
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

J. Math. Anal. Appl. 416 (2014) 212–228

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A new approach to the stability of an abstract system
in the presence of infinite history

A. Guesmia a,∗, S.A. Messaoudi b

a Institut Elie Cartan de Lorraine, UMR 7502, Université de Lorraine, Bat. A, Ile de Saulcy, 57045
Metz Cedex 01, France
b Department of Mathematics and Statistics, KFUPM, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 February 2013
Available online 20 February 2014
Submitted by K. Nishihara

Keywords:
Infinite history
General decay
Viscoelasticity

In this paper, we consider the following problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
utt(t) + Au(t) −

+∞∫
0

g(s)Au(t− s) ds = 0, ∀t > 0

u(−t) = u0(t), ∀t � 0
ut(0) = u1,

where A is a self-adjoint positive definite operator and g is a positive nonincreasing
function. We adopt the method introduced in [19], for finite history, with some
modifications imposed by the nature of our problem, to establish a general decay
result which depends only on the behavior of the relaxation function. Our result
extends the decay result obtained for problems with finite history to those with
infinite history. In addition, it improves, in some cases, some decay results obtained
earlier in [15].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a real Hilbert space with inner product and related norm denoted by 〈·, ·〉 and ‖·‖, respectively.
Let A : D(A) → H be a self-adjoint linear positive definite operator with domain D(A) ⊂ H such that the
embedding is dense and compact. We consider the following class of second-order linear integrodifferential
equations:
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utt(t) + Au(t) −
+∞∫
0

g(s)Au(t− s) ds = 0, ∀t > 0 (1.1)

with initial conditions {
u(−t) = u0(t), ∀t ∈ R+ = [0,+∞[
ut(0) = u1

(1.2)

where utt = ∂2u
∂t2 , ut = ∂u

∂t , u0 and u1 are given history and initial data, and g : R+ → R+ is a given function.
Since the pioneer work of Dafermos [10], problems related to (1.1)–(1.2) have attracted the attention of

many researchers and a large number of papers have appeared. We start by the work of Chepyzhov and
Pata [9], where an abstract problem of the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

utt(t) + Au(t) −
+∞∫
0

g(s)
(
A(t) −Au(t− s)

)
ds = 0, ∀t > 0

u(−t) = u0(t), ∀t � 0
ut(0) = u1

was considered in a Hilbert space H. Here A is a strictly positive self-adjoint operator with a domain
D(A) ⊂ H and 0 <

∫ +∞
0 g(s) ds < +∞. They proved the well-posedness and showed that the exponential

stability holds only for kernels of exponential decay. Also, in a survey paper, Pata [28] discussed the decay
properties of the semigroup associated with Eq. (1.1) and established several stability results. In [27], Pata
studied the asymptotic behavior of an abstract integrodifferential equation of the form

utt(t) + αAu(t) + βut −
t∫

0

g(s)Au(t− s) ds = 0, ∀t > 0

for α > 0, β � 0 and g a positive summable kernel, and analyzed the exponential stability of the semigroup
associated with the positive operator under some sufficient conditions on the kernel which were not con-
sidered before in the literature. He also introduced some new concepts such as the flatness of a kernel. We
refer the reader to Fabrizio et al. [13] and Grasselli et al. [14] for more results of this nature.

In all the above mentioned works, the kernels considered were of either exponential or polynomial decay.
Recently, Guesmia [15] considered the following problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

utt(t) + Au(t) −
+∞∫
0

g(s)Bu(t− s) ds = 0, ∀t > 0

u(−t) = u0(t), ∀t � 0
ut(0) = u1

for A and B two self-adjoint positive definite operators with D(A) ⊂ D(B) and a kernel of more general
decay rate satisfying

(A0) There exist a0, a1 > 0 such that

a1‖v‖2 �
∥∥B 1

2 v
∥∥2 � a0

∥∥A 1
2 v
∥∥2

, ∀v ∈ D(A)
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(A1) g : R+ → R+is a differentiable nonincreasing function satisfying

0 <

+∞∫
0

g(s) ds < 1
a0

(A2) There exists a positive, increasing strictly convex function G : R+ → R+ of class C1(R+)∩C2(]0,+∞[)
satisfying

G(0) = G′(0) = 0, lim
t→+∞

G′(t) = +∞

such that

+∞∫
0

g(s)
G−1(−g′(s)) ds + sup

s∈R+

g(s)
G−1(−g′(s)) < +∞.

He established a general decay estimate given in term of the convex function G. His result generalizes
the usual exponential and polynomial decay results found in the literature. His proof makes use of some
properties of the convex functions and a generalized version of the Young inequality.

For problems with finite history (viscoelasticity), we mention some results related to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
utt(x, t) − Δu(x, t) +

t∫
0

g(t− τ)Δu(x, τ) dτ = 0, in Ω× ]0,+∞[

u(x, t) = 0, on ∂Ω × R+

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω

(1.3)

where Ω is a bounded domain of Rn (n � 1) with a smooth boundary ∂Ω and g is a positive nonincreasing
function defined on R+. The first work that dealt with uniform decay was by Dassios and Zafiropoulos [11] in
which a viscoelastic problem in R3 was studied and a polynomial decay result was proved for exponentially
decaying kernels. After that, a very important contribution by Rivera was introduced. In 1994, Rivera
[20] considered equations for linear isotropic homogeneous viscoelastic solids of integral type which occupy
a bounded domain or the whole space Rn, with zero boundary and history data and in the absence of
body forces. For the bounded domains, he proved an exponential decay result for exponentially decaying
relaxation functions. However, for the whole space case, he showed that only the polynomial decay can be
obtained even if the kernel is of exponential decay. The rate of the decay was also given. This result was later
generalized to a situation where the kernel is decaying algebraically but not exponentially by Cabanillas and
Rivera [5]. In their paper, the authors considered both cases the bounded domains and that of a material
occupying the entire space and showed that the decay of solutions is algebraic, at a rate which can be
determined by the rate of the decay of the relaxation function. Barreto et al. [2] improved this latter result
further by considering equations related to linear viscoelastic plates. They showed that the solution energy
decays at the same decay rate of the relaxation function. In [22], a class of abstract viscoelastic systems of
the form ⎧⎪⎪⎨⎪⎪⎩

utt(t) + Au(t) + βu(t) −
+∞∫
0

g(t− s)Aαu(s) ds = 0, ∀t > 0

u(0) = u0, ut(0) = u1

(1.4)
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for 0 � α � 1, β � 0, were investigated. The main focus was on the case when 0 < α < 1 and the main result
was that solutions for (1.4) decay polynomially even if the kernel g decays exponentially. This result was
improved by Rivera and Naso [24], where the authors considered a more general abstract problem than (1.4)
and established a necessary and sufficient condition to obtain an exponential decay (see also [21]). In the
case of lack of exponential decay, a polynomial decay result has been proved. In the latter case, they showed
that the rate of decay can be improved by taking more regular initial data. Application to concrete examples
was also presented.

For systems with localized frictional dampings cooperating with the dissipation induced by the viscoelastic
term, we mention the work of Cavalcanti et al. [7]. Under the condition

−ξ1g(t) � g′(t) � −ξ2g(t), ∀t � 0

with ‖g‖L1(R+) small enough, the authors obtained an exponential rate of decay. Berrimi and Messaoudi
[3,4] improved Cavalcanti’s result by showing that the viscoelastic dissipation alone is strong enough to
stabilize the system. Also, Cavalcanti and Oquendo [8] considered

utt − k0Δu +
t∫

0

div
(
a(x)g(t− τ)∇u(τ)

)
dτ + b(x)h(ut) + f(u) = 0

under similar conditions on the relaxation function g and a(x) + b(x) � δ > 0, and improved the result
in [7]. They established an exponential stability when g is decaying exponentially and h is linear; and a
polynomial stability when g is decaying polynomially and h is nonlinear. A related problem, in a bounded
domain, of the form

|ut|ρutt − Δu− Δutt +
t∫

0

g(t− τ)Δu(τ) dτ − γΔut = 0

for ρ > 0 and g decaying exponentially, was also studied by Cavalcanti et al. [6]. A global existence result
for γ � 0, as well as an exponential decay for γ > 0, has been established. This latter “exponential decay”
result has been extended to a situation, where γ = 0, by Messaoudi and Tatar [17,18]. Moreover, some
polynomial decay results have been established in the absence, as well as in the presence, of a source term,
for polynomially decaying relaxation functions.

For viscoelastic systems with oscillating kernels, Rivera and Naso [23] showed that, if the kernel satisfies
g(0) > 0 and decays exponentially to zero, then the solution decays exponentially to zero. On the other
hand, if the kernel decays polynomially, then the corresponding solution also decays polynomially to zero
with the same rate of decay.

For more general decaying kernels, Messaoudi [19] considered⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
utt(x, t) − Δu(x, t) +

t∫
0

g(t− τ)Δu(x, τ) dτ = 0, in Ω× ]0,+∞[

u(x, t) = 0, on ∂Ω × R+

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω

(1.5)

where Ω is a bounded domain of Rn and g is a positive nonincreasing function satisfying

g′(t) � −ξ(t)g(t), ∀t � 0 (1.6)
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for ξ a nonincreasing differentiable function. He established a general decay result, from which the usual
exponential and polynomial decay results are only special cases. After that, using the idea of [19], a series
of papers have appeared. See, for instance, Liu [16], Park and Park [26] and Xiaosen and Mingxing [33].

Very recently, Mustafa and Messaoudi [25] considered (1.5), for relaxation functions satisfying, instead
of (1.6), a relation of the form

g′(t) � −H
(
g(t)

)
, ∀t � 0

where H is a positive convex function. They used some properties of the convex functions together with
the generalized Young inequality and established a general decay result depending on g and H. We should
mention here that the result of [25] is established under weaker conditions than those imposed by Alabau-
Boussouira and Cannarsa [1]. For more results related to stability of viscoelastic systems, we refer the reader
to works by Fabrizio and Polidoro [12] and Tatar [30–32].

In the present work, we study the asymptotic behavior of solutions of (1.1)–(1.2), under the assump-
tion (1.6) instead of (A2), considered in [15]. This work will “relatively” extend the result of Messaoudi [19],
known for the finite history case, to the infinite history case. The proof of the current result is easier than
the one in [15] since we need no convex function properties or the generalized Young inequality. Moreover,
this result gives a better rate of decay in some situations (see Remark 2.2 below).

This paper is organized as follows. In Section 2, we discuss the well-posedness and present our main
stability result. In Section 3, the proof of the main result is given. Section 4 is devoted to applications of
our main result.

2. Well-posedness and stability results

In order to discuss the semigroup formulation of our problem and state our stability result, we assume
that A and g satisfy the following hypotheses:

(H1) There exists a positive constant a such that

a‖v‖2 �
∥∥A 1

2 v
∥∥2

, ∀v ∈ D
(
A

1
2
)

(2.1)

(H2) g : R+ → R+ is of class C1(R+) nonincreasing and satisfies

g0 :=
+∞∫
0

g(s) ds ∈ ]0, 1[ (2.2)

(H3) There exists a nonincreasing differentiable function ξ : R+ → R+ such that

g′(s) � −ξ(s)g(s), ∀s ∈ R+ (2.3)

2.1. Well-posedness

It is well known, following a method introduced by Dafermos [10], that (1.1)–(1.2) can be formulated as
an abstract linear first-order system of the form

{Ut(t) = AU(t), ∀t > 0
U(0) = U0

(2.4)
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where U0 = (u0(0), u1, η0)T ∈ H = D(A 1
2 ) ×H × L2

g, U = (u, ut, η
t)T ,

{
ηt(s) = u(t) − u(t− s), ∀t, s ∈ R+

η0(s) = η0(s) = u0(0) − u0(s), ∀s ∈ R+

L2
g is defined by

L2
g =

{
z : R+ → D

(
A

1
2
)
,

+∞∫
0

g(s)
∥∥A 1

2 z(s)
∥∥2

ds < +∞
}

endowed with the inner product

〈z1, z2〉L2
g

=
+∞∫
0

g(s)
〈
A

1
2 z1(s), A

1
2 z2(s)

〉
ds

A is the linear operator given by

A(v, w, z)T =
(
w,−(1 − g0)Av −

+∞∫
0

g(s)Az(s) ds,−∂z

∂s
+ w

)T

and

D(A) =
{

(v, w, z)T ∈ H, w ∈ D
(
A

1
2
)
,
∂z

∂s
∈ L2

g, (1 − g0)v +
+∞∫
0

g(s)z(s) ds ∈ D(A), z(0) = 0
}

Under the hypotheses (H1) and (H2), it is well known (see [24]) that H endowed with the inner product

〈
(v1, w1, z1)T , (v2, w2, z2)T

〉
H = (1 − g0)

〈
A

1
2 v1, A

1
2 v2

〉
+ 〈w1, w2〉 + 〈z1, z2〉L2

g

is a Hilbert space, D(A) ⊂ H with dense embedding, and A is the infinitesimal generator of a linear
contraction C0-semigroup on H (see [24]). Therefore, the classical semigroup theory implies that (see [29]),
for any U0 ∈ H, the system (2.4) has a unique weak solution

U ∈ C
(
R+,H

)
(2.5)

Moreover, if U0 ∈ D(A), then the solution of (2.4) satisfies

U ∈ C1(R+,H
)
∩ C

(
R+, D(A)

)
(2.6)

2.2. Asymptotic behavior

Our main concern in this paper is the asymptotic stability of (2.4). We have the following result:

Theorem 2.1. Assume that (H1)–(H3) hold. Then, for any U0 ∈ H satisfying, for some m0 � 0,

∥∥A 1
2u0(s)

∥∥ � m0, ∀s > 0 (2.7)
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there exist constants γ0 ∈ ]0, 1[ and δ1 > 0 such that, for all t ∈ R+ and for all δ0 ∈ ]0, γ0],

∥∥U(t)
∥∥2
H � δ1

(
1 +

t∫
0

(
g(s)

)1−δ0
ds

)
e−δ0

∫ t
0 ξ(s) ds + δ1

+∞∫
t

g(s) ds (2.8)

Remark 2.2.

1. Our decay estimate (2.8) still holds for the following “little” more general form considered in [15]:

utt(t) + Au(t) −
+∞∫
0

g(s)Bu(t− s) ds = 0, ∀t > 0 (2.9)

where B : D(B) → H is a self-adjoint linear positive definite operator with domain D(A) ⊂ D(B) ⊂ H

with dense and compact embeddings such that, for positive constants a0, a1 and a2,

‖v‖2 � a0
∥∥B 1

2 v
∥∥2 � a1

∥∥A 1
2 v
∥∥2 � a2

∥∥B 1
2 v
∥∥2

, ∀v ∈ D
(
A

1
2
)

(2.10)

2. If there exists ε0 ∈ ]0, 1[, for which

+∞∫
0

(
g(s)

)1−ε0
ds < +∞ (2.11)

then we can choose δ0 ∈ ]0, γ1], γ1 = min{ε0, γ0} such that

+∞∫
0

(
g(s)

)1−δ0
ds < +∞

and consequently, (2.8) takes the form

∥∥U(t)
∥∥2
H � δ1

(
e−δ0

∫ t
0 ξ(s) ds +

+∞∫
t

g(s) ds
)

(2.12)

for some δ1 > 0.
3. Let us compare our estimates (2.8) and (2.12) with the one of [15] obtained for (2.9) under the assump-

tions (2.10) and (A2).
i) Our estimate (2.12) improves, in some particular cases, the decay rate given in [15]. Indeed. Let

g(t) = de−(1+t)q with 0 < q < 1, and d > 0 small enough so that (2.2) and (2.3), with ξ(t) =
q(1 + t)q−1, hold. Then, (2.11) is satisfied and consequently, (2.12) gives, for two positive constants
c1 and c2, ∥∥U(t)

∥∥2
H � c1e

−c2(1+t)q , ∀t ∈ R+ (2.13)

which implies that ‖U(t)‖2
H has the same decay rate as g, and improves the following decay rate

obtained in [15]:

∥∥U(t)
∥∥2
H � c1e

−c2t
p

, ∀t ∈ R+, ∀p ∈
]
0, q2

[
(2.14)
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Similarly, if g(t) = de−(ln(2+t))q with q > 1, and d > 0 small enough so that (2.2) and (2.3), with
ξ(t) = q(ln(2+t))q−1

2+t , hold. Then, (2.11) is satisfied and, hence, (2.12) yields

∥∥U(t)
∥∥2
H � c1e

−c2(ln(1+t))q , ∀t ∈ R+ (2.15)

Estimate (2.15) is little better than the following one obtained in [15]:∥∥U(t)
∥∥2
H � c1e

−c2(ln(1+t))p , ∀t ∈ R+, ∀p ∈ ]1, q[ (2.16)

ii) When g has at most a polynomial decay, for example g(t) = d
(1+t)q with q > 1, and d > 0 small

enough so that (2.2) and (2.3), with ξ(t) = q(1 + t)−1 hold, condition (2.11) is satisfied and, hence,
(2.12) gives ∥∥U(t)

∥∥2
H � c1

(t + 1)c2 , ∀t ∈ R+ (2.17)

Here c2, generated by the calculations, is generally small. However, the approach of [15] gives, in
this case, the following stronger and precise decay rate:

∥∥U(t)
∥∥2
H � c1

(t + 1)p , ∀t ∈ R+, ∀p ∈
]
0, q − 1

2

[
(2.18)

iii) Let us consider an example where (2.11) is never satisfied.
If g(t) = a

(2+t)(ln(2+t))q , with q > 1, and a > 0 small enough so that (2.2) holds, then, simple
calculations show that ξ(t) = q+ln(2+t)

(2+t) ln(2+t) ,

t∫
0

ξ(s) ds = ln(2 + t) − ln 2 + q
(
ln
(
ln(2 + t)

)
− ln(ln 2)

)
and

+∞∫
t

g(s) ds = a

q − 1
(
ln(2 + t)

)1−q

In this case, we apply estimate (2.8), which gives, for δ0 ∈ ]0, γ0] small enough so that (1− δ0)q > 1
(that is qδ0 < q − 1),

∥∥U(t)
∥∥2
H � δ1

(
1 +

t∫
0

a1−δ0

(2 + s)1−δ0(ln(2 + s))(1−δ0)q
ds

)(
2δ0(ln 2)qδ0

(2 + t)δ0(ln(2 + t))qδ0

)

+ aδ1
q − 1

(
ln(2 + t)

)1−q

� δ1

(
1 +

t∫
0

a1−δ0

(2 + s)(ln(2 + s))(1−δ0)q
ds

)
2δ0(ln 2)qδ0

(ln(2 + t))qδ0

+ aδ1
q − 1

(
ln(2 + t)

)1−q

� c

(
1

(ln(2 + t))q−1 + 1
(ln(2 + t))qδ0

)
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for some positive constant c. Then

∥∥U(t)
∥∥2
H � c1

(ln(2 + t))qδ0 , ∀t ∈ R+

Clearly, this decay result is weaker and less precise than the one obtained in [15], which is

∥∥U(t)
∥∥2
H � c

(ln(2 + t))q−1 , ∀t ∈ R+

4. According to the above particular examples, it seems that our approach gives a better decay rate than
the one of [15] when g converges to zero faster than 1

tq , for any q > 0, and the approach of [15] gives a
better decay rate than ours when g converges to zero at most polynomially.

5. It is well known that (see [24]), if g satisfies (2.3) with a constant function ξ (hence g decays at least
exponentially to zero), then (without the restriction (2.7))

∥∥U(t)
∥∥2
H � δ1e

−δ2t, ∀t ∈ R+ (2.19)

which is the best decay rate known in the literature.

3. Proof of the stability estimate

In order to justify the calculations, we establish (2.8) for initial data U0 ∈ D(A). The estimate, then,
remains valid for U0 ∈ H by a simple density argument. We consider the energy functional E associated
with the solution of (2.4), corresponding to U0 ∈ H,

E(t) = 1
2
∥∥U(t)

∥∥2
H

= 1
2

(
(1 − g0)

∥∥A 1
2u(t)

∥∥2 +
∥∥ut(t)

∥∥2 +
+∞∫
0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds

)
(3.1)

where g0 is given in (2.2).
Multiplying (1.1) by ut(t) “scalarly”, we get

E′(t) = 1
2

+∞∫
0

g′(s)
∥∥A 1

2 ηt(s)
∥∥2

ds, ∀t ∈ R+ (3.2)

Since g is nonincreasing, then E is nonincreasing and, consequently, (2.4) is dissipative. Now, we recall the
following three lemmas of [15] (see also [24]).

Lemma 3.1. Assume that (H1) and (H2) are satisfied. Then the functional

I1(t) = −
〈
ut(t),

+∞∫
0

g(s)ηt(s) ds
〉

satisfies, for any ε > 0 and for all t ∈ R+,
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I ′1(t) � −(g0 − ε)
∥∥ut(t)

∥∥2 + ε
∥∥A 1

2u(t)
∥∥2

+ cε

( +∞∫
0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds−
+∞∫
0

g′(s)
∥∥A 1

2 ηt(s)
∥∥2

ds

)
, (3.3)

where cε > 0 is a constant depending on ε.

Proof. Multiplying “scalarly” (1.1) by
∫ +∞
0 g(s)ηt(s) ds, we get

0 =
〈
utt(t),

+∞∫
0

g(s)ηt(s) ds
〉

+ (1 − g0)
〈
Au(t),

+∞∫
0

g(s)ηt(s) ds
〉

+
〈 +∞∫

0

g(s)Aηt(s) ds,
+∞∫
0

g(s)ηt(s) ds
〉

Using the definition of A 1
2 , we get

0 =
〈
utt(t),

+∞∫
0

g(s)ηt(s) ds
〉

+ (1 − g0)
〈
A

1
2u(t),

+∞∫
0

g(s)A 1
2 ηt(s) ds

〉

+
〈 +∞∫

0

g(s)A 1
2 ηt(s) ds,

+∞∫
0

g(s)A 1
2 ηt(s) ds

〉

On the other hand, by using the fact that ∂ηt

∂t (s) = −∂ηt

∂s (s) + ut(t), we find

〈
utt(t),

+∞∫
0

g(s)ηt(s) ds
〉

= ∂

∂t

〈
ut(t),

+∞∫
0

g(s)ηt(s) ds
〉

−
〈
ut(t),

+∞∫
0

g(s) ∂
∂t

ηt(s) ds
〉

= −I ′1(t) − g0
∥∥ut(t)

∥∥2 +
〈
ut(t),

+∞∫
0

g(s)∂sηt(s) ds
〉

By integrating by parts with respect to s in the infinite integral, we get

〈
utt(t),

+∞∫
0

g(s)ηt(s) ds
〉

= −I ′1(t) − g0
∥∥ut(t)

∥∥2 −
〈
ut(t),

+∞∫
0

g′(s)ηt(s) ds
〉

By combining these equalities, we deduce that

I ′1(t) = −g0
∥∥ut(t)

∥∥2 + (1 − g0)
〈
A

1
2u(t),

+∞∫
0

g(s)A 1
2 ηt(s) ds

〉

−
〈
ut(t),

+∞∫
0

g′(s)ηt(s) ds
〉

+
〈 +∞∫

0

g(s)A 1
2 ηt(s) ds,

+∞∫
0

g(s)A 1
2 ηt(s) ds

〉
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By using Cauchy–Schwarz and Young’s inequalities for the last three terms and recall (2.1) to estimate
‖ηt(s)‖2 by 1

a‖A
1
2 ηt(s)‖2, (3.3) follows with cε = (1 + 1

ε )c, where c is a positive constant depending only on
g and a. �
Lemma 3.2. Assume that (H1) and (H2) are satisfied. Then the functional

I2(t) =
〈
ut(t), u(t)

〉
satisfies, for any ε > 0 and for all t ∈ R+,

I ′2(t) �
∥∥ut(t)

∥∥2 − (1 − g0 − ε)
∥∥A 1

2u(t)
∥∥2 + c̃ε

+∞∫
0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds (3.4)

where c̃ε > 0 is a constant depending on ε.

Proof. Multiplying (1.1) “scalarly” by u, we find

0 =
〈
utt(t), u(t)

〉
+ (1 − g0)

〈
Au(t), u(t)

〉
+
〈 +∞∫

0

g(s)Aηt(s) ds, u(t)
〉

Consequently, using the definition of A 1
2 , we arrive at

0 = ∂

∂t

〈
ut(t), u(t)

〉
−
∥∥ut(t)

∥∥2 + (1 − g0)
∥∥A 1

2u(t)
∥∥2 +

〈 +∞∫
0

g(s)A 1
2 ηt(s) ds,A 1

2u(t)
〉

By using Cauchy–Schwarz and Young’s inequalities for the last term, (3.4) holds with c̃ε = c̃
ε , where c̃ is a

positive constant depending only on g. �
Lemma 3.3. Assume that (H1) and (H2) are satisfied. Then there exist constants α0, α1, α2 > 0 such that
the functional

I3 = I1 + g0
2 I2 + α0E

satisfies, for all t ∈ R+,

I ′3(t) � −α1E(t) + α2

+∞∫
0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds (3.5)

Proof. Multiplying (3.4) by g0
2 , adding (3.3), choosing ε = g0(1−g0)

2(2+g0) (note that ε > 0 thanks to (2.2)),
using (3.2) to replace

∫ +∞
0 g′(s)‖A 1

2 ηt(s)‖2 ds with 2E′(t), choosing α0 = 2cε, and noting that (thanks
to (2.2) and (3.1)),

E(t) � 1
2

(∥∥A 1
2u(t)

∥∥2 +
∥∥ut(t)

∥∥2 +
+∞∫
0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds

)
, ∀t ∈ R+
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we get (3.5) with α1 = min{g0 − 2ε, g0(1 − g0 − ε) − 2ε} (α1 > 0 thanks to (2.2) and the choice of ε) and
α2 = cε + g0

2 c̃ε + α1
2 . �

Now, let M be a positive number and

I4 = ME + I3

Keeping in mind (2.2) and (3.1), we have, for all t ∈ R+,

E(t) � 1 − g0
2

(∥∥A 1
2u(t)

∥∥2 +
∥∥ut(t)

∥∥2 +
+∞∫
0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds

)
(3.6)

By using (2.1), (3.6) and the definitions of I1 and I2, we easily conclude that there exist two positive
constants d1 and d2 depending only on g and a such that |I1| � d1E and |I2| � d2E. Thus, |I3| � M0E

with M0 = d1 + g0
2 d2 + α0.

Therefore, for M = 2M0, we get

M0E � I4 � 3M0E (3.7)

Thanks to (3.5) and the fact that E is nonincreasing, we have, for all t ∈ R+,

I ′4(t) � −α1E(t) + α2

+∞∫
0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds (3.8)

Now, we estimate the integral term of (3.8), which represents the main difficulty in the proof of the stability
estimate. To achieve this goal, we adapt, with some necessary modifications, the approach introduced in [19],
for the wave equation with finite history.

Lemma 3.4. Assume that (H1)–(H3) and (2.7) are satisfied. Then there exist positive constants β1 and β2
such that, for all t ∈ R+,

ξ(t)I ′4(t) + β1E
′(t) � −α1ξ(t)E(t) + β2ξ(t)

+∞∫
t

g(s) ds (3.9)

Proof. Using (2.3) and the fact that ξ is nonincreasing, we get, for all t ∈ R+,

ξ(t)
t∫

0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds �
t∫

0

ξ(s)g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds � −
t∫

0

g′(s)
∥∥A 1

2 ηt(s)
∥∥2

ds

then, using (3.2) and the fact that g is nonincreasing, to obtain

ξ(t)
t∫

0

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds � −2E′(t), ∀t ∈ R+ (3.10)

On the other hand, (3.6) and the fact that E is nonincreasing imply that
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∥∥A 1
2u(t)

∥∥2 � 2
1 − g0

E(t) � 2
1 − g0

E(0), ∀t ∈ R+

Therefore, for all s > t,

∥∥A 1
2 ηt(s)

∥∥2 � 2
∥∥A 1

2u(t)
∥∥2 + 2

∥∥A 1
2u(t− s)

∥∥2

� 2 sup
τ>0

∥∥A 1
2u(τ)

∥∥2 + 2 sup
τ<0

∥∥A 1
2u(τ)

∥∥2

� 4
1 − g0

E(0) + 2 sup
τ>0

∥∥A 1
2u0(τ)

∥∥2
, ∀t, s ∈ R+

Then we deduce from (2.7) that, for all t ∈ R+,

ξ(t)
+∞∫
t

g(s)
∥∥A 1

2 ηt(s)
∥∥2

ds �
(

4
1 − g0

E(0) + 2m2
0

)
ξ(t)

+∞∫
t

g(s) ds (3.11)

Finally, multiplying (3.8) by ξ(t) and combining with (3.10) and (3.11), we get (3.9) with β1 = 2α2 and
β2 = α2( 4

1−g0
E(0) + 2m2

0). �
Now, let

F = ξI4 + β1E and h(t) = ξ(t)
+∞∫
t

g(s) ds

Thanks to (3.7) and the fact that ξ is nonnegative and nonincreasing, we have

β1E � F �
(
3ξ(0)M0 + β1

)
E (3.12)

Then, using (3.9) and again the fact that ξ is nonincreasing,

F ′(t) � −γ0ξ(t)F (t) + β2h(t), ∀t ∈ R+

with γ0 = α1
3ξ(0)M0+β1

(note that β1 = 2α2 = 2cε + g0c̃ε + α1 > α1, hence γ0 ∈ ]0, 1[). This last inequality
still holds for any δ0 ∈ ]0, γ0]; that is

F ′(t) � −δ0ξ(t)F (t) + β2h(t), ∀t ∈ R+ (3.13)

Then (3.13) implies that, for all t ∈ R+,

(
eδ0

∫ t
0 ξ(s) dsF (t)

)′ � β2e
δ0
∫ t
0 ξ(s) dsh(t)

Therefore, by integrating over [0, T ] with T � 0,

F (T ) � e−δ0
∫ T
0 ξ(s) ds

(
F (0) + β2

T∫
0

eδ0
∫ t
0 ξ(s) dsh(t) dt

)

which implies that, thanks to (3.12),
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E(T ) � 1
β1

e−δ0
∫ T
0 ξ(s) ds

(
F (0) + β2

T∫
0

eδ0
∫ t
0 ξ(s) dsh(t) dt

)
(3.14)

Because

eδ0
∫ t
0 ξ(s) dsh(t) = 1

δ0

(
eδ0

∫ t
0 ξ(s) ds)′ +∞∫

t

g(s) ds, ∀t ∈ R+

then, by integration by parts,

T∫
0

eδ0
∫ t
0 ξ(s) dsh(t) dt = 1

δ0

(
eδ0

∫ T
0 ξ(s) ds

+∞∫
T

g(s) ds−
+∞∫
0

g(s) ds +
T∫

0

eδ0
∫ t
0 ξ(s) dsg(t) dt

)

Consequently, combining with (3.14),

E(T ) � 1
β1

(
F (0)e−δ0

∫ T
0 ξ(s) ds + β2

δ0

+∞∫
T

g(s) ds
)

+ β2
β1δ0

e−δ0
∫ T
0 ξ(s) ds

T∫
0

eδ0
∫ t
0 ξ(s) dsg(t) dt (3.15)

On the other hand, (2.3) implies that (e
∫ t
0 ξ(s) dsg(t))′ � 0, for all t ∈ R+, and then e

∫ t
0 ξ(s) dsg(t) � g(0).

Therefore,

T∫
0

eδ0
∫ t
0 ξ(s) dsg(t) dt �

(
g(0)

)δ0 T∫
0

(
g(t)

)1−δ0
dt (3.16)

Finally, (3.1), (3.15) and (3.16) give (2.8) with

δ1 = 2
β1

max
{
F (0), β2

δ0
,
β2
δ0

(
g(0)

)δ0}
4. Applications

In this section, we discuss some particular problems that fall in the framework of our abstract model (1.1).

4.1. Finite memory

When u0(t) = 0, ∀t > 0, (1.1) takes the form⎧⎪⎪⎨⎪⎪⎩
utt(t) + Au(t) −

t∫
0

g(s)Au(t− s) ds = 0, ∀t > 0

u(0) = u0, ut(0) = u1

A close look at the proof of Theorem 2.1 shows that the decay estimate (2.8) becomes
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∥∥U(t)
∥∥2
H � δ1e

−δ0
∫ t
0 ξ(s) ds

which is the result obtained in [19].

4.2. Wave equation

Our result (2.8) holds for the following problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
utt(x, t) − Δu(x, t) +

+∞∫
0

g(s)Δu(x, t− s) ds = 0, in Ω× ]0,+∞[

u(x, t) = 0, on ∂Ω × R+

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω × R+

where Ω is a bounded and smooth domain of Rn. This is a particular case of (1.1), with A = −Δ, H = L2(Ω)
and D(A) = H2(Ω) ∩H1

0 (Ω).

4.3. Elastic system

Our result (2.8) holds for the following problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
utt(t) −

n∑
j,k=1

∂

∂xj

(
ajk(x)∂u(x, t)

∂xk

)
+

+∞∫
0

g(s)
n∑

j,k=1

∂

∂xj

(
ajk(x)∂u(x, t− s)

∂xk

)
ds = 0, in Ω× ]0,+∞[

u(x, t) = 0, on ∂Ω × R+

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω × R+

where Ω is a bounded and smooth domain of Rn, ajk ∈ C1(Ω), j, k = 1, . . . , n satisfying some smoothness,
symmetry and coercivity conditions. This is a particular case of (1.1), with

A = −
n∑

j,k=1

∂

∂xj

(
ajk(x) ∂

∂xk

)

H = L2(Ω) and D(A) = H2(Ω) ∩H1
0 (Ω).

4.4. Petrovsky system

Our result (2.8), also, holds for the following problem:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
utt(t) + Δ2u(t) −

+∞∫
0

g(s)Δ2u(t− s) ds = 0, in Ω× ]0,+∞[

u(x, t) = ∂u

∂ν
(x, t) = 0, on ∂Ω × R+

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), on ∂Ω × R+

where Ω is a bounded and smooth domain of Rn and ν is the unit outer normal to Ω. This is a particular
case of (1.1), with A = Δ2, H = L2(Ω) and D(A) = H4(Ω) ∩H2

0 (Ω).
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