L

0

[
(k3 +α)θxθ̃x +β (ϕ̂xθ̃ −θϕ̃x)+β (ψθ̃ −θψ̃)+ρ3θθ̃

]
dx

+βmE ϕ̂(L)ϕ̃(L),

a2(ϕ̃, ψ̃, σ̃) = β

∫ L

0

[
h1ϕ̃ +h2ψ̃ +h3θ̃ +h4ψ̃x

]
dx+α f5xθ̃ +mEg3ϕ̃(L),

and

h4 = (g0− g̃0) f3x−
∫ +∞

0
e−sg(s)

∫ s

0
ep f9x(·, p)d pds and g̃0 =

∫ +∞

0
e−sg(s)ds.

In view of F ∈H and (2.3),

h1, h2, h3, h4 ∈ L2(0,L) and k2− g̃0 ≥ k2−g0 > 0,
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we realize that a1 is a bilinear, continuous and coercive form on H̄ × H̄, and a2 is a linear
and continuous form on H̄. Lax-Milgram theorem implies that (3.15) admits a unique solution
(ϕ̂,ψ,θ) ∈ H̄. By classical regularity arguments, we deduce that (ϕ̂,ψ,θ) solves (3.11) and
fulfills (3.12), (3.13) and (3.14). This proves that (3.6) has a solution Ψ ∈D(B). Finally, since
the linear operator B is maximal monotone, it generates a linear C0 semigroup of contractions
on H and D(B) is dense in H . So, this theorem holds thanks to Hille-Yosida theorem. �

4. STABILITY

In this section, we prove the stability of (3.3) and specify explicitly the decay rate of solutions.
To this end, we need to prove some lemmas. We use c to denote a generic positive constant
which can be different from line to line.

Lemma 4.1. The functional I1 defined by

I1(t) =−
∫ L

0
(ρ1ϕtϕ +ρ2ψtψ)dx+mϕt(0, t)ϕ(0, t)−mEϕt(L, t)ϕ(L, t)

fulfills, for any ε1 > 0,

dI1(t)
dt

≤
(

m+
K2

2

)
ϕ

2
t (0, t)−mEϕ

2
t (L, t)−

1
2

ϕ
2(0, t)−ρ1 ‖ϕt‖2

2−ρ2 ‖ψt‖2
2

+
1
ε1
‖θt‖2

2 +(c+ ε1)‖ψx‖2
2 +(ε1 + k1)‖ϕx +ψ‖2

2 + c(g◦ψx) .

Proof. A direct differentiation of I1(t) yields

dI1(t)
dt

= −k1

∫ L

0
ϕ (ϕx +ψ)x dx+ k1

∫ L

0
ψ (ϕx +ψ)dx−

∫ L

0
ϕxθtdx−

∫ L

0
ψθtdx

+k2 ‖ψx‖2
2−

∫ L

0
ψx

∫ +∞

0
g(t− s)ψx (x,s)dsdx+mϕ

2
t (0, t)−mEϕ

2
t (L, t)

−ρ1 ‖ϕt‖2
2−ρ2 ‖ψt‖2

2−ψ
2(0, t)+mϕtt(0, t)ϕ(0, t)−mEϕtt(L, t)ϕ(L, t).

Then

−k1

∫ L

0
ϕ (ϕx +ψ)x dx = −k1 (ϕx (L, t)+ψ (L, t))ϕ (L, t)+ k1

∫ L

0
ϕx (ϕx +ψ)dx

= mEϕtt(L, t)ϕ (L, t)+ k1

∫ L

0
ϕx (ϕx +ψ)dx,

−
∫ L

0
ϕxθtdx≤ ε1

2
‖ϕx‖2

2 +
1

2ε1
‖θt‖2

2 ≤
ε1

2

(
2‖ϕx +ψ‖2

2 +2c‖ψx‖2
2

)
+

1
2ε1
‖θt‖2

2 ,

−
∫ L

0
ψθtdx≤ ε1

2
‖ψ‖2

2 +
1

2ε1
‖θt‖2

2 ≤
cε1

2
‖ψx‖2

2 +
1

2ε1
‖θt‖2

2 ,

mϕtt(0, t)ϕ(0, t) = τ(t)ϕ(0, t) =−Kϕt(0, t)ϕ(0, t)−ϕ
2(0, t)≤ K2

2
ϕ

2
t (0, t)−

1
2

ϕ
2(0, t)
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and

−
∫ L

0
ψx

∫ +∞

0
g(s)ψx (x, t− s)dsdx

=
∫ L

0
ψx

∫
∞

0
g(s)(ψx (x, t)−ψx (x, t− s))dsdx−g0 ‖ψx‖2

2

≤ ε1

2
‖ψx‖2

2 +
1

4ε1

∫ L

0

(∫ +∞

0
g(s)(ψx (t− s)−ψx (t))ds

)2

dx−g0 ‖ψx‖2
2

≤ ε1

2
‖ψx‖2

2 +
g0

4ε1
(g◦ψx) .

By combining the above six relations, we obtain the desired conclusion immediately. �

Lemma 4.2. The functional I2 defined by

I2(t) = ρ2

∫ L

0
ψt

∫ +∞

0
g(s)(ψ (t)−ψ (t− s))dsdx

fulfills, for any ε2 > 0,

dI2(t)
dt

≤ − [ρ2g0− ε2]‖ψt‖2
2 + cε2 ‖ψx‖2

2 + ε2 ‖ϕx +ψ‖2
2 + ε2 ‖θt‖2

2

−c
(
g′ ◦ψx

)
+ c(g◦ψx) .

Proof. A direct differentiation of I2(t) yields

dI2(t)
dt

= −ρ2g0 ‖ψt‖2
2−ρ2

∫ L

0
ψt

∫ +∞

0
g′ (s)(ψ (t)−ψ (t− s))dsdx

−k2

∫ L

0
ψx

∫ +∞

0
g(s)(ψx (t)−ψx (t− s))dsdx

+k1

∫ L

0
(ϕx +ψ)

∫ +∞

0
g(s)(ψx (t)−ψx (t− s))dsdx

+
∫ L

0
θt

∫ +∞

0
g(s)(ψ (t)−ψ (t− s))dsdx

+
∫ L

0

(∫ +∞

0
g(s)ψx (x, t− s)ds

)∫ +∞

0
g(s)(ψx (t)−ψx (t− s))dsdx,

therefore
dI2(t)

dt
≤ − [ρ2g0− ε2]‖ψt‖2

2 + ε2 ‖ψx‖2
2 + ε2 ‖ϕx +ψ‖2

2 + ε2 ‖θt‖2
2

+ε2

∫ L

0

(∫ +∞

0
g(s)ψx (x, t− s)ds

)2

dx

+
1

4ε2

∫ L

0

(∫ +∞

0
g′ (s)(ψ (t)−ψ (t− s))ds

)2

dx

+
1

4ε2

∫ L

0

(∫ +∞

0
g(s)(ψx (t)−ψx (t− s))ds

)2

dx

+
1

4ε2

∫ L

0

(∫ +∞

0
g(s)(ψ (t)−ψ (t− s))ds

)2

dx.
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By virtue of the estimations∫ L

0

(∫ +∞

0
g(s)(ψ (t)−ψ (t− s))ds

)2

dx

≤ g0

∫ L

0

∫ +∞

0
g(s)((ψ (t)−ψ (t− s)))2 dsdx≤ g0cp (g◦ψx) ,

∫ L

0

(∫ +∞

0
g(s)(ψx (t)−ψx (t− s))ds

)2

dx≤ g0 (g◦ψx)

and ∫ L

0

(∫ +∞

0
g′ (s)(ψ (t)−ψ (t− s))ds

)2

dx≤−g(0)
(
g′ ◦ψx

)
,

the desired result follows. �

Lemma 4.3. The functional I3 defined by

I3(t) = ρ3

∫ L

0
θtθdx+β

∫ L

0
ϕxθdx+

α

2

∫ L

0
θ

2
x dx

fulfills, for any ε1 > 0,

dI3(t)
dt
≤−k3

2

∫ L

0
θ

2
x dx+ c

(
1+

1
ε1

)∫ L

0
θ

2
t dx+ ε1

∫ L

0
(ϕx +ψ)2 dx

+ cε1

∫ L

0
ψ

2
x dx+ c

∫ L

0
ψ

2
t dx.

Proof. A direct differentiation of I3(t) yields

dI3(t)
dt

= ρ3

∫ L

0
θttθdx+ρ3

∫ L

0
θ

2
t dx+β

∫ L

0
ϕxtθdx+β

∫ L

0
ϕxθtdx+α

∫ L

0
θxθxtdx

= −k3

∫ L

0
θ

2
x dx+ρ3

∫ L

0
θ

2
t dx−β

∫ L

0
ψtθdx+β

∫ L

0
ϕxθtdx.

We see that (cp is Poincaré’s constant)

β

∫ L

0
ϕxθtdx ≤ ε1

2

∫ L

0
ϕ

2
x dx+

β 2

2ε1

∫ L

0
θ

2
t dx

≤ ε1

2

(
2
∫ L

0
(ϕx +ψ)2 dx+2cp

∫ L

0
ψ

2
x dx
)
+

β 2

2ε1

∫ L

0
θ

2
t dx

and

−β

∫ L

0
ψtθdx≤ β 2

2k3cp

∫ L

0
ψ

2
t dx+

k3

2

∫ L

0
θ

2
x dx.

Then, the result of Lemma 4.3 is proved. �

We consider as multiplier w, the solution of

−wxx = ψx, w(0) = w(L) = 0.

It can be shown easily that the solution of this equation is explicitly given by

w(x, t) =−
∫ x

0
ψ(s, t)dx+

x
L

∫ L

0
ψ(s, t)dx.
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It follows that

‖wx‖2
2 ≤ ‖ψ‖2

2 ≤ cp‖ψx‖2
2 and ‖wt‖2

2 ≤ cp‖wtx‖2
2 ≤ cp‖ψt‖2

2.

Lemma 4.4. The functional I4 defined by

I4(t) = ρ1

∫ L

0
ϕtwdx+ρ2

∫ L

0
ψtψdx

fulfills, for any ε4 > 0,

dI4(t)
dt
≤− l

2

∫ L

0
ψ

2
x dx+ c

∫ L

0
θ

2
t dx+ c

(
1+

1
ε4

)∫ L

0
ψ

2
t dx+ ε4

∫ L

0
ϕ

2
t dx+ c(g◦ψx) .

Proof. A direct differentiation of I4(t) yields

dI4(t)
dt

= ρ1

∫ L

0
ϕttwdx+ρ1

∫ L

0
ϕtwtdx+ρ2

∫ L

0
ψttψdx+ρ2

∫ L

0
ψ

2
t dx

= k1

∫ L

0
w2

xdx− k1

∫ L

0
ψ

2dx+
∫ L

0
wxθtdx− k2

∫ L

0
ψ

2
x dx+

∫ L

0
θtψdx

+ρ2

∫ L

0
ψ

2
t dx+ρ1

∫ L

0
ϕtwtdx+

∫ L

0
ψx

∫ +∞

0
g(s)ψx (t− s)ds.

We remark that, for any ε3, ε4 > 0,

ρ1

∫ L

0
ϕtwtdx≤

ρ2
1

4ε4

∫ L

0
w2

t dx+ ε4

∫ L

0
ϕ

2
t dx≤

ρ2
1

4ε4

∫ L

0
ψ

2
t dx+ ε4

∫ L

0
ϕ

2
t dx,

∫ L

0
wxθtdx≤ ε3

∫ L

0
w2

xdx+
1

4ε3

∫ L

0
θ

2
t dx≤ ε3

∫ L

0
ψ

2
x dx+

1
4ε3

∫ L

0
θ

2
t dx,

∫ L

0
θtψdx≤ ε3

∫ L

0
ψ

2
x dx+

1
4ε3

∫ L

0
θ

2
t dx

and ∫ L

0
ψx

∫ +∞

0
g(s)ψx (t− s)ds

=
∫ L

0
ψx

∫ +∞

0
g(s)(ψx (t− s)−ψx (t))dsdx+g0

∫ L

0
ψ

2
x dx

≤ (ε3 +g0)
∫ L

0
ψ

2
x dx+

g0

4ε3
(g◦ψx) .

By choosing ε3 = l/6, the result follows. �

Lemma 4.5. The functional I5 defined by

I5(t) = ρ2

∫ L

0
ψt (ϕx +ψ)dx+

k2ρ1

k1

∫ L

0
ϕtψxdx− ρ1

k1

∫ L

0
ϕt

∫ +∞

0
g(s)ψx (t− s)dsdx

fulfills, for any ε1 > 0,

dI5(t)
dt
≤ ϕx (L)

(
k2ψx (L)−

∫ +∞

0
g(s)ψx (L, t− s)ds

)
− k1

2

∫ L

0
(ϕx +ψ)2 dx (4.1)
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+ cε1

∫ L

0
ϕ

2
t dx+ c

(
1+

1
ε1

)∫ L

0
ψ

2
x dx+ρ2

∫ L

0
ψ

2
t dx

+ c
(

1+
1
ε1

)∫ L

0
θ

2
txdx+ cε1 (g◦ψx)−

c
ε1

(
g′ ◦ψx

)
+

(
ρ2−

k2ρ1

k1

)∫ L

0
ϕtxψtdx.

Proof. A direct differentiation of I5(t) yields

dI5(t)
dt

= k2

∫ L

0
ψxx (ϕx +ψ)dx− k1

∫ L

0
(ϕx +ψ)2 dx+

∫ L

0
(ϕx +ψ)θtdx

−
∫ L

0
(ϕx +ψ)

∫ +∞

0
g(s)ψxx (x, t− s)ds+ρ2

∫ L

0
ψt (ϕx +ψ)t dx

+k2

∫ L

0
(ϕx +ψ)x ψxdx− k2

k1

∫ L

0
ψxθtxdx

−
∫ L

0
(ϕx +ψ)x

∫ +∞

0
g(s)ψx (t− s)dsdx+

k2ρ1

k1

∫ L

0
ϕtψtxdx

+
1
k1

∫ L

0
θtx

∫ +∞

0
g(s)ψx (t− s)dsdx− ρ1

k1

∫ L

0
ϕt

∫ +∞

0
g′ (s)ψx (t− s)dsdx,

therefore

dI5(t)
dt

= ϕx (L)
(

k2ψx (L)−
∫ +∞

0
g(s)ψx (L, t− s)ds

)
− k1

∫ L

0
(ϕx +ψ)2 dx

+
∫ L

0
(ϕx +ψ)θtdx+ρ2

∫ L

0
ψ

2
t dx− k2

k1

∫ L

0
ψxθtxdx

+

(
ρ2−

k2ρ1

k1

)∫ L

0
ϕtxψtdx+

1
k1

∫ L

0
θtx

∫ +∞

0
g(s)ψx (t− s)dsdx

−ρ1

k1

∫ L

0
ϕt

∫ +∞

0
g′ (s)ψx (t− s)dsdx.

On the other hand, we have∫ L

0
(ϕx +ψ)θtdx≤ k1

2

∫ L

0
(ϕx +ψ)2 dx+

1
2k1

∫ L

0
θ

2
t dx,

−k2

k1

∫ L

0
ψxθtxdx≤ ε1

∫ L

0
ψ

2
x dx+

k2
2

4ε1k2
1

∫ L

0
θ

2
txdx,

1
k1

∫ L

0
θtx

∫ +∞

0
g(s)ψx (t− s)dsdx

=
1
k1

∫ L

0
θtx

∫ +∞

0
g(s)(ψx (t− s)−ψx (t))dsdx+

1
k1

∫ L

0
θtx

∫ +∞

0
g(s)ψx (t)dsdx

≤ ε1 (g◦ψx)+
g0

4ε1k2
1

∫ L

0
θ

2
txdx+

1
k1

∫ +∞

0
g(s)ds

∫ L

0
θtxψx (t)dx

≤ ε1 (g◦ψx)+
g0

k2
1

(
g0 +

1
4ε1

)∫ L

0
θ

2
txdx+ ε1

∫ L

0
ψ

2
x (t)dx
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and

−ρ1

k1

∫ L

0
ϕt

∫ +∞

0
g′ (s)ψx (t− s)dsdx

= −ρ1

k1

∫ L

0
ϕt

∫ +∞

0
g′ (s)(ψx (t− s)−ψx (t))dsdx+

ρ1g(0)
k1

∫ L

0
ϕtψxdx

≤ − 1
4ε1

(
g(0)ρ1

k1

)2 (
g′ ◦ψx

)
+2ε1

∫ L

0
ϕ

2
t dx+

1
4ε1

(
g(0)ρ1

k1

)2 ∫ L

0
ψ

2
x (t)dx.

A combination of the above five relations leads to the result of Lemma 4.5. �

To deal with the boundary terms appearing in the above lemma, we introduce the function

m(x) = 2− 4
L

x, x ∈ [0,L]

and prove the following lemma.

Lemma 4.6. The functional I6 defined, for ε1 > 0, by

I6(t) =
ε1ρ1

k1

∫ L

0
m(x)ϕtϕxdx− ρ2

4ε1

∫ L

0
m(x)ψt

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

fulfills

dI6(t)
dt

≤ −ϕx (L)
(

k2ψx (L)−
∫ t

0
g(s)ψx (L, t− s)ds

)
+cε1

∫ L

0
ϕ

2
t dx+ cε1

∫ L

0
θ

2
xtdx+

c
ε1

∫ L

0
ψ

2
t dx+ cε1

∫ L

0
(ϕx +ψ)2dx

+c
(

ε1 +
1
ε1

+
1
ε3

1

)∫ L

0
ψ

2
x dx− c

ε1

(
g′ ◦ψx

)
+ c
(

1
ε1

+
1
ε3

1

)
(g◦ψx) .

Proof. A direct differentiation of I6(t) yields

dI6(t)
dt

=
ε1ρ1

k1

∫ L

0
m(x)ϕttϕxdx+

ε1ρ1

k1

∫ L

0
m(x)ϕtϕtxdx

− ρ2

4ε1

∫ L

0
m(x)ψtt

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

− ρ2

4ε1

∫ L

0
m(x)ψt

(
k2ψx−g(0)ψx−

∫ +∞

0
g′ (s)ψx (t− s)ds

)
dx.
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Therefore,

dI6(t)
dt

= ε1

∫ L

0
m(x)(ϕx +ψ)x ϕxdx− ε1

k1

∫ L

0
m(x)θtxϕxdx

+
ε1ρ1

k1

∫ L

0
m(x)ϕtϕtxdx+

1
4ε1

∫ L

0
m(x)

(
k2ψxx−

∫ +∞

0
g(s)ψxx (t− s)ds

)
×
(

k2ψx−
∫ +∞

0
g(s)ψx (t− s)ds

)
dx

− k1

4ε1

∫ L

0
m(x)(ϕx +ψ)

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

+
1

4ε1

∫ L

0
m(x)θt

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

+
ρ2

4ε1

∫ L

0
m(x)ψt

(
k2ψxt−g(0)ψx−

∫ +∞

0
g′ (s)ψx (t− s)ds

)
dx.

Integrating by parts, one sees that

dI6(t)
dt

= −ε1
(
ϕ

2
x (L)+ϕ

2
x (0)

)
− ε1

k1

∫ L

0
m(x)θtxϕxdx+

2ε1ρ1

k1L

∫ L

0
ϕ

2
t dx

+
2ε1

L

∫ L

0
ϕ

2
x dx+ ε1

∫ L

0
m(x)ϕxψxdx− ε1ρ1

k1
(ϕ2

t (L)+ϕ
2
t (0))

− 1
4ε1

[(
k2ψx(L)−

∫ +∞

0
g(s)ψx(L, t− s)ds

)2

+
(
k2ψx(0)−

∫ +∞

0
g(s)ψx(0, t− s)ds

)2
]

+
1

2ε1L

∫ L

0

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)2

dx

− k1

4ε1

∫ L

0
m(x)(ϕx +ψ)

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

+
1

4ε1

∫ L

0
m(x)θt

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

+
k2ρ2

2ε1L

∫ L

0
ψ

2
t dx− ρ2

4ε1

∫ L

0
m(x)ψt

(
g(0)ψx +

∫ +∞

0
g′ (s)ψx (t− s)ds

)
dx.

Using Young’s and Poincaré’s inequalities, we see that, for any ε1, ε5 > 0,

−ε1(ϕ
2
x (L)−

1
4ε1

(
k2ψx(L)−

∫ +∞

0
g(s)ψx(L, t− s)ds

)2

≥−ϕx (L)
(

k2ψx (L)−
∫ +∞

0
g(s)ψx (L, t− s)ds

)
,

−ε1

k1

∫ L

0
m(x)θtxϕxdx≤ cε1

∫ L

0
((ϕx +ψ)2 +ψ

2
x )dx+ cε1

∫ L

0
θ

2
txdx,

2ε1

L

∫ L

0
ϕ

2
x dx+ ε1

∫ L

0
m(x)ϕxψxdx≤ cε1

∫ L

0
((ϕx +ψ)2 +ψ

2
x )dx,
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1
2ε1L

∫ L

0

(
k2ψx−

∫
∞

0
g(s)ψx (t− s)ds

)2

dx≤ c
ε1

∫ L

0
ψ

2
x dx+

c
ε1

(g◦ψx) ,

− k1

4ε1

∫ L

0
m(x)(ϕx +ψ)

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

≤ c
ε1

[
ε5

∫ L

0
((ϕx +ψ)2 +ψ

2
x )dx+

c
ε5

(g◦ψx)

]
,

1
4ε1

∫ L

0
m(x)θt

(
k2ψx−

∫ +∞

0
g(s)ψx (t− s)ds

)
dx

≤ c
ε1

[
ε5

∫ L

0
θ

2
xtdx+

c
ε5

∫ L

0
ψ

2
x dx+

c
ε5

(g◦ψx)

]
,

and

− ρ2

4ε1

∫ L

0
m(x)ψt

(
g(0)ψx +

∫ +∞

0
g′ (s)ψx (t− s)ds

)
dx

≤ c
ε1

∫ L

0
(ψ2

x +ψ
2
t )dx− c

ε1

(
g′ ◦ψx

)
.

Taking ε5 = ε2
1 , the sum of the above inequalities leads to the desired result. �

Next, we define a Lyapunov functional F , which is equivalent to the first-order energy func-
tional E. For positive constants N,N1 and N2, to be chosen appropriately later, we let

F = NE + I1 +N1I2 + I3 +N2I4 + I5 + I6.

It easy to show that, for N large enough, there exist two positive constants µ1 and µ2 such that

µ1E ≤ F ≤ µ2E. (4.2)

4.1. Uniform stability. Here, we consider the case

ρ2

ρ1
=

k2

k1
. (4.3)

and prove the following uniform stability result.

Theorem 4.7. Assume that (A1), (A2) and (4.3) are satisfied. Let Ψ0 ∈H be given and

ξ0 ≡ constant or sup
s∈R+

‖η0x‖2 <+∞. (4.4)

Then, there exist constants β0 ∈]0,1] and α1 > 0 such that, for all α0 ∈]0,β0[,

E (t)≤ α1

(
1+

∫ t

0
(g(s))1−α0 ds

)
e
−α0

∫ t

0
ξ0(s)ds

+α1

∫ +∞

t
g(s)ds, ∀t ∈ R+. (4.5)
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Proof. Assumption (4.3) implies that the last term in (4.1) vanishes. By differentiating F , using
(2.12) and the previous lemmas and taking ε2 =

k1
4N1

, we obtain

F ′ (t)≤− [ρ1−N2ε4−2cε1]‖ϕt‖2
2−
[

N1ρ2g0−
k1

4
− c−N2c

(
1+

1
ε4

)
− c

ε1

]
‖ψt‖2

2

−
[

Nα− 1
ε1
−N1ε2− c

(
1+

1
ε1

)
−N2c− c

(
1+

1
ε1

)
− cε1

]
‖θtx‖2

2

− k3

2
‖θx‖2

2−
[

N2l
2
−2cε1−

ck1

4
− c
(

1+
1
ε1

)
− c
(

1+
1
ε1

+
1
ε3

1

)]
‖ψx‖2

2

−
[

k1

4
− ε1 (2c+1)

]
‖ϕx +ψ‖2

2 +

[
c
ε1

+ c(N1 +N2)+ cε1 + c
(

1
ε1

+
1
ε3

1

)]
(g◦ψx)

+

[
N

β

2
−N1c− c

ε1

](
g′ ◦ψx

)
−
(

NK−m− K2

2

)
ϕ

2
t (0, t)−mEϕ

2
t (L, t)−

1
2

ϕ
2(0, t).

We choose the parameters as follows: ε1 small enough so that

γ1 := ρ1−2cε1 > 0 and
k1

4
− ε1 (2c+1)> 0,

N2 large enough so that

N2l
2
−2cε1−

ck1

4
− c
(

1+
1
ε1

)
− c
(

1+
1
ε1

+
1
ε3

1

)
> 0

(N2 exists because l > 0 according to (2.3)), ε4 small enough so that

γ1−N2ε4 > 0,

N1 large enough so that (notice that g0 > 0 according to (2.3))

N1ρ2g0− c−N2c
(

1+
1
ε4

)
− c

ε1
> 0,

and N large enough so that

Nα− 1
ε1
−N1ε2− c

(
1+

1
ε1

)
−N2c− c

(
1+

1
ε1

)
− cε1 > 0,

N
β

2
−N1c− c

ε1
> 0 and NK−m− K2

2
> 0.

Consequently, from the definition of the energy functional E, we obtain, for some c1 > 0,

F ′ (t)≤−c1E (t)+ c(g◦ψx) . (4.6)

In order to solve this differential inequality, we have first to distinguish two cases related to
(4.4).

The case, ξ ≡ constant. From the right inequality in (2.4), we have

ξ0(t)(g◦ψx) = ((ξ0g)◦ψx)≤−(g′ ◦ψx),

then, using (2.12), we find

ξ (t)(g◦ψx)≤−
2
β

E ′(t). (4.7)
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The case ,ξ0 6= constant. Following the arguments in [20] and [22], and using the right
inequality in (2.4), we get

ξ0(t)
∫ t

0
g(s)‖ηx‖2

2 ds≤
∫ t

0
ξ0(s)g(s)‖ηx‖2

2 ds≤−
∫ t

0
g′(s)‖ηx‖2

2 ds≤−(g′ ◦ψx).

Next, recalling (2.12), we obtain

ξ0(t)
∫ t

0
g(s)‖ηx‖2

2 ds≤− 2
β

E ′(t). (4.8)

On the other hand, the definition of E and the fact that E is nonincreasing imply that

‖ψx‖2
2 ≤

2
β l

E(t)≤ 2
β l

E(0).

Therefore, for s≥ t,

‖ηx‖2
2 = ‖η0x(·,s− t)+ψx(·, t)−ψx(·,0)‖2

2 ≤ c

(
E(0)+ sup

s∈R+

‖η0x‖2
2

)
.

In view of the boundedness condition on η0 in (4.4), we deduce that

ξ0(t)
∫ +∞

t
g(s)‖ηx‖2

2 ds≤ cξ0(t)
∫ +∞

t
g(s)ds. (4.9)

Hence, the combination of (4.8) and (4.9) yields

ξ0(t)
∫ +∞

0
g(s)‖ηx‖2

2 ds≤− 2
β

E ′(t)+ cξ0(t)
∫ +∞

t
g(s)ds. (4.10)

Finally, multiplying (4.6) by ξ0(t) and combining with (4.7) and (4.10), we get for the two
previous cases and for some c2 > 0,

ξ0(t)F ′(t)≤−c1ξ0(t)E(t)+ cξ0(t)
∫ +∞

t
g(s)ds− c2E ′(t). (4.11)

Let

F̃ = ξ0F + c2E and h(t) = ξ0(t)
∫ +∞

t
g(s)ds.

Noticing that ξ0 is nonincreasing and using (4.2) and (4.11), we deduce that

F̃ ′(t)≤−c1ξ0(t)E(t)+ ch(t)+ξ
′
0(t)F(t)≤−c1ξ0(t)E(t)+ ch(t). (4.12)

Thanks to (4.3) and because, again, ξ0 is nonincreasing, we see that, for some positive constants
µ̃1 and µ̃2

µ̃1E ≤ F̃ ≤ µ̃2E. (4.13)

Therefore, (4.12) implies that, for any α0 ∈]0,β0[, where β0 = min
{

1, c1
µ̃2

}
,

F̃ ′(t)≤−α0ξ0(t)F̃(t)+ ch(t). (4.14)

Then, (4.14) implies that

∂

∂ t

e
α0

∫ t

0
ξ0(s)ds

F̃(t)

≤ ce
α0

∫ t

0
ξ0(s)ds

h(t).
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It follows, by integrating over [0,T ] with T ≥ 0, that

F̃(T )≤ e
−α0

∫ T

0
ξ0(s)ds

F̃(0)+ c
∫ T

0
e

α0

∫ t

0
ξ0(s)ds

h(t)dt

 ,

which implies, according to (4.13), that

E(T )≤ ce
−α0

∫ T

0
ξ0(s)ds

1+
∫ T

0
e

α0

∫ t

0
ξ0(s)ds

h(t)dt

 . (4.15)

Since

e
α0

∫ t

0
ξ0(s)ds

h(t) =
1

α0

∂

∂ t

e
α0

∫ t

0
ξ0(s)ds

∫ +∞

t
g(s)ds,

we may write

∫ T

0
e

α0

∫ t

0
ξ0(s)ds

h(t)dt

=
1

α0

e
α0

∫ T

0
ξ0(s)ds ∫ +∞

T
g(s)ds−

∫ +∞

0
g(s)ds+

∫ T

0
e

α0

∫ t

0
ξ0(s)ds

g(t)dt

 .

Consequently, combining with (4.15), we arrive at

E(T )≤ c

e
−α0

∫ T

0
ξ0(s)ds

+
∫ +∞

T
g(s)ds


+ ce

−α0

∫ T

0
ξ0(s)ds ∫ T

0
e

α0

∫ t

0
ξ0(s)ds

g(t)dt.

(4.16)

On the other hand, the right inequality in (2.4) implies that

∂

∂ t

e
α0

∫ t

0
ξ0(s)ds

(g(t))α0

= α0(g(t))α0−1(ξ0(t)g(t)+g′(t))e
α0

∫ t

0
ξ0(s))ds

≤ 0,

and, hence,

e
α0

∫ t

0
ξ0(s)ds

(g(t))α0 ≤ (g(0))α0.

We end up with

∫ T

0
e

α0

∫ t

0
ξ0(s)ds

g(t)dt ≤ (g(0))α0

∫ T

0
(g(t))1−α0 dt. (4.17)

Finally, (4.16) and (4.17) give (4.5). �
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4.2. Weak stability. Here we consider the case

ρ2

ρ1
6= k2

k1
. (4.18)

and prove the following weak stability result.

Theorem 4.8. Assume that (A1), (A2) and (4.18) are satisfied. Let Ψ0 ∈ D(B) be given and

ξ0 ≡ constant or sup
s∈R+

max
k=0,1

∥∥∥∥ ∂ k

∂ sk η0x

∥∥∥∥
2
<+∞. (4.19)

Then, there exists a positive constant α1 > 0 such that

E(t)≤ α1

(
1+

∫ t

0
ξ0(s)

∫ +∞

s
g(p)d pds

)(∫ t

0
ξ0(s)ds

)−1

, ∀t > 0. (4.20)

Remark 4.9. 1. If (A2) holds with ξ0≡ constant (which implies that g converges exponentially
to zero at infinity), then (4.5) leads to, for some positive constants d1 and d2,

E(t)≤ d1e−d2t , ∀t ∈ R+, (4.21)

and (4.20) implies that

E(t)≤ d1

t
, ∀t > 0. (4.22)

The decay rates of E in (4.21) and (4.22) are the best ones which can be obtained from (4.5)
and (4.20), respectively.

2. If ξ0 ≡ constant, then (A2) implies that g converges exponentially to zero at infinity.
However, when ξ0 6= constant, condition (A2) allows s 7→ g(s) to have a decay rate arbitrarly
close to 1

s at infinity, which represents the critical limit, since g is integrable on R+. For specific
examples of g satisfying (A1)-(A2), and the corresponding decay rates given by (4.5) and (4.20),
we refer to [20] and [22].

3. Using the arguments of [23] introduced for wave equations with infinite memories, the
boundedness restrictions (4.4) and (4.19) on the initial data η0 can be removed, and the admis-
sible class of kernels g can be widened by replacing the right inequality in (2.4) by the following
weaker one:

g′(t)≤−ξ0(t)G(g(t)), ∀t ∈ R+,

where G is a given function satisfying some hypotheses. Instead (4.5) and (4.20), we will get
more general stability estimates which take into consideration the size of η0. We do not apply
the arguments of [23] in the present paper because seeking the largest class possible of η0 and
g is not among our objectives and, moreover, we want to keep our paper not too long.

Proof of Theorem 4.8. We consider the energy of second order defined by

E1(t) = E(ϕt ,ψt ,θt)

=
1
2

[
ϕ

2
t (0, t)+mϕ

2
tt(0, t)+βmEϕ

2
tt (L, t)+ρ3 ‖θtt‖2

2 + k3 ‖θxt‖2
2

]
+

β

2

[
ρ1 ‖ϕtt‖2

2 +ρ2 ‖ψtt‖2
2 + l ‖ψxt‖2

2 + k1 ‖(ϕx +ψ)t‖
2
2 +(g◦ψxt)(t)

]
.



GENERAL STABILITY RESULTS FOR THE TRANSLATIONAL PROBLEM OF MEMORY-TYPE 21

Clearly,

E ′1(t) =−Kϕ
2
tt(0, t)−α ‖θxtt‖2

2 +
β

2
(
g′ ◦ψxt

)
. (4.23)

On the other hand, because the last term in (4.1) does not necessarily vanish (in view of (4.18)),
we find, instead of (4.6),

F ′ (t)≤−c1E (t)+ c(g◦ψx)+

(
ρ2−

k2ρ1

k1

)∫ L

0
ϕxtψtdx. (4.24)

Therefore, instead of (4.12), in this case

F̃ ′(t)≤−α0ξ0(t)E(t)+ ch(t)+ξ0(t)
(

ρ2−
k2ρ1

k1

)∫ L

0
ϕxtψtdx. (4.25)

The following lemma gives an estimation of the last term in (4.25).

Lemma 4.10. For any ε > 0, there exists cε > 0 such that∣∣∣∣(ρ2−
k2ρ1

k1

)∫ L

0
ϕxtψt dx

∣∣∣∣≤ cε

∫ +∞

0
g(s)‖ηxt‖2

2 ds+ εE(t)− cεE ′(t). (4.26)

Proof. We have, by integrating by parts and using the definition of η ,(
ρ2− k2ρ1

k1

)∫ L

0
ϕxtψt dx =

(
k2ρ1
k1
−ρ2

)∫ L

0
ψxtϕt dx

= 1
g0

(
k2ρ1
k1
−ρ2

)∫ L

0
ϕt

∫ +∞

0
g(s)ηxt dsdx

+ 1
g0

(
k2ρ1
k1
−ρ2

)∫ L

0
ϕt

∫ +∞

0
g(s)ψxt(t− s)dsdx.

(4.27)

Using the definition of E, it is to see that, for all ε > 0,∣∣∣∣ 1
g0

(
k2ρ1

k1
−ρ2

)∫ L

0
ϕt

∫ +∞

0
g(s)ηxt dsdx

∣∣∣∣≤ ε

2
E(t)+ cε

∫ +∞

0
g(s)‖ηxt‖2

2 ds. (4.28)

On the other hand, an integration with respect to s and the use of the definition of η allow us to
write∫ L

0
ϕt

∫ +∞

0
g(s)ψxt(t− s)dsdx = −

∫ L

0
ϕt

∫ +∞

0
g(s)∂s(ψx(t− s))dsdx

=
∫ L

0
ϕt

(
g(0)ψx(t)+

∫ +∞

0
g′(s)ψx(t− s)ds

)
dx

= −
∫ L

0
ϕt

∫ +∞

0
g′(s)ηx dsdx.

Therefore, in view of (2.12), we have∣∣∣∣ 1
g0

(
k2ρ1

k1
−ρ2

)∫ L

0
ϕt

∫ +∞

0
g(s)ψxt(t− s)dsdx

∣∣∣∣≤ ε

2
E(t)− cεE ′(t). (4.29)

Inserting (4.28) and (4.29) into (4.27), we obtain (4.26).
Now, combining (4.25) and (4.26), and choosing ε small enough, we find, for some positive

constant c̃,

F̃ ′(t)≤−c̃ξ0(t)E(t)+ ch(t)− cξ0(t)E ′(t)+ cξ0(t)
∫ +∞

0
g(s)‖ηxt‖2

2 ds. (4.30)
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On the other hand, using the boundedness condition on η0 in (4.19), we have (as for (4.7) and
(4.10))

ξ0(t)
∫ +∞

0
g(s)‖ηxt‖2

2 ds≤−cE ′1(t)+ ch(t). (4.31)

Hence, (4.30) and (4.31) lead to(
F̃(t)+ cE1(t)+ cξ0(t)E(t)

)′ ≤−cξ0(t)E(t)+ ch(t)+ cξ
′
0(t)E(t)≤−cξ0(t)E(t)+ ch(t),

(4.32)
since ξ0 is nonincreasing. Finally, by integrating over [0,T ] and having in mind that E is
nonincreasing, we end up with

cE(T )
∫ T

0
ξ0(t)dt ≤ F̃(0)+ cE1(0)+ cξ0(0)E(0)+ c

∫ T

0
h(t)dt,

which leads to the desired result (4.20). �

Remark 4.11. Here it is rather porous thermoelastic Timoshenko system of type III which is
fixed to a base in translational motion at one end and a dynamic mass is attached to the other
end. For such a system and that complications, stability results were achieved by controlling
the structure through the base platform in both cases, equal and nonequal of wave speeds of
propagation.
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