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In this paper, we consider a Timoshenko system in one-dimensional bounded do-
main with infinite memory and distributed time delay both acting on the equation of
the rotation angle. Without any restriction on the speeds of wave propagation and
under appropriate assumptions on the infinite memory and distributed time delay
convolution kernels, we prove, first, the well-posedness and, second, the stability
of the system, where we present some decay estimates depending on the equal-
speed propagation case and the opposite one. The obtained decay rates depend on
the growths of the memory and delay kernels at infinity. In the nonequal-speed
case, the decay rate depends also on the regularity of initial data. Our stability re-
sults show that the only dissipation resulting from the infinite memory guarantees
the asymptotic stability of the system regardless to the speeds of wave propaga-
tion and in spite of the presence of a distributed time delay. Applications of our
approach to specific coupled Timoshenko-heat and Timoshenko-wave systems as
well as the discrete time delay case are also presented. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891489]

I. INTRODUCTION

Let g : R+ → R+ and f : R+ → R be given functions. We consider the following Timoshenko
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕt t (x, t) − k1(ϕx (x, t) + ψ(x, t))x = 0,

ρ2ψt t (x, t) − k2ψxx (x, t) + k1(ϕx (x, t) + ψ(x, t))

+
∫ +∞

0
g(s)ψxx (x, t − s)ds +

∫ +∞

0
f (s)ψt (x, t − s)ds = 0,

ϕ(0, t) = ψ(0, t) = ϕ(L , t) = ψ(L , t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt (x,−t) = ψ1(x, t),

(1.1)

where (x, t) ∈]0, L[×R+, (ϕ0, ψ0, ϕ1, ψ1) are given initial data belonging to a suitable space, (ϕ,
ψ) is the state (unknown) of (1.1), L, ρ1, ρ2, k1, and k2 are positive constants. A subscript y denotes
the derivative with respect to y. We also use the prime notation to denote the derivative when the
function has only one variable. The infinite integrals depending on g and f represent, respectively,
the infinite memory and the distributed time delay terms. This type of systems has been introduced
in Ref. 44. It describes the transverse vibration of a thick beam of length L, where ϕ is the transverse
displacement of the beam, − ψ is the rotation angle of the filament of the beam, and ρ1, ρ2, k1, and
k2 account for some physical properties of the beam (see, for example, Refs. 23 and 24).
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Our objective here is to prove the well-posedness and investigate the asymptotic behavior as
time goes to infinity of solutions of (1.1) under appropriate assumptions on the convolution kernels
g and f.

The questions related to well-posedness and stability/instability of evolution equations with
delay and/or memory have attracted considerable attention in recent years and many researchers
have shown that the memory plays the role of a damper, whereas the time delay can destabilize a
system that was asymptotically stable in the absence of time delay. The main problem concerning the
stability in the presence of memory is determining the largest class of kernels g which guarantee the
stability and the best relation between the decay rate of g and the asymptotic behavior of solutions of
the considered system. Because a small delay time can be a source of instability (see, for example,
Ref. 28), to stabilize a hyperbolic system involving input delay terms, additional control terms (like
memory or frictional damping) will be necessary. Let us recall some works related to the subject of
the present paper.

In the absence of time delay term (i.e., f ≡ 0), a large amount of the literature is available on
Timoshenko-type systems44 with (finite or infinite) memory or frictional damping, addressing the
issues of the existence, uniqueness, smoothness, and asymptotic behavior in time; see, for example,
Refs. 2, 4, 5, 8, 9, 16–19, 25, and 26, and the references cited therein. In these papers, it was shown
that the dissipation given by the memory term is strong enough to stabilize the system, and various
decay estimates (exponential, polynomial, or others) have been obtained depending on the regularity
of the initial data, the growth of g at infinity and the relation

k1

ρ1
= k2

ρ2
(1.2)

and the opposite one. The equality (1.2) means that the first two equations of (1.1) have the same

speeds of wave propagation

√
k1

ρ1
and

√
k2

ρ2
, respectively. Similar stability results are known in the

literature for other hyperbolic evolution equations with memory; see, for example, Ref. 14 and the
references cited therein. The idea of proof consists in considering some integral and/or differenial
inequalities involving g and/or some of its derivatives as a characterization of the growth of g at
infinity from which the decay rate of the solution is deduced.

When the second equation of (1.1) is replaced by

ρ2ψt t (x, t) − k2ψxx (x, t) + k1(ϕx (x, t) + ψ(x, t)) (1.3)

+
∫ t

0
g(s)ψxx (x, t − s)ds + μ1ψt (x, t) + μ2ψt (x, t − τ ) = 0,

where μ1, μ2, and τ are fixed non-negative constants, the stability of Timoshenko system was
proved in Ref. 35 under the assumption 0 ≤ μ2 ≤ μ1. The decay rate of solution obtained in
Ref. 35 depends on the one of g. This result shows that the dissipation resulting from both finite

memory
∫ t

0
g(s)ψxx (x, t − s)ds and frictional damping μ1ψ t(x, t) is strong enough to stabilize

Timoshenko system in presence of a constant discrete time delay μ2ψ t(x, t − τ ) provided that the
coefficient of the delay is smaller or equal than the one of the damping. Similar stability results for
various hyperbolic evolution equations with frictional damping and time delay exist in the literature,
in this regard, we refer the reader to Refs. 3, 6, 7, 21, 27–31, and 32.

As far as we know, the problem of stability of Timoshenko system with infinite memory and
distributed time delay considered in this paper has never been treated in the literature. The stability
of the following abstract hyperbolic equation with infinite memory and discrete or distributed time
delay:

utt (t) + Au(t) −
∫ +∞

0
g(s)Au(t − s)ds + μut (t − τ )ds = 0 (1.4)
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and

utt (t) + Au(t) −
∫ +∞

0
g(s)Bu(t − s)ds +

∫ +∞

0
f (s)ut (t − s)ds = 0 (1.5)

was studied in, respectively, Refs. 15 and 20, and several decay estimates were proved depending
on the growth of g and f at infinity, and the connection between the operators A and B. But
(1.4)(1.5) do not include (1.1), since the operators A and B are supposed to be definite positive in
Refs. 15 and 20.

Unlike the discrete time delay models, which ignore the inherent memory effects, the distributed
time delay considered in this paper do take into account the whole (infinite) past history of the
solution. More precisely, we are in presence of an indefinite frictional damping which depends on
all previous states (the past information is stored and used later). This is what makes the present
case more realistic. In fact, the discrete case will be a special case which corresponds to the Dirac
delta distribution kernel (at some time τ ).

According to the known results cited above, one main question naturally arises: is it possible
for the memory term, which plays solely the role of dissipation in (1.1), to play the same role
as a robust controller against the delay and stabilize (1.1), and is it possible to get the decay rate
of solutions explicitly in term of, in particular, the connection between the delay and the memory
kernels? As far as we know, this situation has never been considered before in the literature. In this
paper, we shall prove, regardless of the speeds of wave propagation and under some appropriate
assumptions on g and f, that (1.1) is well-posed in an appropriate underlying space, and that the only
dissipation generated by the infinite memory guarantees the asymptotic stability of (1.1) in spite of
the presence of a distributed time delay. Moreover, the decay rate of solutions is explicitly found in
terms of the growths of g and f at infinity. When (1.2) does not hold, the decay rate depends also
on the regularity of initial data and, so, it can be improved by choosing initial data regular enough.
The proof is based on the semigroup theory for the well-posedness, and the energy method for the
stability. We introduce new functionals to get crucial estimates on the distributed time delay and
the infinite memory, and overcome subsequently the difficulties generated by the nondissipativeness
character of our system (1.1). Moreover, we will appeal to some ideas and arguments in Refs. 20
and 36–43. These ideas will, in particular, allow us to deal with some arbitrary decaying kernels
without assuming explicit conditions on their derivatives. The approach presented in this paper can
be applied to the case of finite memory and/or discrete time delay as well as other Timoshenko-type
systems.

The plan of the paper is as follows. In Sec. II, we present our assumptions on g and f, and
state and prove the well-posedness of (1.1). Section III is devoted to the statement and proof of the
asymptotic stability results of (1.1) under some additional assumptions on g and f. Section IV will
be devoted to some applications to the coupled Timoshenko-heat and Timoshenko-wave systems as
well as to the discrete time delay case. Finally, in Sec. V, we discuss some general comments and
issues.

II. WELL-POSEDNESS

In this section, we state our assumptions on g and f, and prove the global existence, uniqueness,
and smoothness of the solution of (1.1). We assume that

(A1) The function g is of class C1(R+,R+), nonincreasing and satisfies

g0 :=
∫ +∞

0
g(s)ds < k2. (2.1)

Moreover, for some positive constant θ0,

−g′(s) ≤ θ0g(s), ∀s ∈ R+. (2.2)
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(A2) The function f is of class C1(R+,R) and satisfies, for some positive constant α,

| f (s)| ≤ αg(s) and | f ′(s)| ≤ αg(s), ∀s ∈ R+. (2.3)

Following a method devised in Ref. 5, we consider a new auxiliary variable η to treat the infinite
memory and distributed time delay terms, and formulate the system (1.1) in the following abstract
linear first-order system: {

Ut (t) = (A + B)U (t),

U (0) = U0,
(2.4)

where {
U = (ϕ,ψ, ϕt , ψt , η)T ,

U0 = (ϕ0, ψ0(·, 0), ϕ1, ψ1(·, 0), η0)T ∈ H ,

H = (
H 1

0 (]0, L[)
)2 × (

L2(]0, L[)
)2 × L2

g(R+, H 1
0 (]0, L[))

and {
η(x, t, s) = ψ(x, t) − ψ(x, t − s),

η0(x, s) = η(x, 0, s) = ψ0(x, 0) − ψ0(x, s).
(2.5)

The set L2
g(R+, H 1

0 (]0, L[)) is the weighted space with respect to the measure g(s)ds defined by

L2
g(R+, H 1

0 (]0, L[)) =
{
w : R+ → H 1

0 (]0, L[),
∫ L

0

∫ +∞

0
g(s)w2

x (x, s)dsdx < +∞
}

and endowed with the classical inner product

〈v,w〉L2
g(R+,H 1

0 (]0,L[)) =
∫ L

0

∫ +∞

0
g(s)vx (x, s)wx (x, s)dsdx .

The operators B and A are linear and given by

B(w1, w2, w3, w4, w5)T =
(

0, 0, 0,
‖ f ‖∞

ρ2
w4, ε0w5

)T

(2.6)

and

A

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

w3

w4

k1
ρ1

(w1x + w2)x

w̃4

−w5s − ε0w5 + w4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.7)

where

w̃4 = 1

ρ2
(k2 − g0)w2xx − k1

ρ2
(w1x + w2) − ‖ f ‖∞

ρ2
w4

+ 1

ρ2

∫ +∞

0
g(s)w5xx (s)ds − 1

ρ2

∫ +∞

0
f (s)w5s(s)ds,

ε0 = α2g0c0

4‖ f ‖∞
(2.8)

and c0 is the smallest positive constant satisfying (Poincaré’s inequality)∫ L

0
w2(x)dx ≤ c0

∫ L

0
w2

x (x)dx, ∀w ∈ H 1
0 (]0, L[) (2.9)
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(ε0 is well defined positive constant, since ‖f‖∞ > 0. Otherwise, f ≡ 0 and then no distributed time
delay is considered in (1.1), which is a well studied case in the literature; see the Introduction). The
domains D(B) and D(A ) of B and A , respectively, are given by D(B) = H and

D(A ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W = (w1, w2, w3, w4, w5)T ∈ H , w5(0) = 0

w5s ∈ L2
g(R+, H 1

0 (]0, L[)), w3, w4 ∈ H 1
0 (]0, L[), w1 ∈ H 2(]0, L[)

(k2 − g0)w2xx +
∫ +∞

0
g(s)w5xx (s)ds ∈ L2(]0, L[)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (2.10)

since, thanks to the Cauchy-Schwarz inequality and the first inequality in (2.3),

w5s ∈ L2
g(R+, H 1

0 (]0, L[)) =⇒
∫ +∞

0
f (s)w5s(s)ds ∈ L2(]0, L[). (2.11)

We use the classical notations D(A 0) = H , D(A 1) = D(A ) and

D(A n) = {W ∈ D(A n−1),A W ∈ D(A n−1)}, n = 2, 3, · · · ,

endowed with the classical graph norm

‖W‖D(A n ) =
n∑

k=0

‖A k W‖H . (2.12)

On the other hand, keeping in mind the definition of η in (2.5), we have⎧⎪⎨
⎪⎩

ηt (x, t, s) + ηs(x, t, s) = ψt (x, t),

η(0, t, s) = η(L , t, s) = 0,

η(x, t, 0) = 0.

(2.13)

Therefore, we conclude from (2.6), (2.7), and (2.13) and the equality

ηs(x, t, s) = ψt (x, t − s) (2.14)

that the systems (1.1) and (2.4) are equivalent.
Thanks to (2.1), it is well-known that H endowed with the inner product, for W =

(w1, w2, w3, w4, w5)T and W̃ = (w̃1, w̃2, w̃3, w̃4, w̃5)T ,

〈
W, W̃

〉
H

=
∫ L

0
((k2 − g0)w2x (x)w̃2x (x) + k1(w1x (x) + w2(x))(w̃1x (x) + w̃2(x))) dx

+
∫ L

0
(ρ1w3(x)w̃3(x) + ρ2w4(x)w̃4(x))dx + 〈w5, w̃5〉L2

g(R+,H 1
0 (]0,L[))

is a Hilbert space and D(A ) ⊂ H with dense embedding, since, using contradiction arguments,
this inner product generates on H a norm equivalent to the one of

H0 := (H 1(]0, L[))2 × (L2(]0, L[))2 × L2
g(R+, H 1(]0, L[));

that is, there exist two positive constants d1 and d2 satisfying, for all W ∈ H ,

d1‖W‖H0 ≤ ‖W‖H ≤ d2‖W‖H0 . (2.15)

The well-posedness of problem (2.4) is ensured by the following theorem:

Theorem 2.1. Assume that (A1)–(A2) hold. Then, for any n ∈ N and U0 ∈ D(A n), the system
(2.4) has a unique solution satisfying

U ∈ ∩n
k=0Ck(R+,D(A n−k)). (2.16)

Proof. To prove Theorem 2.1, we use the semigroup approach. So, first, we show that the linear
operator A is dissipative. Indeed, let W = (w1, w2, w3, w4, w5)T ∈ D(A ), then
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〈A W, W 〉H (2.17)

=
∫ L

0
((k2 − g0)w4x (x)w2x (x) + k1(w3x (x) + w4(x))(w1x (x) + w2(x))) dx

+
∫ L

0
(k1(w1x (x) + w2(x))xw3(x) − k1(w1x (x) + w2(x))w4(x)) dx

+
∫ L

0
((k2 − g0)w2xx − ‖ f ‖∞w4(x)) w4(x)dx

+
∫ L

0

(∫ +∞

0
g(s)w5xx (x, s)ds −

∫ +∞

0
f (s)w5s(x, s)ds

)
w4(x)dx

+
∫ L

0

∫ +∞

0
g(s)(−w5s(x, s) − ε0w5(x, s) + w4(x))xw5x (x, s)dsdx .

It is clear that by integrating by parts with respect to s and using the fact that

lim
s→+∞ g(s)w5x (x, s) = lim

s→+∞ f (s)w5(x, s) = 0

(due to (A1), (2.3) and (2.9)) and w5(x, 0) = 0 (definition of D(A )), we find

−
∫ L

0

∫ +∞

0
g(s)w5x (x, s)w5xs(x, s)dsdx = 1

2

∫ L

0

∫ +∞

0
g′(s)w2

5x (x, s)dsdx . (2.18)

Note that, thanks to (2.2) and the fact that g is nonincreasing and w5 ∈ L2
g(R+, H 1

0 (]0, L[)),

∣∣∣∣
∫ L

0

∫ +∞

0
g′(s)w2

5x (x, s)ds

∣∣∣∣ = −
∫ L

0

∫ +∞

0
g′(s)w2

5x (x, s)ds

≤ θ0

∫ L

0

∫ +∞

0
g(s)w2

5x (x, s)ds

< +∞,

so the integral in the right hand side of (2.18) is well defined. Moreover,

−
∫ L

0
w4(x)

∫ +∞

0
f (s)w5s(x, s)dsdx =

∫ L

0
w4(x)

∫ +∞

0
f ′(s)w5(x, s)dsdx . (2.19)

Consequently, inserting (2.18) and (2.19) in (2.17) and integrating by parts with respect to x, we get

〈A W, W 〉H = 1

2

∫ L

0

∫ +∞

0
g′(s)w2

5x (x, s)dsdx

+
∫ L

0
w4(x)

∫ +∞

0
f ′(s)w5(x, s)dsdx (2.20)

− ‖ f ‖∞
∫ L

0
w2

4(x)dx − ε0

∫ L

0

∫ +∞

0
g(s)w2

5x (x, s)dsdx .

Now, using Young’s inequalities, (2.9) and the second inequality in (2.3) imply that (ε0 and c0 are
defined, respectively, in (2.8) and (2.9)),

∫ L

0
w4(x)

∫ +∞

0
f ′(s)w5(x, s)dsdx (2.21)
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≤ α

2

√
c0‖ f ‖∞

ε0g0

∫ L

0

∫ +∞

0
g(s)w2

4(x)dsdx + α

2

√
ε0g0

c0‖ f ‖∞

∫ L

0

∫ +∞

0
g(s)w2

5(x, s)dsdx

≤ α

2

√
c0g0‖ f ‖∞

ε0

∫ L

0
w2

4(x)dx + α

2

√
ε0g0c0

‖ f ‖∞

∫ L

0

∫ +∞

0
g(s)w2

5x (x, s)dsdx

≤ ‖ f ‖∞
∫ L

0
w2

4(x)dx + ε0

∫ L

0

∫ +∞

0
g(s)w2

5x (x, s)dsdx .

Finally, combining (2.20) and (2.21), and using the fact that g is nonincreasing, we obtain

〈A W, W 〉H ≤ 1

2

∫ L

0

∫ +∞

0
g′(s)w2

5x (x, s)dsdx ≤ 0, (2.22)

which means that A is dissipative.
Next, we shall prove that I d − A is surjective. Indeed, let F = ( f1, f2, f3, f4, f5)T ∈ H , we

show that there exists W = (w1, w2, w3, w4, w5)T ∈ D(A ) satisfying

(I d − A )W = F, (2.23)

which is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w3 = w1 − f1,

w4 = w2 − f2,

ρ1w1 − k1(w1x + w2)x = ρ1( f1 + f3),

(ρ2 + ‖ f ‖∞)w2 − (k2 − g0)w2xx + k1(w1x + w2) −
∫ +∞

0
g(s)w5xx (s)ds

+
∫ +∞

0
f (s)w5s(s)ds = (ρ2 + ‖ f ‖∞) f2 + ρ2 f4,

w5s + (1 + ε0)w5 = w2 + f5 − f2.

(2.24)

We note that the last equation in (2.24) with w5(0) = 0 has the unique solution

w5(s) = e−(1+ε0)s
∫ s

0
e(1+ε0)y(w2 + f5(y) − f2)dy

= (1 + ε0)−1
(
1 − e−(1+ε0)s

)
w2 + e−(1+ε0)s

∫ s

0
e(1+ε0)y( f5(y) − f2)dy. (2.25)

Next, plugging (2.25) into the fourth equation in (2.24), we get{
ρ1w1 − k1(w1x + w2)x = ρ1( f1 + f3),

l2w2 − l1w2xx + k1(w1x + w2) = f̃ ,
(2.26)

where

l1 = k2 − g0 + (1 + ε0)−1g0 − (1 + ε0)−1
∫ +∞

0
g(s)e−(1+ε0)sds,

l2 = ρ2 + ‖ f ‖∞ +
∫ +∞

0
f (s)e−(1+ε0)sds

and

f̃ = (ρ2 + ‖ f ‖∞) f2 + ρ2 f4 + (1 + ε0)
∫ +∞

0
f (s)e−(1+ε0)s

(∫ s

0
e(1+ε0)y( f5(y) − f2)dy

)
ds

−
∫ +∞

0
f (s)( f5(s) − f2)ds +

∫ +∞

0
g(s)e−(1+ε0)s

(∫ s

0
e(1+ε0)y( f5(y) − f2)xx dy

)
ds.
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It remains only to prove that (2.26) has a solution (w1, w2) ∈ (
H 1

0 (]0, L[)
)2

. Then, substituting in
(2.25) and the first two equations in (2.24), we obtain W ∈ D(A ) satisfying (2.23). Since l1 ≥ k2

− g0 > 0 (according to (2.1)) and

l2 ≥ ρ2 + ‖ f ‖∞ − ‖ f ‖∞
1

1 + ε0
≥ ρ2 > 0,

we see that the operator

K

(
w1

w2

)
=
(

ρ1w1 − k1(w1x + w2)x

l2w2 − l1w2xx + k1(w1x + w2)

)
,

is self-adjoint linear positive definite. Considering the variational formulation of (2.26), and applying
the Lax-Milgram theorem and classical regularity arguments, we conclude that (2.26) has a unique
solution (w1, w2) ∈ (

H 1
0 (]0, L[)

)2
satisfying the third and fourth equations of (2.24), since (2.25).

Therefore, using (2.11),

(k2 − g0)w2xx +
∫ +∞

0
g(s)w5xx (s)ds ∈ L2(]0, L[).

This proves that I d − A is surjective. Finally, we note that (2.22) and (2.23) mean that −A is a
maximal monotone operator. Hence, using Lummer-Phillips theorem (see Ref. 34), we deduce that
A is an infinitesimal generator of a linear C0-semigroup on H .

On the other hand, as the linear operator B (defined in (2.6)) is Lipschitz continuous, it
follows that A + B also is an infinitesimal generator of a linear C0-semigroup on H (see Ref. 34:
Chap. 3 – Theorem 1.1). Consequently, (2.4) is well-posed in the sense of Theorem 2.1 (see
Refs. 22 and 34). �

III. ASYMPTOTIC STABILITY

In this section, we investigate the asymptotic behavior of the solution of (2.4) by the use of
the energy method. We produce suitable Lyapunov functionals and prove some decay estimates
depending on the asymptotic behavior of g, the connection between g and f, and the regularity of
initial data.

A. Additional assumptions and stability results

Our asymptotic stability results hold under the following additional assumptions:

(A3) The function g satisfies

g0 :=
∫ +∞

0
g(s)ds > 0 (3.1)

and one of the following two conditions holds:

∃θ1 > 0, g′(s) ≤ −θ1g(s), ∀s ∈ R+ (3.2)

or there exists a positive nonincreasing function ξ : R+ → R∗
+ of class C(R+,R∗

+) such that⎧⎨
⎩ g(t − s) ≥ ξ (t)

∫ +∞

t
g(τ − s)dτ, ∀t ∈ R+, ∀s ∈ [0, t],

g′(s) < 0, ∀s ∈ R+.

(3.3)

(A4) There exists a positive even function γ : R → R∗
+ of class C(R,R∗

+) and nonincreasing on
R+, and a positive function β : R+ → R∗

+ of class C(R+,R∗
+) such that

β0 :=
∫ +∞

0
β(s)ds < +∞ (3.4)
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and

| f (s)| ≤ e−γ̃ (s)β(s)g(s), ∀s ∈ R+, (3.5)

where

γ̃ (s) = 2
∫ s

2

0
γ (τ )dτ, ∀s ∈ R+. (3.6)

Moreover, when (1.2) does not hold, we assume also that f is of class C3(R+,R) and satisfies,
for some positive constant α̃,

| f ′′(s)| ≤ α̃g(s) and | f ′′′(s)| ≤ α̃g(s), ∀s ∈ R+. (3.7)

Remark 3.1. The condition (2.2) implies that the decay rate of g is at most of exponential type.
The conditions (3.2) and (3.3) include, respectively, the class of functions g which converge to zero
at least exponentially or less than exponentially. When

lim
t→+∞ ξ (t) > 0,

the first inequality in (3.3), introduced in Refs. 39 and 42, implies that g converges to zero at least
exponentially but it does not involve the derivative of g. We distinguish the cases (3.2) and (3.3)
because they lead to different kinds of decays.

Theorem 3.2. Assume that (A1)–(A4) hold. Then there exists a positive constant δ0 independent
of f such that, if ∫ +∞

0
| f (s)|ds < δ0, (3.8)

then, we have the following stability results:

(i) Equal speed propagation and exponential decay of g: if (1.2) and (3.2) hold, then, for any
U0 ∈ D(A ), there exist positive constants δ1 and δ2 such that

‖U (t)‖2
H ≤ δ2e−δ1φ(t), ∀t ∈ R+, (3.9)

where

φ(t) =
∫ t

0
min{1, γ (s)}ds. (3.10)

(ii) Nonequal speed propagation and exponential decay of g: if (1.2) does not hold and (3.2)
holds, then, for any n = 2, 3, ··· and U0 ∈ D(A n), there exists a positive constant δ1 such that

‖U (t)‖2
H ≤ δ1

(1 + t)n−1
, ∀t ∈ R+. (3.11)

(iii) Equal speed propagation and arbitrary decay of g: if (3.2) does not hold, and (1.2) and
(3.3) hold, then, for any U0 ∈ D(A ), there exist positive constants δ1 and δ2 such that

‖U (t)‖2
H ≤ δ2e−δ1φ(t)

(
1 +

∫ L

0

∫ t

0
eδ1φ(s)

∫ +∞

s
g(τ )ψ2

0x (x, τ − s)dτdsdx

)
, ∀t ∈ R+, (3.12)

where

φ(t) =
∫ t

0
min{1, γ (s), ξ (s)}ds. (3.13)
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B. Examples and comments

Let us illustrate our decay estimates (3.9), (3.11), and (3.12) by the following simple examples
(some of them were given in Ref. 20 for (1.5)):

1. Equal speed propagation and exponential decay of g: (1.2) and (3.2) hold

Let us consider the class g(s) = α2e−α1s , with α1, α2 > 0. Then (A1) and (3.1) hold provided
that α2 is small enough so that (2.1) holds. This class satisfies (3.2) with θ1 = α1.

3.2.1.1. If

| f (s)| ≤ β2e−β1(s+1)p
g(s), ∀s ∈ R+, (3.14)

for some constants β1, β2, p > 0 with β2 small enough so that (3.8) holds, then (3.5) is satisfied
with β(s) = β2e−β0(s+1)p

,

γ (s) = q(β1 − β0)(2|s| + 1)q−1, (3.15)

any β0 ∈ ]0, β1[ and q = min {p, 1} (so γ is positive on R and nonincreasing on R+), and therefore,
(3.9) gives, for some positive constants c′ and c′′,

‖U (t)‖2
H ≤ c′′e−c′(t+1)q

, ∀t ∈ R+.

3.2.1.2. If

| f (s)| ≤ β2e−β1(ln(s+1))p

g(s), ∀s ∈ R+, (3.16)

for some constants β1, β2 > 0, and p > 1 with β2 small enough so that (3.8) holds, then (3.5) holds
with β(s) = β3e−β0(ln(s+1))p

,

γ (s) =

⎧⎪⎨
⎪⎩

p(β1 − β0)
(ln(2|s| + 1))p−1

2|s| + 1
if |s| ≥ 1

2
(ep−1 − 1) := s0,

p(β1 − β0)(p − 1)p−1e1−p := c̃ if |s| ∈ [0, s0],

(3.17)

β3 = β2e2c̃s0 and any β0 ∈ ]0, β1[ (so γ is positive and continuous on R, and nonincreasing on R+),
and therefore, (3.9) gives, for some positive constants c′ and c′′,

‖U (t)‖2
H ≤ c′′e−c′(ln(t+1))p

, ∀t ∈ R+.

3.2.1.3. If

| f (s)| ≤ β1

(s + 1)p
g(s), ∀s ∈ R+, (3.18)

for some constants β1 > 0 and p > 1 with β1 small enough so that (3.8) holds, then (3.5) holds with
β(s) = β1

(s+1)p−β0
,

γ (s) = β0

2|s| + 1
(3.19)

and any β0 ∈ ]0, p − 1[ (so β is integrable on R+), and therefore, (3.9) gives, for some positive
constants c′ and c′′,

‖U (t)‖2
H ≤ c′′(t + 1)−c′

, ∀t ∈ R+.

2. Nonequal speed propagation and exponential decay of g: (1.2) does not
hold and (3.2) holds

The estimate (3.11) gives a decay rate of polynomial type for the solution of (2.4), where the
decay rate depends on the regularity of initial data U0.
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3. Equal speed propagation and arbitrary decay of g: (3.2) does not hold,
and (1.2) and (3.3) hold

Let us consider the classes (3.14), (3.16), and (3.18) of f, and the following three classes of g
which satisfy (3.3) and do not satisfy (3.2).

3.2.3.1. If

g(s) = α2(s + 1)r−1e−α1(s+1)r
, (3.20)

for some constants α1, α2 > 0, and r ∈ ]0, 1[. Then (A1) and (3.1) hold provided that α2 is small
enough so that (2.1) holds. On the other hand, (3.3) holds with ξ (s) = α1(s + 1)r − 1, and therefore,
(3.12) holds with

φ(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0
ξ (s)ds in case (3.14) with r ≤ p,∫ t

0
γ (s)ds in case (3.14) with r > p, and in cases (3.16) and (3.18).

If, for example, for some positive constants λ0 and M0,∫ L

0
ψ2

0x (x, s)dx ≤ M0e(ln(s+1))λ0
, ∀s ∈ R+, (3.21)

then (3.12) implies that, for some positive constants c′ and c′′, and for all t ∈ R+,

‖U (t)‖2
H ≤

⎧⎪⎨
⎪⎩

c′′e−c′(t+1)min{p,r}
in case (3.14),

c′′e−c′(ln(t+1))p
in case (3.16),

c′′(t + 1)−c′
in case (3.18).

(3.22)

3.2.3.2. If

g(s) = α2

s + er−1
(ln(s + er−1))r−1e−α1(ln(s+er−1))r

, (3.23)

for some constants α1, α2 > 0, and r > 1. Then (A1) and (3.1) hold provided that α2 is small
enough so that (2.1) holds. On the other hand, (3.3) holds with ξ (s) = rα1(s + er − 1)− 1(ln (s +
er − 1))r − 1, and therefore, (3.12) holds with

φ(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0
ξ (s)ds in case (3.14), and in case (3.16) with r ≤ p,∫ t

0
γ (s)ds in case (3.18), and in case (3.16) with r > p.

If, for example, for some positive constants λ0 and M0,∫ L

0
ψ2

0x (x, s)dx ≤ M0(s + 1)λ0 , ∀s ∈ R+, (3.24)

then (3.12) implies that, for some positive constants c′ and c′′, and for all t ∈ R+,

‖U (t)‖2
H ≤

⎧⎪⎨
⎪⎩

c′′e−c′(ln(t+1))r
in case (3.14),

c′′e−c′(ln(t+1))min{p,r}
in case (3.16),

c′′(t + 1)−c′
in case (3.18).

(3.25)

3.2.3.3. If

g(s) = α1(s + 1)−r , (3.26)

for some constants α1 > 0 and r > 1. Then (A1) and (3.1) hold provided that α1 is small enough so
that (2.1) holds. On the other hand, (3.3) is satisfied with ξ (s) = (r − 1)(s + 1)− 1, and therefore,

(3.12) holds with φ(t) =
∫ t

0
ξ (s)ds.
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If, for example, for some positive constants λ0 and M0,∫ L

0
ψ2

0x (x, s)dx ≤ M0(ln(s + 2))λ0 , ∀s ∈ R+, ∀s ∈ R+, (3.27)

then (3.12) implies that, for some positive constants c′ and c′′, and for all t ∈ R+,

‖U (t)‖2
H ≤

{
c′′(t + 1)−c′

if r > 2,

c′′(t + 1)c′
if r ≤ 2.

(3.28)

The estimate (3.28) in case 1 < r ≤ 2 does not imply the strong stability of (2.4),

lim
t→+∞ ‖U (t)‖2

H = 0. (3.29)

The limt→+∞ ‖U (t)‖2
H in (3.12) depends on the connection between the growths at infinity of g, f,

and
∫ L

0
ψ2

0x (x, ·)dx .

C. Proof of Theorem 3.2

We start our proof by giving the modified energy functional E associated with any weak solution
of (2.4) (corresponding to initial data U0 ∈ H ),

E(t) := 1

2
‖U (t)‖2

H . (3.30)

Let U0 ∈ D(A n0 ), where n0 = 1 if (1.2) holds, and n0 = 2 if (1.2) does not hold, so that all the
calculations below are justified. From (2.4), (2.6), (2.14), (2.19), and (2.20) we get

E ′(t) = 1

2

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx −
∫ L

0
ψt (x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx . (3.31)

Note that, in contrast to the situation of absence of delay and/or presence of frictional damping
considered in the literature (as in (1.3)), we are unable to determine the sign of E′ from (3.31), and
therefore, the system (2.4) is not necessarily dissipative with respect to E at this stage.

On the other hand, using Cauchy-Schwarz inequality, the following classical inequalities hold,
for all v ∈ C(R+,R+) (see, for example, Refs. 16 and 26),

(∫ +∞

0
g(s)v(s)ds

)2

≤ g0

∫ +∞

0
g(s)v2(s)ds (3.32)

and (∫ +∞

0
g′(s)v(s)ds

)2

≤ −g(0)
∫ +∞

0
g′(s)v2(s)ds. (3.33)

Inequalities (3.32) and (3.33) will be repeatedly used in the proof. Also, we will denote by cδ a
positive constant depending on some parameter δ.

In order to prove (3.9), (3.11), and (3.12) we prove briefly several lemmas. Lemmas 3.3–3.9
and 3.11 are known in case f ≡ 0 (see, for example, Refs. 2, 8, 17, 19, 25, and 26), while the ones
3.10 and 3.12–3.14 are introduced in the present paper to cope with the new situation due to the
distributed time delay and the nondissipativeness character of (1.1).

Lemma 3.3. The functional

I1(t) := −ρ2

∫ L

0
ψt (x, t)

∫ +∞

0
g(s)η(x, t, s)dsdx,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

109.221.113.22 On: Mon, 18 Aug 2014 18:10:28



081503-13 Aissa Guesmia J. Math. Phys. 55, 081503 (2014)

satisfies, for all δ > 0,

I ′
1(t) ≤

∫ L

0

(−ρ2(g0 − δ)ψ2
t (x, t) + δ

(
ψ2

x (x, t) + (ϕx (x, t) + ψ(x, t))2
))

dx

+ cδ

∫ L

0

∫ +∞

0

(
g(s)η2

x (x, t, s) − g′(s)η2
x (x, t, s)

)
dsdx (3.34)

+
∫ L

0

(∫ +∞

0
f (s)ψt (x, t − s)ds

)(∫ +∞

0
g(s)η(x, t, s)ds

)
dx .

Proof. The proof is identical to the one given in Refs. 25 and 26 in case f ≡ 0. Indeed, by
differentiating I1, using the second equation in (1.1) and the first one in (2.13), and integrating by
parts, we get

I ′
1(t) = −ρ2g0

∫ L

0
ψ2

t (x, t)dx +
∫ L

0

(∫ +∞

0
f (s)ψt (x, t − s)ds

)(∫ +∞

0
g(s)η(x, t, s)ds

)
dx

+
∫ L

0

(∫ +∞

0
g(s)ηx (x, t, s)ds

)2

dx − g0

∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx

− ρ2

∫ L

0
ψt (x, t)

∫ +∞

0
g′(s)η(x, t, s)dsdx + k2

∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx

+ k1

∫ L

0
(ϕx (x, t) + ψ(x, t))

∫ +∞

0
g(s)η(x, t, s)dsdx .

Applying Cauchy-Schwarz inequality, (2.9) and Young’s inequality

ab ≤ d

2
a2 + 1

2d
b2, ∀a, b ∈ R, ∀d > 0,

to the last four terms of the above equality, and using (3.33), we get

I ′
1(t) ≤

∫ L

0

(
−ρ2(g0 − δ)ψ2

t (x, t) + δ

2
ψ2

x (x, t) + δ(ϕx (x, t) + ψ(x, t))2

)
dx

+
∫ L

0

(∫ +∞

0
f (s)ψt (x, t − s)ds

)(∫ +∞

0
g(s)η(x, t, s)ds

)
dx

− cδ

∫ L

0

∫ +∞

0
g′(t)η2

x (x, t, s)dsdx + cδ

∫ L

0

(∫ +∞

0
g(t)ηx (x, t, s)ds

)2

dx

− g0

∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx .

(3.35)

Again, applying Cauchy-Schwarz and Young’s inequalities to the last term in (3.35), and using
(3.32), we find (3.34).

In case (3.3), we will consider another manipulations for the last two terms in (3.35). �

Lemma 3.4. The functional

I2(t) := −
∫ L

0
(ρ1ϕ(x, t)ϕt (x, t) + ρ2ψ(x, t)ψt (x, t)) dx
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satisfies, for some c1 > 0 (not depending on f),

I ′
2(t) ≤ −

∫ L

0

(
ρ1ϕ

2
t (x, t) + ρ2ψ

2
t (x, t)

)
dx + k1

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx

+ c1

∫ L

0
ψ2

x (x, t)dx + c1

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx

+
∫ L

0
ψ(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx .

(3.36)

Proof. Similar to the proof of Refs. 2,8,25, and 26 in case f ≡ 0, by differentiating I2, using the
first two equations in (1.1) and integrating by parts, we find

I ′
2(t) = −

∫ L

0
(ρ1ϕ

2
t (x, t) + ρ2ψ

2
t (x, t))dx + k1

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx

+ (k2 − g0)
∫ L

0
ψ2

x (x, t)dx +
∫ L

0
ψ(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx

+
∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx .

(3.37)

The use of Young’s inequality and (3.32) for the last term in (3.37) leads to (3.36). �

Lemma 3.5. The functional

I3(t) : = ρ2

∫ L

0
ψt (x, t) (ϕx (x, t) + ψ(x, t)) dx + k2ρ1

k1

∫ L

0
ψx (x, t)ϕt (x, t)dx

− ρ1

k1

∫ L

0
ϕt (x, t)

∫ +∞

0
g(s)ψx (x, t − s)dsdx

satisfies, for all ε > 0,

I ′
3(t) ≤ ρ2

∫ L

0
ψ2

t (x, t)dx + 1

2ε

(
k2ψx (L , t) −

∫ +∞

0
g(s)ψx (L , t − s)ds

)2

+ 1

2ε

(
k2ψx (0, t) −

∫ +∞

0
g(s)ψx (0, t − s)ds

)2

+ ε

2

(
ϕ2

x (L , t) + ϕ2
x (0, t)

) − k1

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx

− cε

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx + ε

∫ L

0
ϕ2

t (x, t)dx

−
∫ L

0
(ϕx (x, t) + ψ(x, t))

∫ +∞

0
f (s)ψt (x, t − s)dsdx

+
(

ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx .

(3.38)

Proof. As in Ref. 2 in case f ≡ 0, a simple differentiation of I3, using the first two equations in
(1.1) and the fact that

ψxt (x, t − s) = ηxs(x, t, s), (3.39)
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and integration by parts give

I ′
3(t) = −k1

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx − ρ1

k1

∫ L

0
ϕt (x, t)

∫ +∞

0
g(s)ψxt (x, t − s)dsdx

+
(

k2ρ1

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx + k2

∫ L

0
ψx (x, t)(ϕx (x, t) + ψ(x, t))x dx

+
∫ L

0

(
k2ψxx (x, t) −

∫ +∞

0
g(s)ψxx (x, t − s)ds

)
(ϕx (x, t) + ψ(x, t))dx

−
∫ L

0

(∫ +∞

0
f (s)ψt (x, t − s)ds

)
(ϕx (x, t) + ψ(x, t))dx

+ ρ2

∫ L

0
ψ2

t (x, t)dx −
∫ L

0
(ϕx (x, t) + ψ(x, t))x

∫ +∞

0
g(s)ψx (x, t − s)dsdx

= −k1

∫ L

0
(ϕx (x, t)+ψ(x, t))2dx+ρ2

∫ L

0
ψ2

t (x, t)dx+
(

ρ1k2

k1
−ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx

−
∫ L

0
(ϕx (x, t)+ψ(x, t))

∫ +∞

0
f (s)ψt (x, t−s)dsdx

+
(

k2ψx (L , t)−
∫ +∞

0
g(s)ψx (L , t−s)ds

)
ϕx (L , t)

−
(

k2ψx (0, t)−
∫ +∞

0
g(s)ψx (0, t−s)ds

)
ϕx (0, t)+ ρ1

k1

∫ L

0
ϕt (x, t)

∫ +∞

0
g′(s)ηx (x, t, s)dsdx .

By using (3.33) and Young’s inequality for the last three terms in this equality, we get (3.38). �

To handle the boundary terms in (3.38), we proceed as in Ref. 2.

Lemma 3.6. Let m(x) := 2 − 4

L
x . The functionals

J1(t) := ρ2

∫ L

0
m(x)ψt (x, t)

(
k2ψx (x, t) −

∫ +∞

0
g(s)ψx (x, t − s)ds

)
dx

and

J2(t) := ρ1

∫ L

0
m(x)ϕt (x, t)ϕx (x, t)dx

satisfy, for all ε > 0 and for some c2, c3 > 0 (not depending neither on f nor on ε),

J ′
1(t) ≤ c2

(
1 + 1

ε

)∫ L

0
ψ2

x (x, t)dx −
(

k2ψx (L , t) −
∫ +∞

0
g(s)ψx (L , t − s)ds

)2

−
(

k2ψx (0, t) −
∫ +∞

0
g(s)ψx (0, t − s)ds

)2

+ εk1

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx

+ cε

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx − c2

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx

+ c2

∫ L

0
ψ2

t (x, t)dx − k2

∫ L

0
m(x)ψx (x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx

+
∫ L

0
m(x)

(∫ +∞

0
g(s)ψx (x, t − s)ds

)∫ +∞

0
f (s)ψt (x, t − s)dsdx

(3.40)
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and

J ′
2(t) ≤ −k1

(
ϕ2

x (L , t) + ϕ2
x (0, t)

)
+ c3

∫ L

0

(
ϕ2

t (x, t) + (ϕx (x, t) + ψ(x, t))2 + ψ2
x (x, t)

)
dx .

(3.41)

Proof. As in Ref. 2 in case f ≡ 0, differentiating J1, using the second equation in (1.1) and
(3.39), and integrating by parts, we find

J ′
1(t) =

∫ L

0
m(x)

(
k2ψxx (x, t)−

∫ +∞

0
g(s)ψxx (x, t−s)ds

)(
k2ψx (x, t)−

∫ +∞

0
g(s)ψx (x, t−s)ds

)
dx

− k1

∫ L

0
m(x)(ϕx (x, t) + ψ(x, t))

(
k2ψx (x, t) −

∫ +∞

0
g(s)ψx (x, t − s)ds

)
dx

−
∫ L

0
m(x)

(∫ +∞

0
f (s)ψt (x, t − s)ds

)(
k2ψx (x, t) −

∫ +∞

0
g(s)ψx (x, t − s)ds

)
dx

+ ρ2

∫ L

0
m(x)ψt (x, t)

(
k2ψxt (x, t) −

∫ +∞

0
g(s)ψxt (x, t − s)ds

)
dx

= −
(

k2ψx (L , t) −
∫ +∞

0
g(s)ψx (L , t − s)ds

)2

−
(

k2ψx (0, t) −
∫ +∞

0
g(s)ψx (0, t − s)ds

)2

−
∫ L

0
m(x)

(∫ +∞

0
f (s)ψt (x, t − s)ds

)(
k2ψx (x, t) −

∫ +∞

0
g(s)ψx (x, t − s)ds

)
dx

+ 2k2ρ2

L

∫ L

0
ψ2

t (x, t)dx + ρ2

∫ L

0
m(x)ψt (x, t)

∫ ∞

0
g′(s)ηx (x, t, s)dsdx

+ 2

L

∫ L

0

(
(k2 − g0)ψx (x, t) +

∫ +∞

0
g(s)ηx (x, t, s)ds

)2

dx

− k1

∫ L

0
m(x)(ϕx (x, t) + ψ(x, t))

(
(k2 − g0)ψx (x, t) +

∫ +∞

0
g(s)ηx (x, t, s)ds

)
dx .

Using Young’s inequality and the fact that |m(x)| ≤ 2 on ]0, L[, we get

−k1m(x)(ϕx (x, t) + ψ(x, t))

(
(k2 − g0)ψx (x, t) +

∫ +∞

0
g(s)ηx (x, t, s)ds

)

≤ εk1(ϕx (x, t) + ψ(x, t))2 + k1

ε

(
(k2 − g0)ψx (x, t) +

∫ +∞

0
g(s)ηx (x, t, s)ds

)2

.

Developing the last term in this inequality, inserting it in the previous equality and using Young’s
inequality and (3.33), we find

J ′
1(t) ≤ c2

(
1 + 1

ε

)∫ L

0
ψ2

x (x, t)dx −
(

k2ψx (L , t) −
∫ +∞

0
g(s)ψx (L , t − s)ds

)2

−
(

k2ψx (0, t) −
∫ +∞

0
g(s)ψx (0, t − s)ds

)2

+ c2

∫ L

0
ψ2

t (x, t)dx

+ εk1

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx − c2

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx
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+ c2

(
1 + 1

ε

)∫ L

0

(∫ +∞

0
g(s)ηx (x, t, s)ds

)2

dx

+
∫ L

0
m(x)

(∫ +∞

0
g(s)ψx (x, t − s)ds

)∫ +∞

0
f (s)ψt (x, t − s)dsdx

− k2

∫ L

0
m(x)ψx (x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx

− 2g0

(
k1

ε
+ 2

L

)∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx .

(3.42)

Applying again Young’s inequality to the last term in (3.42), and using (3.32), we get (3.40).
On the other hand, using Poincaré’s inequality (2.9) for ψ , we get

∫ L

0
ϕ2

x (x, t)dx ≤ 2
∫ L

0
(ϕx (x, t) + ψ(x, t))2dx + 2c0

∫ L

0
ψ2

x (x, t)dx . (3.43)

Then, similarly, differentiating J2, using the first equation in (1.1), integrating by parts and using
Young’s inequality and (3.43), we obtain (3.41). �

Lemma 3.7. For any ε ∈ ]0, 1[, the functional

I4(t) := I3(t) + 1

2ε
J1(t) + ε

2k1
J2(t)

satisfies, for some c4 > 0 (not depending neither on f nor on ε),

I ′
4(t) ≤ −

(
k1

2
− εc4

)∫ L

0
(ϕx (x, t) + ψ(x, t))2dx + εc4

∫ L

0
ϕ2

t (x, t)dx

+ cε

∫ L

0

∫ +∞

0

(
g(s)η2

x (x, t, s) − g′(s)η2
x (x, t, s)

)
dsdx

+ c4

ε2

∫ L

0
ψ2

x (x, t)dx +
∫ L

0
J3(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx

+ c4

ε

∫ L

0
ψ2

t (x, t)dx +
(

ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx,

(3.44)

where

J3(x, t) := −ϕx (x, t) − ψ(x, t) − 1

2ε
m(x)

(
k2ψx (x, t) −

∫ +∞

0
g(s)ψx x, t − sds

)
. (3.45)

Proof. Combining (3.38) and (3.40) and (3.41), we obtain (3.44).

Lemma 3.8. The functional

I5(t) := 1

8
I2(t) + I4(t)
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satisfies, for some c5 > 0 (not depending on f),

I ′
5(t) ≤ −k1

4

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx + c5

∫ L

0
(ψ2

t (x, t) + ψ2
x (x, t))dx

+ c5

∫ L

0

∫ ∞

0

(
g(s)η2

x (x, t, s) − g′(s)η2
x (x, t, s)

)
dsdx

− ρ1

16

∫ L

0
ϕ2

t (x, t)dx +
∫ L

0
J4(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx

+
(

ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx,

(3.46)

where

J4(x, t) := J3(x, t) + 1

8
ψ(x, t). (3.47)

Proof. Estimates (3.36) and (3.44) with 0 < ε < min

{
k1

8c4
,

ρ1

16c4

}
small enough imply (3.46).�

Now, as in Ref. 2, we use a function w to get a crucial estimate.

Lemma 3.9. Let

w(x, t) := −
∫ x

0
ψ(y, t)dy + 1

L

(∫ L

0
ψ(y, t)dy

)
x .

Then the functional

I6(t) :=
∫ L

0
(ρ1ϕt (x, t)w(x, t) + ρ2ψt (x, t)ψ(x, t)) dx

satisfies, for all ε1 ∈ ]0, 1[ and for some c6 > 0 (not depending neither on f nor on ε1),

I ′
6(t) ≤ −k2 − g0

2

∫ L

0
ψ2

x (x, t)dx + c6

ε1

∫ L

0
ψ2

t (x, t)dx

+ ε1

∫ L

0
ϕ2

t (x, t)dx + c6

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx

−
∫ L

0
ψ(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx .

(3.48)

Proof. The fact that −wxx = ψx and w(0, t) = w(L , t) = 0 imply that∫ L

0
w2

x (x, t)dx =
∫ L

0
ψx (x, t)w(x, t)dx = −

∫ L

0
ψ(x, t)wx (x, t)dx

≤
(∫ L

0
ψ2(x, t)dx

) 1
2
(∫ L

0
w2

x (x, t)dx

) 1
2

,

which gives, using (2.9) for wt (note that wt (0, t) = wt (L , t) = 0),∫ L

0
w2

x (x, t)dx ≤
∫ L

0
ψ2(x, t)dx and

∫ L

0
w2

t (x, t)dx ≤ c0

∫ L

0
ψ2

t (x, t)dx . (3.49)

On the other hand,

−k1

∫ L

0
(ϕx (x, t) + ψ(x, t))(wx (x, t) + ψ(x, t))dx (3.50)
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= −k1

(∫ L

0
(ϕx (x, t) + ψ(x, t))dx

)(
1

L

∫ L

0
ψ(y, t)dy

)

= −k1

L

(∫ L

0
ψ(x, t)dx

)2

≤ 0.

Therefore, as in Ref. 2 in case f ≡ 0, by differentiating I6, using the first two equations in (1.1),
integrating by parts and using (3.49) and (3.50) and Young’s inequality for ϕtwt , we find

I ′
6(t) ≤ −(k2 − g0)

∫ L

0
ψ2

x (x, t)dx + c6

ε1

∫ L

0
ψ2

t (x, t)dx

+ ε1

∫ L

0
ϕ2

t (x, t)dx −
∫ L

0
ψ(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx

−
∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx .

(3.51)

The use of Young’s inequality and (3.32) for the last term in (3.51) gives (3.48). �

Now, we introduce a new functional I7 which plays a crucial role in dealing with the distributed
time delay.

Lemma 3.10. Let

I7(t) := e−γ̂ (t)
∫ L

0

∫ +∞

0
eγ̃ (s)| f (s)|

(∫ t

t−s
eγ̂ (τ )ψ2

t (x, τ )dτ

)
dsdx, (3.52)

where γ̃ and γ are defined in assumption (A4), and

γ̂ (t) :=
∫ t

0
γ (s)ds. (3.53)

The functional I7 satisfies

I ′
7(t) ≤ g(0)β0

∫ L

0
ψ2

t (x, t)dx − γ (t)I7(t) −
∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx, (3.54)

where β0 is defined in (3.4).

Proof. First, thanks to (2.9), (2.14), and (3.5) we have (note also that g is nonincreasing and γ̂

is increasing)

I7(t) ≤
∫ L

0

∫ +∞

0
β(s)g(s)

(∫ t

t−s
ψ2

t (x, τ )dτ

)
dsdx

≤
∫ L

0

∫ +∞

0
β(s)

(∫ t

t−s
g(t − τ )ψ2

t (x, τ )dτ

)
dsdx

≤ c0

∫ L

0

∫ +∞

0
β(s)

(∫ s

0
g(τ )ψ2

xt (x, t − τ )dτ

)
dsdx

≤ c0

∫ L

0

∫ +∞

0
β(s)

(∫ +∞

0
g(τ )η2

xs(x, t, τ )dτ

)
dsdx ;

thus, due to (3.4) and the fact that ηs ∈ L2
g(R+, H 1

0 (]0, L[)) (in virtue of (2.16) with n = 1),

I7(t) ≤ c0β0‖ηs(x, t, ·)‖2
L2

g(R+,H 1
0 (]0,L[)), (3.55)
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and therefore, the functional I7 is well-defined. Moreover, using again (3.5), a simple and direct
differentiation gives

I ′
7(t) = −γ (t)I7(t) +

(∫ +∞

0
eγ̃ (s)| f (s)|ds

)∫ L

0
ψ2

t (x, t)dx

−
∫ L

0

∫ +∞

0
eγ̃ (s)+γ̂ (t−s)−γ̂ (t)| f (s)|ψ2

t (x, t − s)dsdx

≤ −γ (t)I7(t) +
(∫ +∞

0
β(s)g(s)ds

)∫ L

0
ψ2

t (x, t)dx

−
∫ L

0

∫ +∞

0
eγ̃ (s)+γ̂ (t−s)−γ̂ (t)| f (s)|ψ2

t (x, t − s)dsdx

≤ −γ (t)I7(t) + g(0)β0

∫ L

0
ψ2

t (x, t)dx

−
∫ L

0

∫ +∞

0
eγ̃ (s)+γ̂ (t−s)−γ̂ (t)| f (s)|ψ2

t (x, t − s)dsdx .

(3.56)

On the other hand, the function h(t) := γ̃ (s) + γ̂ (t − s) − γ̂ (t), for s ≥ 0 fixed and t ≥ 0, satisfies

h′(t) = γ (t − s) − γ (t). Then h is nondecreasing, for t ≥ s

2
, and it is nonincreasing, for t ≤ s

2
,

because γ is even and nonincreasing on R+. Therefore, h(t) ≥ h(
s

2
) = 0, and (3.54) follows at

once. �

Now, let N, N1, and N2 be positive constants (which will be fixed latter on). We define the
functional

L1(t) := N E(t) + N1 I1(t) + I5(t) + N2 I6(t) + I7(t). (3.57)

At this step, we distinguish three cases depending on (1.2) and (3.2)–(3.3).

1. Equal speed propagation and exponential decay of g: (1.2) and (3.2) hold

By combining (3.31), (3.34), (3.46), (3.48), and (3.54) taking δ = k1

8N1
and using (3.2), we get

L ′
1(t) (3.58)

≤ −
(

(k2 − g0)N2

2
− c5 − k1

8

)∫ L

0
ψ2

x (x, t)dx −
(ρ1

16
− ε1 N2

) ∫ L

0
ϕ2

t (x, t)dx

− k1

8

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx −

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx

−
(

ρ2(g0 N1 − k1

8
) − c6 N2

ε1
− g(0)β0 − c5

)∫ L

0
ψ2

t (x, t)dx − γ (t)I7(t)

+
(

N

2
− cN1,N2

)∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx −
∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx

+
∫ L

0
J5(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx +

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx,

where

J5(x, t) := J4(x, t) − Nψt (x, t) − N2ψ(x, t) + N1

∫ +∞

0
g(s)η(x, t, s)ds. (3.59)
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Due to (1.2), the last term in (3.58) vanishes. Now, we choose N2 large enough such that

(k2 − g0)N2

2
− c5 − k1

8
> 0 (3.60)

(N2 exists according to (2.1)), then we take ε1 ∈ ]0, 1[ small enough so that

ρ1

16
− ε1 N2 > 0.

Next, we pick N1 so large such that

ρ2(g0 N1 − k1

8
) − c6 N2

ε1
− g(0)β0 − c5 > 0

(N1 exists thanks to (3.1)). On the other hand, by the definition of the functionals E, I1 − I6, and
J1 − J2, and the use of (2.15), (2.9) and Young’s inequality, there exists a positive constant c7 (not
depending neither on f nor on N) such that

|N1 I1(t) + I5(t) + N2 I6(t)| ≤ c7 E(t), ∀t ∈ R+, (3.61)

which implies that

(N − c7)E(t) ≤ L1(t) − I7(t) ≤ (N + c7)E(t), ∀t ∈ R+. (3.62)

Then, we choose N large enough such that

N > max{c7, 2cN1,N2}, (3.63)

so E ∼ L1 − I7 holds and, from (3.58) and the definition of E, we obtain, for some c8 > 0 (not
depending on f),

L ′
1(t) ≤ −c8 E(t) −

∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx

− γ (t)I7(t) +
∫ L

0
J5(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx .

(3.64)

Similar to (3.61), from the definition of E and J3 − J5, and using (2.9) and Young’s inequality, we
find that there exists a positive constant c9 (not depending on f) such that∫ L

0
J 2

5 (x, t)dx ≤ c9 E(t).

Therefore, applying Cauchy-Schwarz and Young’s inequalities, we get, for

ε′ = 2

(∫ +∞

0
| f (s)|ds

)−1

(3.65)

(if
∫ +∞

0
| f (s)|ds = 0, then f ≡ 0, and therefore, the two terms in (3.64) depending on f vanish),

∫ L

0
J5(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx (3.66)

≤
(∫ L

0

(∫ +∞

0
f (s)ψt (x, t − s)ds

)2

dx

) 1
2 (∫ L

0
J 2

5 (x, t)dx

) 1
2

≤ ε′

2

(∫ +∞

0
| f (s)|ds

)∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx + 1

2ε′

∫ L

0
J 2

5 (x, t)dx

≤
∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx + c9

4

(∫ +∞

0
| f (s)|ds

)
E(t).
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Hence, under condition (3.8) with

δ0 = 4c8

c9
(3.67)

(noting that δ0 is positive and does not depend on f) and by combining (3.64) and (3.66), we find,
for some c10 > 0,

L ′
1(t) ≤ −c10 E(t) − γ (t)I7(t), ∀t ∈ R+. (3.68)

By combining (3.62) and (3.68), we obtain

L ′
1(t) ≤ −δ1 min{1, γ (t)}L (t), ∀t ∈ R+, (3.69)

where δ1 = min{ c10
N+c7

, 1}. Then, an integration of the differential inequality (3.69) over [0, t] gives

L1(t) ≤ L1(0)e−δ1φ(t), ∀t ∈ R+, (3.70)

where φ is defined in (3.10). Consequently, the choice (3.63) of N and the relations (3.30)(3.62)(3.70)
lead to

‖U (t)‖2
H = 2E(t) ≤ 2

N − c7
L1(t) ≤ 2L1(0)

N − c7
e−δ1φ(t), ∀t ∈ R+,

which is the decay estimate (3.9) with δ2 = 2L1(0)

N − c7
.

2. Nonequal speed propagation and exponential decay of g: (1.2) does
not hold and (3.2) holds

To deal with the last term in (3.58) (which can not be absorbed by E) and get (3.11), we appeal
to some ideas of Refs. 1, 8, and 13 based on the energies of high orders defined by

Ek(t) = 1

2
‖U (k)(t)‖2

H , ∀U0 ∈ D(A k), k = 0, · · · , n (3.71)

(so E0 = E). As for (3.31), Ek satisfies

E ′
k(t) = 1

2

∫ L

0

∫ +∞

0
g′(s)(∂k

t ηx )2(x, t, s)dsdx

−
∫ L

0
∂k+1

t ψ(x, t)
∫ +∞

0
f (s)∂k+1

t ψ(x, t − s)dsdx .

(3.72)

We start by proving two lemmas, where the first one is given in Ref. 8, while the second one is
introduced in the present paper to cope with some delay terms.

Lemma 3.11. For any ε > 0, we have(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx (3.73)

≤ ε

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0
ϕ2

t (x, t)dx − 1

εθ1g0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ E ′
1(t)

− g(0)

2εg2
0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx

− 1

εθ1g0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t − s)dsdx .
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Proof. We proceed as in Ref. 8. By recalling that g0 =
∫ +∞

0
g(s)ds, we have

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx (3.74)

= 1

g0

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)

∫ +∞

0
g(s)ηxt (x, t, s)dsdx

+ 1

g0

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)

∫ +∞

0
g(s)ψxt (x, t − s)dsdx .

Using Young’s inequality and (3.32) (for v = ηxt ), we get, for all ε > 0,

1

g0
(
ρ1k2

k1
− ρ2)

∫ L

0
ϕt (x, t)

∫ +∞

0
g(s)ηxt (x, t, s)dsdx (3.75)

≤ ε

2

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0
ϕ2

t (x, t)dx + 1

2εg0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0

∫ +∞

0
g(s)η2

xt (x, t, s)dsdx .

Moreover, using (3.2) and (3.72) for k = 1, we get

1

2εg0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0

∫ +∞

0
g(s)η2

xt (x, t, s)dsdx (3.76)

≤ − 1

εθ1g0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ E ′
1(t)

− 1

εθ1g0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t − s)dsdx .

On the other hand, by integrating by parts with respect to s and using (3.39) and (3.33) (for v = ηx )
and Young’s inequality, we have, for all ε > 0 (note also that ηx(x, t, 0) = lims → +∞g(s)ηx(x, t, s)
= 0 due to (2.13) and (2.16) for n ≥ 1),

1

g0

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)

∫ +∞

0
g(s)ψxt (x, t − s)dsdx (3.77)

= 1

g0

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)

∫ +∞

0
g(s)ηxs(x, t, s)dsdx

= 1

g0

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)

∫ +∞

0
(−g′(s))ηx (x, t, s)dsdx

≤ ε

2

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0
ϕ2

t (x, t)dx − g(0)

2εg2
0

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx .

Inserting (3.75)–(3.77) into (3.74), we find (3.73). �

Lemma 3.12. The functional

I8(t) :=
∫ L

0
ψt (x, t)

(
f (0)

2
ψt (x, t) −

∫ +∞

0
f ′′(s)η(x, t, s)ds

)
dx (3.78)

satisfies (α̃ is defined in (3.7)),

I ′
8(t) ≤

∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t − s)dsdx +

(
αg(0) + 1

2

)∫ L

0
ψ2

t (x, t)dsdx

− α̃2g0c0

2θ1

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx .

(3.79)
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Proof. From (2.14), we conclude that ηss(x, t, s) = − ψ tt(x, t − s) (recall that ηss ∈
L2

g(R+, H 1
0 (]0, L[)), for any t ∈ R+ fixed, since U0 ∈ D(A n) with n ≥ 2), and then∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t − s)dsdx = −

∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ηss(x, t, s)dsdx .

By integrating by parts with respect to s and using the fact that ηs(x, t, 0) = ψ t(x, t) (du to (2.14)),
η(x, t, 0) = 0 (thanks to (2.13)) and lims → + ∞f(s)ηs(x, t, s) = lims → +∞f′(s)η(x, t, s) = 0 (according
to (2.3) and (2.16) with n ≥ 2), we get∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t−s)dsdx =

∫ L

0
ψt t (x, t)

(
f (0)ψt (x, t)−

∫ +∞

0
f ′′(s)η(x, t, s)ds

)
dx

= I ′
8(t) +

∫ L

0
ψt (x, t)

∫ +∞

0
f ′′(s)ηt (x, t, s)dsdx .

Again, using η(x, t, 0) = lims → +∞f′(s) = lims → + ∞f′′(s)η(x, t, s) = 0 (in virtue of (2.3), (2.13),
(3.7), and (2.16) with n ≥ 1), and integrating by parts with respect to s, we find

I ′
8(t) =

∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t − s)dsdx

−
∫ L

0
ψt (x, t)

∫ +∞

0
f ′′(s)(ψt (x, t) − ηs(x, t, s))dsdx

=
∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t − s)dsdx + f ′(0)

∫ L

0
ψ2

t (x, t)dx

−
∫ L

0
ψt (x, t)

∫ +∞

0
f ′′′(s)η(x, t, s)dsdx .

On the other hand, using (2.3), we have

f ′(0)
∫ L

0
ψ2

t (x, t)dx ≤ αg(0)
∫ L

0
ψ2

t (x, t)dx .

Moreover, using (3.7), Young’s inequality, (3.32) (for v = |η|) and (2.9), we obtain

−
∫ L

0
ψt (x, t)

∫ +∞

0
f ′′′(s)η(x, t, s)dsdx

≤ 1

2

∫ L

0
ψ2

t (x, t)dx + α̃2g0c0

2

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx .

Inserting these two inequalities in the previous equality, we arrive at

I ′
8(t) ≤

∫ L

0
ψt t (x, t)

∫ +∞

0
f (s)ψt t (x, t − s)dsdx +

(
αg(0) + 1

2

)∫ L

0
ψ2

t (x, t)dsdx

+ α̃2g0c0

2

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx .

(3.80)

Applying (3.2) to the last term of (3.80) gives (3.79). �

Now, let us consider the functional

L2(t) := L1(t) + 1

εg0θ1

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ (E1(t) + I8(t)). (3.81)

By combining (3.58), (3.73), and (3.79) we get

L ′
2(t) (3.82)
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≤ −
(

(k2 − g0)N2

2
− c5 − k1

8

)∫ L

0
ψ2

x (x, t)dx −
(

ρ1

16
− ε1 N2 − ε

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
) ∫ L

0
ϕ2

t (x, t)dx

− k1

8

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx −

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx

−
(
ρ2(g0 N1− k1

8
)− c6 N2

ε1
− 1

εg0θ1

(
αg(0) + 1

2

) ∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ − g(0)β0 − c5

)∫ L

0
ψ2

t (x, t)dx

+
(

N

2
−
(

g(0)

2εg2
0

+ α̃2c0

2εθ2
1

) ∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ − cN1,N2

)∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx − γ (t)I7(t)

−
∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx +
∫ L

0
J5(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx .

First, we choose N2 as in (3.60), and then we take ε = ε1 and ε1 ∈ ]0, 1[ small enough so that

ρ1

16
− ε1

(
N2 +

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
)

> 0.

Next, we pick N1 so large such that

ρ2

(
g0 N1 − k1

8

)
− 1

ε1

(
c6 N2 + 1

g0θ1

(
αg(0) + 1

2

) ∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
)

− g(0)β0 − c5 > 0

(N1 exists due to (3.1)). On the other hand, using (2.3) and (3.7), Young’s inequality, (3.32) (for
v = |η|) and (2.9), we find

|I8(t)| ≤ 1 + αg(0)

2

∫ L

0
ψ2

t (x, t)dx + α̃2g0c0

2

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx .

Consequently, in virtue of (2.15) and (3.30), there exists a positive constant c̃7 (not depending neither

on
∫ +∞

0
| f (s)|ds nor on N) such that

1

εg0θ1

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ |I8(t)| ≤ c̃7 E(t), ∀t ∈ R+, (3.83)

which implies that, for all t ∈ R+, using (3.62) and (3.81),

(N − c7 − c̃7)E(t) ≤ L2(t) − 1

εg0θ1

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ E1(t) − I7(t) ≤ (N + c7 + c̃7)E(t). (3.84)

Finally, we choose N large enough such that

N > max

{
c7 + c̃7, 2cN1,N2 +

(
g(0)

εg2
0

+ α̃2c0

εθ2
1

) ∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣
}

. (3.85)

Therefore, from (3.82) and the definition of E, we obtain (3.64) for L2 instead of L1, and some

c̃8 > 0 (not depending on
∫ +∞

0
| f (s)|ds) instead of c8. Thus, according to (3.66) and under condition

(3.8), where δ0 is defined in (3.67) with c̃8 instead of c8, we find, for some c̃10 > 0,

L ′
2(t) ≤ −c̃10 E(t) − γ (t)I7(t) ≤ −c̃10 E(t), ∀t ∈ R+. (3.86)

Before concluding (3.11), we prove this last lemma.

Lemma 3.13. There exist two positive constants a0 and a1 such that, for any U0 ∈ D(A 2),∫ T

S
E(t)dt ≤ a1(E(S) + E1(S)), ∀0 ≤ S ≤ T (3.87)
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and

E ′(t) ≤ a0 E(t), ∀t ∈ R+. (3.88)

Proof. By integrating (3.86) over [S, T], we get (note that L2 ≥ 0 in virtue of (3.84) and (3.85))

c̃10

∫ T

S
E(t)dt ≤ L2(S) − L2(T ) ≤ L2(S), ∀0 ≤ S ≤ T . (3.89)

Moreover, (3.55) and (2.13) imply that

I7(t) ≤ c0β0‖ηs(x, t, ·)‖2
L2

g(R+,H 1
0 (]0,L[))

≤ c0β0‖ψt (x, t) − ηt (x, t, ·)‖2
L2

g(R+,H 1
0 (]0,L[))

≤ 2c0β0

(
‖ψt (x, t)‖2

L2
g(R+,H 1

0 (]0,L[)) + ‖ηt (x, t, ·)‖2
L2

g (R+,H 1
0 (]0,L[))

)

≤ 2c0β0

(
g0

∫ L

0
ψ2

xt (x, t)dx +
∫ L

0

∫ +∞

0
g(s)η2

xt (x, t, s)dsdx

)
,

and then, according to (3.71) for k = 1,

I7(t) ≤ 4c0β0 max

{
g0

k2 − g0
, 1

}
E1(t). (3.90)

Consequently, by substituting (3.90) and the right inequality of (3.84) in (3.89), we deduce (3.87)
with

a1 = 1

c̃10
max

{
N + c7 + c̃7,

1

εg0θ1

∣∣∣∣ρ1k2

k1
− ρ2

∣∣∣∣ + 4c0β0 max

{
g0

k2 − g0
, 1

}}
.

On the other hand, taking (3.31) and (2.14) in consideration, integrating with respect to s and using
the fact that η(x, t, 0) = lims → + ∞f(s)η(x, t, s) = 0 (thanks to (2.3), (2.9), (2.13), and (2.16) with n
≥ 1), we find

E ′(t) ≤ −
∫ L

0
ψt (x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx

≤ −
∫ L

0
ψt (x, t)

∫ +∞

0
f (s)ηs(x, t, s)dsdx

≤
∫ L

0
ψt (x, t)

∫ +∞

0
f ′(s)η(x, t, s)dsdx,

hence, applying Young’s inequality and using (2.3) and (3.32) (for v = |η|) and (2.9),

E ′(t) ≤ 1

2

∫ L

0
ψ2

t (x, t)dx + α2g0c0

2

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx,

which gives (3.88) with a0 = max
{

1
ρ2

, α2g0c0

}
. �

Lemma 3.13 allows us to apply [Theorem 2.2 of Ref. 13: case f ≡ 1, m = 1, a2 = 0, and n ≥ 2]
and get (3.11) by continuity of E.

3. Equal speed propagation and arbitrary decay of g: (1.2) and (3.3) hold, and (3.2) does
not hold

We prove here the decay estimate (3.12) under condition (3.3), which allows g to have a general
decay at infinity that can be arbitrary close to 1

t .
In the cases of absence of delay and/or presence of frictional damping considered in the literature

(like (1.3)), the proof of the known stability estimates when g has an arbitrary decay is based on
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some differential inequalities on g involving at least its first derivative in order to express∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx (3.91)

in term of ∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx,

and then use the nonincreasingness of E. This strategy seems not applicable in our case, since E is
not necessarily nonincreasing due to the last term in (3.31) generated by the distributed time delay.

Our proof is based on different manipulations of the term (3.91), the integral inequality in (3.3)
introduced and used in Refs. 36–39, and 40, which does not involve any derivative of g, and the use
of a new functional J6 (defined in (3.100) below) that is able to absorb some memory terms without
passing by E′.

First, following the idea in Refs. 36–39, and 40, we see that

2
∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ψx (x, t − s)dsdx (3.92)

=
∫ L

0

∫ +∞

0
g(s)

(
ψ2

x (x, t − s) − η2
x (x, t, s)

)
dsdx + g0

∫ L

0
ψ2

x (x, t)dx .

Second, for i ∈ N∗, we consider, as in Ref. 33, the set

Ai = {s ∈ R+, g(s) ≤ −ig′(s)}, (3.93)

and we put

gi =
∫

Ac
i

g(s)ds. (3.94)

Note that gi > 0, otherwise, Ac
i = ∅ and then (3.2) is satisfied for θ1 = 1

i , which is the case of
exponential decay of g treated previously. On the other hand, thanks to the second inequality in
(3.3), we have limi→+∞ Ac

i = ∩i∈N∗ Ac
i = ∅, and then

lim
i→+∞

gi = 0. (3.95)

Next, we go back to (3.35), (3.37), (3.42), and (3.51). Clearly, we have∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx =

∫ L

0
ψx (x, t)

∫
Ai

g(s)ηx (x, t, s)dsdx

+
∫ L

0
ψx (x, t)

∫
Ac

i

g(s)ηx (x, t, s)dsdx .

Then, using Cauchy-Schwarz and Young’s inequalities for the two terms in the right hand side of
the above equality and the definition (3.94) of gi, we have, for any ε2 > 0,∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx ≤ ε2

∫ L

0
ψ2

x (x, t)dx + g0

4ε2

∫ L

0

∫
Ai

g(s)η2
x (x, t, s)dsdx

+
√

gi

2

(∫ L

0
ψ2

x (x, t)dx +
∫ L

0

∫
Ac

i

g(s)η2
x (x, t, s)dsdx

)
.

Using the definition (3.93) of Ai, we obtain∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx (3.96)
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≤ ε2

∫ L

0
ψ2

x (x, t)dx − ig0

4ε2

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx

+
√

gi

2

(∫ L

0
ψ2

x (x, t)dx +
∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx

)
.

Similarly, we find

∫ L

0

(∫ +∞

0
g(s)ηx (x, t, s)ds

)2

dx

=
∫ L

0

(∫
Ai

g(s)ηx (x, t, s)ds +
∫

Ac
i

g(s)ηx (x, t, s)ds

)2

dx

≤ 2
∫ L

0

(∫
Ai

g(s)ηx (x, t, s)ds

)2

dx + 2
∫ L

0

(∫
Ac

i

g(s)ηx (x, t, s)ds

)2

dx

≤ 2g0

∫ L

0

∫
Ai

g(s)η2
x (x, t, s)dsdx + 2gi

∫ L

0

∫
Ac

i

g(s)η2
x (x, t, s)dsdx .

Therefore, using again the definition (3.93) of Ai, we deduce that

∫ L

0

(∫ +∞

0
g(s)ηx (x, t, s)ds

)2

dx ≤ −2ig0

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx

+ 2gi

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx .

(3.97)

The last term we discuss, using (3.92), is

−
∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ηx (x, t, s)dsdx (3.98)

= −g0

∫ L

0
ψ2

x (x, t)dx +
∫ L

0
ψx (x, t)

∫ +∞

0
g(s)ψx (x, t − s)dsdx

= −g0

2

∫ L

0
ψ2

x (x, t)dx + 1

2

∫ L

0

∫ +∞

0
g(s)

(
ψ2

x (x, t − s) − η2
x (x, t, s)

)
dsdx .

After, we insert (3.96), (3.97), and (3.98) into (3.35), (3.37), (3.42), and (3.51) considering the
functional L1 defined in (3.57), using (3.31), (3.38), (3.41), and (3.54) taking (2.1) in consideration,

choosing δ = k1

8N1
and

0 < ε <

{
k2

1

4c3
,

k1ρ1

8(2k1 + c3)

}
,

we obtain, for some c11, c12 > 0 (not depending on N, N1, N2, i, ε1, ε2 and f),

L ′
1(t) (3.99)
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≤ −
(

k2 N2 + g2
0 N1

2
− c11 − ε2

8

)∫ L

0
ψ2

x (x, t)dx − k1

8

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx

−
(ρ1

16
− ε1 N2

) ∫ L

0
ϕ2

t (x, t)dx −
(

ρ2(g0 N1 − k1

8
) − c6 N2

ε1
− c11

)∫ L

0
ψ2

t (x, t)dx

+
∫ L

0

∫ +∞

0

(
−cN1,N2 g(s)η2

x (x, t, s) +
(

N

2
− cN1,ε2,i

)
g′(s)η2

x (x, t, s)

)
dsdx

−
∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx +
√

gi

16

∫ L

0
ψ2

x (x, t)dx − γ (t)I7(t)

+ cN1 (gi + √
gi )

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx

+
(

g0 N1 + N2

2
+ c12

)∫ L

0

∫ +∞

0
g(s)ψ2

x (x, t − s)dsdx

+
∫ L

0
J5(x, t)

∫ +∞

0
f (s)ψt (x, t − s)dsdx +

(
ρ1k2

k1
− ρ2

)∫ L

0
ϕt (x, t)ψxt (x, t)dx .

Last, we introduce the functional J6 and prove a crucial identity on its derivative.

Lemma 3.14. Let

J6(t) =
∫ L

0

∫ t

0

(∫ +∞

t
g(τ − s)dτ

)
ψ2

x (x, s)dsdx . (3.100)

Then, for any λ ∈ ]0, 1[,

J ′
6(t) ≤ −(1 − λ)ξ (t)J6(t) − λ

∫ L

0

∫ +∞

0
g(s)ψ2

x (x, t − s)dsdx

+ g0

∫ L

0
ψ2

x (x, t)dx + λ

∫ L

0

∫ +∞

t
g(s)ψ2

0x (x, s − t)dsdx .

(3.101)

Proof. First, thanks to the first inequality in (3.3) and the fact that η ∈ L2
g(R+, H 1

0 (]0, L[)) (due
to (2.16) for n = 1), we have

J6(t) ≤ 1

ξ (t)

∫ L

0

∫ t

0
g(t − s)ψ2

x (x, s)dsdx

≤ 1

ξ (t)

∫ L

0

∫ t

0
g(s)ψ2

x (x, t − s)dsdx

≤ 2

ξ (t)

(
g0

∫ L

0
ψ2

x (x, t)dx +
∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx

)
,

hence, according to the definition of E,

J6(t) ≤ 4

ξ (t)
max

{
g0

k2 − g0
, 1

}
E(t). (3.102)
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Consequently, the functional J6 is well-defined. Moreover, by the first inequality in (3.3), a simple
and direct differentiation gives

J ′
6(t) =

(∫ +∞

t
g(τ − t)dτ

)∫ L

0
ψ2

x (x, t)dx −
∫ L

0

∫ t

0
g(t − s)ψ2

x (x, s)dsdx

= g0

∫ L

0
ψ2

x (x, t)dx − (1 − λ)
∫ L

0

∫ t

0
g(t − s)ψ2

x (x, s)dsdx

− λ

∫ L

0

∫ t

−∞
g(t − s)ψ2

x (x, s)dsdx + λ

∫ L

0

∫ 0

−∞
g(t − s)ψ2

x (x, s)dsdx

≤ g0

∫ L

0
ψ2

x (x, t)dx − (1 − λ)ξ (t)J6(t)

− λ

∫ L

0

∫ +∞

0
g(s)ψ2

x (x, t − s)dsdx + λ

∫ L

0

∫ +∞

t
g(s)ψ2

0x (x, s − t)dsdx,

which is exactly (3.101). �

Finally, let N3 > 0 and

F1(t) := L1(t) + N3 J6(t). (3.103)

Due to (1.2), the last term in (3.99) vanishes. Taking into account the relations (3.66), (3.99), and
(3.101) we get

F ′
1(t) (3.104)

≤ −
(

k2 N2 + g2
0 N1

2
− c11 − g0 N3 − ε2

8

)∫ L

0
ψ2

x (x, t)dx −
(ρ1

16
− ε1 N2

) ∫ L

0
ϕ2

t (x, t)dx

− k1

8

∫ L

0
(ϕx (x, t) + ψ(x, t))2dx −

(
ρ2(g0 N1 − k1

8
) − c6 N2

ε1
− c11

)∫ L

0
ψ2

t (x, t)dx

− cN1,N2

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx +
(

N

2
− cN1,ε2,i

)∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx

− γ (t)I7(t) − (1 − λ)N3ξ (t)J6(t) +
√

gi

16

∫ L

0
ψ2

x (x, t)dx

+ cN1 (gi + √
gi )

∫ L

0

∫ +∞

0
g(s)η2

x (x, t, s)dsdx + λN3

∫ L

0

∫ +∞

t
g(s)ψ2

0x (x, s − t)dsdx

+ c9

4

(∫ +∞

0
| f (s)|ds

)
E(t) − (λN3 − g0 N1 + N2

2
− c12)

∫ L

0

∫ +∞

0
g(s)ψ2

x (x, t − s)dsdx .

Now, we choose the different constants carefully so as to obtain some desired signs of the coefficients.
First, we select

N2 >
2

k2 − g0
(c11 + g0c12 + 1)

(note that N2 exists according to (2.1)). Next, we pick ε1 such that

0 < ε1 < min

{
1,

ρ1

16N2

}
.

Then, we choose N1 such that

N1 >
1

ρ2g0

(
c11 + c6 N2

ε1

)
+ k1

8g0
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(N1 exists due to (3.1)) and

0 < ε2 < 8

(
(k2 − g0)N2

2
− c11 − g0c12 − 1

)
(clearly ε2 exists by our choice of N2). Next, we select N3 and λ such that

N3 = g0 N1 + N2

2
+ c12 + 1

g0
and λ = 1

N3

(
g0 N1 + N2

2
+ c12

)
(noting that N3 exists thanks to (3.1), and λ ∈ ]0, 1[ according to the choice of N3). These choices
imply that, for some c13, c14 > 0 (not depending on N, i and f),

F ′
1(t) ≤ −c13 E(t) − γ (t)I7(t) − c13ξ (t)J6(t)

+ c14

∫ L

0

∫ +∞

t
g(s)ψ2

0x (x, s − t)dsdx + c9

4

(∫ +∞

0
| f (s)|ds

)
E(t)

+ c14(gi + √
gi )E(t) +

(
N

2
− c̃i

)∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx,

(3.105)

where c̃i is a positive constant depending on i. Then, under condition (3.8), where δ0 is defined in
(3.67) with c13 instead of c8, and in virtue of (3.95), we can choose i big enough so that

gi + √
gi <

1

c14

(
c13 − c9

4

∫ +∞

0
| f (s)|ds

)
.

Last, we select N big enough so that

N > max{2c̃i , c7},
where c7 is defined in (3.61); so the last term in (3.105) is nonpositive and, using (3.62) and (3.103),

(N − c7)E(t) ≤ F1(t) − I7(t) − N3 J6(t) ≤ (N + c7)E(t), ∀t ∈ R+. (3.106)

According to our choices of i and N, we deduce from (3.105) that, for some c15 > 0,

F ′
1(t) ≤ −c15 E(t) − γ (t)I7(t) − c13ξ (t)J6(t) + c14

∫ L

0

∫ +∞

t
g(s)ψ2

0x (x, s − t)dsdx . (3.107)

Therefore, using (3.106) and (3.107), we find, for

δ1 = min

{
c15

N + c7
, 1,

c13

N3

}
,

F ′
1(t) ≤ −δ1 min{1, γ (t), ξ (t)}F1(t) + c14

∫ L

0

∫ +∞

t
g(s)ψ2

0x (x, s − t)dsdx . (3.108)

By integrating the differential inequality (3.108) over [0, t], we get

F1(t) ≤ e−δ1φ(t)

(
F1(0) + c14

∫ L

0

∫ t

0
eδ1φ(s)

∫ +∞

s
g(τ )ψ2

0x (x, τ − s)dτdsdx

)
, (3.109)

where φ is defined in (3.13). Then, from (3.30), (3.106), and (3.109) we find

‖U (t)‖2
H = 2E(t)

≤ 2

N − c7
F1(t)

≤ δ2e−δ1φ(t)

(
1 +

∫ L

0

∫ t

0
eδ1φ(s)

∫ +∞

s
g(τ )ψ2

0x (x, τ − s)dτdsdx

)
,

(3.110)

which gives (3.12) with δ2 = 2

N − c7
max{c14,F1(0)}.
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IV. APPLICATIONS

Our well-posedness and asymptotic stability results for (1.1) hold for various Timoshenko-type
systems. We present here some examples.

A. Timoshenko-heat

Let us consider coupled Timoshenko-heat systems under Fourier’s law of heat conduction⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕt t (x, t) − k1(ϕx (x, t) + ψ(x, t))x = 0,

ρ2ψt t (x, t) − k2ψxx (x, t) + k1(ϕx (x, t) + ψ(x, t)) + k4θx (x, t)

+
∫ +∞

0
g(s)ψxx (x, t − s)ds +

∫ +∞

0
f (s)ψt (x, t − s)ds = 0,

ρ3θt (x, t) − k3θxx (x, t) + k4ψxt (x, t) = 0,

ϕ(0, t) = ψ(0, t) = θ (0, t) = ϕ(L , t) = ψ(L , t) = θ (L , t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt (x,−t) = ψ1(x, t), θ (x, 0) = θ0(x),

(4.1)

where θ denotes the temperature difference (see Ref. 9 for more details).
Under (A1) and (A2), system (4.1) can be formulated in the abstract form (2.4), where U =

(ϕ,ψ, ϕt , ψt , θ, η)T , U0 = (ϕ0, ψ0(·, 0), ϕ1, ψ1(·, 0), θ0, η0)T ∈ H ,

H = (H 1
0 (]0, L[))2 × (L2(]0, L[))3 × L2

g(R+, H 1
0 (]0, L[)),

and the operators A and B are given by (ε0 and c0 are defined, respectively, in (2.8) and (2.9)),

B(w1, w2, w3, w4, w5, w6)T =
(

0, 0, 0,
‖ f ‖∞

ρ2
w4, 0, ε0w6

)T

and

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

w6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w3

w4

k1
ρ1

(w1x + w2)x

w̃4

1
ρ3

(k3w5x − k4w4)x

−w6s − ε0w6 + w4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

w̃4 = 1

ρ2
(k2 − g0)w2xx − k1

ρ2
(w1x + w2) − k4

ρ2
w5x − ‖ f ‖∞

ρ2
w4

+ 1

ρ2

∫ +∞

0
g(s)w6xx (s)ds − 1

ρ2

∫ +∞

0
f (s)w6s(s)ds.

From (2.1), H endowed with the inner product, for W = (w1, w2, w3, w4, w5, w6)T and W̃ T =
(w̃1, w̃2, w̃3, w̃4, w̃5, w̃6)T ,

〈
W, W̃

〉
H

=
∫ L

0
((k2 − g0)w2x (x)w̃2x (x) + k1(w1x (x) + w2(x))(w̃1x (x) + w̃2(x))) dx

+
∫ L

0
(ρ1w3(x)w̃3(x) + ρ2w4(x)w̃4(x) + ρ3w5(x)w̃5(x))dx

+ 〈w6, w̃6〉L2
g(R+,H 1

0 (]0,L[))

is a Hilbert space. Similar to the proof of Theorem 2.1 for (1.1), we can prove that the linear
operator −A is a maximal monotone operator, and B is Lipschitz continuous. Then A + B is an

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

109.221.113.22 On: Mon, 18 Aug 2014 18:10:28



081503-33 Aissa Guesmia J. Math. Phys. 55, 081503 (2014)

infinitesimal generator of a linear C0-semigroup on H . Consequently, (2.4) associated with (4.1) is
well-posed in the sense of Theorem 2.1.

On the other hand, under (A1)–(A4), Theorem 3.2 holds for (4.1). We use the same functionals
and arguments given in Sec. III (see also Ref. 19 in case f ≡ 0).

B. Timoshenko-thermoelasticity

Our approach can be applied to the following Timoshenko-thermoelasticity system of type III,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕt t (x, t) − k1(ϕx (x, t) + ψ(x, t))x = 0,

ρ2ψt t (x, t) − k2ψxx (x, t) + k1(ϕx (x, t) + ψ(x, t)) + k4θxt (x, t)

+
∫ +∞

0
g(s)ψxx (x, t − s)ds +

∫ +∞

0
f (s)ψt (x, t − s)ds = 0,

ρ3θt t (x, t) − k3θxx (x, t) + k4ψxt (x, t) − k5θxxt (x, t) = 0,

ϕ(0, t) = ψ(0, t) = θx (0, t) = ϕ(L , t) = ψ(L , t) = θx (L , t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt (x,−t) = ψ1(x, t),

θ (x, 0) = θ0(x), θt (x, 0) = θ1(x),

(4.2)

which models the transverse vibrations of a thick beam, taking into account the heat conduction
introduced in Refs. 10–12.

Under (A1) and (A2), system (4.2) also can be formulated in the abstract form (2.4), where
U = (ϕ,ψ, θ, ϕt , ψt , θt , η)T , U0 = (ϕ0, ψ0(·, 0), θ0, ϕ1, ψ1(·, 0), θ1, η0)T ∈ H ,

H = (H 1
0 (]0, L[))2 × H 1

∗ (]0, L[) × (L2(]0, L[))2 × L2
∗(]0, L[) × L2

g(R+, H 1
0 (]0, L[)),

H 1
∗ (]0, L[)=

{
v ∈ H 1(]0, L[) :

∫ L

0
v(x)dx =0

}
, L2

∗(]0, L[)=
{
v ∈ L2(]0, L[) :

∫ L

0
v(x)dx =0

}

and the operators A and B are given by

B(w1, w2, w3, w4, w5, w6, w7)T =
(

0, 0, 0, 0,
‖ f ‖∞

ρ2
w5, 0, ε0w7

)T

and

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

w6

w7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w4

w5

w6

k1
ρ1

(w1x + w2)x

w̃5

1
ρ3

(k3w3x − k4w5 + k5w6x )x

−w7s − ε0w7 + w5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

w̃5 = 1

ρ2
(k2 − g0)w2xx − k1

ρ2
(w1x + w2) − k4

ρ2
w6x − ‖ f ‖∞

ρ2
w5

+ 1

ρ2

∫ +∞

0
g(s)w7xx (s)ds − 1

ρ2

∫ +∞

0
f (s)w7s(s)ds.
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From (2.1), H endowed with the inner product, for W = (w1, w2, w3, w4, w5, w6, w7)T and W̃ =
(w̃1, w̃2, w̃3, w̃4, w̃5, w̃6, w̃7)T ,

〈
W, W̃

〉
H

=
∫ L

0
((k2 − g0)w2x (x)w̃2x (x) + k1(w1x (x) + w2(x))(w̃1x (x) + w̃2(x))) dx

+
∫ L

0
(k3w3x (x)w̃3x (x) + ρ1w4(x)w̃4(x) + ρ2w5(x)w̃5(x) + ρ3w6(x)w̃6(x))dx

+ 〈w7, w̃7〉L2
g(R+,H 1

0 (]0,L[))

is a Hilbert space. Similar to the proof of Theorem 2.1 for (1.1), we can prove that A + B is an
infinitesimal generator of a linear C0-semigroup on H by proving that −A is maximal monotone
and B is Lipschitz continuous, and then we deduce that (2.4) associated with (4.2) is well-posed in
the sense of Theorem 2.1.

On the other hand, under (A1)–(A4), Theorem 3.2 holds for (4.2), where, here, E(t) =
1

2
‖(ϕ,ψ, θ̃ , ϕt , ψt , θ̃t , η)‖2

H and

θ̃ (x, t) = θ (x, t) − t

L

∫ L

0
θ1(y)dy − 1

L

∫ L

0
θ0(y)dy;

so ∫ L

0
θ̃ (x, t)dx = 0,

and then (2.9) is applicable for θ̃ . For the proof, we use the same functionals as in Sec. III and some
arguments in Ref. 19 considered in case f ≡ 0.

C. Porous thermoelastic

Our approach can also be applied to the following porous thermoelastic system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕt t (x, t) − k1(ϕx (x, t) + ψ(x, t))x + k4θx (x, t) = 0,

ρ2ψt t (x, t) − k2ψxx (x, t) + k1(ϕx (x, t) + ψ(x, t)) − k5θ (x, t)

+
∫ +∞

0
g(s)ψxx (x, t − s)ds +

∫ +∞

0
f (s)ψt (x, t − s)ds = 0,

ρ3θt (x, t) − k3θxx (x, t) + k4ϕxt (x, t) + k5ψt (x, t) = 0,

ϕ(0, t) = ψ(0, t) = θ (0, t) = ϕ(L , t) = ψ(L , t) = θ (L , t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),
ψ(x,−t) = ψ0(x, t), ψt (x,−t) = ψ1(x, t), θ (x, 0) = θ0(x).

(4.3)

Under (A1) and (A2), system (4.3) can be formulated in the abstract form (2.4), where U , U0, B,
and 〈·, ·〉H are defined as in case (4.1), and the operator A is given by

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

w6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w3

w4

k1
ρ1

(w1x + w2)x − k4
ρ1

w5x

w̃4

1
ρ3

(k3w5x − k4w3)x − k5
ρ3

w4

−w6s − ε0w6 + w4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

w̃4 = 1

ρ2
(k2 − g0)w2xx − k1

ρ2
(w1x + w2) + k5

ρ2
w5 − ‖ f ‖∞

ρ2
w4

+ 1

ρ2

∫ +∞

0
g(s)w6xx (s)ds − 1

ρ2

∫ +∞

0
f (s)w6s(s)ds.
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As in the previous applications, the proof of Theorem 2.1 for (4.3) is similar to the one given in Sec.
II for (1.1).

Under (A1)–(A4), Theorem 3.2 holds also for (4.3) with the same proof as in Sec. III.

D. Discrete time delay

Similar well-posedness results to the ones in Theorem 2.1 and, under (1.2), the stability estimates
(3.9) and (3.12) hold in the case of discrete time delay for (1.1) as well as for (4.1)–(4.3). Let us
discuss the case of (1.1) with discrete time delay (the cases of (4.1)–(4.3) with discrete time delay
can be treated similarly)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕt t (x, t) − k1(ϕx (x, t) + ψ(x, t))x = 0,

ρ2ψt t (x, t) − k2ψxx (x, t) + k1(ϕx (x, t) + ψ(x, t))

+
∫ +∞

0
g(s)ψxx (x, t − s)ds + μψt (x, t − τ ) = 0,

ϕ(0, t) = ψ(0, t) = ϕ(L , t) = ψ(L , t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt (x, 0) = ψ1(x), ψt (x, t − τ ) = f0(x, t − τ ) (t ∈]0, τ [),

(4.4)

where τ ∈ ]0, + ∞[, μ ∈ R∗ and (ϕ0, ψ0, ϕ1, ψ1, f0) are given initial data.
We prove briefly that (4.4) is well posed under the assumption (A1), and it is stable provided

that (1.2), (A1), and (A3) hold and |μ| is small enough, and we establish decay estimates similar to
(3.9) and (3.12).

1. Well-posedness

Following the idea in Ref. 28 (see also Refs. 29–31) to deal with the delay term by considering
a new auxiliary variable z, we can formulate the system (4.4) in the abstract form (2.4), where
U = (ϕ,ψ, ϕt , ψt , η, z)T , U0 = (ϕ0, ψ0(·, 0), ϕ1, ψ1, η0, z0)T ∈ H ,

H = (H 1
0 (]0, L[))2 × (L2(]0, L[))2 × L2

g(R+, H 1
0 (]0, L[)) × L2(]0, 1[, L2(]0, L[)),

L2(]0, 1[, L2(]0, L[)) =
{
w : ]0, 1[→ L2(]0, L[),

∫ L

0

∫ 1

0
w2(x, p)dpdx < +∞

}
endowed with the inner product

〈w1, w2〉L2(]0,1[,L2(]0,L[)) =
∫ L

0

∫ 1

0
w1(x, p)w2(x, p)dpdx,

and {
z(x, t, p) = ψt (x, t − τp),

z0(x, p) = z(x, 0, p) = f0(x,−τp).
(4.5)

The operators A and B are linear and given by

B(w1, w2, w3, w4, w5, w6)T = |μ|
ρ2

(
0, 0, 0, w4, 0, 0

)T
(4.6)

and

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

w6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w3

w4

k1
ρ1

(w1x + w2)x

w̃4

−w5s + w4

− 1
τ
w6p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.7)
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where

w̃4 = 1

ρ2
(k2 − g0)w2xx − k1

ρ2
(w1x + w2) − |μ|

ρ2
w4

− μ

ρ2
w6(1) + 1

ρ2

∫ +∞

0
g(s)w5xx (s)ds.

(4.8)

The domains D(A ) and D(B) of A and B, respectively, are given by

D(A ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(w1, w2, w3, w4, w5, w6)T ∈ H , w5(0) = 0, w6(0) = w4

w6p ∈ L2(]0, 1[, L2(]0, L[)), w5s ∈ L2
g(R+, H 1

0 (]0, L[)), w3, w4 ∈ H 1
0 (]0, L[)

w1 ∈ H 2(]0, L[), (k2 − g0)w2xx +
∫ +∞

0
g(s)w5xx (s)ds ∈ L2(]0, L[)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(4.9)

and D(B) = H . Keeping in mind the definition (4.5) of z, we have{
τ zt (x, t, p) + z p(x, t, p) = 0,

z(x, t, 0) = ψt (x, t).
(4.10)

Therefore, we conclude from (2.13) and (4.10) that the systems (4.4) and (2.4) are equivalent.
Clearly, thanks to (2.1), H endowed with the inner product, for W = (w1, w2, w3, w4, w5, w6)T

and W̃ = (w̃1, w̃2, w̃3, w̃4, w̃5, w̃6)T ,

〈
W, W̃

〉
H

=
∫ L

0
((k2 − g0)w2x (x)w̃2x (x) + k1(w1x (x) + w2(x))(w̃1x (x) + w̃2(x))) dx

+
∫ L

0
(ρ1w3(x)w̃3(x) + ρ2w4(x)w̃4(x))dx

+ 〈w5, w̃5〉L2
g(R+,H 1

0 (]0,L[)) + τ |μ| 〈w6, w̃6〉L2(]0,1[,L2(]0,L[))

is a Hilbert space and D(A ) ⊂ H with dense embedding. Similar to the proof of Theorem 2.1 for
(1.1), we can prove that the linear operator −A is a maximal monotone operator, and B is Lipschitz
continuous; the proof is similar to the one given in Ref. 15 for an abstract evolution equation with
infinite memory and discrete time delay. Then A + B is an infinitesimal generator of a linear C0-
semigroup on H (see Ref. 34: Chap. 3 – Theorem 1.1). Consequently, (2.4) associated with (4.4) is
well-posed in the sense of Theorem 2.1 (see Refs. 22 and 34).

2. Stability

We prove here that the system (2.4) associated with (4.4) is stable under (A1), (A3), and (1.2),
and provided that |μ| is small enough. We provide two decay estimates depending on ξ .

Theorem 4.1. Assume (A1), (A3), and (1.2) hold. Then there exists a positive constant δ0

independent of μ such that, if

|μ| < δ0, (4.11)

then, for any U0 ∈ H , there exist positive constants δ1 and δ2 such that the weak solution of
(2.4) associated with (4.4) satisfies (3.9) with φ(t) = t if (3.2) holds, and it satisfies (3.12) with

φ(t) =
∫ t

0
min{1, ξ (s)}ds if (3.2) does not hold and (3.3) holds.

Proof. Let U0 ∈ D(A ), so that all the calculations below are justified. By a simple density
argument, the decay estimates in Theorem 4.1 remain valid for any weak solution (U0 ∈ H ). First,
as in Ref. 15, we provide a bound on the derivative of the energy functional E (defined in (3.30))
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associated with the solution of (2.4). We find

E ′(t) ≤ 1

2

∫ L

0

∫ +∞

0
g′(s)η2

x (x, t, s)dsdx + |μ|
∫ L

0
ψ2

t (x, t)dx . (4.12)

Note that, as in the distributed delay case, the sign of E′ cannot be determined directly from (4.12).
The proof of Theorem 4.1 is identical to the one given for system (1.1). The only modification

of the proof given in Sec. III for (3.9) and (3.12) is the use of the following functional J7, introduced
in Ref. 28, instead of I7 (defined in (3.52)) to get a crucial estimate on the discrete delay term.

Lemma 4.2. The functional

J7(t) = τe2τ

∫ L

0

∫ 1

0
e−2τpz2(x, t, p)dpdx

satisfies

J ′
7(t) = −2J7(t) + e2τ

∫ L

0
ψ2

t (x, t)dx −
∫ L

0
z2(x, t, 1)dx . (4.13)

Proof. See, for example, Ref. 20. �

Now, defining L1 and F1, respectively, by (3.57) and (3.103) with J7 instead of I7, we get, for
some positive constants δ1, c16 > 0 (as for (3.69) and (3.108)),

L ′
1(t) ≤ −δ1L1(t), ∀t ∈ R+

when (3.2) holds, and

F ′
1(t) ≤ −δ1 min{1, ξ (t)}F1(t) + c16

∫ L

0

∫ +∞

t
g(s)ψ2

0x (x, t − s)dsdx, ∀t ∈ R+

when (3.2) does not hold and (3.3) holds. The rest of the proof carries out as in the case of distributed
delay. �

V. GENERAL COMMENTS AND ISSUES

1. In the case of distributed time delay (1.1) and (4.1)–(4.3), the decay estimates (3.9) and (3.12)
are obtained only for classical solutions (that is, for U0 ∈ D(A )), since the functional I7 defined
in (3.52) is not well-defined for weak solutions; that is, when U0 ∈ H (see (3.55)).

2. When (1.2) does not hold (which is more interesting from the physical point of view), proving
the stability of (4.1)–(4.3) with discrete delay instead of the distributed one (that is, the infinite
integral depending on f is replaced by μψ t(x, t − τ )) and (4.4), seems a delicate question, since
the second energy E1 (defined in (3.71) with k = 1) satisfies

E ′
1(t) ≤ 1

2

∫ L

0

∫ +∞

0
g′(s)η2

xt (x, t, s)dsdx + |μ|
∫ L

0
ψ2

t t (x, t)dx ;

so E1 is not necessarily nonincreasing due to the term depending on μ, this term cannot be
absorbed by E itself even if |μ| is supposed small enough. In the case of distributed delay, the
key of solution was the introduction of the functional I8 defined in (3.78).

3. In the case of absence of delay (i.e., f ≡ 0 and μ = 0), it is well-known that (see Refs. 8,9, and
19), the systems (1.1), (4.1), (4.2), and (4.3) are not exponentially stable when (1.2) does not
hold, but they are dissipative (with respect to E) and the energy satisfies some weaker decay
estimates depending on the (exponential or arbitrary) decay of g at infinity and the regularity of
the initial data U0. In the particular case of exponential decay (3.2), the decay rate obtained in
Refs. 8,9, and 19 is of type 1

tn , which is stronger than the one given in (3.11). This fact is caused
by the nondissipativeness character of (1.1), (4.1), (4.2), and (4.3) generated by the presence of
delay.
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4. In both distributed and discrete delay cases, the arguments presented in this paper can be adapted
to the case where the delay is considered in the first equation; so similar well-posedness and
stability results can be obtained. However, proving the stability of (1.1) in the case where the
memory is considered in the first equation seems a delicate question.

5. The estimate (3.12) does not imply (3.29); that limit depends on the connection between the

growths at infinity of g, f, and
∫ L

0
ψ2

0x (x, ·)dx .

If ψ0x satisfies ∫ L

0

∫ +∞

0
ψ2

0x (x, s)dsdx < +∞, (5.1)

then (3.9) holds, where φ is defined in (3.13). The idea of proof relies on the following functional
J8 instead of J6 (defined in (3.100)):

J8(t) :=
∫ L

0

∫ +∞

0
g(s)

∫ t

t−s
ψ2

x (x, τ )dτdsdx . (5.2)

The functional J8 is well-defined and satisfies, for all λ ∈ ]0, 1[,

J ′
8(t) ≤ −(1 − λ)ξ (t)J8(t) − λ

∫ L

0

∫ +∞

0
g(s)ψ2

x (x, t − s)dsdx + g0

∫ L

0
ψ2

x (x, t)dx, (5.3)

which is similar to (3.101) but without the last term of (3.101). See Ref. 20 in case (1.5) for
more details concerning the idea of proof.

6. If the second initial data ψ1 satisfies∫ L

0

∫ +∞

0
ψ2

1 (x, s)dsdx < +∞, (5.4)

the condition (3.5) is not needed, and the estimates (3.9) and (3.12) hold for γ : R+ → R∗
+ of

class C(R+,R∗
+) and nonincreasing such that

| f (t − s)| ≥ γ (t)
∫ +∞

t
| f (τ − s)|dτ, ∀t ∈ R+, ∀s ∈ [0, t]. (5.5)

Replacing (3.5) by (5.5) allows f to have more general decay rate at infinity; so the growth of f
does not depend on the one of g. The idea of proof (see Ref. 20 for (1.5)) relies on the following
functional J9 instead of I7 (defined in (3.52)):

J9(t) := 2
∫ L

0

∫ +∞

0
| f (s)|

∫ t

t−s
ψ2

t (x, τ )dτdsdx . (5.6)

As for (5.3) with λ = 1

2
, we find

J ′
9(t) ≤ 2αg0

∫ L

0
ψ2

t (x, t)dx − γ (t)J9(t) −
∫ L

0

∫ +∞

0
| f (s)|ψ2

t (x, t − s)dsdx, (5.7)

which is similar to (3.54) with 2αg0 and J9 instead of g(0)β0 and I7, respectively. Similarly, if
both (5.1) and (5.4) are satisfied, then (3.9) holds under (5.5) instead of (3.5).

7. As in the distributed delay case, if the first initial data ψ0x satisfies (5.1), then (3.9) holds for

the discrete time delay case (4.4), where φ(t) =
∫ t

0
min{1, ξ (s)}ds. The idea of proof consists

in replacing J6 (defined in (3.100)) by J8 (defined in (5.2)).
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