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Abstract

In this paper, we consider coupled wave-wave, Petrovsky—Petrovsky and wave—Petrovsky systems in
N-dimensional open bounded domain with complementary frictional damping and infinite memory acting
on the first equation. We prove that these systems are well-posed in the sense of semigroups theory and pro-
vide a weak stability estimate of solutions, where the decay rate is given in terms of the general growth of
the convolution kernel at infinity and the arbitrary regularity of the initial data. We finish our paper by con-
sidering the uncoupled wave and Petrovsky equations with complementary frictional damping and infinite
memory, and showing a strong stability estimate depending only on the general growth of the convolution
kernel at infinity.
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1. Introduction

Let g: Ry — R, be a given function, N € N*, @ C R" be an open bounded domain with
smooth boundary I', and H = L*(R) be endowed with its natural inner product and correspond-
ing norm denoted, respectively, by (-, -) and | - ||. Let a, a, b, b and d be variable coefficients
depending only on the space variable such that d, be L®(Q),

Wheo(Q) x Whoo(Q) x Wh°(Q):  wave-wave,
(a,a,b) € { W>®(Q) x W2®(Q) x W>»>®(Q): Petrovsky—Petrovsky,
W (Q) x W2°(Q) x Wh(Q):  wave—Petrovsky,

infa >0, infa>0, infsb>0 and infd>0.
Q Q Q Q

We consider the linear bounded self-adjoint operators D = d Id and B =0bId (Id is the identity
operator), and the linear unbounded self-adjoint ones

(—=div(aV), —div(aV), —div(bV)) : wave—wave,
(A, A, B) =1 (A(aA), A(aA), A(bA)) : Petrovsky—Petrovsky,
(—div(aV), AaA), —div(bV)) : wave—Petrovsky

with domains D(D) = D(B) = H and

(D(A), D(A), D(B))
(H*(Q) N HY(Q), H*(Q) N Hy (), H*(Q) N H} () :  wave-wave,
=1 (HYQ) N H(Q), HY(Q) N H}(Q), H*(Q) N HZ(Q)) : Petrovsky—Petrovsky,
(H*(Q) N HJ(Q), HY(Q) N HZ (), H*(Q) N H} (Q)):  wave-Petrovsky.

Also
(Pa®), D(AD), D(BY), D(B), D(D))
(HO1 (2), HOl (), HO1 (), H, H) :  wave-wave,
= (Hoz(Q), HOZ(Q), Hg(Q), H, H) . Petrovsky—Petrovsky,
(Hg(Q), H3(Q), H) (), H, H) : wave-Petrovsky.
The aim of this paper is the study of the well-posedness and asymptotic behavior when time goes

to infinity of solutions of the following coupled wave—wave, Petrovsky—Petrovsky and wave—
Petrovsky system:

“+o00

un(t)+Au(t)—|—Du,(t)—/g(s)Bu(t—s)ds+1§v(t)=O, Vi >0, an
J .

v (1) + Av(t) + Bu(t) = 0, vt >0
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with initial conditions

{u(—t):uo(t), Vt e Ry, (12)

v(0)=vg, u;(0)=u1, v, (0)=vy

and homogeneous Dirichlet—Dirichlet, Dirichlet-Dirichlet—-Neumann-Neumann and Dirichlet—
Dirichlet-Neumann boundary conditions on I' x R4

u=v=0: wave—wave,
d a .
u=v=4g =45 =0: Petrovsky—Petrovsky, (1.3)
— = U _ 4
u=v=q4 = 0 wave—Petrovsky,
where 3% is the outer normal derivative. The unknown (u, v) : Ry — H x H is the state of

the system (1.1)—(1.3) corresponding to the initial data (ug, vo, #1, v1). The term Du, and the
infinite integral in (1.1) represent, respectively, the frictional damping and the infinite memory,
which play, in a complementary way, the role of dissipation for the whole system (1.1)—(1.3) via
only the first equation in (1.1).

The problem of well-posedness and stability of (1.1)—(1.3) has attracted considerable attention
in recent years and an important amount of research has been devoted in this direction, where
diverse types of dissipative mechanisms have been introduced and several stability results have
been obtained.

In the uncoupled case: B = 0, it is well-known that the second equation of (1.1):

v () + Av(t) =0, Vi>0 (1.4)

is well-posed and it is a conservative equation.
Concerning the first equation in (1.1) with B =0:

+oo
U (t) + Au(t) + Du,(t) — / g(s)Bu(t —s)ds =0, Vt>0, (1.5)
0

a large amount of literature is available for this model, addressing problems of existence, unique-
ness and asymptotic behavior in time; see, for example, [22] (and the references therein) in case
B =0,[9-13,24,26,27] in case D = 0 and g converges exponentially to zero at infinity, and [15]
and [20] in case D =0 and g having a general growth at infinity. Also, for the particular case
of a single wave equation or Timoshenko-type systems with complementary frictional damping
and memory or two memories, we refer the reader to [6-8,16,18,19].

In the coupled case: B # 0, the stability of (1.1) is more complicated since only the first equa-
tion in (1.1) is directly controlled, whereas the second one is partially and indirectly controlled
via the behavior of the first one. The concept of indirect stability for coupled systems was intro-
duced, as far as we know, in [29], where the controlled equation plays the role of stabilizer for
the second one via the coupling terms. See [21] for further related stability results for coupled
systems.

When B =0, it has been proved in [ 1] that (1.1) is not exponentially stable and the asymptotic
behavior of solutions is at least of polynomial type with decay rates depending on the smoothness
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of initial data. Some extensions of the results of [1] to the non-linear and non-dissipative cases
are given in [14].

The stability of (1.1) in case D = 0 was proved in [17] by providing a stability estimate
depending in terms of the growth of g at infinity and the regularity of the initial data.

Our main objective in this paper is showing that the dissipation generated by the complemen-
tary frictional damping and infinite memory controls guarantees the stability of (1.1)—(1.3), and
investigating the effect of each control on the asymptotic behavior of the solutions, where each
control can vanish in a part of the domain. The general idea of the indirect decay estimate (3.11)
below lies in the fact that the term v;, which could be regarded as the viscous damping for the
second equation of (1.1), can be expressed via higher derivatives of u through the weak cou-

pling

+00
—Bu(t) = uy (t) + Au(t) + Du,(t) — / 2(s)Bu(t — s)ds.
0

This higher-energy decay estimate on the u-equation provides some control over the terms for
the energy of the v-equation. We provide an explicit and general characterization of the decay
rate depending on the growth of g at infinity and the regularity of the initial data. This includes
the particular two cases B =0 and D = 0 (only one control is considered) treated in [1] and [17],
respectively. At the end, we consider the uncoupled wave and Petrovsky equations (1.5) and
prove a strong stability estimate depending only on the growth of g at infinity. This particular
case gives a generalization of some results of [7,9-11,13,15,20,24,26,27] concerning the cases
D =0 and g converges exponentially to zero.

The paper is organized as follows. In Section 2, we consider some hypotheses and prove the
well-posedness of (1.1)—(1.3). Section 3 is devoted to the statement and proof of the asymptotic
stability of (1.1)—(1.3). Finally, in Section 4, we treat the uncoupled case (1.5).

2. Well-posedness

We state in this section some assumptions on B, B and g _and give a brief proof of the global
existence, uniqueness and smoothness of solutions of (1.1)—(1.3).

First, thanks to the properties of the coefficients a, a, b and I;, there exist positive constants
ao, ai, a; and by satisfying

max {arwl%, 1 B2wl?} < aoladwl?,  vwe D(A?), @1
allwl? < 42w, Ywe D(A?) 22)

and
|Bwl® <biflwl|?, Vwe H. 23)

On the other hand, we assume that

Please cite this article in press as: M.M. Cavalcanti et al., Weak stability for coupled wave and/or Petrovsky systems
with complementary frictional damping and infinite memory, J. Differential Equations (2015),
http://dx.doi.org/10.1016/j.jde.2015.08.028

© 0O N O O A WO N =


Original text:
Inserted Text:
equaion

Original text:
Inserted Text:
inifinity

Original text:
Inserted Text:
, and

Original text:
Inserted Text:
The Section

Original text:
Inserted Text:
, and


-

© 0O N o O »~ W N

JID:YJDEQ AID:7989 /FLA [m1+; v1.211; Prn:1/09/2015; 15:08] P.5 (1-38)

M.M. Cavalcanti et al. / J. Differential Equations eee (eeee) see—eee 5
(A0) The space
+00
L2R:, D(B?) = {w: Ry — D(BY), f 2(5)|B2w(s)|2ds < +oo
0

endowed with the inner product

+00

=fg(s)<3%w1(s),3%w2(s)>ds
0

(w, wa) 1
L%(R+,D(32))

is a Hilbert space.
(A1) The kernel g is of class C'(Ry) N LY(Ry), non-increasing and satisfies

+00 :
g0 := / g(s)ds < —. (2.4)
agp
0

Moreover, there exists a positive constant §p such that

—g'(s) <8og(s), VseR,. 2.5)

(A2) The positive constant by in (2.3) satisfies

———
by < A8 = a0g0) 2.6)
ao

Remark 2.1. Some interesting examples of a function b, where the assumption (A0) holds, can
be found in [2-5,23].

Now, following a method devised in [10] to treat the memory term, we formulate the system
(1.1)—(1.3) in the following abstract linear first-order system:

{%(r):d%(r), Vi >0,
2.7)
U (0) = %,
where % = (u, v, us, vi, )T, U = (uo(0), vo, u1, vi,n0)! € A,
= D(A?) x D(A?) x H x H x LR+, D(B?)),
{n(t,s):u(t)—u(t—s), Vt,s e Ry, 2.8)
n0(s) =n(0,s) =up(0) —up(s), VseRy )

Please cite this article in press as: M.M. Cavalcanti et al., Weak stability for coupled wave and/or Petrovsky systems
with complementary frictional damping and infinite memory, J. Differential Equations (2015),
http://dx.doi.org/10.1016/j.jde.2015.08.028

-

© o N o o »~ 0w N



© 0 N o 0o A O N =

A A A B B B D B OWOW W W W W W W W WN NN DNDDNDDNDNDNDN N NN S S s S ad S A
N o o0 A WM 242 O © 0N o g B WON 4+ O © 0o N o g~ WON 2+ O © 0o N o g s~ W N =+ O

JID:YJDEQ AID:7989 /FLA [m1+; v1.211; Prn:1/09/2015; 15:08] P.6 (1-38)
6 M.M. Cavalcanti et al. / J. Differential Equations eee (eeee) see—eee

and 7 is a linear operator given by

w3
w1 w4
wo +00
| wy |=] —A+gB)w — Dws — f g(s)Bws(s)ds — B 2.9)
w4 0
ws —Awy — Bwj
—0dsws + w3

with domain Z(47) given by

W= (w1, wa, w3, wy, ws)T €, dws € L2Ry, D(B1)), wy € D(AT),
+00
w3 € D(A?), wy € D(A), (A— goB)wy + / g(s)Bws(s)ds € H, ws(0)=0
0

D() =

(2.10)
We use the classical notations 2(7°) = 7, 2(#') = D(/) and
D" =W e DA™ AW e DA™}, n=12,...,
endowed with the graph norm
n
lwlgem =Y Il wl.
k=0

The space 57 is endowed with the inner product, for W = (wy, wo, w3, wy, w5)T and W =
(W1, Wa, W3, Wa, Ws)7,

1 1

+<Aiw2, A7w2>+<l~3w2, ﬁ11>+ Bw, 17)2>
+

w3, W w4, W ws, W .
3, W3) + (ws, W4) + (ws 5>L§(R+,D(3%))

Note that, from (2.4) and (2.6), one can choose € € ]g—:, %[ and, consequently,
eob b
m:mmb—%@—°1%J——é}>a 2.11)
a €0aq

Then, thanks to (2.1), (2.2), (2.3) and the Cauchy—Schwarz and Young’s inequalities, we have,
for any (wy, w) € D(A?) x D(A?),
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1 ~ ~ 1
g0l B2 w2+ (Buwa, wi)+ (Buwi,wa) = —aogoll A2wi ]2 = 2y/br i [
1 by

2 —aogoll AZwill* — brollwiI” = flwa

€ob1ag
ai

15 by -1
> — | aogo + [AZw || — ——[|A2wz]|.
€0a]

Therefore
1 ~1 1 1 ~1
co (142w 12+ 1A3wa]?) < 142w 17 = goll B2wi |2 + | A% w2
+<1§w2,w1>+<1§w1,w2>. (2.12)

Consequently, in yirtue of (A0), (7, (-, ) ») is a Hilbert space and Z(&/) C ¢ with dense
embedding.
Now, keeping (2.8) in mind, we find

on(t,s) +9sn(t,s) =u (1), Vi, s € Ry, o)
77([10)209 VIGR+ :
and
n=0 onI' xRy xR;: wave-wave and wave—Petrovsky. -~
n= S—Z =0 onI xRy xRy: Petrovsky—Petrovsky. (2.14)

Therefore, we deduce from (2.9), (2.13) and (2.14) that (1.1)—(1.3) is equivalent to (2.7), where
the well-posedness is ensured by the following theorem:

Theorem 2.2. Assume that (A0)—(A2) hold. Then, for any n € N and %y € 2("), the sys-

tem (2.7) has a unique solution
U e Myt (Ry, 7 (777F)). 2.15)

Proof. By proving that the operator —47 is maximal monotone, semigroups theory gives Theo-
rem 2.2. So, for any W = (w1, wa, w3, wa, ws) € Z(</), we have

(S]]

(AW, W) =<A%W3,A%w1>—go<3%w3, B%w1>~|—<A~%w4,Alw2>
+«Ewmwﬁ+%§w$wﬁ+«—sz—Bwhwo
+00
+ <<—A +g0B)wi — Dws — / g(s)Bws(s)ds — Bwy, w3>
0

+ (=0sws + w3, ws) (2.16)

Lg(m,pw%)) '
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By the definitions of A% s A% and B 3 , and the fact that H is a real Hilbert space,
(A +goB)wi, w3) = — <A%w3, A%w1> + go<B%w3, B%w1>,
(—Aws, wy) == (A2wy, A2w,)

and

—+00
<—/g(S)Bws(S)ds,w3>=—(wz,ws)

0

Lg(R+,D<B%)> ’

On the other hand, integrating by parts and using the fact that lim;_, 4 g(s)B% ws(s) =0 (due

to (A1)) and ws(0) = O (definition of 2(%)), we find

5 | +00

ws 1

<——,w5> : =—/g’(s)||BZw5(s)||2ds.
s lywepey) 2

Consequently, inserting these four equalities in (2.16), we get
| +o0
1 1
(AW, W) p=—|D>ws|)* + = / g/ ()| B1ws(s)|*ds,

2
0

which implies that

(AW, W) <0,

(2.17)

(2.18)

since g is non-increasing. This means that .o/ is dissipative. Note that, thanks to (2.5) and the

fact that ws € Lé(RJr, D(B%)),

+00 +00

/ g () B2ws(s)|2ds| = — / g (9| B2ws(s)|2ds
0 0
+00

1
<5 / 2($)]| BEws(s)|Pds
0
< 400,

so the infinite integral in (2.17) is well defined.

(2.19)

Next, we shall prove that Id — o/ is surjective. Indeed, let F = (f1, f2, f3, f4, fs)T €, we

show that there exists W = (w1, wa, w3, wg, ws)! € Z(o7) satisfying

(Id — /)W = F.

(2.20)

with complementary frictional damping and infinite memory, J. Differential Equations (2015),
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We note that the first and second equations in (2.20) give

wi3=w; — fi and ws=wy— f>. (2.21)
The last equation in (2.20) with ws(0) = 0 has a unique solution

N

ws(s) = /ey(fs(y)+w1—f1)dy e . (2.22)

0

On the other hand, multiplying the third and fourth equations in (2.20) by ¢; € D(A%) and
@ e D(A%), respectively, and plugging (2.21) and (2.22), we get

<A%w1,A%§01> <B >+<D2w1,D2g01>+<w1+§w2,¢1>
= (B3¢ B fi)+(Die1. DA fi)+ (g1 fi+ ). 223)
<1§w1,¢2>+( Aruy, Alg > (w2, 2) = (@2, f2+ fa),
+o00
where g1=/g(s)e_sds,
0
400 s
fi= f gls)e™ / & (fi— fs(y)dy | ds.
0 0

Notice that

H+fieDAD+HCH, fi+feDA)+HCH, DificH

and g1 < go. On the other hand,

+00 s +00 s
1~ !
IIBff1|I§||f1II/g(S)6‘S /eydy ds+/g(S)e_S /e)’llfs(y)lldy ds
0 0 0 0
+00 +00

<11l / (5)(1 — e~)ds + / 0] / g(s)e~ds | dy
0

y

+00 +00
<||f1||/g(S)ds+/g(y)ey|Ifs(y)|I /e’sds dy
0 y
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“+o00
= gollf1ll + / g fslidy
0
1 1
+00 2 —+00 2
< gollfill + / gy)dy / g fs)I*dy
0 0
< goll f1ll + /goll /5l

1
LZ([R+,D(B2))

< 400,

S0, B% fl € H.Then, using (2.12) and Lax—Milgram theorem, we deduce that (2.23) has a unique
solution

(wi, wy)T € D(A?) x D(A?).

Furthermore, coming back to (2.20), using classical regularity arguments and recalling (2.21)
and (2.22), we see that W € (/) satisfying

400
(A—goB)w; + / g(s)Bws(s)ds € H.
0

Hence Id — </ is surjective. Finally, (2.18) and (2.20) mean that —</ is a maximal mono-
tone operator. Therefore, using Lummer—Phillips theorem (see [28]), we deduce that <7 is the
infinitesimal generator of a linear contraction Cop-semigroup on .7, and then the result of Theo-
rem 2.2 is ensured by the semigroup theory (see [22,25,28]). O

3. Asymptotic behavior

This section is devoted to the study of the asymptotic behavior of solutions of (2.7). According
to the definitions of A, B and A, there exist constants ay, a, > 0 such that

IVPAZw|? < )l BTw|?,  Vw e D(A?) 3.1
and
1 2 o~ o7k 2 ~1
[A2w]” <allAZw|”, VYw e D(A?). (3.2)
On the other hand, we consider the following additional assumptions:

(A3) There exist positive constants «; and ap, and I'g C I' with positive Lebesgue measure
|| > 0 such that

igf(b +d)>a; and ilpfb > 20. 3.3)
0
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(A4) The constant by defined in (2.3) satisfies

ayar (1 —aogo)

1< (3.4)
aop
Moreover
infb>0 or supl; <0,
2 Q
which is equivalent to the fact that there exists a positive constant by satisfying
<Bw, w> > bollwl®, YweH 3.5)
or
<1§w, w> < —bollwl®, Vwe H. (3.6)
(A5) The function g satisfies g(0) > 0 and there exists a positive constant § such that
g'(s) < —8g(s), VseRy (3.7

or there exists an increasing strictly convex function G : Ry — R, of class C'(Ry) N
C2(]0, +o0[) satisfying G(0) = G'(0) =0, lim;_, 1 oo G’ (t) = 400 and

+00

g(s) 8(s)
—ds+ —— < H4-o00. 3.8
/ g T gy ST G9

Now, we introduce two sets of initial data %4 for which our stability estimate holds. Let, for
nelN,

Ton = D(A") (3.9)
when (3.7) holds, and
T s 2
Ty = i%o e DA™ : tsellgir  Jmax / resrarTe ’Bfafuo(s - t)H ds < +oo} (3.10)

when (3.8) holds and (3.7) does not hold.

Theorem 3.1. Assume that (A0)—(AS) hold and let n € N* and % € JH;y,, where ig =2 if
A=A —goB,andig =3 if A# A — goB. Then there exists a positive constant c,, such that

1% 013 = caGa(T). ¥ >0, G.11)
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where G1(s) = Gal(s), Gn(s) =G1(sGp=1(s)), form=2,3,...,nand s e Ry, and

K if (3.7) holds,

Go(s) = { . (3.12)
sG'(s) if(3.8) holds and (3.7) does not hold.

Remark 3.2. Notice that, because G, (0) =0,
. 2
tilgloo % )15, = 0. (3.13)

On the other hand, the class of functions satisfying (A1) and (AS) is very wide and contains
the ones which converge to zero exponentially (conditions (2.5) and (3.7)) or at a slower rate
(conditions (2.5) and (3.8)) like, respectively,

d>

Tron (3.14)

g1(s) =die™ ™ and g(s) =
where di, q1,d> > 0 and g» > 1. We see that g1 and g satisfy (A1) provided that d; and d; are
small enough so that d; < Z—(‘) and dy < qza—gl. On the other hand, g; satisfies (3.7) with § = ¢;.

Then G, (s) = s", and therefore, (3.11) gives, for any % € Z(/'"),

% 013, <™, Vi >0. (3.15)
. QL . g2+ 1
However, g> does not satisfy (3.7) but it satisfies (3.8) with G(s) = s?, forany p > T Then
q2 —
Gn(s) = p~PrsPn, where p, =), _, p~™, and therefore, (3.11) gives
1
1%, < e p i, im0, vp> Lo (3.16)
) q2 —

Notice that ¢ ~P» approaches " (which is the decay rate in (3.15)) as p goes to 17 (that is, when
q> converges to +00). Estimate (3.16) holds for initial data satisfying, for example,

Uy € D(A")  and max

2
B%afuo(s)u <dy(1+55, VseRy, (.17
k=0,...,ipn

-1 - 1
where d3 is a positive constant and g3 < P(q )~ @+ 1D 380 U € Hipn.-

p
For more examples, see [17], where (1.1) is considered in the case D = 0.

Proof of Theorem 3.1. The proof of (3.11) focuses on the case n = 1 and it is based on the
multipliers method by considering some appropriate functionals and adapting to our model (1.1)
some arguments of [1,8,17]. The general case (3.11), for any n € N*, is then deduced by induction
onn.

Now, assume that (A0)—(A5) hold and let % € %;, and E be the associated energy functional
with the solution of (2.7) giving by
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1
E()= Ell%(z)llég}. (3.18)

We start our proof, first, by noting that, using (2.7) and (2.17),

+00
1
E’(t)=—||D%u,<t)||2+§/g’(s)HB%n(t,s)nzds, VieR,. (3.19)
0

Recalling that g is non-increasing, (3.19) implies that E is non-increasing, and consequently,
(2.7) is dissipative. If D =0 and g =0, then E’ = 0; thus (2.7) is a conservative system. This fact
shows that the unique dissipation considered in (1.1) is the one resulting from the complementary
frictional damping and infinite memory controls. On the other hand, if E(#9) = 0, for some 7 €
R4, then E(¢) =0, for all ¢ > 1y, and therefore, (3.11) holds. Then, without loss of generality,
we assume that E(¢) > 0, forallr e Ry.

Second, we consider a function « introduced in [8] to establish some needed estimates.

Lemma 3.3. Let og = min{a, o} and o € C2(Q) such that

O<a<b onf,
a=0 ifb< %, (3.20)
a=>b isz%

Then the function « is not identically zero and satisfies
inf(a + d) > 22 (3.21)
inf(a —. .
Q -2

Proof. In yirtue of the second inequality of (3.3) and the regularity of b, there exists a neighbor-
hood 2p of I'y such that

inf b>an. (3.22)
QN

Then, for x € Q2N Qp, we have b(x) > ap, which implies, by (3.20), that « = b > ap on 2 N Q.
Thus « is not identically zero.

On the other hand, if b(x) > O%, then (3.20) implies that o (x) + d(x) > a(x) = b(x) > “70 If
b(x) < “70, then, according to the first inequality of (3.3) and the fact that og < 1, d(x) > % >
“70, which implies that o (x) + d(x) > d(x) > 0‘70 Consequently, (3.21) holds. O

Now, we apply the multipliers method to get some useful inequalities.

Lemma 3.4. Let us define the functionals

+00
Il(t)=—<ur(t),ot/g(S)n(t,S)dS>

0
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and

+00 +00

12<r>=—<um(r>,a / g(s)nn<r,s>ds>—<1§vf<t),a f g(s)nn<r,s>ds>.
0 0

Then, for any €1, 81 > 0, there exist c¢,, c5; > 0 such that, for all t € R,

080 1 ~1 1
1{<t>s—(7g—e1>||u[<t>||2+el||Azu<r>||2+e1||sz(t)||2+cﬂ ID2u, ()|
400
1

+cq, / g B2, )| %ds (3.23)

0
and
080 1
L) < —(Tg — 8D Nt (O + 8111 AZuse (1)1 + 81 llve (1)1

+00
1 L 1
e I D2 (01 + e, / g) (1820, )12+ 1B nie e, 9)I7) ds. (3.24)
0

“+0o0

Proof. Asin [19], multiplying the first equation of (1.1) by & / g(s)n(t, s)ds, we get

0
+00 +00
0=<un(t),a[g(S)n(t,S)dS>+<(A—goB)u(t)+Dut(t),a/g(S)n(t,S)dS>
0 0

+00 +00 oo
+</ g(s)Bn(t,s)ds,ot/g(s)n(t,s)ds>+<§v(t),afg(s)n(t,s)ds>.

0 0 0
. .. 1 1 .
Using the definition of A2 and B2, we obtain

+00 +0
0:<u,,(t)+Du,(t),a/g(s)n(t,s)ds>+<A5u(t),a/g(s)Aén(t,s)ds>

0 0

+00 +o0
—g0<B%u(t)ds,a/g(s)B%n(t,s)ds—l—(B%oz)/g(s)r](t,s)ds>
0

0
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+00 —+o0 —+0o0
+</ g(s)B%n(z,s)ds,a/g(s)B%n(z,s)der(B%a) / g(s)n(t,s)ds>

0 0 0

+00 o0
+<A%u(z),(A%a)/g(s)n(z,s)ds>+<1§v(z>,a/g(s)n(r,s)ds>. (3.25)
0

0

On the other hand, by using d,n(¢, s) = —dsn(¢, s) + u(¢) (according to (2.13)), we find

+00 +00 oo
<un(t),a/g(S)n(t,S)dS>=3t<ur(t),a/g(S)n(t,S)dS>—<ur(t),a/g(S)nz(t,S)dS>
0 0 0

400
=—Ii(®) —gollﬁut(t)l|2+<uz(t),ot / g(S)m(t,S)dS>-
0

Integrating by parts with respect to s in the infinite memory integral, and using the fact that
limg_, o0 g(s)n(t, s) =0 and 5 (¢, 0) = 0 (according to (A1) and (2.13)), we get

+00 +0oo
<un<r),a / g(S)n(t,S)dS>=—1{(t)—gollx/aur(t)llz—<uz(t),a / g’(s>n<r,s>ds>.
0 0

(3.26)

Exploiting (3.25) and (3.26), we deduce

+oo
I (t) = —gollNau, (0)|I* — <uz(t), o / g (Hm(, S)dS>
0

400 +o0
+<év(z)+Dut(t),a/g(s)n(t,s)ds>+<A%u(t),a/g(s)A%n(r,s)ds>
0

0
—+00 +oo
—go<B%u<t>,a/g(s)Bin<r,s>ds+<B%a> f g(s)n<r,s>ds>
0 0

+00
+<A%u<r),(A%a>/g(s>n<r,s>ds>
0

+00 +00 +00
+<fg(s)3%n(t,s)ds,afg(s)B%n(z,s)ds+(B%a)/g(s)n(t,s)ds>. (3.27)
0

0 0

Thanks to (3.21), we see that
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—gollvau ()11 = —gollve + du ()11* + gollVdu, (1)
< —Q0g0
- 2

s ()12 + goll D 2uts (1) (3.28)

On the other hand, since (2.14) and Ty C Q N Qo C suppa (in yirtue of (3.20) and (3.22)), then

lan(t. )| = / o2 (1, 5)dx

supp o

< (supa?) f (1, s)dx.
@ supp o

Hence, using a version of Poincaré’s inequality [8], there exists a positive constant ¢* such that

/ [Vn(t, s)|2dx :  wave—wave and wave—Petrovsky

supp o
lan(t, s)||* < c*(supa?)
Q

/ |An(t, s)|2dx :  Petrovsky—Petrovsky,

supp o
thus, using (3.20),
2 _ 4 NS 2
lam(z, s)| Sa—o(sgpa MIB2n(t, s)|I° (3.29)
Similarly,
A2 2 ﬁ Aol IB2 2
I(Aza)n(z,s)|I” < " (Slglzpl al?)|B2n(t,s)| (3.30)
and
1 4c* 1 1
I(BZayn(t, 5)||* < a—o(sgp|BZa|2>||an<r,s>||2. (3.31)
Also, using (3.1) and (3.20),
1 ) _ 4ar 2 1 2
lle A2n(t, )| Sa_o(s‘gp“ MWB2n(t,s)|I°. (3.32)

Inserting (3.28) into (3.27), applying Cauchy—Schwarz and Young’s inequalities to the last six
terms of (3.27), using (2.1), (2.2), (2.3) and (2.5) to estimate ||B%u(t) 12, | Bv(t)||* and —g'(s) by
apllA > u(®)||?, g—} I A% v(1)||? and 8pg (s), respectively, and exploiting (3.29)—(3.32), we get (3.23).

Using the system obtained by differentiating two times the first equation of (1.1) with respect
to time ¢; that is,
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+00
Upprr (8) + Aty (1) + Dugy (2) — / g(s)Buy (t —s)ds + Bu, (1) =0, V>0, (3.33)
0
+00
multiplying (3.33) by « / g(s)n (¢, s)ds, we find (as for I})
0

+00
L) = —80||x/5um(l)||2 - <Mm(l)s o / g (), s)ds>

0

+00 +o0
+<A%un<t>,a / () Ak n (1. 5)ds + (Ata) / g(S)Tht(f,S)dS>
0

0

+00 “+o00
—go<B%un(t>,a / g(s)BIny(t,$)ds + (BZa) / g(s)nn<t,s>ds>

0 0

—+o0 —+00
+<Dum(t),oz/g(S)nn(t,S)dS>—<sz(t),a/g(S)nm(t,S)dS>

0 0

+00 “+00 +oo
+< / g($)BIny(t, s)ds, a f g(s)B2ny(t,s)ds + (B2a) / g(S)Uzt(f,S)dS>~
0 0

0

Then, following the same procedure as before, we get (3.24). O

Lemma 3.5. Define the functionals

JO = (0, u @) o0 = (i (0, w3y 0) + (Bo u0) - and - Ri(0) = (1), 0(0)).
Then, for any A1, A2, A3, €2, 82 > 0, there exist ce,, cs, > 0 such that

birag

1 ~1
J{(@) < a1 — (1 — aggo — €2 — ADIA2u(®)||* + ——|A2v(1) ||
A a1a1
+00
1 1
+ce, ID2u ()1 + ce / &) IB2n(t, s)|?ds, VreRy, (3.34)
0

1 by
() < (L 4+ 1) lure (ON1* — (1 — aogo — 82) | AZur (1)1 + mnvzmu?

+00
1 1
+ 5, | D2y (D17 + c5, / gO)IBZny(t,9)|%ds, VreRy (3.35)
0
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and

RY(0) < v, (0] + ||A2u(t)|| — (- mIAT0I VieRy  (3.36)

4)»3

Proof. Multiplying the first equation of (1.1) by u(¢), we find
0= (us (1), u(r)) + ((A — goB)u(t) + Duy (1), u(1))

+00
+</ g(s)Bn(t,s)ds,u(t)> +<1§v(t),u(t)>.

0

Consequently, using the definition of A? and B%, we have

= 3 (e (1), u()) — 1y O + | A2u (@) — goll B2u(t)]?
+00

T (Du, (1), u(t)) +</ ¢(s)B2n(t, 5)ds, B%u(t)>+<év(t),u(t)>,

0

which implies that

T = a1 = [ATu@ I + gollB2u)]* = (Bu(r). u()

+o00
— (Du, (1), u(®)) —<f ¢(s)B2n(t, 5)ds, Biu(t)>. (3.37)

0

By applying Cauchy—Schwarz and Young’s inequalities for the last three terms of (3.37), and
exploiting (2.1), (2 2) and (2.3) to estimate [|u(r)||2, [|B2u(2)||2 and || Bv()||2 by % ||A%u(t)||2

ao||A2 u(t) ||2 and - ||A 3 v(t) ||2 respectively, inequality (3.34) holds. Similarly, multiplying the

second equation of (1 1) by v(¢) and following the same procedure as for (3.34), we get (3.36).
On the other hand, multiplying (3.33) by u (¢), we have (as for J/ D

B0 = e O = 14Ty O + goll BTy (0 + {Bvi 1), w1 1))

+0o0
Dty (1), gy (1)) — < / ¢(5) B (1, 5)ds, B%un(r>>.

0

Then, following the same procedure as in the proof of (3.34), (3.35) holds. O

Now, we adapt the approach of [1] to our system (1.1) in gbjective to get a crucial estimate.
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Lemma 3.6. Let Ry be the functional defined by

+00
Ra(6) = (e (£), v, (1)) — {u, (£, vy (1)) + < / g(s)BIn(t, 5)ds, B%v(t>>

0

when (3.5) holds and A=A- goB,

+00
Ra(t) = — (s (1), 0, (1)) + (1t (1), vy (£)) — < / 2(s)BIn(t, 5)ds, B%v<t>>

0

when (3.6) holds and A=A-— goB,

Ra(t) = (A" Auge (1), 1 (0)) = (A7 Aug (0, v (0)) = g (Bu: (1), BTo(0)
+00

- < f g(s)B2 (1, 5)ds, B%u(t)>
0

when (3.5) holds and A #* A —goB, and

Ro(t) = — (A7 Auy (0, v (0)) + (A7 Ay (0, vy (0) + g0 (BAus (0, BHo 1)
+00

—</ g(s)B%n,(t,s)ds, Bév(t)>

0

when (3.6) holds and A # A — goB. Then, for any 83, €3, €4 > 0, there exist ce,, ce, > 0 such that

~1
Ry (1) < —(bo — ex)llv; (1> + Vb1l (1)1 + €31 A2v(0) |
+00
1 1
+ee ID2uy (1) * + cey f ) IB2ny (1, 5)|%ds, VreR, (3.38)
0

incase A=A — goB, and

1
llitsee ()12

do +
Ry(1) < —(bo — e3) v () 1> + V/brdo llu, (1) 1I* + °€

3
8361352
465

+o00
1
+ce4[g(S)IIBfnn(t,S)Ilzds, Vie Ry (3.39)
0

1 ~1 1
+ IA2u (D1 + 83 + e |AZv(0) 1> + ces | D 2wy (1)1
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in case A # A — goB, where dy is the smallest positive constant satisfying
1A~ Aw]® < doflwl®,  Yw € D(A) (3.40)
(since A~V A is bounded thanks to (3.2)).

Proof. 1. Case A = A — g B: considering the equations obtained by differentiating the equations
of (1.1) with respect to time ¢; that is

+00
s (t) + Aug (2) + Dug (1) — / g()Bu;(t —s)ds + Bv,(t) =0, Vi>0  (3.41)
0
and
Vit (£) + Av,(t) + Bu, (1) =0, Vi >0, (3.42)

and multiplying (3.41) and (3.42) by v,(¢) and u,(t), respectively, we get

+00
0= {ty (1), 1 (1)) + (A — Qo By (1) + Dty (1), vy (1) + < [ swr8nasas, v,(r>>
0
= i (1), 1 0) = (Ave 0,1 0) = (Bus (0,100 + (B 1), v, 0)
+00

=, <un(r>,vt(r)>—<ut(r>,v,,(t>>+< / g(s)B%n,<r,s)ds,B%v(r>> + (Duyy (1), v, (1))

0

+0o0
—< f g(s)Binn(r,s)ds,Biv(t>>—(éu,<t),u,(r>)+(évt<r),w(r)),

0

since ((A — goB)u;(t), v; (1)) — <Avt 1), u,(t)> =0 (because A = A —goB and Ais self-adjoint).
Therefore

+00
0y <“tt(t)avt(t))_<Mt(t)avtt(t))+</g(S)B%nt(f»S)dS’B%v(t)>

0
+00
= — (D (1), v () + < [ g8 0. B%v<r>> +(Bus 0,4 0) = (Boy 1), v o).
0

(3.43)

Consequently, using Cauchy—Schwarz and Young’s inequalities for the first two terms of the
right hand side of (3.43), and using (2.1) and (3.2) to estimate ||B%v(t)||2 by aodz||f§%v(t)||2,
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and using (2.3) and (3.5) to estimate the last two terms of the right hand side of (3.43), we
get (3.38) when A = A — goB and (3.5) holds.

Similarly, multiplying (3.43) by —1 and following the same procedure, we find (3.38) when
A=A — goB and (3.6) holds.

2. Case A # A — goB: multiplying (3.41) and (3.42) by v;(r) and A" Au,(¢), respectively,

and noting that (Au,(t), v,(t)) — <A_1Aut(t), Avt (t)> =0 (because Ais self-adjoint), we get

400
0= <um(t),vt(t)>+((A—goB)ut(t)+Dun(t),vz(t)>+</ g(S)Bnt(t,S)ds,vz(t)>

0

o+ (Bur), v ) = (s (0, A Aus (0) = (Ave (00, A A 0)) = (Bus ), A~ Aus ()
((A—IAun(r), v () = (A7 Aur (1), va ) = g0 (B2 1), BIo(0))

g(s)B% N (t,8)ds, B% v(t)>)

+

+

e¢]

=9
- g(s)B%mz(r,sms,B%v(t>>—(éutm,A—lAut(r>>+go<B%un<t),B%vm)

S+ O

o Gt (1), 0, 0) = (A7 Ay (00, 0,0)) + (Dt (1), v (0) + (Bui (1), 0,0)).

Therefore

o, ((AlAun(t), v (0) = (A7 Aur (1), v ) = g0 (B2 1), BIo(0))

+00
+ < / ¢(s)B2n, (1, s)ds, B%v(z)>>

0

+00
- </ e(s) B2, (1, 5)ds, B%v(t)> +<§ut(t), A—lAu,(t)>

0

— 80(BEuir (1), BEO®) = a1, 00 )) = (Dutg (1), 0, 1))

+ (A7 A (1), v 0) = (Bug0), v ). (3.44)

Consequently, using Cauchy—Schwarz and Young’s inequalities, applying (3.2), (2.3) and (2.1)
to estimate [[B2o(@)[1% [Bu()l and [|B2uy@)* by aod2llA2v()| vBrlu @)l and
aollA2uy (1)|%, rtespectively, and using (3.40) and (3.5) to estimate [|A~'Au (1),
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||A_1Au,(t) ||2 and the last term of the right hand side of (3.44), we get (3.39) when A #*A—goB
and (3.5) holds.

Similarly, multiplying (3.44) by —1 and following the same procedure, we find (3.39) when
A#A—goBand (3.6) holds. O

Before proving the next lemma, let us consider, for k =1, 2, 3,

1
Ei(t) = §||8,k02/(t)||§f, vVt e R (3.45)
Similarly to (3.19), we have
+00
/ 1ok 2 1 ’ 1ok 2
E(0)=~ID20fu0I* + 5 | £ @IB23fn@.9)IPds. Vi eR,. (3.46)
0

Lemma 3.7. There exist positive constants N;, M; (i =0,1,2) and C; (i =0, 1) such that the
functional

F(t)=No(E@)+ E1(t))+ Nili1(t) + M1 J1(t) + C1R1(¢) + Rx(2) (3.47)
l:fA:A — goB, and
F(t) =No(E@)+ E1(t) + E2(0)) + N1 1) + N2 [ (2)
+ M Ji1(t) + MaJo(t) + CrR (1) + Ra(2) (3.48)

if A# A — goB, satisfies, for all t € Ry,

F(0) = Mo(E() + E1(1) (3.49)
and
+00
FO ==ME®+Co [ 86) (1Bl + 1B ) as 350
0
if A=A —goB, and
F(®) = Mo(E@) + Ey(0) + Ex(0) (3:51)
and
+00
FiO ==ME® +Co [ 0 (184G + 1B 1050 + 1840097 ds
0
(3.52)
if A#A—goB.
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Proof. First, we prove (3.49) and (3.51). Using (2.12), (3.18) and the fact that co < 1 (cg is
defined in (2.11)), we find, for all € R,

—+00
co 1 ~1 1
A0S ||ut<r>||2+||vz(z>||2+||A2u<r>||2+||sz<r)||2+/g(s)MBZn(r,s)nzds
0
(3.53)
Similarly,
—+00

co 1 ~1 1
Ev() =~ ||un(r>||2+||vn<r)||2+||A2u,<r>||2+||szt<r>||2+/g(s)MBZn,(r,s)nzds
0

(3.54)
and
c 1 ~1
Ex(t) > 50 (num(r)n2 F 0 O+ A2 uge ()1 + 1 AZ v (1))
+00
1
+ / g(s>||Bfnn<r,s>||2ds). (3.55)

0

From (3.53)—(3.55) and the definition of /;, J; and R; (i = 1, 2), we see that there exists a positive
constant L (not depending on Np) such that

F(t)> (No— L)(E(t) + E1(2)), VteRy
incase A= A — goB, and
F(t) = (No— L)(E(t) + E1(t) + E2(1)), VieRy
in case A # A — goB. Thus, for any No > L, (3.49) and (3.51) hold, for any
O0<My<No—L. (3.56)
Second, we prove (3.50) and (3.52) by distinguishing two cases.

1. Case A = A — goB: by combining (3.23), (3.34), (3.36) and (3.38), taking in consideration
(3.19) and (3.46), and noting that g’ < 0, we get

’ 2 2 1 2 il 2
F (@) < —Lillus " — Lallve D17 — Lal|A2u(@)||” — Lal|A2v(@)]|
+00

1 1
+/g(S) ((Nlcel+Mlcez)||37n(t,S)||2+653||Bfntz(t,S)||2>ds
0
1 1
— (No — Nice, — Mice)IID2us (01> — (No — ce;) |1 D2ugt (1) 1%, (3.57)
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where

Ly =N — My — Vb1 — €N,

Ly =Dy —Ci —e3,

apbi
L3=(1—apgo—A)My — ———C1 —e1N1 — &M,
dayairz
aob1
Li=(1—-A3)C1 — ———M; —€N1 —€3.
dajai M

1 1
We choose A1 = 5(1 — apgo) (which is positive since (2.4)), A3 = o 0 < Cy < bp and

2a0b1 C 2/b
> -
apgoarar (1 —apgo)  ogo

(note that, because g(0) > 0 according to (AS5), then go > 0). After, we take

a0b1C1
ajai (1 —apgo)

N 2 1_ C
<M1<min{%_ /b,alal( aOgO) l}

apby

(M exists due to (3.4) and the definition of N1). These choices imply that

N b
8T py— by >0, by—Ci1>0, (1—apgo— )M — -2 ¢, >0
2 daiairs
and
aogbq
1—X3)Ci— ——M; >0.
( 3)Cy dara M
Next, we choose €3 = €3 = €1 and €1 small enough such that L; > 0, i =1, ..., 4. Finally, we
choose

No > max{L, Nice, + Mice,, Ce; }

(so My in (3.56) exists and the last two terms of (3.57) are negative). On the other hand, using
Young inequality, (2.1), (2.2) and (2.3), we find

2 (B, u0) + (Buwr, o)) = (B, v0)
1
=5 (1Bu@P + o)1)

1 (bia | B
s§<¥nAz (t)||2+&—||Afv<t>||2), Vi€ Ry,
1
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therefore, from (3.18),

E(t) < C2(||ut(f)||2 F w12+ 1AZu@)]? + | AZv()|2

“+o00
+/g<s)||B%n<r,s>||2ds),

0

where

1 b 1
C2=—max{1+1—ao,l+~—}.
2 ai ai

By combining (3.57) and (3.58), (3.50) holds, for any

1
0 <My < —min{Ly, Ly, L3, L4}
C
and

Co=max {ce;, Nice, + Mice, + min{Ly, L2, L3, L4}}.

So, (3.49) anNd (3.50) hold, for any My > O satisfying (3.56)~and (3.59).

[m1+; v1.211; Prn:1/09/2015; 15:08] P.25 (1-38)

25

(3.58)

(3.59)

2. Case A # A — goB: similarly to the proof in case A = A — goB, by combining (3.23),
(3.24), (3.34)—(3.36) and (3.39), taking in consideration (3.19) and (3.46), and noting that g’ < 0,

we get

’ 2 2 1 2 71 2 2
F (@) < —Lillus " — Lallve (DN — L3[|A2u(@)||” — LallA2v(@)]|* — Lslluw ()l

+o0
1 1
— Lol A2uy 0IP + (Nice, + Mice,) / g@IB2n(, 5| ds
0
+00

1 1
+ f 8(5) ((Nacs, + Macs, + cc) | BEnus(t, )12 + Nacs, | B2 e (¢,9)117) ds

0
1 1
— (No — Nice, — Mice)IID2us (0)]|> — (No — ce3) | D2ugt (1) 2

1
— (No — Nacs, — Macs,))IID2uss (1)1?, Vi € Ry,

where

(3.60)
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Ly =N — My — /bidy — €1 Ny,
Ly=by—C biMy s N
= _— —6 —_— p— s
2=by TR 1N2
apb
L3=(1—apgo—A)My — ———C1 —€1N1 — M,
dayairz
aob1
Li=(1—A3)C1 — ———M; — 33 — €1 N1 — €4,
darai M
do+1
Ls =%0N, — (1 + )M — 0 — 81N,
€3
2.2~
ap8pa2
Le=(1—apgo) M — 04803 — 81Ny — 8o M».

‘We choose

bo ((@1a1)*(1 — apgo)* — (aoh1)?)

1 1
AM==(1- , A3=5 and 0<3 i
1=5(—aog), A3=5 an <8< 2(a1a1)*(1 — apgo)?

(A1 and 83 exist thanks to (2.4) and (3.4)). Next, we take

283(aray)(1 — 2 a2gla
’ 32(01611) ( 261080) _<Ci<by and M;> 08042
(@1a1)*(1 —apgo)= — (aoh1) 4(1 — aopgo)ds3
(C exists in yirtue of the choice of §3). After, we pick
b1C a (1 — Ci—26
0<es<by—Ch. # <M < arai(l —apgo)(Cy 3)
ajai (1 =aogo) aopby

(e3 and M exist according to the choice of C) and

b1 M

M>—————
4(bp — C1 —€3)

(A7 exists due to the choice of €3). Next, we choose

2(Sbrdo + M 2 do+1
Ny > 2Whido+ My N2>—((1+AQ)M2+ ot )

X080 X080 €3

These choices imply that

M
@Nl—Ml—\/b1d0>0, bg—C1 —e3— ! 2>0,

2 4z,
b b
(l—aogo—)nl)Ml—ao%C1>O, (1—)»3)C1—[I()%M1—53>0,
dajai sz dajair
do+1 algla
X080\ (1 amMa— DL 0 and (1 — aggo) M — 205092 _ ¢
2 €3 483
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At the end, we take €4 = €3 = §» = §1 = €1 and €1 small enough such that L; > 0,i =1,...,6.
Finally, we choose

No > max{L, Nice, + Mice,, Ces, Nacs, + Macs,}

(so My in (3.56) exists and the last three terms of (3.60) are negative). By combining (3.58)
and (3.60), we find (3.52), for any M satisfying (3.59), and

Co=max {Nice, + Mice, + min{Ly, Lz, L3, L4}, Nacs, + Macs, + ce,, Nacs, } -
So, (3.51) and (3.52) hold, for any My > 0 satisfying (3.56) and (3.59). O

Now, we estimate the integral terms in (3.50) and (3.52). Under the condition (3.7) and us-
ing (3.19), we have

+00

%
fawﬁmewsyﬂm,WE&. (3.61)
0

In case where (3.8) holds and (3.7) does not hold, we apply this lemma given in [15] and [17]
under, respectively, the condition

1
sup || B2ug(s)||* < +oo

seR,
and the weaker one
+00

Lemma 3.8. There exists a positive constant C3 such that, for any €y > 0, the following inequality
holds:

+00
G’(eoE(t))/g(S)IIB%n(t,S)IIZdSS—C3E/(t)+C3€oE(t)G/(€oE(t)), VieRy.  (3.62)
0

Proof. For the convenience of the reader, we give a brief proof of this lemma (see [17]).

First, we note that, if g’(sg) = 0, for some sy > 0, then g(sg) = 0 because G~'(0) = 0 and
S > % is bounded (thanks to (3.8)), and therefore, g(s) = 0, for all s > 5o because g is
non-negative and non-increasing. This implies that the infinite integral in (3.62) is effective only
on [0, so]. Thus, without loss of generality, we can assume that g’ < 0.
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Let t € R,. Because E is non-increasing and using (2.1), (3.53) implies that
1 2 1 ) 1 2
1850 I =2 (1B + | Brut - )|?)
4
<O +21B2ut — )|, Vs eR,.
co

Then, for

8
2% £0) ifo<s<t,
M(t,s) = 403 1 (3.63)
T E©0) 4+ 21B2ug(s — )| ifs > 1,
co
we conclude that
IBIn@, ) < M(t,s), Vi,s €R,. (3.64)

Let 71(¢,s), To(¢, s) > 0 (which will be fixed later on), €¢g > 0 and K (s5) =
Thanks to (AS5), the function K is non-decreasing, then, using (3.64),

N
GT(S)’ for s € R+.

K (—2(. 98 OIBn@9)I?) < K (~M(@.9)n(.5)g'(). Vs € Ry

Using this inequality, we arrive at

+00

+00
[ sonsineoras = g [ 67 (ntg @18 )
, G'(e0E()) J T (t,s)

71(t, 5)G' (€0 E(1))g(s)
X K
—T12(,5)8’'(s)

<! 70 6~ g 0 IBE w9 I)
" Gk ] ny ’ ’

71(t, s)G' (€0 E(1))g(s)
X K
—T12(,5)8'(s)
+00

< gorm | masC ((reogeBiies?)
~ G'(eE() ) T (t,s)

M(t,s)t1(t,5)G (€0 E(1))g(s)
G (=M(t,s)ta(t,5)8'(s))

(—r20. 98 @B, 9)]1) ds

(—M(t, s)Ta(t, s)g/(s)) ds

Let G*(s) = SUP; R, {st — G(7)}, s € Ry, denote the dual function of G. According to (AS),

G*(5) =s(G)'(5) = GU(G) ' (s)), VseRy.
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Using Young’s inequality: s152 < G(s1) + G*(s3), for

M(t,5)T1(t, )G (€0 E(1))g(s)
G (=M(t,9)na(t, $)g'(5))

1
s1=G—1(—mt,s)g%s)umn(r,s)uz) and s, =

we get

+00

/ g®IBIn(t, s)|ds <
0

-1 (t

3 2
~ Gl E(t)) / (s g'®)IB2n(t,s)ds

n / (M(t,S)fl(t,S)G’(éoE(t))g(S))ds
G'(e0E)) J T1(t,s) G =M, 5)na(t,5)g'(5))

Using the fact that G*(s) < s(G')~!(s), we get

+00

/ g | BIn(t. 5)|ds

0

+00
—1 T2(t ) /

2
= GlE®) ) a0, ¢ ®IBIn, )]s

+o00
+ / M(t,s)g(s) GH~! M(t,s)t1(t, 5)G (€0 E(1))g(s) s
J G (=M(t,9)12(t,5)8'(5)) G (=M(t,5)Ta(t, $)8'(5))
Thanks to (3.8), SUPeR, #;(s)) = m| < +00. Then, using the fact that (G")~ I is non-

decreasing and choosing 12(z, s) = M(t 5 We get

+00 +00

/g(S)IIB277(t 5)|Pds <

0

1 1 2
g )IB2n(t, s)|"ds

—1 1
~ G'(eE)) / M1, s)Ti(t, )

M 5)g(s)

Sy (@) M s)n (G €E @) ds

Choosing 71(¢,s) = and using (3.19) and the fact that

1
miM(t,s)

o0
M(t,
sup Mds =:my < +00

er, J G7H(=g'(5))
0

(due to (3.8) and (3.10)), we obtain
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+o0 +o0 +oo )
1 2 —m , 1 2 M(t,s)g(s)
g@IBzn@, s)°ds < ———— / g ®IBIn(t, )"ds +eE@) | ———— —~ds
0/ G'(e0E(1)) , G1(~g'(5)

—2m; )
< mE (t) +eomaE(t),

which gives (3.62) with C3 = max{2m,m>}. O

Now, we go back to (3.50) and (3.52). Similarly to (3.61) and (3.62), and using (3.46), we
find, fork =1, 2,3,

+00

-2
/ g(s)nB%a,kn(t,sanssTE,@(t), Vi e Ry (3.65)
0

if (3.7) holds. Otherwise, when (3.8) holds and (3.7) does not hold, we get, for any €y > 0,

+00
G'(eoE (1)) / gIB2 301, 9)1%ds < Casx (~EL() + «EWG (@E (1)), Vi €Ry,
0
(3.66)

where C4, C5 and Cg are defined as C3 with, respectively, ||B% dsug(s — t)||2, ||B% Bfuo(s — z‘)||2
and | B? d3uo(s — 1)) instead of IB2ug(s — 1)|12, and E;(0), E4(0) and E3(0) instead of E(0)
in the definition (3.63) of M(¢, s). Therefore, from (3.50) and (3.52), we get, for some positive
constants C7 and Cs (do not depending on €),

F'(t) < —MoE(t) — C7(E'(t) + E5(1) + EE5(1)), VieR,
if (3.7) holds, and
G'(e0E(1)F'(t) < —(My — Cse) E(t)G' (€0 E(t)) — C3(E'(t) + E5(1) + EE5(1)), VteRy

if (3.8) holds and (3.7) does not hold, where £ =0 if A=A-— goB,and § =1 if A #* A — goB.

. 0 ..
By choosing 0 < €p < s we see that, for some positive constants Cy and Cyy,
8

Go(eoE
Go(eoE()) = —@%F’U) —Cio(E' (N + Ey() +EE5(1), VieRy, (3.67)

where Gy is defined in (3.12). By integrating (3.67) over [0, T'], for T > 0, and using the fact

Go(eoE) . .
that F, E, Ey, E3 > 0 (due to (3.49) and (3.51)), Go(egE) and —z are non-increasing

(according to (AS) and the fact that E is non-increasing), we find
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T

GoleoE(THT < f GoleoE(D)dt
0
Go(egE(0))

<Gy E(0) F(0) + C1o(E(0) + E2(0) + £ E3(0)).
This implies (3.11) for n =1 and

o =max{l, o CLEOD o6y 1 1o (EO) + Ex0) +sE3<0>>}.
€0 E(0)

Now, suppose that (3.11) holds and let %) € #,(n+1). We have 8,]‘?/(0) € Hign, for k =

0,1,2ifig=2,and k =0, 1, 2, 3 if iy = 3 (thanks to Theorem 2.2 and the definition of .’%;), and
then (3.11) implies that, for k =1, ..., i,

9k
E(t) < ann<67”) and  E(1) < 6,G, (1), (3.68)

where 9,’1‘ is a positive constant. On the other hand, for some positive constant Cy; (according to
the definition of F, E, E;, I;, J; and R;),

F@)<Cu(E@)+Ei@), VieRy (3.69)
if A=A — goB, and
F(t) <Cn(E®) + Ei(t) + Ex(t)), VteRy (3.70)

if A # A — goB. Integrating (3.67) over [T, 2T], for T > 0, and using (3.69), (3.70) and the fact

Go(eoE) . .
that Go(eg E) and —F are non-increasing, we deduce that, for all 7 > 0,

2T
Goleo EQT)T < / Goleo E(1))di
T
< Ci(E(T) + E(T) + Ex(T) + § E3(T)), (3.71)
where
Go(e0E(0))
Cp=C CoCij——
12 10+ CoChy E0)
From (3.68) and (3.71), we get, for all 7 > 0,
Eery <2671 (292 (6, 1ol (29"1)+926 (293)+593G (293)
— — | ¢ — — — .
e O \2r \"T"2r n=nior nEnaT n=nior

This implies (note that G, and G, are non-decreasing), for t = 27,
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—1 (Cn+1 Cn+1 Cn+1
@) = cniGy' (BHGu(E)) = o1 Gupn (D), i >0,

where

— i 1 2 3 1 2 3
Cop1 =max | —,2¢,, 26,202,263, 2 (c, +6) +62 +£63) Cia } .
€0

This proves (3.11), for n + 1. The proof of Theorem 3.1 is completed.
4. Uncoupled wave and Petrovsky equations

As it was mentioned in the introduction, in the uncoupled case: B =0, the second equa-
tion (1.4) of (1.1) is conservative; that is, its classical energy

Ev) =5 (lu®IP +14200)?)

N =

is a constant function. In this section, we consider the first equation (1.5) of (1.1); that is

+o00
Uy (t) + Au(t) + Du,(t) — / g(s)Bu(t —s)ds =0, Vt>0,

0
u(—=t) =uo(t), u(0)=u, Vie R,

“4.1)

with homogeneous Dirichlet and Dirichlet—-Neumann boundary conditions on I" x R

(4.2)

{ u=~0: wave,

u _ .
u=45=0: Petrovsky,
where the coefficients a, b and d are as before and

(=div(aV), —div(bV),d Id) : wave,

(A,B,D) = {
(A(aAN), A(bA),dId) : Petrovsky.

4.1. Well-posedness

System (4.1)—(4.2) can be written in the abstract form

{ U) =AU (), Vt>0, @3)

u0) =%,

where % = (u, u;, )T, % = (uo(0), uy, no)’ € A,
A = D(A?) x H x L2(Ry, D(B?))

endowed with the inner product, for W = (w1, wz, w3)” and W = (@1, w2, w3)7,
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~ 1 1 1 1
W,W> =<A7 ,Az”)— <37 ,BE~> i i ,
( » w1 wi)— o wi w1) + (wa, W2) + (w3 w3>L§,(R+,D(3%))

and
w2
w1 “+o00
g | wy | = (—A+goB)w1—Dwz—/g(S)sz(S)dS
w3 0
—0sw3 + wy

with domain

W = (wi, wy, w3)" €, dyws € L2(R, D(B?)),
+00
wy € D(A?), (A - goB)w; + [ g(s)Bws(s)ds € H, w3(0)=0
0

D() =

Then, applying the same arguments as in Section 2, we deduce that, under assumptions
(A0)—(A1), for any n € N and % € Z("), the system (4.3) has a unique solution satisfy-
ing (2.15).

4.2. Strong stability
We prove here the following strong stability estimate for (4.3):

Theorem 4.1. Assume that (A0), (A1), (A3) and (AS) hold and let Uy € )y, where ) is defined
in (3.9) and (3.10) (for n = 0). Then there exist positive constants ¢y and ¢y such that

lZ @)% <c1G  (eat), V>0, (4.4)

1

where G(s) = /

N

dt, for s €10, 1], and Gy is defined in (3.12).
Go(7)

Remark 4.2. Because lim,_, o+ (~7(s) = 400, then (3.13) holds. On the other hand, in the case of
the particular examples (3.14) considered in Section 3, we deduce from (4.4) that

% )13, <cre™?, VteRy (4.5)
in case g1, and

q+1

_ 1
1% 1% < et (p(p = Deat +1)" 7T, Vi eRs, >

(4.6)

in case g». Notice that (4.5) and (4.6) are stronger than, respectively, (3.15) and (3.16), for any
n € N*,
For more examples, see [15], where (4.1) is considered in the case D = 0.
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Proof of Theorem 4.1. Let E be the associated energy functional with the solution of (4.3)
given by (3.18). As for (2.7) (by taking A=0and B =0), E satisfies (3.19).

Now, we consider the functionals I; and J; defined, respectively, in Lemma 3.4 and
Lemma 3.5. We deduce from (3.23) and (3.34) (by taking A =0 and B = 0) that, for any
€1, €2 > 0, there exist ¢¢,, c¢, such that

@080 1 1
10 < =(—= —eDlus O + el A2u@®I + e, | D2us (1)1
+o00
1
+ cey /g(s)nmn(z,s)nzds, VieRy (4.7)
0

and

1 1
J1(@0) < s DI = (1 — aogo — )| AZu(®) | + ce, | D2us ()|
+00
+Cez/g(S)IlB%n(t,S)IIZdS, Vi eR,. 4.8)
0

Notice that the estimates (4.7) and (4.8) hold, for any % € #0.

Lemma 4.3. There exist positive constants Ni, M; (i =0, 1) and Cy such that the functional

F()=NoE(@t)+ N111(t) + J1(t), VteR, (4.9)
satisfies
MoE(t) < F(t) <M E(t), VYteRy (4.10)
and
400
F'(1) < —=MoE(1) + Co / g IBIn(,s)|ds, Vi €R,. (4.11)
0

Proof. Similarly to (3.53), we have

+00
Ci 1 1
E@i%lmmW+MM®V+/ﬁmwme%s,VmR+ (4.12)
0

Then, from the definition of /1 and Ji, there exists a positive constant L (not depending on Ny)
such that

(No— LYE(t) < F(t) < (No+ L)E(t), VteRj,.
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Thus, for any Ng > L, (4.10) holds, for any

O<My<Ny—L and M;> No+ L. (4.13)

On the other hand, by combining (3.19), (4.7) and (4.8), and noting that g’ < 0, we get

+o00
1 1
F'(t) < —Lillu,)1* = LallAZu(®) 1> + (Nice, + cey) / g IBIn(t, s)|*ds
0
1
— (No — Nice, — ce)IDZus (017, (4.14)

where
{Ll = %N1 —1—€1Ny,

Ly=1-—apgo—€1N1 — €.

We choose N| >
, 080
according to (2.4)) and

, €0 = €1, €] small enough such that Ly, L, > 0 (since 1 — apgo > 0

No > max{L, Nice, + ce,}

(so My in (4.13) exists and the last term of (4.14) is negative). On the other hand, from (3.18),
we have

+o00
1 1 1
E@ = ||ut(r>||2+||Afu(r)||2+fg(s)HBfn(r,s)nzds : (4.15)
0

By combining (4.14) and (4.15), (4.11) holds, for any
0 < My <2min{Ly, Ly} (4.16)
and
Co =max {Nice, + ce, + min{Ly, Ly}}.
So, (4.10) and (4.11) hold, for any My > 0 satisfying (4.13) and (4.16). O

By combining (3.61), (3.62) and (4.11) (which are satisfied, for any % € #p), we find, for
some positive constants C4 and Cs5 (do not depending on ),

F'(t) < —MyE(t) — C4E'(t) VteR,

if (3.7) holds, and
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G'(eE(M))F'(1) < —(Mo — Cs€0) E(1)G' (€0 E(1)) — CsE'(t), V1 € Ry

M
if (3.8) holds and (3.7) does not hold. By choosing 0 < ¢y < C—O, we see that, for some positive
5
constants Cg and C7,

Go(eoE(1)) < —CGWF/(I) —C7E'(t), VteRy, 4.17)

where G is defined in (3.12). Let ¢; > 0 and

i Go(eoE
F=c (Cé%ﬂrcm). (4.18)

We have F ~ E (because @ is non-increasing and F ~ E according to (4.10)), and, us-
ing (4.17),

F' < —c2Go(eo E). (4.19)
Then, for ¢; > 0 such that
F<eE and F(0)<1, (4.20)
we get (since Gy is increasing)
F' < —c2Go(F). 4.21)
Then (4.21) implies that
(G(F)) = ¢, (4.22)

1
~ 1
where G(s) = f G—() drt, for s € ]0, 1]. Integrating (4.22) over [0, ¢] yields
o(t
s

G(F(1)) > cat + G(F(0)), VieR,. (4.23)
Because F 0 <1, G(l) —=0and G is decreasing, we obtain from (4.23) that
G(F(t)) > cat, VieRy,
which implies that
F(t) <G Year), VieR,.

The fact that F ~ E gives (4.4). This completes the proof of Theorem 4.1.
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