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Abstract: We study very ample vector bundles on curves. We first give
numerical conditions for the existence of non-special such bundles. Then we
prove the inequality

h0(detE) ≥ h0(E) + rank(E)− 2

over curves of genus at least two. We apply this to prove some special cases
of a conjecture on scrolls of small codimension.
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0 Introduction

Algebraic vector bundles over projective curves have been intensively stud-
ied over the last decades. Special classes such as stable and ample ones were
the subject of many contributions by several authors. On the other hand,
many classical and modern studies were devoted to understanding embed-
dings of curves, i.e. to very ample line bundles. Long before the modern
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concept of vector bundle was introduced, classical algebraic geometers had
dealt with embedded projective bundles (over curves) with degree -1 fibers,
known as “scrolls”. In modern terms this amounts to studying very ample
vector bundles of arbitrary rank over curves.

In the first section of the paper we give numerical necessary and sufficient
conditions for the existence of non-special very ample vector bundles over a
given curve, generalizing a well-known result of Halphen for the rank -1 case
(Proposition 1). Next we remark that on hyperelliptic curves very ample
vector bundles are always non-special so the existence problem is completely
solved in this case. We also give a numerical criterion ensuring the ampleness
of a vector bundle, which generalizes a result of Hartshorne’s (Proposition
2).

The second section contains the main result of the paper which is the follow-
ing inequality:

h0(detE) ≥ h0(E) + rank(E)− 2,

where E is a very ample vector bundle over a curve of genus at least two.
Moreover, we completely classify the cases where equality holds. We end the
paper by proposing a conjecture on scrolls embedded with small codimension,
which is supported by facts proved in both sections. More precisely, the
conjecture holds if either the base curve is hyperelliptic or rank(E) ≤ 4. See
our paper [7] for a discussion of this conjecture in the context of manifolds
embedded with small codimension.

1

Let C be a smooth projective curve of genus g over the complex field.
Throughout the paper we denote by E a vector bundle on C, by r its rank
and by d its degree.

Definition A vector bundle E over C is called (very) ample if the tauto-
logical line bundle OP(E)(1) is (very) ample on P(E).

When E is very ample, P(E) under the corresponding embedding is classically
known as a scroll.

As in the case of line bundles one easily proves the following:

Lemma 1 A rank r vector bundle E on C is very ample if and only if for
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any two (possibly equal) points P,Q on C one has

h0(E(−P −Q)) = h0(E)− 2r.

�

As usual we call a vector bundle E special if H1(C,E) 6= 0.

Already in the rank 1 case the numerical classification of special very ample
vector bundles is a very subtle problem, so we first restrict our attention
to the non-special case. The following Proposition generalizes a well-known
result of Halphen (see e.g.[5]) to arbitrary rank.

Proposition 1
(i) If g ≤ 1, any very ample vector bundle on C is non-special and such a

vector bundle having rank r and degree d exists if and only if d ≥ r in
case g = 0 and d ≥ 2r + 1 in case g = 1.

(ii) If g ≥ 2, there exists a non-special very ample vector bundle of rank r
and degree d on C if and only if d ≥ r(g + 1) + 2.

Proof: The genus-zero case is classical and easy. For g = 1 see e.g. [6],
p.151.

Let now g ≥ 2. Take E very ample and non-special and consider the scroll
P(E) in PN where N := h0(E) − 1. Lemma 1 implies N ≥ 2r − 1. If
N = 2r − 1 if follows g = 0 (e.g. by Barth-Lefschetz; in fact, P(E) is the
Segre embedding of P1 × Pr−1 in this case). If N = 2r we may apply the
double-point formula

cr(NP(E)/P2r) = (deg(P(E)))2

[9], which in this case takes the form

r(r + 1)g = (d− r)(d− (r + 1))

(remark that deg(P(E)) = d and compute the Chern classes of the normal
bundle out of its associated exact sequence and the Euler exact sequences for
P(E) and for PN ). Using the Riemann-Roch theorem and the non-speciality
of E it follows g ≤ 1.

So h0(E) − 1 = N ≥ 2r + 1. Applying once again Riemann-Roch we get
d ≥ r(g + 1) + 2.
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Now we turn to the converse implication. Let d and r be such that d ≥
r(g + 1) + 2. We look for a non-special very ample E with these invariants.
Using Lemma 1, Riemann-Roch and Serre duality we see that a vector bundle
E is very ample and non-special if and only if

H0(C,E∨ ⊗ ωC(P +Q)) = 0

for any points P,Q of C (where ωC stands for the canonical line bundle of
C). Remark that the degree of E∨ ⊗ ωC(P +Q) is

d′ := −d+ 2r(g − 1) + 2r ≤ r(g − 1)− 2.

Let Ur,d′ be the moduli space of stable vector bundles of rank r and degree d′

on C. Let W 0 ⊂ Ur,d′ be the locus of vector bundles having nonzero global
sections. Consider the natural map

ϕ : Ur,d′ × C(2) → Ur,d′−2r,

which sends (F, P + Q) to F (−P − Q), C(2) being the second symmetric
product of C. It is enough to prove that the restriction of ϕ to W 0×C(2) is not
surjective. Since dimUr,d′−2r = dimUr,d′ = r2(g−1)+1 and d′ ≤ r(g−1)−2,
this will be a consequence of the fact that dimW 0 ≤ r(r−1)(g−1)+d′. The
estimate for dimW 0 is the easy part of Sundaram’s work on Brill-Noether loci
in arbitrary rank, [13]. We remark that a slight refinement of his argument
makes it work for g = 2 too. �

Lemma 2 For a vector bundle E on C one has: E is special if and only if
E possesses a rank -1 special locally free quotient.

Proof: One way is clear from the associated cohomology sequence.

Conversely, assume E special and take a nonzero global section of E∨ ⊗ ωC .
Dualizing we get a quotient of E⊗ω−1

C of the form OC(−D) for some effective
divisor D. So E has the quotient ωC(−D) which is special. �

Corollary 1 Let C be hyperelliptic and g ≥ 2. Then any very ample vector
bundle on C is non-special. In particular, there exists a very ample vector
bundle of degree d and rank r on C if and only if d ≥ r(g + 1) + 2.

Proof: Use Lemma 2 and the facts that a quotient of a very ample vector
bundle remains very ample and any very ample line bundle on a hyperelliptic
curve is non-special. �
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Remarks:

1. Since any genus 2 curve is hyperelliptic the existence problem for very
ample vector bundles is settled in this case too.

2. For g = 3 the only non-hyperelliptic curves are the plane quartics. On
a plane quartic C, we may take E = ω⊕rC which is very ample of degree
4r < r(g + 1) + 2. This example will play a special role later on.

Now we look for more specific criteria ensuring the (very) ampleness of a
given vector bundle.

Definition For a vector bundle E on C we set d1(E) := min{deg(L) | L a
quotient line bundle of E}.

One sees that d1(E) is well defined and the following easy properties hold:

(i) d1(E) ≤ degE if E is globally generated,

(ii) d1(E ⊗ L) = d1(E) + degL for any line bundle L on C,

(iii) d1 is related to the invariant s1 of P(E) (cf. [10],[5; V, 2.8]) by
s1(P(E)) = degE + rd1(E

∨).

Proposition 2
Let E be a rank r vector bundle on C.

(i) If d1(E) >
r − 1

r
g then E is ample.

(ii) If d1(E) ≥ 2g − 1 then E is non-special.

(iii) If d1(E) ≥ 2g then E is globally generated.

(iv) If d1(E) ≥ 2g + 1 then E is very ample.

For g = 1, (i) is an old result due to Hartshorne, [4].

Proof:

(i) Let L be a line bundle quotient of E of degree d1(E) and

0→ F → E → L→ 0

be the corresponding exact sequence.
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Using the theorem of Mukai and Sakai [10], one has

degL

rankL
− degF

rankF
≤ g.

In our case this gives

degE ≥ rd1(E)− (r − 1)g > 0.

If E is semi-stable, the ampleness follows from Hartshorne’s criterion [3].
Otherwise, take E ′ a maximal destabilizing subbundle of E of rank r′ and
degree d′ and argue by induction on r = rankE. Since d1(E/E

′) ≥ d1(E) >

(r − 1)g/r > (r′ − 1)g/r′ and
d′

r′
>
d

r
> 0, E/E ′ and E ′ are ample by the

induction hypothesis and Hartshorne’s criterion. Being an extension of ample
vector bundles, E is ample too, [3].

(ii), (iii) and (iv) are easily derived from suitable versions of Lemma 1 and
the following remark:

d1(E) ≥ a if and only if
H0(C,E∨ ⊗ L) = 0 for all L ∈ Pica−1(C).

�

Corollary 2 A semi-stable rank r bundle over C of degree d ≥ 2rg + 1 is
very ample.

2

The main result of this section is the following:

Theorem If E is a very ample vector bundle of rank r on C and g ≥ 2 then

h0(detE) ≥ h0(E) + r − 2.

Moreover, equality holds if and only if C admits an embedding in P2 by means
of a line bundle L and E = L⊕r for r ≥ 2 when g = 3 and for r = 2 or r = 3
when g > 3.

For a very ample vector bundle E on C let X := P(E) be the associated
scroll embedded in PN by means of the complete linear system |OP(E)(1)|
and π : X → C the projection.
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We shall prove the theorem by successively cutting X with hyperplanes con-
taining two fibers of π and comparing the invariants of X to those of the
residual scroll in such hyperplane sections.

For any effective divisor D on C we denote by < π∗(D) > the linear span of
π∗(D) in PN , that is the base locus of the linear subsystem of |OPN (1)| given
by sections of H0(PN , Iπ∗(D)(1)) ∼= H0(X,OX(1)(−π∗D)) ∼= H0(C,E(−D)).

Suppose from now on that g ≥ 1 and let A = P1 + P2 be a general effec-
tive degree 2 divisor on C. Recall that since g ≥ 1 we have N ≥ 2r (see
proof of Proposition 1) and dim(< π∗(A) >) = 2r − 1 (Lemma 1). Sup-
pose that the linear span of π∗(A) contains some other fibers of π over an
effective divisor B on C of degree b. We first remark that b is independent
of the choice of A, provided A is general. Consider indeed the subvariety
T of C × C × C parametrizing effective divisors D of degree 3 such that
dim(< π∗(D) >) ≤ 2r − 1. This is a proper subvariety whose projection on
any factor C × C is generically finite of degree b. Moreover, no fiber of the
projection C × C × C → C × C is contained in T . Otherwise there would
exist 2 fibers of π such that any other fiber of π lies in their span.

Lemma 3 If b > 0, then for various choices of general effective divisors A
of degree 2 the associated divisors A + B are linearly equivalent on C and
|A+B| is very ample.

Proof: b > 0 means that in the above construction dimT = 2. We consider
a general fiber C ×C of the projection C ×C ×C → C. (i.e. we fix P1 in A
and vary P2).

Then T ∩ (C ×C) is one-dimensional and has no vertical, and by symmetry

also no horizontal components with respect to the projection C × C p→ C.
Let Z be the pure 1-dimensional part of T ∩ (C × C). The symmetry of Z
in C × C allows us to introduce an equivalence relation on C:

P ∼ P ′ if P = P ′ or (P, P ′) ∈ Z

(for the transitivity, remark that if (P,Q) and (Q,R) are in Z then
dim(< π∗(P1 + P + Q + R) >) = 2r − 1 and thus (P,R) is in Z). There
exist b+ 1 distinct points all equivalent modulo this relation. Otherwise the
diagonal of C × C must lie in Z so the divisor B associated to A = P1 + P2

always contains P2. This cannot happen for all P1, for then B would also
contain P1 by symmetry and thus Z would have horizontal components.
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By factorizing through ∼ we get a (possibly ramified) covering of degree b+1

of Riemann surfaces C
f→ C/∼ =: C0.

If now P1 moves the corresponding fibers p−1(P2)∩Z must also vary, otherwise
we get horizontal components when we fix P2.

This produces a nontrivial family of coverings (not coming from automor-
phisms of C0) parametrized by a neighborhood S of P1 :

C × S

##FFFFFFFFF
// C

���������

S

There exists a maximal family of holomorphic maps of this type parameter-
ized by {(ζ, s) ∈ U × S;α(ζ, s) = 0} (for a smaller S if necessary) where U
is an open neighborhood of 0 in H0(C, f ∗TC0), α : U × S → H1(C, f ∗TC0) is
holomorphic with dα(0,P1) = (0, f ∗ ◦ ρ),

f ∗ : H1(C0, TC0)→ H1(C, f ∗TC0)

and ρ : T0S → H1(C0, TC0) the Kodaira-Spencer map associated to the family
C → S (cf. [11], 3.2.3.).

Since f ∗ is injective it follows H0(C, f ∗TC0) 6= 0 so g(C0) ≤ 1. Moreover, for
g(C0) = 1, H0(C, f ∗TC0)

∼= H0(C0, TC0)
∼= C and one can see that all the

coverings of the maximal family come from automorphisms of C0 composed
by f , and this is also excluded in our case. Thus g(C0) = 0 and the fibers of
f are linearly equivalent divisors on C. (Remark that, at least for g(C0) ≥ 2,
the above deformation theory argument may be replaced by a well known
finiteness result due to Severi; see e.g. [12]).

So, moving any point of A in an open set of C we get by adding the corre-
sponding B linearly equivalent divisors A+B. We may give up the genericity
assumption on A by looking at the pure 2-dimensional part T ′ of T and tak-
ing the fibers of the projection T ′ → C × C. It is then easy to see that the
divisors A+B remain linearly equivalent. Since T ′ has no “horizontal fibers”
|A+B| has no base points, and for two given fibers F1, F2 of π there always
exist a third one F such that F1 6⊂< F2 + F > by Lemma 1. This proves
that |A+B| is very ample. �

Lemma 4 If r ≥ 2 then for a general divisor A of degree 2 on C the general
hyperplane of PN containing π∗(A) does not contain other fibers of π excepting
those which are already in < π∗(A) >.
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Proof: We consider the linear system H of hyperplanes of PN containing
π∗(A) and the incidence variety I ⊂ H × C given by pairs (H,P ) ∈ H × C
such that H ⊃< π∗(A+B + P ) >.

Suppose that I projects onto H. Then dim I = dimH = N − 2r. Consider
the part I ′ of I consisting of components covering H. If < π∗(A) > cuts the
general fiber of π along an (r − 1 − t)-dimensional subspace, then dim I ′ =
dimH − t + 1, hence t = 1. But then < π∗(A) > cuts X along an (r − 1)-
dimensional scroll X ′ plus the fibers of π over A + B, and an element of H
contains extra fibers over some divisor, B′ say, of C. Hence an exact sequence

0→ OX(π∗(A+B +B′))→ OX(1)→ OX′(1)→ 0

and by applying π∗ also

0→ OC(A+B +B′)→ E → E ′ → 0

where E ′ := π∗OX′(1).

So OC(A+B+B′) = detE⊗(detE ′)−1 does not depend on the choice of the
hyperplane. Thus B′ moves in a linear system (whose degree is the degree of
the projection I ′ → H and) whose dimension is dimH. Moreover, one sees
as in Lemma 3 that the divisors A + B + B′ are linearly equivalent to each
other and that |A+B +B′| is very ample.

In particular dim |A + B + B′| ≥ dim |B + B′| + 2 ≥ N − 2r + 2 and the
restriction morphism

H0(PN ,OPN (1)) ∼= H0(X,OX(1))→ H0(X ′,OX′(1))

has a (2r− 2)-dimensional image at most, showing that X ′ embeds in P2r−3,
a contradiction since g ≥ 1 (see proof of Proposition 1). �

Corollary 3 Keeping the previous notations, if b > 0 then dim |A+B| = 2.

Proof: By Lemma 4, OC(A + B) is a subbundle of E. Hence any global
section s of OC(A + B) extends to a section of E vanishing on the same
divisor D as s. There exists then a hyperplane in PN containing π∗D and no
other fibers of π. Thus D is uniquely determined by two of its points. �

Lemma 5 Let g ≥ 2 and |D1|, |D2| two very ample linear systems on C
with dim |D1| = 2, dim |D2| > 2. Then

dim |D1 +D2| ≥ 4 + dim |D2|.

9



This is a special case of the Clifford type results contained in ([1], III B)
which is sufficient for our purposes. For the reader’s convenience we sketch
a proof.

Proof: Let δ = dim |D2|+ 2. Then δ ≤ degD2, since g ≥ 2.

Let Γ ∈ |D2| be general with respect to |D1| and Γ′ ⊂ Γ consist of δ distinct
points P1, . . . , Pδ. By the Uniform Position Theorem [1], there exists divisors
D1 in the first linear system through P2, P3 and D2 in the second system
through P4, . . . , Pδ, neither of which containing P1. It follows that Γ′ imposes
independent conditions on |D1 +D2|. Thus

dim |D1 +D2| = δ + dim |D1 +D2 − Γ′| ≥ δ + dim |D1| = 4 + dim |D2|.

�

Proof of the theorem Let g ≥ 2 and consider the fibers of π : X → C over
a general effective degree 2 divisor A, B the associated divisor corresponding
to supplementary fibers in < π∗(A) > and D = A + B. By Lemma 4, there
exists a hyperplane section of X containing no other fibers of π excepting
those over D. Let X ′ be the residual (r − 1)-dimensional scroll in this hy-
perplane section and E ′ = π∗OX′(1). We have the same exact sequences as
before

0→ OX(π∗(D))→ OX(1)→ OX′(1)→ 0,
0→ OC(D)→ E → E ′ → 0.

Suppose first that degD = 2 (i.e. b = 0).

Then
h0(E) ≤ h0(E ′) + h0(OC(D)) = h0(E ′) + 1.

Since | det(E)| is very ample we also have

h0(detE ′) = h0(det(E)(−D)) = h0(detE)− 2

so h0(detE)− h0(E) ≥ h0(detE ′)− h0(E ′) + 1.

Let now degD > 2 (i.e. b > 0). By the Corollary above,

h0(E) ≤ h0(E ′) + 3.

When h0(detE ′) > 3 then Lemma 5 gives

h0(detE) ≥ 4 + h0(detE ′).
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So in this case

h0(detE)− h0(E) ≥ h0(detE ′)− h0(E ′) + 1

too.

In the remaining case h0(detE ′) = 3 so r = 2, detE ′ = OC(D) and
h0(detE)−h0(E) = h0(detE ′)−h0(E ′). (Notice that h0(detE) = 6 and that
h0(E) < 6 would contradict the double-point formula; see proof of Proposi-
tion 1).

Applying further this cutting procedure to the residual scrolls we see that the
difference h0(detE)−h0(E) decreases by at least one at each step excepting
possibly at the last one. Summing up it follows that h0(detE) ≥ h0(E)+r−2.

Now we show by induction on r that h0(detE) = h0(E) + (r − 2) implies
E = L⊕r, where L is a very ample line bundle on C with h0(L) = 3.

For r = 2, we must have

0→ L→ E → L→ 0

exact and h0(E) = 2h0(L) = 6.

Two fibers of π span now a 2-codimensional subspace of P5 so h0(E⊗L−1) = 2
and the extension

0→ OC → E ⊗ L−1 → OC → 0

splits since the surjection E ⊗ L−1 → OC admits a section. (This splitting
can also be deduced directly from h0(E) = 2h0(L) with no very ampleness
assumption on E). Suppose now that our claim is true for r− 1 ≥ 2, and let
E be of rank r such that

h0(detE) = h0(E) + r − 2.

Cutting X as usual we find

0→ OC(D)→ E → E ′ → 0,

h0(detE)− h0(E) = h0(detE ′)− h0(E ′) + 1
h0(E) = h0(E ′) + h0(OC(D)),
h0(detE ′) = h0(E ′) + r − 3,
E ′ = L⊕(r−1)
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and OC(D) = (detE) ⊗ L−(r−1), implying that OC(D) doesn’t depend on
the choice of A. Thus OC(D) = L (Lemma 3) and one proves that the exact
sequence

0→ L→ E → L⊕(r−1) → 0.

splits in the same way as before.

Finally, it follows by direct computation that h0(L⊕r) = h0(Lr)−r+2 exactly
in the cases appearing in the theorem’s statement. �

As a first consequence we get a Clifford type result for very ample vector
bundles.

Corollary 4 Let E be a very ample vector bundle on C.

i) If detE is special then

h0(E) ≤ d

2
+ 3− r.

ii) If detE is non-special then

h0(E) ≤ d− g + 3− r.

�

Example: If g = 3 then for any very ample vector bundle E one has

h1(E) ≤ r

and equality holds if and only if C is a plane curve and E = ω⊕rC .

We have seen that r-dimensional scrolls over C embedded in PN exist only
when N ≥ 2r − 1, equality occuring only for the Segre scroll P1 × Pr−1.
Assume now N = 2r and recall that the double-point formula reads:

r(r + 1)g = (d− r)(d− (r + 1)).

We have also seen that for g = 0 and g = 1 such scrolls do exist for all r ≥ 1.
We propose the following:

Conjecture If X is an r-dimensional scroll over C embedded in P2r (r ≥ 2),
then g(C) ≤ 1.
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Supporting evidence for the conjecture is given by the hyperelliptic case (see.
Corollary 1 and Proof of Proposition 1) the case r = 2 ([8], [2]) and the case
r = 3 ([14]).

As a final application of our theorem we prove the Conjecture for r ≤ 4 by
an uniform method.

Corollary 5 For 2 ≤ r ≤ 4 an r-dimensional scroll, over C, embedded in
P2r satisfies

g(C) ≤ 1.

Proof: Let X = P(E) → C be our scroll and assume g ≥ 2. We want to
apply Castelnuovo’s inequality (cf. [1]) to C embedded by means of | detE|.
The double-point formula excludes the equality case in the theorem so we
have

h0(detE) > h0(E) + r − 2 ≥ 3r − 1.

Letting M = [(d−1)/(3r−2)] and ε = d−1−(3r−2)M we get the following
expression of Castelnuovo’s inequality

g ≤ M(M − 1)

2
(3r − 2) +M · ε

which combined with the double-point formula gives our assertion.

�
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