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This paper proves the well-posedness and uniform stabilization of a nonlinear
coupled system. We estimate the energy decay rate by using the multiplier method.
© 1999 Academic Press

Key Words: uniform stabilization; strong damping; integral inequality; coupled
systems.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In this paper we are concerned with the energy decay of the solution to
the initial boundary value problem for the nonlinear coupled wave equa-
tion and Petrovsky system

up + Nu, +au, + g(u)) =0  inQXR* (1.1)
uy — Auy +aup +g,(uy) =0 in QX R (1.2)
du, =u; =u,=0 onT xXR" (1.3)

u(x,0) =u(x) and ui(x,0)=ui(x) onQ,i=12, (14)

where ( is a bounded open domain in R” with smooth boundary I' of
class C*; v is the outward unit normal vector to I', R* = [0,%); and a:
O - R, g1, 8, R — R are some given functions. Under suitable assump-
tions we shall prove that this system is well posed and dissipative, and we
shall obtain explicit decay rate estimates.

Our work was motivated by some recent results of Komornik et Loreti
[4]. They proved the observability of system (1.1), (1.2), (1.4) with g, = 0,

38

0022-247X /99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



DAMPED NONLINEAR COUPLED SYSTEM 39
a € R, and the boundary condition
u,=u,=Au; =0 onT X R*

by a new approach based on a generalization of some results of nonhar-
monic analysis to vector-valued functions. However, this approach forced
them to restrict themselves to the case where () is an open ball.

We will show that in fact the multiplier method can be adapted to the
study of the stability of our problem, in any bounded open domain Q of
class C*. In fact, we shall give a new approach based on a direct adaptation
of the usual multiplier method (cf., e.g., [5]). This method leads to decay
rate estimates in the nonlinear case, under the assumption that a is
sufficiently small.

Throughout the paper we shall make the following assumptions:

(H1) The function a belongs to L*({) and

1
lall L=ca) < oo (1.5)

where ¢’, ¢” > 0 (depending only on the geometry of () are the constants
such that

lullfcoy < ¢ [ (Aw)*dx, Vu € HE(Q),
Il < " [ IVul® dv, Vu € H(Q).

(H2) The functions g; are continuous and nondecreasing and g,(0)
= 0. Furthermore, there exists a constant c; > 0, i = 1, 2, such that

|g(x)| <c;(1+1x),  VxeR (1.6)

Remark. It is possible to weaken the growth assumption (1.6) as was
done for the study of the wave equation in [5]. To keep this paper from
becoming too long, we consider only the case of (1.6).

If u = (uy, u,) is a solution of the problem (1.1)-(1.4), then we define its
energy E: R* — R by the following formula:

E(t) = %fn(u;)z + (uy)? + (Auy)? + [Vuy|® dx + /Qauluz dx. (1.7)
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By assumption (1.5) we have

des o < ()’ C () dx
fﬂauluz Z—E||a||L“(Q)fQ ?(“1) + z(uz)

1
> - E\/c’c”IIaIILw(Q)fQ(Aul)Z + | Vu,|? dx.

Hence
E(t) > %jﬂ(ug)z + (uy)’ + (1= Ve llall =) ) ((Auy)® + | Vu,|?) dx

> 0.
Then E is a nonnegative function.

Let us introduce for brevity the Hilbert spaces H = L2(Q) X L2(Q),
V =HZ(Q) X H}(Q), and W = (H*(Q) N HZX(Q)) X (H*(Q) N H}(Q)),
endowed with the norms defined by

Gtz ua) s = [ ()" + ()"

(re7e “2)”%/ = fQ(Aul)z + |VU2|2 dx + Zfﬂauluz dx
and
2
Gtz ua) [ = [ (Rua)” + V8wl + (Bup)” de = (a05) [

Thanks to hypothesis (1.5) the second expression defines in 77 a norm,
equivalent to the norm induced by H2(Q) x H(Q), and then the latter
expression defines in W a norm, equivalent to the norm induced by
H*Q) x H?(Q). Therefore we have a dense and compact imbedding
W cV cH by Rellich’s theorem. Identifying H with its dual H', we
obtain the diagram

WcVcH=H cV' cw

with dense and compact imbeddings.
We shall establish a well-posedness and a regularity result:

THEOREM 1. 1. Given (u},ul) €V and (ui,u3) € H arbitrarily, the
problem (1.1)—(1.4) has a unique weak solution satisfying

(uy,u,) € C(R*; V) N CHR™; H). (1.8)

Furthermore, its energy is nonincreasing.
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2. Assume that (ud,ul) € W and (ui, u}) € V. Then the solution of
(1.D)—-(1.4) satisfies

(uy,uy) € LY(RY; V), (uj,uy) € L”(RT; H) (1.9)
and
(u,,u,) e (R, W). (1.10)

Turning to the stability of system (1.1)—(1.4), let us assume that there
exists a number p > 1 and four positive constants «;, B;, i = 1,2, such that

B; min{lx|, [x|”} <|g:(x)| < a; max{|xl, |x|1/p} VxeR. (1.11)

THEOREM 2. Assume (1.11). Then every weak solution of (1.1)—(1.4)
satisfies the estimate

E(t) < cyE(0)e ", Vi>0, ifp=1, (1.12)
while c,, w are positive constants, independent of the initial data, and
E(t) <cy(1+10) PP Vi>0, ifp>1, (1.13)

where cy is a constant depending on the initial energy E(0).

Remark. Using a technique of [2, 3], we could consider more general
growth conditions than (1.11).

2. WELL-POSEDNESS AND REGULARITY

Let us introduce the duality mapping A: V' — 1V’ and define another,
nonlinear mapping B: V' — V' by

(Bu,z)y y = fﬂgl(ul)zl + 8o(uy) 2, dx,
u=(u,uy), z=1(z,,z,) €V.

Thanks to assumption (1.6) this definition is correct.

Choose z = (zy,z,) € V' arbitrarily. Assume for the moment that
(1.1)-(1.4) has a smooth solution u = (u,, u,). Multiplying equations (1.1),
(1.2), respectively, by z,, z,; integrating by parts their sum in Q; and finally
using boundary condition (1.3) we easily obtain

(W' +Au + Bu',z)y =0, VzeV. (2.1)
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Therefore we deduce from (1.1)—(1.4) that
u' +Au +Bu' = 0inR*, u(0) = (uf,u3), u'(0) = (ui,uz). (2.2)

Putting U = (u, z) == (u, ') and U = (—z, Au + Bz), we can rewrite
(2.2) as a first-order system:

U +2U =0inR*, U(0) = (u° ut), (2.3)

where u° = (u?, u9), u' = (u}, u}). It is natural to consider the operator .«
in the Hilbert space .#:= IV X H. Therefore we define its domain by

D(&) ={U=(u,z) €VXV:Au + Bz € H},

and we define the solution of (1.1)-(1.4) as that of (2.3).
LEMMA 2.1. & is a maximal monotone operator in %.

Proof.  The monotonicity of .«/ follows from the nondecreasingness of
g1, &, Indeed, given U = (u, 2), U = (&, 2) € D(¥) arbitrarily, we have
(U — U, U — Uy
={(Z—z,u—uyy+{Au —Au + Bz — BZ,z — Z)y
=(Bz—-Bz,z—Z)yy

- Z (8:2) —8(2))(z ) dr = 0,

It remains to show that for any given U° = (u° z°) €.# there exists
U = (u, z) € D(%) such that (1 +.&)U = U°. It suffices to show that the
map I + A + B: V — V' is onto. Indeed, then there exists z € I satisfy-
ing

(I+A+B)z=2z"—Au.

Setting u = z + u® we conclude easilythat U € V X V, Au + Bz =z° — 2
€ H (hence U € D(«)), and (I +.2)U = U°.

To prove the surjectivity of I + A + B: V = V', fix f € V' arbitrarily,
set

G(1) = ['a(s)ds, 1eR, =12
0
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and consider the map F: IV — R defined by the formula
F(u) = 3lhullly + 3llully + [ Gu(wy) + Go(u) de = fruwdpy.

Using the growth assumption in (H2) one can readily verify that F is well
defined and continuously differentiable and that

<F’(M),Z>y”y = <(1 + A+ B)u _fyZ>V’,V

for all u,z € V. Furthermore, thanks to the nondecreasingness of the
function g;, F is convex and hence lower semicontinuous in V. Finally, we
deduce from the inequality

F(z) = (Glzlly = Il )izl

that F(z) » +if ||z]|[, = +«. Hence there is a point u € IV minimizing
F. It follows that F(u) = 0,ie., (I + A4 + B)u = f.

LEMMA 2.2. We have W X V = D(%), and therefore D(&) is dense in Z.

Proof. Fix (u,z) € W X V arbitrarily; to prove that (u, z) € D(w), it
suffices to prove the estimate

[{Au + Bz,v)p v| < cllvlly, YveV, (2.4)

with a suitable constant c¢. Using the definition of 4 and B we have

(Au + Bz, v}y v = | Au,Av, + Vu, - Vo, + a(uw, + u,v,) dx
Mttt 2 2 12 21

+ [ g1(z1) 01 + 82(2,) v, . (2.5)
Q

Since (u,z) € WX V implies u,; € H*(Q), u, € H*(Q), we may apply
Green’s formula to the right hand side and use the boundary condition
(1.3). We obtain

(Au + Bz,v)p y = f (Xuy)vy + (—Auy)v, + a(uw, + uyv,) dx
Q

+fgl(zl)ul + 82(z,) v, dx.
Q

Since u, € H*(Q), u, € H*(Q) implies that (A%u,, Au,) € H, by using
(1.6), (2.4) follows. Since the density of W X IV in # is well known, it
follows that D() is dense in Z We may now apply the standard theory of
nonlinear semigroups [1], and (1.8), (1.9) follow.
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Fix (u, z) € D(&) arbitrarily; to prove that (u«,z) € W X V, set

f=Au+ Bz, h=—(g(z1) 82(2))
Observe that Eq. (2.5) may also be written in the form

(fyvdv v = fQAul Av, + Vu, - Vo, + a(uw, + u,v,) dx

—jﬂh~udx, YoeV.

This means that u is the weak solution of the boundary value problem
Ay, =f, + h, — au, in
—Au, =f, + h, — au, in
u, =u, = du; =0, inT.
Since f € H by assumption and by hypothesis (1.6) we have & € H. Then
applying the elliptic regularity theory to this problem we conclude that
u € W. Then D(¥) = W X VV and (1.10) follows from the general theory
of nonlinear semigroups [1].

We finish this section by giving an explicit formula for the derivative of
the energy.

LEMMA 2.3.  The energy of a weak solution of (1.1)—(1.4) is nonincreasing
and locally absolutely continuous and

E'(t) = —fQu’lgl(u’l) +uyg,(uy) dx  a.e.inRT. (2.6)

Proof.  Multiplying (1.1) by «} and (1.2) by «/, integrating by parts their
sum over Q X (0,7), and finally eliminating the normal derivatives by
using the boundary condition (1.3), we easily obtain

E(0) ~ E(T) = [ [ i) + (1) dd

for every positive number T. Being the primitive of an integrable function,
E is locally absolutely continuous and equality (2.6) is satisfied. Thanks to
assumption (H2) the nonincreasingness of the energy follows from (2.6).

3. DECAY ESTIMATES

Using an easy density argument, based on Theorem 1, it is sufficient to
prove the estimate of Theorem 2 for strong solutions. Henceforth we
assume that u is a strong solution of the system (1.1)—(1.4).
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We are going to prove that the energy of this solution satisfies the
estimate

fSTE(t)‘P*“/Z dt < cE(S) (3.1)

for all 0 < § < T < +0o0. Here and in what follows we shall denote by ¢
diverse positive constants. We recall that if a nonnegative and nonincreas-
ing function E: R*— R™ satisfies the estimate (3.1), then it also satisfies
(1.12)-(1.13) (cf., e.g., [6, Theorem 8.1 and 9.1]). Then Theorem 2 will be
proved if we establish inequality (3.1).

LEMMA 3.1. We have

[EP (1) dr < 0 (S)
S
i=2 . i , ,
te X [TECR(0) [ () + gi(up) drdt (32)
i=1"S Q
forall 0 < S <T < +o=

Proof. Multiplying Eq. (1.1) by E(¢)?~Y/2y,, integrating by parts, and
using the boundary condition (1.3), we obtain that

0= ["E@)" 7 [uy(u; + Nuy + au, + gy(y)) ded
S Q
[E (/2 dx]T iy IOy dvd
= t u U - — - HYE(t) | ugu, t

(72 [t e | === (VE'(1) [ sty

_}_jTE(pfl)/Z(t)f (Aul)z - (u’l)2 + auu, + u,g,(uy) dxdt.
s Q

Similarly, we have

0 jTE(t)(p—l)/zfuz(u/é — Au, + auy + g(uy)) dxdt
S Q

T

-1
= [JE(t)""”/2 fﬂuzu’z dx] - TfSTE<P-3)/2(z)E’(t)fQu2u'2 dx dt

N

+/TE(p’1)/2(t)f |Vu,|® — (u'2)2 + augu, + u,g,(uy) dxdt.
s Q
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Taking their sum, we obtain that

/TE<p—1>/z(t)f (1) + (uy)® + (Auy)® + |Vu,|® + 2au,u, drdt
N Q

T
— —[E(t)(pl)/zjulu’l + u,u, dx}

Q N

p—1
2

T
+ JTEC2()E (1) [y + ugidy dxdt
N Q

+ [T [ 20" + 2uy)

—uy gy (Uy) — upg,(uy) drdr. (3:3)
Next we observe that (note that the energy is nonincreasing)

T

HE(I‘)(pl)/Z '/;zulu’l + u,u dx}
s

< cE(8)"TVHE(T) + E(S)) < eE(8)TV,
e

1 .7
—— [ EPINE (1) | uu, + u,id, dredt
. () E'(1) [ sty + ugtty

<c[TEC02(0)| E(1)| < cE($) "V,
N

and, for € = 3(1 — Vc'c"llall =n)) (thanks to (1.5), € > 0),

i=2
_f > u;g(u;) dx
Qi=1
€ 2 € 2 ¢ N2 ! N2
< [ 5"+ S()' + goga()” + Joga(ur) de
< [ (D) + Vi) + (1) + (u)
Q 4e de
(¢’, " are the constants defined in assumption (H1)). Therefore we con-
clude from (3.3) the estimate (3.2).
LEMMA 3.2. We have, forallt € R,

fﬂ(u;)zdxs—cE’(t)+c(—E’(t))2/(pH), i=12 (34)
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and
[Qg,.(u;)2 dx < —cE'(t) + c¢(—E(0))Y?*Y,  i=1,2. (35)
Proof.  Fix t > 0 arbitrarily, and set
O ={xeQu(n)] <1}, O ={reu(x)|>1}, i=12
Using the growth assumption (1.11), we have

2/(p+1)
[ )P <cf (wg(u)) "V ar < ( [ wig(u) d)
Qi »Q,' ‘Q’i

2/(p+1) )
) < c(—E(1)Y P

<c| | ujg(u;) dx
(fﬂ gi(u))
(we applied Lemma 2.3 in the last step) and
! 2 ! ! !
[ )P dx < cf wig(u)de < —cE(1).
F Qf

Taking their sum, we obtain (3.4). Using assumption (1.11), we may prove
in the same way estimate (3.5).

LEMMA 3.3.  The estimate
JIE@©TT 2 dr < c(1+ E©0) V) E(S) (3.6)
S

holds forall 0 < § < T < +o».

Proof.  Substituting the estimates (3.4) and (3.5) into the right-hand side
of (3.2), we obtain that

/;TE(t)(p+l)/2 dt < CE(S)(erl)/S + Cj;‘TE(t)(pil)/z( _E/(t))
+E(Z)(p_l)/2( _Er(t))Z/(erl) dt
< CE(S)(p+l)/2 + chE(t)(P—l)/Z( _E/(t))Z/(p+1) dt.
S

Using the Young inequality, for any fixed € > 0 we have

CE(t) "V (—E (1)) < eE(1) PV 4 ceTP2(—E(1)).
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Therefore

1—e) [[E)" " a
N

IA

cE(8) 7V 4 cetor/2 [T(—E(1)) ar
N

IA

c(1+ €*P/2)(1+ E(S)P V) E(S);

choosing 0 < € < 1 and using the nonincreasingness of the energy, (3.6)
follows.

The constant ¢ in (3.6) is independent of S, T and E(0); then the
estimate (3.1) holds with a constant ¢ independent of S, T, and, if p = 1, ¢
is also independent of E(0).
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