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We consider in this paper the problem of asymptotic behavior of solutions to an abstract
linear dissipative integrodifferential equation with infinite memory (past history) modeling
linear viscoelasticity. We show that the stability of the system holds for a much larger
class of the convolution kernels than the one considered in the literature, and we provide
a relation between the decay rate of the solutions and the growth of the kernel at infinity.
Some applications are also given.
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1. Introduction

Let H be a Hilbert space with inner product and related norm denoted by 〈· , ·〉 and ‖ · ‖, respectively. Let A : D(A) → H
and B : D(B) → H be self-adjoint linear positive definite operators with domains D(A) ⊂ D(B) ⊂ H such that the embed-
dings are dense and compact. We consider the following class of second-order linear integrodifferential equation:

u′′(t) + Au(t) −
∞∫

0

g(s)Bu(t − s)ds = 0, ∀t > 0, (1.1)

where ′ = ∂
∂t , with initial conditions{

u(−t) = u0(t), ∀t ∈ R+ = [0,∞[,
u′(0) = u1,

(1.2)

where u0 and u1 are given history and initial data, and the convolution kernel g : R+ → R+ is a given function which
represents the term of dissipation.

In the particular case A = B = −� (the negative Laplacian operator with respect to the space variable) on L2(Ω) (where
Ω ⊂ R

n is a given domain) with Dirichlet boundary conditions, Eq. (1.1) describes the dynamics of linear viscoelastic solids
(see [16] for example). Eq. (1.1) can also used to formulate a generalized Kirchhoff viscoelastic beam with memory (see
[15] and the references therein). For more details concerning the physical phenomena which are modeled by differential
equations with memory, as well as the problem of the modeling of materials with memory, we refer the reader to the
recent and interesting paper [18].

It is well known, following a method devised in the pioneering paper [5] (see also [13,15,16]), that the system (1.1)–(1.2)
can be formulated as the following abstract linear first-order system:
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{
U ′(t) + AU (t) = 0, ∀t > 0,

U (0) = U0,
(1.3)

where U0 = (u0(0), u1, η0)
T ∈ H = D(A

1
2 ) × H × L2

g(R+, D(B
1
2 )), U = (u, u′, ηt)T ,{

ηt(s) = u(t) − u(t − s), ∀t, s ∈ R+,

η0(s) = η0(s) = u0(0) − u0(s), ∀s ∈ R+

(ηt is the relative history of u, and it was introduced first in [5]), L2
g(R+, D(B

1
2 )) is the weighted space with respect to the

measure g(s)ds defined by

L2
g

(
R+, D

(
B

1
2
)) =

{
z: R+ → D

(
B

1
2
)
,

∞∫
0

g(s)
∥∥B

1
2 z(s)

∥∥2
ds < ∞

}

endowed with the inner product

〈z1, z2〉
L2

g (R+,D(B
1
2 ))

=
∞∫

0

g(s)
〈
B

1
2 z1(s), B

1
2 z2(s)

〉
ds,

and A is the linear operator given by

A(v, w, z)T =
(

−w, Av − g0 B v +
∞∫

0

g(s)Bz(s)ds,
∂z

∂s
− w

)T

,

where g0 = ∫ ∞
0 g(s)ds,

D(A) =
{

(v, w, z)T ∈ H, v ∈ D(A), w ∈ D
(

A
1
2
)
, z ∈ L g,

∞∫
0

g(s)Bz(s)ds ∈ H

}

and L g = {z ∈ L2
g(R+, D(B

1
2 )), ∂s z ∈ Lg, z(0) = 0}. Under the following assumptions on A, B and g:

(A0) there exist positive constants a0 and a1 such that

a1‖v‖2 �
∥∥B

1
2 v

∥∥2 � a0
∥∥A

1
2 v

∥∥2
, ∀v ∈ D

(
A

1
2
)
,

(A1) g : R+ → R+ of class C1(R+) nonincreasing and satisfies

0 < g0 <
1

a0
, (1.4)

it is well known (see [13] for example) that H endowed with the inner product〈
(v1, w1, z1)

T , (v2, w2, z2)
T 〉

H = 〈
A

1
2 v1, A

1
2 v2

〉 − g0
〈
B

1
2 v1, B

1
2 v2

〉 + 〈w1, w2〉 + 〈z1, z2〉
L2

g (R+,D(B
1
2 ))

is a Hilbert space, D(A) ⊂ H with dense embedding, and A is the infinitesimal generator of a linear contraction C0-
semigroup on H. Therefore, the classical semigroup theory implies that (see [19]), for any U0 ∈ H, the system (1.3) has a
unique weak solution

U ∈ C(R+, H).

Moreover, if U0 ∈ D(A), then the solution of (1.3) is classical; that is

U ∈ C1(R+, H) ∩ C
(
R+, D(A)

)
.

The question we consider in this paper concerns the asymptotic stability of (1.3). In other words, for which class of
kernels g we have (strong stability)

lim
t→∞

∥∥U (t)
∥∥2

H = 0, (1.5)

and is it possible to get a decay estimation on ‖U ‖2 in function of g?
H
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This question was the subject of several works appeared in the last few years (see [3,6–9,13,15–18], and the references
therein). To focus on our motivation, let us mention some known results in the literature related to the stabilization of
abstract systems with past history (for further results of stabilization, we refer the reader to the list of references of this
paper, which is not exhaustive, and the references therein).

Under the condition

∃δ > 0: g′(s) � −δg(s), ∀s ∈ R+, (1.6)

the authors in [7] (using Laplace transform method), [8] (using energy estimates) and [9] (using semigroups theory) have
proved the exponential (uniform) stability of (1.3); that is

∃m, M > 0: ∥∥U (t)
∥∥2

H � Me−mt, ∀t ∈ R+. (1.7)

The authors in [13] considered (for given operators D , A, B and C ) the more general abstract equation than (1.1), namely

Du′′(t) + Au(t) −
∞∫

0

g(s)Bu(t − s)ds + Cu′(t) = 0, ∀t > 0, (1.8)

and proved that (1.7) holds if the operators satisfy some conditions and g satisfies

∃δ1, δ2 > 0: − δ1 g(s) � g′(s) � −δ2 g(s), ∀s ∈ R+. (1.9)

The dissipation of (1.8) is given by the infinite memory integral and the damping Cu′ , and then it is stronger than the one
of (1.1).

Condition (1.9) was also considered in [14] to prove (1.7) for Timoshenko systems, and in [12] it was proved that these
Timoshenko systems are polynomially stable if, in some how, g converges to zero faster than 1

t2 .
Eq. (1.1) in the particular case A = αB with α > 0 was considered in [16], and (1.7) was proved for g equal to a negative

exponential except on a sufficiently small set where g is flat. This condition allows g to have horizontal inflection points or
even flat zones. The case A = αB (α > 0) was also considered in [18] with general memory; that is the infinite integral in
(1.1) is replaced with

∫ l
0 (l ∈ ]0,∞]), and the exponential stability (1.7) was proved under the condition (1.6).

In [4], it was proved that the weaker condition

∃δ1 � 1, ∃δ2 > 0: g(t + s) � δ1e−δ2t g(s), ∀t ∈ R+, for a.e. s ∈ R+ (1.10)

is a necessary condition for (1.3) to be exponentially stable; that is (1.7) holds. In the particular case A = −(1 + g0)� and
B = −� (with homogeneous Dirichlet boundary condition), the exponential stability (1.7) was discussed in [17], establishing
a necessary and sufficient condition involving the kernel g , this condition implies (1.10) but allows g to be almost flat.

It was also proved in [13], for some operators D , A, B and C , and under condition (1.9), that (1.8) is not exponentially
stable and, for any U0 ∈ D(A), the following polynomial rate of decay was obtained:

∃M > 0: ∥∥U (t)
∥∥2

H � M

t
, ∀t > 0. (1.11)

Eq. (1.1) with B = Aα , α ∈ [0,1[ and g satisfies (1.6) was recently considered in [15], where the authors proved that for
any U0 ∈ D(A),

∃M > 0: ∥∥U (t)
∥∥

H � M

(
ln t

t

) 1
2−2α

ln t, ∀t > 0,

and the decay rate is optimal in the sense that t
−1

2−2α cannot be improved on D(A).
According to the results cited above, the problem of stability of (1.3) is well solved when the kernel g converges ex-

ponentially to zero at infinity, and then there is almost nothing more to say in this case. The main question now is the
following: is (1.3) still stable (that is (1.5) holds) if g does not satisfy (1.10), and if yes, is it possible to get a decay estimate
on ‖U ‖2

H ? In other words, when g does not converge exponentially to zero at infinity (then (1.7) is not satisfied), what kind
of decay estimates we have? The aim of the present paper is to give a positive answer to these questions by proving that
(1.3) is stable for much larger class of kernels g than the one satisfying (1.10), and providing a general decay estimate on
‖U ‖2

H in function of g . Our decay estimate is necessarily weaker than (1.7). We consider two cases corresponding to the
following two conditions on A and B: there exists a positive constant a2 such that∥∥A

1
2 v

∥∥2 � a2
∥∥B

1
2 v

∥∥2
, ∀v ∈ D

(
A

1
2
)

(1.12)

or ∥∥A
1
2 v

∥∥2 � a2
∥∥A

1
2 B

1
2 v

∥∥2
, ∀v ∈ D

(
A

1
2 B

1
2
)
. (1.13)
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The decay estimate (2.4) we get under condition (1.12) is stronger than (2.6) we get by assuming (1.13) (see examples
below).

The plan of the present paper is as follows: in Section 2, we specify the assumption on g and formulate our main
stability results. Section 3 is devoted to the proof of the main results. Finally, in Section 4, we discuss some applications,
give some general comments and state some open problems.

2. The main results

In addition to (1.12) or (1.13), (A0) and (A1), assuming that g satisfies the following assumption:

(A2) There exists an increasing strictly convex function G : R+ → R+ of class C1(R+) ∩ C2(]0,∞[) satisfying

G(0) = G ′(0) = 0 and lim
t→∞ G ′(t) = ∞ (2.1)

such that
∞∫

0

g(s)

G−1(−g′(s))
ds + sup

s∈R+

g(s)

G−1(−g′(s))
< ∞. (2.2)

Remark 2.1. The class of kernels satisfying (A1)–(A2) and do not satisfy (1.10) is very large; for example

g(t) = d

(t + 2)(ln(t + 2))q

with d > 0 small enough such that (1.4) holds, and q > 1, where we can take G(t) = e−t−p
for p > 1

q−1 and t near zero

(see also the examples below). In general, all positive function g of class C1(R+) with g′ < 0 satisfies (A2) if it is integrable
on R+ , and it does not satisfy (1.10) if it does not converge exponentially to zero at infinity.

Now, we are in position to state our main results.

Theorem 2.1. Assume that (A0)–(A2) hold.

(1) If (1.12) holds, then for any U0 ∈ H satisfying

∃m0 � 0: ∥∥B
1
2 u0(s)

∥∥ � m0, ∀s > 0, (2.3)

there exist positive constants δ0 , δ1 and δ2 (depending continuously on ‖U0‖2
H ) such that∥∥U (t)

∥∥2
H � δ1G−1

1 (δ2t), ∀t ∈ R+, (2.4)

where G1(t) = ∫ 1
t

1
sG ′(δ0s) ds (t ∈ ]0,1]).

(2) If (1.13) holds, then for any U0 ∈ D(A) × D(A
1
2 ) × L2

g(R+, D(A
1
2 B

1
2 )) satisfying

∃m0 � 0: ∥∥A
1
2 B

1
2 u0(s)

∥∥ � m0, ∀s > 0, (2.5)

there exist positive constants δ0 , δ1 and δ2 (depending continuously on ‖A
1
2 U0‖2

H ) such that

∥∥U (t)
∥∥2

H � δ1G−1
0

(
δ2

t

)
, ∀t > 0, (2.6)

where G0(t) = tG ′(δ0t) (t ∈ R+).

Remark 2.2. Before going on, let us first give some comments on our results. Our estimates (2.4) and (2.6) imply (1.5) (since
G−1

0 (0) = 0 and lims→0+ G1(s) = ∞) and they are weaker than (1.7) and (1.11) in general, and coincide with (1.7) and (1.11)
when G = Id, respectively. But the class of kernels g satisfying (A1)–(A2) and does not satisfy (1.10) (which is a necessary
condition to get (1.7)) is very huge (see Remark 2.1 above), and on the other hand, estimates (2.4) and (2.6) give precise
and general informations on the decay rate of ‖U ‖2

H in function of g .

Now, let us give just three simple examples to illustrate our results. In these examples (where (1.10) does not hold), we
see that (2.4) implies that ‖U ‖2

H has at least a similar decay to the one of g when (1.12) holds, but the decay rate of ‖U ‖2
H

is smaller than the one of g (nevertheless, it is arbitrary close to the one of g in (2.9)). When the weaker condition (1.13)
holds, (2.6) is much weaker than (2.4) (nevertheless, it is arbitrary close to (1.11) in (2.10) and (2.12)).
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Example 2.1. Let g(t) = d
(1+t)q with q > 1, and d > 0 small enough so that (1.4) holds. Assumption (A2) is satisfied with

G(t) = t
1
p +1 for any p ∈ ]0,

q−1
2 [. Then (2.4) and (2.6) imply, respectively (for some C > 0),

∥∥U (t)
∥∥2

H � C

(t + 1)p
, ∀t ∈ R+, ∀p ∈

]
0,

q − 1

2

[
, (2.7)

∥∥U (t)
∥∥2

H � C

(t + 1)
p

p+1

, ∀t ∈ R+, ∀p ∈
]

0,
q − 1

2

[
. (2.8)

Example 2.2. Let g(t) = de−(ln(2+t))q
with q > 1, and d > 0 small enough so that (1.4) holds. For

G(t) =
t∫

0

(− ln s)1− 1
p e−(− ln s)

1
p

ds

when t is near zero, assumption (A2) is satisfied for any p ∈]1,q[ (note that for this example, (2.2) depends only on the
growth of G at zero, and for any r > 1, G(tr g(t)) � −g′(t) for t near infinity). Then (2.4) implies (for some C1, C2 > 0)∥∥U (t)

∥∥2
H � C1e−C2(ln(1+t))p

, ∀t ∈ R+, ∀p ∈ ]1,q[. (2.9)

Assumption (A2) holds also with G(t) = t p for any p > 1. Then (2.6) implies (for some C > 0)

∥∥U (t)
∥∥2

H � C

(t + 1)
1
p

, ∀t ∈ R+, ∀p > 1. (2.10)

Example 2.3. Let g(t) = de−(1+t)q
with 0 < q < 1, and d > 0 small enough so that (1.4) holds. Assumption (A2) is satisfied

with

G(t) =
t∫

0

(− ln s)1− 1
p ds

for t near zero and for any p ∈ ]0,
q
2 [ (we can see that G(tr G(t)) � −g′(t) for t near infinity and for any r ∈]1,

q
p − 1[). Then

(2.4) implies (for some C1, C2 > 0)

∥∥U (t)
∥∥2

H � C1e−C2t p
, ∀t ∈ R+, ∀p ∈

]
0,

q

2

[
. (2.11)

Assumption (A2) holds also with G(t) = t p for any p > 1. Then (2.6) implies (for some C > 0)

∥∥U (t)
∥∥2

H � C

(t + 1)
1
p

, ∀t ∈ R+, ∀p > 1. (2.12)

3. Proof of Theorem 2.1

In order to prove (2.4) and (2.6), first, we assume that (A0) and (A1) are satisfied and we consider the energy functional
E associated with the solution of (1.3) corresponding to U0 ∈ H,

E(t) = 1

2

∥∥U (t)
∥∥2

H

= 1

2

(∥∥A
1
2 u(t)

∥∥2 − g0
∥∥B

1
2 u(t)

∥∥2 + ∥∥u′(t)
∥∥2) + 1

2

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds, ∀t ∈ R+. (3.1)

Using simple computations (multiplying (1.1) by u′(t) and integrating by parts, see [13]), we get

E ′(t) = 1

2

∞∫
0

g′(s)
∥∥B

1
2 ηt(s)

∥∥2
ds � 0, ∀t ∈ R+. (3.2)

Therefore, thanks to the nonincreasingness of g , E is nonincreasing, and consequently (1.3) is dissipative, where the total
dissipation is given by the infinite memory integral.
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Now, we proceed as in [13] to prove the following three lemmas for classical solutions, so all the calculations are
justified. By a simple density argument, these lemmas remain valid for any weak solution. On the other hand, if E(t0) = 0
for some t0 � 0, then E(t) = 0 for all t � t0 (thanks to (3.2)) and thus (2.4) and (2.6) are satisfied. Then, without loss of
generality, we assume that E(t) > 0 for all t ∈ R+ .

Lemma 3.1. Assume that (A0) and (A1) are satisfied. Then the functional

I1(t) = −
〈

u′(t),
∞∫

0

g(s)ηt(s)ds

〉

satisfies, for any ε > 0, there exists cε > 0 such that for all t ∈ R+ ,

I ′1(t) � −(g0 − ε)
∥∥u′(t)

∥∥2 + ε
∥∥A

1
2 u(t)

∥∥2 + cε

∞∫
0

g(s)
∥∥A

1
2 ηt(s)

∥∥2
ds

+ cε

( ∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds −

∞∫
0

g′(s)
∥∥B

1
2 ηt(s)

∥∥2
ds

)
. (3.3)

Proof. Multiplying (1.1) by
∫ ∞

0 g(s)ηt(s)ds, we get

0 =
〈

u′′,
∞∫

0

g(s)ηt(s)ds

〉
+

〈
Au,

∞∫
0

g(s)ηt(s)ds

〉
− g0

〈
Bu,

∞∫
0

g(s)ηt(s)ds

〉
+

〈 ∞∫
0

g(s)Bηt(s)ds,

∞∫
0

g(s)ηt(s)ds

〉
.

Using the definition of A
1
2 and B

1
2 , we get

0 =
〈

u′′,
∞∫

0

g(s)ηt(s)ds

〉
+

〈
A

1
2 u,

∞∫
0

g(s)A
1
2 ηt(s)ds

〉
− g0

〈
B

1
2 u,

∞∫
0

g(s)B
1
2 ηt(s)ds

〉

+
〈 ∞∫

0

g(s)B
1
2 ηt(s)ds,

∞∫
0

g(s)B
1
2 ηt(s)ds

〉
.

By using the fact that ∂tη
t = −∂sη

t + u′ (we note ∂μ = ∂
∂μ ), we find

〈
u′′,

∞∫
0

g(s)ηt(s)ds

〉
= ∂t

〈
u′,

∞∫
0

g(s)ηt(s)ds

〉
−

〈
u′,

∞∫
0

g(s)∂tη
t(s)ds

〉

= −I ′1 − g0
∥∥u′∥∥2 +

〈
u′,

∞∫
0

g(s)∂sη
t(s)ds

〉
.

By integrating by parts with respect to s in the infinite memory integral, we get〈
u′′,

∞∫
0

g(s)ηt(s)ds

〉
= −I ′1 − g0

∥∥u′∥∥2 −
〈

u′,
∞∫

0

g′(s)ηt(s)ds

〉
.

By exploiting these equalities, we deduce

I ′1 = −g0
∥∥u′∥∥2 −

〈
u′,

∞∫
0

g′(s)ηt(s)ds

〉
+

〈
A

1
2 u,

∞∫
0

g(s)A
1
2 ηt(s)ds

〉
− g0

〈
B

1
2 u,

∞∫
0

g(s)B
1
2 ηt(s)ds

〉

+
〈 ∞∫

0

g(s)B
1
2 ηt(s)ds,

∞∫
0

g(s)B
1
2 ηt(s)ds

〉
.

By using Cauchy–Schwarz inequality and Young’s inequality for the last four terms of this equality, and (A0) to estimate

‖B
1
2 u‖2 by a0‖A

1
2 u‖2, and ‖ηt(s)‖2 by 1

a1
‖B

1
2 ηt(s)‖2, (3.3) follows. �
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Lemma 3.2. Assume that (A0) and (A1) are satisfied. Then the functional

I2(t) = 〈
u′(t), u(t)

〉
satisfies, for any ε > 0, there exists c̃ε > 0 such that for all t ∈ R+ ,

I ′2(t) �
∥∥u′(t)

∥∥2 − (1 − g0a0 − ε)
∥∥A

1
2 u(t)

∥∥2 + c̃ε

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds. (3.4)

Proof. Multiplying (1.1) by u we find

0 = 〈
u′′, u

〉 + 〈Au, u〉 − g0〈Bu, u〉 +
〈 ∞∫

0

g(s)Bηt(s)ds, u

〉
.

Consequently, using the definition of A
1
2 and B

1
2 , we have

0 = ∂t
〈
u′, u

〉 − ∥∥u′∥∥2 + ∥∥A
1
2 u

∥∥2 − g0
∥∥B

1
2 u

∥∥2 +
〈 ∞∫

0

g(s)B
1
2 ηt(s)ds, B

1
2 u

〉
.

By using Cauchy–Schwarz inequality and Young’s inequality for the last term of this equality, and (A0) to estimate ‖B
1
2 u‖2

by a0‖A
1
2 u‖2, (3.4) holds. �

Lemma 3.3. Assume that (A0) and (A1) are satisfied. Then there exist α0,α1,α2 > 0 such that the functional

I3 = I1 + g0

2
I2 + α0 E

satisfies for all t ∈ R+ ,

I ′3(t) � −α1 E(t) + α2

( ∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds +

∞∫
0

g(s)
∥∥A

1
2 ηt(s)

∥∥2
ds

)
. (3.5)

Proof. Multiplying (3.4) by g0
2 , adding (3.3), choosing ε = g0(1−a0 g0)

2(2+g0)
(ε > 0 thanks to (1.4)), using (3.2) to replace∫ ∞

0 g′(s)‖B
1
2 ηt(s)‖2 ds with 2E ′(t), and noting that (thanks to (3.1)),

E(t) � 1

2

(∥∥A
1
2 u(t)

∥∥2 + ∥∥u′(t)
∥∥2 +

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds

)
, ∀t ∈ R+,

we get (3.5). �
Now, let

I4 = M E + I3

for positive constant M (to be chosen later). Thanks to (A0) and (1.4), we see that for all t ∈ R+ ,

E(t) � 1 − a0 g0

2

(∥∥A
1
2 u(t)

∥∥2 + ∥∥u′(t)
∥∥2 +

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds

)
, (3.6)

and then, by definition of I1 and I2, there exist two positive constants d1 and d2 such that |I1| � d1 E and |I2| � d2 E .
Therefore, there exists M0 > 0 such that |I3| � M0 E . Then we choose M > M0 and we get I4 ∼ E; that is

∃M1, M2 > 0: M1 E � I4 � M2 E.

Thanks to (3.5) and the nonincreasingness of E , we have for all t ∈ R+ ,

I ′4(t) � −α1 E(t) + α2

( ∞∫
g(s)

∥∥B
1
2 ηt(s)

∥∥2
ds +

∞∫
g(s)

∥∥A
1
2 ηt(s)

∥∥2
ds

)
. (3.7)
0 0
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Now, we estimate the first infinite memory integral of (3.7) in function of E ′ . This is the main difficulty in the proof of the
stability of (1.3). When g satisfies condition (1.6), the classical conclusion is immediate (using (3.2)):

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds � −2

δ
E ′(t), ∀t ∈ R+.

This inequality coincides with (3.8) below when G = Id. Here, by proving (3.8), we introduce a new approach to estimate
this term under (2.3) and the weaker assumption (A2).

Lemma 3.4. Assume that (A0)–(A2) and (2.3) are satisfied. Then there exists β1 > 0 such that for all δ0 > 0 and t ∈ R+ ,

G ′(δ0 E(t)
) ∞∫

0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds � −β1 E ′(t) + β1δ0 E(t)G ′(δ0 E(t)

)
. (3.8)

Proof. First, we note that, if g′(s0) = 0 for some s0 � 0, then g(s0) = 0 because G−1(0) = 0 and s �→ g(s)
G−1(−g′(s))

is bounded

(thanks to (A2)), and therefore, g(s) = 0 for all s � s0 because g is nonnegative and nonincreasing. This implies that the
infinite integrals in (3.7) are effective only on [0, s0]. Thus, without loss of generality, we can assume that g′ < 0.

Let G∗(t) = sups∈R+{ts − G(s)} for t ∈ R+ denote the dual function of G . Thanks to (A2), G ′ is increasing and defines a
bijection from R+ to R+ , and then for any t ∈ R+ , the function s �→ ts − G(s) reaches its maximum on R+ at the unique
point (G ′)−1(t). Therefore

G∗(t) = t
(
G ′)−1

(t) − G
((

G ′)−1
(t)

)
, ∀t ∈ R+.

Let δ0, τ1, τ2 > 0. Using the general Young’s inequality: t1t2 � G(t1) + G∗(t2) for

t1 = G−1(−τ2 g′(s)
∥∥B

1
2 ηt(s)

∥∥2)
, t2 = τ1G ′(δ0 E(t))g(s)‖B

1
2 ηt(s)‖2

G−1(−τ2 g′(s)‖B
1
2 ηt(s)‖2)

,

we get for all t ∈ R+ ,

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds = 1

τ1G ′(δ0 E(t))

∞∫
0

G−1(−τ2 g′(s)
∥∥B

1
2 ηt(s)

∥∥2)τ1G ′(δ0 E(t))g(s)‖B
1
2 ηt(s)‖2

G−1(−τ2 g′(s)‖B
1
2 ηt(s)‖2)

ds

� − τ2

τ1G ′(δ0 E(t))

∞∫
0

g′(s)
∥∥B

1
2 ηt(s)

∥∥2
ds

+ 1

τ1G ′(δ0 E(t))

∞∫
0

G∗
(

τ1G ′(δ0 E(t))g(s)‖B
1
2 ηt(s)‖2

G−1(−τ2 g′(s)‖B
1
2 ηt(s)‖2)

)
ds.

Using (3.2) and the fact that G∗(s) � s(G ′)−1(s), we get for all t ∈ R+ ,

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds � − 2τ2

τ1G ′(δ0 E(t))
E ′(t)

+
∞∫

0

g(s)‖B
1
2 ηt(s)‖2

G−1(−τ2 g′(s)‖B
1
2 ηt(s)‖2)

(
G ′)−1

(
τ1G ′(δ0 E(t))g(s)‖B

1
2 ηt(s)‖2

G−1(−τ2 g′(s)‖B
1
2 ηt(s)‖2)

)
ds. (3.9)

Now, assumption (A0), (3.6) and the nonincreasingness of E imply that

∥∥B
1
2 u(t)

∥∥2 � a0
∥∥A

1
2 u(t)

∥∥2 � 2a0

1 − a0 g0
E(t) � 2a0

1 − a0 g0
E(0), ∀t ∈ R+.

Therefore∥∥B
1
2 ηt(s)

∥∥2 � 2
∥∥B

1
2 u(t)

∥∥2 + 2
∥∥B

1
2 u(t − s)

∥∥2 � 8a0

1 − a g
E(0) + 2 sup

∥∥B
1
2 u0(τ )

∥∥2
, ∀t, s ∈ R+.
0 0 τ>0



756 A. Guesmia / J. Math. Anal. Appl. 382 (2011) 748–760
Then, in both cases (2.3) and (2.5) (note that (2.5) implies (2.3) thanks to (A0)), we deduce that there exists a positive
constant N1 satisfying∥∥B

1
2 ηt(s)

∥∥2 � N1, ∀t, s ∈ R+. (3.10)

On the other hand, let K (s) = s
G−1(s)

for s ∈ R+ (K (0) = 0 because, thanks to (A2), lims→0+ s
G−1(s)

= limt→0+ G(t)
t =

G ′(0) = 0). The function K is nondecreasing. Indeed, the fact that G−1 is concave and G−1(0) = 0 (thanks to (A2)) im-
plies that for any 0 � s1 < s2

K (s1) = s1

G−1(
s1
s2

s2 + (1 − s1
s2

)0)
� s1

s1
s2

G−1(s2) + (1 − s1
s2

)G−1(0)
= s2

G−1(s2)
= K (s2).

Therefore, using (3.10) and the fact that (G ′)−1 is nondecreasing,

(
G ′)−1

(
τ1G ′(δ0 E(t))g(s)‖B

1
2 ηt(s)‖2

G−1(−τ2 g′(s)‖B
1
2 ηt(s)‖2)

)
= (

G ′)−1
(

τ1G ′(δ0 E(t))g(s)

−τ2 g′(s)
K

(−τ2 g′(s)
∥∥B

1
2 ηt(s)

∥∥2))

�
(
G ′)−1

(
τ1G ′(δ0 E(t))g(s)

−τ2 g′(s)
K

(−τ2N1 g′(s)
))

�
(
G ′)−1

(
τ1N1G ′(δ0 E(t))g(s)

G−1(−τ2N1 g′(s))

)
.

Then we get from (3.9) and (3.10) that for all t ∈ R+ ,

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds � − 2τ2

τ1G ′(δ0 E(t))
E ′(t) + N1

∞∫
0

g(s)

G−1(−τ2N1 g′(s))

(
G ′)−1

(
τ1N1G ′(δ0 E(t))g(s)

G−1(−τ2N1 g′(s))

)
ds.

Condition (2.2) implies that sups∈R+
g(s)

G−1(−g′(s))
= N2 < ∞. Then, choosing τ2 = 1

N1
and using again the fact that (G ′)−1 is

nondecreasing, we find for all t ∈ R+ ,

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds � − 2

τ1N1G ′(δ0 E(t))
E ′(t) + N1

(
G ′)−1(

τ1N1N2G ′(δ0 E(t)
)) ∞∫

0

g(s)

G−1(−g′(s))
ds.

Similarly, thanks to (2.2),
∫ ∞

0
g(s)

G−1(−g′(s))
ds = N3 < ∞. Then, choosing τ1 = 1

N1 N2
,

∞∫
0

g(s)
∥∥B

1
2 ηt(s)

∥∥2
ds � − 2N2

G ′(δ0 E(t))
E ′(t) + N1N3δ0 E(t), ∀t ∈ R+

which gives (3.8) with β1 = max{2N2, N1N3}. �
Now, following the two assumptions (1.12) and (1.13), we have the following two cases:

Case 1: (1.12) holds. Using (1.12) to estimate ‖A
1
2 ηt(s)‖2 by a2‖B

1
2 ηt(s)‖2 in (3.7), multiplying then by G ′(δ0 E(t)) and using

(3.8), we get

G ′(δ0 E)I ′4 + β1α2(1 + a2)E ′ � −(
α1 − β1α2(1 + a2)δ0

)
EG ′(δ0 E).

Choosing δ0 small enough so that β2 = α1 − β1α2(1 + a2)δ0 > 0 and put

F = τ
(
G ′(δ0 E)I4 + β1α2(1 + a2)E

)
with τ > 0, we deduce (note that G ′(δ0 E) is nonincreasing)

F ′ � −τβ2 EG ′(δ0 E). (3.11)

Thanks to the fact that I4 ∼ E and the nonincreasingness of G ′(δ0 E), we have F ∼ E . Choosing τ > 0 small enough so that

F � E and F (0) � 1, (3.12)

we deduce from (3.11) that (note that s �→ sG ′(δ0s) is nondecreasing)
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F ′ � −δ2 F G ′(δ0 F ), (3.13)

where δ2 = τβ2. Inequality (3.13) implies that (G1(F ))′ � δ2, where G1(t) = ∫ 1
t

1
sG ′(δ0s) ds for t ∈ ]0,1]. Then, by integrating

over [0, t], we get

G1
(

F (t)
)
� δ2t + G1

(
F (0)

)
� δ2t, ∀t ∈ R+

since G1 is nonincreasing, F (0) � 1 and G1(1) = 0. Therefore,

F (t) � G−1
1 (δ2t), ∀t ∈ R+.

The equivalence F ∼ E and the definition (3.1) of E give (2.4).

Case 2: (1.13) holds. Multiplying (3.7) by G ′(δ0 E(t)) and using (3.8), we get for all δ0 > 0 and t ∈ R+ ,

G ′(δ0 E(t)
)

I ′4(t) + β1α2 E ′(t)

� −(α1 − β1α2δ0)E(t)G ′(δ0 E(t)
) + α2G ′(δ0 E(t)

) ∞∫
0

g(s)
∥∥A

1
2 ηt(s)

∥∥2
ds. (3.14)

We follow an approach of [13] and we consider the energy E2 associated with A
1
2 U corresponding to U0 ∈ D(A)× D(A

1
2 )×

L2
g(R+, D(A

1
2 B

1
2 )) defined on R+ by

E2(t) = 1

2

∥∥A
1
2 U (t)

∥∥2
H

= 1

2

(∥∥Au(t)
∥∥2 − g0

∥∥A
1
2 B

1
2 u(t)

∥∥2 + ∥∥A
1
2 u′(t)

∥∥2) + 1

2

∞∫
0

g(s)
∥∥A

1
2 B

1
2 ηt(s)

∥∥2
ds. (3.15)

As for (3.2) (applying A
1
2 to (1.1), multiplying by A

1
2 u′(t) and integrating by parts), we get

E ′
2(t) = 1

2

∞∫
0

g′(s)
∥∥A

1
2 B

1
2 ηt(s)

∥∥2
ds � 0, ∀t ∈ R+. (3.16)

Now, similarly to (3.8) (in the proof of (3.8), we replace B
1
2 with A

1
2 B

1
2 and use (2.5) and (3.16)), we deduce that there

exists λ1 > 0 such that for all δ0 > 0 and t ∈ R+ ,

G ′(δ0 E(t)
) ∞∫

0

g(s)
∥∥A

1
2 B

1
2 ηt(s)

∥∥2
ds � −λ1 E ′

2(t) + λ1δ0 E(t)G ′(δ0 E(t)
)
. (3.17)

Using (1.13) to estimate ‖A
1
2 ηt(s)‖2 by a2‖A

1
2 B

1
2 ηt(s)‖2 in (3.14) and using (3.17), we get

G ′(δ0 E)I ′4 + β1α2 E ′ + λ1α2a2 E ′
2 � −(

α1 − α2(β1 + a2λ1)δ0
)

EG ′(δ0 E).

Choosing δ0 small enough so that β2 = α1 − α2(β1 + a2λ1)δ0 > 0 and put

F = G ′(δ0 E)I4 + β1α2 E + λ1α2a2 E2,

we deduce (note that G ′(δ0 E) is nonincreasing)

F ′ � −β2G0(E), (3.18)

where G0(t) = tG ′(δ0t) for t ∈ R+ . Thanks to the fact that G0(E) is nonincreasing, and by integrating (3.18) over [0, t], we
get for all t ∈ R+ ,

tG0
(

E(t)
)
�

t∫
0

G0
(

E(s)
)

ds � −1

β2

t∫
0

F ′(s)ds = 1

β2

(
F (0) − F (t)

)
� 1

β2
F (0) = δ2.

Then, using the nondecreasingness of G0 and the definition (3.1) of E , we get (2.6).
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4. Applications

We present in this section some applications for the stability results of our abstract Eq. (1.1). In the first three applications
which concern the wave equation, Petrovsky type system and elasticity model, we consider an open bounded domain
Ω ⊂ R

n , where n ∈ N
∗ , with smooth boundary Γ .

4.1. Wave equations

Let aij,bij ∈ C1(Ω̄), i, j = 1, . . . ,n, such that

aij(x) = a ji(x), bij(x) = b ji(x), ∀i, j = 1, . . . ,n, ∀x ∈ Ω

and there exist a,b > 0 satisfying

n∑
i, j=1

aij(x)εiε j � a
n∑

i=1

ε2
i ,

n∑
i, j=1

bij(x)εiε j � b
n∑

i=1

ε2
i , ∀ε1, . . . , εn ∈ R, ∀x ∈ Ω.

Let A = −∑n
i, j=1 ∂i(aij∂ j) and B = −∑n

i, j=1 ∂i(bij∂ j), where we note ∂k = ∂
∂xk

, and let us consider the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′ + Au −
∞∫

0

g(s)Bu(t − s)ds = 0, ∀(x, t) ∈ Ω × R+,

u = 0, ∀(x, t) ∈ Γ × R+,

u(x,−t) = u0(x, t), u′(x,0) = u1(x), ∀(x, t) ∈ Ω × R+.

(4.1)

The particular case A = −� (corresponds to aij = δi j the Kronecker’s symbol) represents the classical wave equation.
Problem (4.1) can be rewritten in the abstract form (1.3), where H = L2(Ω) endowed with its natural inner product

〈v1, v2〉 = ∫
Ω

v1 v2 dx, D(A
1
2 ) = H1

0(Ω) = {v ∈ H1(Ω), v = 0 on Γ } and D(A) = H2(Ω) ∩ H1
0(Ω). It is well known that

A and B satisfy (A0) and (1.12), and then (2.4) holds under assumptions (A1), (A2) and (2.3).
If we consider in (4.1) Bu = bu with b > 0, then (1.12) is not satisfied but (1.13) is, and then (2.6) holds under assump-

tions (A1), (A2) and (2.5).

4.2. Petrovsky type system

Let us consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′ + a�2u − b

∞∫
0

g(s)�2u(t − s)ds = 0, ∀(x, t) ∈ Ω × R+,

u = ∂νu = 0, ∀(x, t) ∈ Γ × R+,

u(x,−t) = u0(x, t), u′(x,0) = u1(x), ∀(x, t) ∈ Ω × R+,

(4.2)

where a,b > 0 and ∂ν is the outer normal derivative. For A = a�2, B = b�2, H = L2(Ω), D(A
1
2 ) = H2

0(Ω) = {v ∈ H2(Ω),

v = ∂ν v = 0 on Γ } and D(A) = H4(Ω) ∩ H2
0(Ω), (A0) and (1.12) are satisfied and (4.2) is equivalent to (1.3). Then, under

assumptions (A1), (A2) and (2.3), (2.4) holds.
If we consider in (4.2) Bu = bu with b > 0 (instead of Bu = b�2u), then (1.13) holds but (1.12) does not, and then (2.6)

holds under assumptions (A1), (A2) and (2.5).
In this application, the following boundary conditions can also be considered (as in [13]):

u = �u = 0, ∀(x, t) ∈ Γ × R+.

Under these boundary conditions, we can consider also Bu = −b�u with b > 0, then (1.13) holds but (1.12) does not, and
then (2.6) holds under assumptions (A1), (A2) and (2.5).

4.3. Elasticity model

Let aijkl,bijkl ∈ C1(Ω̄), i, j,k, l = 1, . . . ,n, such that for all i, j,k, l = 1, . . . ,n,

aijkl(x) = a jikl(x) = akli j(x), bijkl(x) = b jikl(x) = bkli j(x), ∀x ∈ Ω,

and there exist a,b > 0 satisfying for all symmetric matrix (εi j)i j ,
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n∑
i, j,k,l=1

aijkl(x)εi jεkl � a
n∑

i, j=1

ε2
i j,

n∑
i, j,k,l=1

bijkl(x)εi jεkl � b
n∑

i, j=1

ε2
i j, ∀x ∈ Ω.

Let u = (u1, . . . , un)T , Au = −1
2 (

∑n
j,k,l=1 ∂ j(aijkl(∂kul + ∂luk)))

T
i and Bu = −1

2 (
∑n

j,k,l=1 ∂ j(bijkl(∂kul + ∂luk)))
T
i . We consider

the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′ + Au −
∞∫

0

g(s)Bu(t − s)ds = 0, ∀(x, t) ∈ Ω × R+,

u = 0, ∀(x, t) ∈ Γ × R+,

u(x,−t) = u0(x, t), u′(x,0) = u1(x), ∀(x, t) ∈ Ω × R+.

(4.3)

The case aijkl = λδi jδkl + μ(δikδ jl + δilδ jk) with λ,μ > 0 (the Lamé’s coefficients) represents the isotropic elasticity model.
Assumptions (1.12) and (A0), and the reformulation of (4.3) in the abstract form (1.3) hold with H = (L2(Ω))n endowed

with the natural inner product 〈v, w〉 = ∫
Ω

∑n
i=1 vi wi dx, D(A

1
2 ) = (H1

0(Ω))n and D(A) = (H2(Ω) ∩ H1
0(Ω))n . Then, under

assumptions (A1), (A2) and (2.3), (2.4) holds.
If we consider in (4.3) Bu = (b1u1, . . . ,bnun)T with bi > 0 (i = 1, . . . ,n), then (1.12) is not satisfied but (1.13) is, and then

(2.6) holds under assumptions (A1), (A2) and (2.5).

4.4. Infinite memory and internal damping

The well-possedness and stability results of this paper remain valid if we add to the Eq. (1.1) a linear damping βu′
(β > 0):

u′′(t) + Au(t) + βu′ −
∞∫

0

g(s)Bu(t − s)ds = 0, ∀t > 0. (4.4)

Eq. (4.4) includes the one considered in [16] (A = αB , α > 0). The dissipation in (4.4) is stronger than the one in (1.1)
because it is induced by both past history and damping, and then the proof in case (4.4) is simpler; we do not need the
functional I1 because the term ‖u′‖2 can be directly estimated using the derivative of the energy of (4.4).

4.5. Finite memory

Our stability results (2.4) and (2.6) remain valid if we consider a finite memory; that is the infinite integral
∫ ∞

0 in (1.1)

(and then in particular in (4.1)–(4.4)) is replaced with the finite one
∫ t

0 :

u′′(t) + Au(t) −
t∫

0

g(s)Bu(t − s)ds = 0, ∀t > 0. (4.5)

Eq. (4.5) is in fact a particular case of (1.1) corresponding to a null past history (u0(t) = 0 for all t > 0), and then the
restrictions (2.3) and (2.5) are not needed in this case. Eq. (4.5) was considered in [1] in the particular case A = B (with a
semilinear source term) and g satisfies (A1) and a nonlinear differential inequality which implies that g converges to zero
faster than 1

t2 . On the other hand, in case (1.12) and for some particular kernels, our decay estimate (2.4) is stronger than
the one of [1] (see (2.9) and (2.11)), where only the polynomial decay was obtained in [1].

In the particular case A = B = −�, (4.5) was considered in [10] and [11] (with a nonlinear source term), and a general
decay result (not necessarily of exponential or polynomial type) was established under condition (1.6) with positive and
nonincreasing function δ = δ(s). In the case A = B , Eq. (4.5) was considered in [2] with g satisfying

g′(s) � −δ(s)K
(

g(s)
)
, ∀s ∈ R+,

where K is a nonnegative function satisfying some hypotheses, and a general decay estimate was proved.
On the other hand, the approach presented in this paper can be applied (with some small adaptations) to the case where

the infinite integral in (1.1) is replaced with the finite one
∫ l

0, where l ∈]0,∞[, in objective to get the decay estimates (2.4)
and (2.6) under the assumption (A2). This application gives an extension to the exponential stability result proved in [18]
under the condition (1.6).

Remark 4.1. The semigroup theory implies that (see [19]), under assumptions (A0) and (A1), and for any n ∈ N
∗ and U0 ∈

D(An), the solution of (1.3) has the regularity

U ∈
n⋂

Cn−k(
R+, D

(
Ak)).
k=0
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A more general decay estimate (depending on n) than (2.6) can be proved in case (1.13) (see [13]). To keep this paper short,
we do not discuss this point.

Open problems. 1. For technical reasons (proof of (3.8) and (3.17)), the stability estimates (2.4) and (2.6) are proved

under the restrictions (2.3) and (2.5), respectively. Proving (2.4) and (2.6) for arbitrary η0 ∈ L2
g(R+, D(B

1
2 )) and η0 ∈

L2
g(R+, D(A

1
2 B

1
2 )), respectively, is open.

2. The damping Cu′ and the assumption (1.9) played an important role in the proof of (1.7) for (1.8) considered in [13]
with operators A and B satisfying more weaker conditions than ours (A0), (1.12) and (1.13). It would be interesting to get a
stability estimate of (1.8) (in particular with C = 0) under the weaker assumption (A2).

3. The kernel g converges to zero at infinity faster than G−1
1 given in (2.4), and (2.4) is very probably not optimal.

Recently, the authors in [2] considered the case of finite memory (4.5) (with A = B) and presented a general and sufficient
condition under which the energy converges to zero at least as fast as g at infinity. Getting the optimal decay rate of the
energy of (1.1) with g satisfying (A2) is a very interesting and open problem.
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