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The model under consideration in this paper describes a vibrating structure of an interfacial slip and
consists of three coupled hyperbolic equations in one-dimensional bounded interval under mixed homo-
geneous Dirichlet–Neumann boundary conditions. The first two equations are related to Timoshenko-type
systems and the third one is subject to the dynamics of the slip. The main problem we discuss here is
stabilizing the system by a viscoelastic damping generated by an infinite memory and acting only on one
equation. First, we prove the existence, uniqueness and regularity of solutions using the semigroup theory.
After that, we combine the energy method and the frequency domain approach to show that the infinite
memory is capable alone to guarantee the strong and polynomial stability of the model, that is bringing
it back to its equilibrium state with a decay rate of type t−d , where d is a positive constant depending on
the regularity of initial data. Moreover, we prove that, when the infinite memory is effective on the first
equation, the model is not exponentially stable independently of the values of the parameters. However,
when the infinite memory is effective on the second or the third equation, we prove that the exponential
stability is equivalent to the equality between the three speeds of wave propagations. An extension of our
results to the frictional damping case is also given. Our results improve and extend some existing results
in the literature subject to other types of controls.

Keywords: Timoshenko beam with interfacial slip; infinite memory; well-posedness; asymptotic
behavior; energy method; frequency domain approach..

1. Introduction

The structures known under the name laminated Timoshenko beams are composed of two layered
identical beams of uniform thickness and attached together on top of each other subject to transversal
and rotational vibrations and taking account the longitudinal displacement. An adhesive layer of small
thickness is bonding the two adjoining surfaces and creating a restoring force being proportional to the
amount of slip and producing a damping. These structures are used in many practical fields; see, for
example, Lo & Tatar (2015) for more details. When the longitudinal displacement (slip) is ignored, the
laminated Timoshenko beams are reduced to the well-known Timoshenko beams (Timoshenko, 1921).
But in many practical cases, the slip is present and, logically, it cannot be avoided. During the past few
years, these structures were the subject of several studies in the literature recovering well-posedness and
stability by adding some kinds of controls. The obtained stability results depend on the nature, number
and position of the controls and some relations between the parameters (constants) of the model. The
first researchers have been forced to stabilize the system by additional boundary controls. After that,
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some other internal controls were considered. Let us mention here some of these results related to our
objectives in this paper.

Mathematically, a model of laminated Timoshenko beams of length 1 and with interfacial slip based
on the Timoshenko theory is given by the system (see Hansen, 1994 and Hansen & Spies, 1997)

⎧
⎪⎨

⎪⎩

ρ wtt + G (ψ − wx)x = 0,

Iρ (3s − ψ)tt − G (ψ − wx) − D (3s − ψ)xx = 0,

3Iρ stt + 3G (ψ − wx) + 4γ s + 4βst − 3Dsxx = 0,

(1.1)

where the subscripts x and t denote the derivative with respect to space and time variables x and t,
respectively, x ∈ (0, 1) and t > 0, combining with some initial data and boundary conditions at x = 0
and x = 1. The parameters ρ, G, Iρ , D, γ and β are positive constants and denote the density, shear
stiffness, mass moment of inertia, flexural rigidity, adhesive stiffness and adhesive damping parameter,
respectively. The functions w = (x, t) and ψ = (x, t) represent the transverse displacement and rotation
angle, respectively, and the function s = s(x, t) is proportional to the amount of slip along the interface,
so the third equation in (1.1) describes the dynamics of the slip and contains the internal frictional
damping 4βst. Without loss of generality, the length of the beam is assumed to be equal to 1 instead of
l. When the third equation in (1.1) is not taken in consideration (i.e. s = 0), that is (1.1) is reduced to
Timoshenko (1921) beams, the stability question was widely treated in a huge number of works; see,
for example, Cavalcanti et al. (2014) and Guesmia et al. (2012) and the references therein.

Wang et al. (2005) considered the change of variable given by the effective rotation angle
ξ = 3s − ψ and proved the exponential stability through mixed homogeneous Dirichlet–Neumann
boundary conditions and two boundary controls at x = 1 provided that the speeds of wave propagations
of the first two equations (transverse displacement and rotation angle) are different, that is

√
G

ρ
�=

√
D

Iρ
. (1.2)

It was also proved in Wang et al. (2005) that the frictional damping 4βst created by the interfacial
slip alone is strong enough to stabilize asymptotically the structure (with a decay rate of polynomial
type) but it is not able to stabilize the structure exponentially. The same exponential stability result
of Wang et al. (2005) was proved in Cao et al. (2007) for the same model but through two boundary
controls at x = 0 and x = 1. The exponential stability result of Wang et al. (2005) was improved
in Tatar (2015) by dropping some conditions on the parameters. Lo & Tatar (2016b) proved that the
exponential stability of (1.1) holds if the boundary controls are replaced by a frictional damping acting
on the first equation (transverse displacement). Raposo (2016) proved that the exponential stability holds
without any restriction on the parameters if the first two equations in (1.1) are also damped via frictional
dampings. Recently, Raposo et al. (2017) proved that, without any restriction on the parameters, the
polynomial stability of (1.1) holds under additional three dynamic boundary conditions at l, where l
is the length of the beam. For the stability of laminated beams with Cattaneo’s or Fourier’s type heat
conduction, we refer the readers to Alves et al. (2016) and Liu & Zhao (2017).

The viscoelastic dampings, which are represented by a memory term in the form of a convolution,
may be caused by the utilization of special materials able to drive the structures to rest in a very fast
manner without any other kinds of controls. These materials are useful if there is no change of frequency
or temperature in the structures. For more details, see, for example, Beards & Imam (1978), Lo & Tatar
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(2015) and Lo & Tatar (2016b). The stability of (1.1) under viscoelastic dampings was treated in Lo &
Tatar (2015), Lo & Tatar (2016a) and Lo & Tatar (2016b). Namely, provided that G is small enough
and (1.2) is not satisfied, the exponential stability of (1.1) was proved in Lo & Tatar (2015), Lo &
Tatar (2016a) and Lo & Tatar (2016b) by adding viscoelastic dampings represented by finite memories
of the form

∫ t

0
h1(t − τ)wxx(x, τ) dτ ,

∫ t

0
h2(t − τ)(3s − ψ)xx(x, τ) dτ and

∫ t

0
h3(t − τ)sxx(x, τ) dτ (1.3)

with h1 = h3 = 0 in Lo & Tatar (2015), h1 = 0 (and β = 0) in Lo & Tatar (2016a) and h3 = 0 in
Lo & Tatar (2016b), where hj : R+ → R+, j = 1, 2, 3 are differentiable, non-increasing, integrable on
R+ and satisfying, for some positive constants βj and αj,

− βjhj ≤ h′
j ≤ −αjhj, j = 1, 2, 3. (1.4)

For the stability of Bresse (1859) systems with infinite memories, we refer the readers to Guesmia
(2017a,b), Guesmia & Kafini (2015) and Guesmia & Kirane (2016) and the references therein. The
Bresse systems are similar to (1.1) and known as the circular arch problem.

From the cited results above, we see that the exponential and/or polynomial stability has been
proved via at least two controls and/or under some restrictions on the parameters. On the other hand,
the speeds of the wave propagations of the last two equations in (1.1) (rotation angle and amount

of slip) are always assumed being the same (both are equal to
√

D
Iρ

). Therefore, a natural question

that can be asked is what is the control that can guarantee alone the strong and/or polynomial and/or
exponential stability of the system? And what is the minimum of restrictions on the parameters that
are needed? We propose investigating the case where a unique viscoelastic control represented by an
infinite memory is considered and no other internal or boundary control is present. More precisely, we
study, in this paper, the well-posedness and the stability of three structures with interfacial slip and
infinite memory effective only on one equation. The first case is when the memory is working on the
transverse displacement

⎧
⎪⎪⎨

⎪⎪⎩

ρ1 ϕtt + k (u − ϕx)x +
∫ ∞

0
g(s)ϕxx(x, t − s) ds = 0,

ρ2 (3v − u)tt − b (3v − u)xx − k (u − ϕx) = 0,

ρ̃3 vtt − k̃0vxx + 3k (u − ϕx) + 4 δ̃ v = 0

(1.5)

with boundary conditions

ϕx(0, t) = ϕ(1, t) = u(0, t) = ux(1, t) = v(0, t) = vx(1, t) = 0 (1.6)

and initial data

(ϕ(x, −t), u(x, 0), v(x, 0)) = (ϕ0(x, t), u0(x), v0(x)) (1.7)

and

(ϕt(x, 0), ut(x, 0), vt(x, 0)) = (ϕ1(x), u1(x), v1(x)). (1.8)
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The second case is when the memory is working on the rotation angle

⎧
⎪⎪⎨

⎪⎪⎩

ρ1 ϕtt + k (u − ϕx)x = 0,

ρ2 (3v − u)tt − b (3v − u)xx − k (u − ϕx) +
∫ ∞

0
g(s)(3v(x, t − s) − u(x, t − s))xx ds = 0,

ρ̃3 vtt − k̃0vxx + 3k (u − ϕx) + 4 δ̃ v = 0

(1.9)

with boundary conditions (1.6) and initial data (1.8) and

(ϕ(x, 0), u(x, −t), v(x, −t)) = (ϕ0(x, 0), u0(x, t), v0(x, t)). (1.10)

The third case is when the memory is working on the amount of slip

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1 ϕtt + k (u − ϕx)x = 0,

ρ2 (3v − u)tt − b (3v − u)xx − k (u − ϕx) = 0,

ρ̃3 vtt − k̃0vxx + 3k (u − ϕx) + 4 δ̃ v +
∫ ∞

0
g̃(s)vxx(x, t − s) ds = 0

(1.11)

with boundary conditions (1.6) and initial data (1.8) and

(ϕ(x, 0), u(x, 0), v(x, −t)) = (ϕ0(x), u0(x), v0(x, t)). (1.12)

Here (x, t) ∈ (0, 1) × R+, ϕ = ϕ(x, t) is the transverse displacement; u = u(x, t) represents the
rotation angle; v = v(x, t) is proportional to the amount of slip along the interface; ρ1, ρ2, ρ̃3, k,
b, k̃0 and δ̃ are positive constants; g, g̃ : R+ → R+ are given relaxation functions satisfying some
hypotheses and ϕ0, u0, v0, ϕ1, u1 and v1 are given functions belonging to a suitable Hilbert space.
The systems (1.5), (1.9) and (1.11) are given in more general form than the one considered in the
literature, since the speeds of wave propagations of the last two equations are not necessarily equal
and no frictional damping is present in the last equation. Our objectives in this paper is proving the
well-posedness of these three systems and establishing their stability in terms of the parameters and the
relaxation functions.

For the stability, first, we show that (1.9) and (1.11) are strongly and polynomially stable without

any restrictions on the parameters, where the decay rate for classical solutions is arbitrarily close to t− 1
10 .

Moreover, we prove that (1.9) and (1.11) are exponentially stable if and only if the three speeds of wave
propagations are equal. Second, we prove that the strong and polynomial stability of (1.5) (with a decay

rate for classical solutions arbitrarily close to t− 1
4 ) hold provided that the speeds of wave propagations

of the last two equations in (1.5) are equal or δ̃ does not belong to a given sequence of real numbers.
Third, we prove that (1.5) is not exponentially stable whichever the values of the parameters. Finally, we
give an extension to the case where the infinite memory is replaced by a frictional damping by proving
that our results are still satisfied and the polynomial decay rate for classical solutions is arbitrarily close

to t− 1
8 and t− 1

2 instead of t− 1
10 and t− 1

4 , respectively.
The proof of the well-posedness is based on the semigroup theory. However, the stability results are

proved using the energy method combined with the frequency domain approach.
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The paper is organized as follows. In Section 2, we consider some assumptions on the relaxation
functions and prove the well-posedness. In Sections 3, 4, 5 and 6, we prove our strong, exponential,
polynomial and lack of exponential stability, respectively. In Section 7, we give an extension of our
results to the case of frictional damping. We end our paper by giving some general comments and issues
in Section 8.

2. Setting of the semigroup

To simplify the mathematical study of our systems (1.5), (1.9) and (1.11), we put

{
ρ3 = 1

9 ρ̃3, k0 = 1
9 k̃0, δ = 4

9 δ̃, g = 1
9 g̃,

w = −3v, ψ = 3v − u, w0 = −3v0, w1 = −3v1, ψ0 = 3v0 − u0, ψ1 = 3v1 − u1.

Then the systems (1.5), (1.9) and (1.11) are reduced to

⎧
⎪⎨

⎪⎩

ρ1 ϕtt − k (ϕx + ψ + w)x + F1 = 0,

ρ2 ψtt − b ψxx + k (ϕx + ψ + w) + F2 = 0,

ρ3 wtt − k0wxx + k(ϕx + ψ + w) + δ w + F3 = 0,

(2.1)

where

F2 = F3 = 0 and F1(x, t) =
∫ ∞

0
g(s)ϕxx(x, t − s) ds (2.2)

in case (1.5),

F1 = F3 = 0 and F2(x, t) =
∫ ∞

0
g(s)ψxx(x, t − s) ds (2.3)

in case (1.9) and

F1 = F2 = 0 and F3(x, t) =
∫ ∞

0
g(s)wxx(x, t − s) ds (2.4)

in case (1.11). The boundary conditions (1.6) become

ϕx(0, t) = ϕ(1, t) = ψ(0, t) = ψx(1, t) = w(0, t) = wx(1, t) = 0, t ∈ R+, (2.5)

and the initial data are now

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ϕ(x, −t), ψ(x, 0), w(x, 0)) = (ϕ0(x, t), ψ0(x), w0(x)) in case (2.2),

(ϕ(x, 0), ψ(x, −t), w(x, 0)) = (ϕ0(x), ψ0(x, t), w0(x)) in case (2.3),

(ϕ(x, 0), ψ(x, 0), w(x, −t)) = (ϕ0(x), ψ0(x), w0(x, t)) in case (2.4),

(ϕt, ψt, wt)(x, 0) = (ϕ1, ψ1, w1)(x),

x ∈ (0, 1), t ∈ R+. (2.6)
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To rewrite our system (2.1) with (2.5) and (2.6) in an abstract first-order system in a suitable Hilbert
space H, we consider the functional η introduced in Dafermos (1970) and its initial data η0 given by

{
η(x, t, s) = f (x, t) − f (x, t − s), x ∈ (0, 1), s, t ∈ R+,

η0(x, s) = f0(x, 0) − f0(x, s), x ∈ (0, 1), s ∈ R+,
(2.7)

where

f =

⎧
⎪⎨

⎪⎩

ϕ in case (2.2),

ψ in case (2.3),

w in case (2.4)

and f0 =

⎧
⎪⎨

⎪⎩

ϕ0 in case (2.2),

ψ0 in case (2.3),

w0 in case (2.4).

(2.8)

Then the integral term becomes

∫ ∞

0
g(s) fxx(x, t − s) ds = g0 fxx(x, t) −

∫ ∞

0
g(s)ηxx(x, t, s) ds,

where

g0 =
∫ ∞

0
g(s) ds.

The functional η satisfies

⎧
⎪⎨

⎪⎩

ηt(x, t, s) + ηs(x, t, s) − f̃ (x, t) = 0, x ∈ (0, 1), s, t > 0,

η(x, 0, s) = η0(x, s), x ∈ (0, 1), s ∈ R+,

η(x, t, 0) = 0, x ∈ (0, 1), t ∈ R+,

(2.9)

where the subscript s denotes the derivative with respect to s,

f̃ =

⎧
⎪⎨

⎪⎩

ϕ̃ in case (2.2),

ψ̃ in case (2.3),

w̃ in case (2.4),

ϕ̃ = ϕt, ψ̃ = ψt and w̃ = wt. (2.10)

Let

{
U = (ϕ, ϕ̃, ψ , ψ̃ , w, w̃, η),

U0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1, η0).
(2.11)

Now, we can rewrite the system (2.1) with its initial data (2.6) in the following initial value problem:

{
Ut(t) = AU(t), t > 0,

U(0) = U0,
(2.12)
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where A is a linear operator given by

AU =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕ̃

k
ρ1

(ϕx + ψ + w)x

ψ̃

1
ρ2

[
b ψxx − k (ϕx + ψ + w)

]

w̃

1
ρ3

[
k0wxx − k (ϕx + ψ + w) − δ w

]

−ηs + f̃

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ BU, (2.13)

where

BU =
(

0, −g0

ρ1
ϕxx + 1

ρ1

∫ ∞

0
g(s)ηxx ds, 0, 0, 0, 0, 0

)T

(2.14)

in case (2.2),

BU =
(

0, 0, 0, −g0

ρ2
ψxx + 1

ρ2

∫ ∞

0
g(s)ηxx ds, 0, 0, 0

)T

(2.15)

in case (2.3) and

BU =
(

0, 0, 0, 0, 0, −g0

ρ3
wxx + 1

ρ3

∫ ∞

0
g(s)ηxx ds, 0

)T

(2.16)

in case (2.4).
To define the energy Hilbert space H, we consider the standard L2(0, 1) space with its classical

scalar product 〈·, ·〉 and its norm ‖ · ‖. We consider also the phase Hilbert space

H̃ =
{

H1 in case (2.2),

H0 in cases(2.3)and(2.4),

where

H1 = {v ∈ H1(0, 1) : v(1) = 0} and H0 = {v ∈ H1(0, 1) : v(0) = 0}. (2.17)

We also introduce the Hilbert space

Lg =
{

v : R+ → H̃,
∫ ∞

0
g(s)‖vx(s)‖2 ds < ∞

}
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equipped with the inner product

〈η, η̃〉Lg
=

∫ ∞

0
g(s)〈ηx(s), η̃x(s)〉 ds.

The energy space is given by

H = H1 × L2(0, 1) × H0 × L2(0, 1) × H0 × L2(0, 1) × Lg

equipped with the inner product, for any

U1 = (ϕ1, ϕ̃1, ψ1, ψ̃1, w1, w̃1, η1), U2 = (ϕ2, ϕ̃2, ψ2, ψ̃2, w2, w̃2, η2) ∈ H,

〈U1, U2〉H = k〈(ϕ1x + ψ1 + w1), (ϕ2x + ψ2 + w2)〉 + b〈ψ1x, ψ1x〉 + k0〈w1x, w2x〉

+ δ〈w1, w2〉 − g0〈 f1x, f2x〉 + ρ1〈ϕ̃1, ϕ̃2〉 + ρ2〈ψ̃1, ψ̃2〉 + ρ3〈w̃1, w̃2〉 + 〈η1, η2〉Lg
,

(2.18)
where fj is defined in terms of ψj, ϕj and wj, j = 1, 2, as f in (2.8). The homogeneous Dirichlet boundary
conditions are guaranteed by the definition of H, and the homogeneous Neumann ones are taken in
consideration in the definition of D(A) given by

D(A) = {U ∈ H, AU ∈ H, ϕx(0) = ψx(1) = wx(1) = η(s = 0) = 0}. (2.19)

To guarantee that H is a Hilbert space and get the well-posedness of (2.12), we consider the following
hypothesis:

(H) Assume that the function g : R+ → R+ is differentiable, non-increasing and integrable on R+
such that g0 > 0 and there exists a positive constant k̃ satisfying, for any

(ϕ, ψ , w) ∈ H1 × H0 × H0,

the following inequality:

k̃
(
‖ϕx‖2 + ‖ψx‖2 + ‖wx‖2

)
≤ k‖ϕx + ψ + w‖2 + b‖ψx‖2 + k0‖wx‖2 + δ‖w‖2 − g0‖fx‖2. (2.20)

Moreover, assume that there exist positive constants β1 and β2 such that

− β1g ≤ g′ ≤ −β2g. (2.21)

Remark 1 1. Condition (2.20) holds with k̃ = k̂ − g0 if g0 < k̂, where k̂ is the biggest constant
satisfying

k̂
(
‖ϕx‖2 + ‖ψx‖2 + ‖wx‖2

)
≤ k‖ϕx + ψ + w‖2 + b‖ψx‖2 + k0‖wx‖2 + δ‖w‖2, (2.22)
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for any (ϕ, ψ , w) ∈ H1 × H0 × H0. Notice that, according to the considered homogeneous Dirichlet
boundary conditions and Poincaré’s inequality, when the right-hand side of (2.22) vanishes, we have
ϕ = ψ = w = 0 (even if δ = 0). So, under condition (2.20), H is a Hilbert space and its inner product
generates a norm

‖U‖2
H = 〈U, U〉H (2.23)

equivalent to the one of [H1(0, 1) × L2(0, 1)]3 × Lg.
2. By considering the particular choices (ψ , w) = (0, 0), (ϕ, w) = (0, 0) and (ϕ, ψ) = (0, 0), we see

that condition (2.20) leads to

⎧
⎪⎨

⎪⎩

k − g0 ≥ k̃ in case (2.2),

b − g0 ≥ k̃ in case (2.3),

k0 − g0 ≥ k̃ in case (2.4).

(2.24)

This ensures the hyperbolicity of (2.1).
3. Condition (2.21) implies that

g(0)e−β1s ≤ g(s) ≤ g(0)e−β2s, s ∈ R+, (2.25)

so the typical functions g satisfying (2.21) are

g(s) = b1e−b2s,

where b1 and b2 are positive constants.
4. If g0 = 0, then g ≡ 0 and therefore (2.12) is a conservative system, that is t �→ ‖U(t)‖2

H
is a constant function. Indeed, using (2.12), (2.13), (2.23) and a direct computation, we get, for any
U ∈ D(A),

( ‖U‖ 2
H

)′ = 2
〈
Ut, U

〉

H = 2 〈AU, U〉H = −2
∫ 1

0

∫ ∞

0
g(s)ηxηxs ds dx = −

∫ 1

0

∫ ∞

0
g(s)

(
η2

x

)

s ds dx.

By integrating with respect to s and noting that

η(s = 0) = 0 and lim
τ→∞ g(τ )‖ηx(s = τ)‖2 = 0,

we find

( ‖U‖2
H

)′ =
∫ ∞

0
g′(s)‖ηx‖2 ds. (2.26)

Notice that the left-hand inequality in (2.21) implies that the integral in (2.26) is bounded. So, if g ≡ 0,
then (2.12) is a conservative system, that is

‖U(t)‖2
H = ∥

∥U0

∥
∥2
H , t ∈ R+.
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Our well-posedness results are presented in the following theorem:

Theorem 2.1 Assume that (H) holds. Then, for any m ∈ N and U0 ∈ D(Am), system (2.12) admits a
unique solution U satisfying

U ∈ ∩m
j=0Cm−j(

R+; D(Aj)
)
. (2.27)

Proof. First, direct calculations give (as for (2.26))

〈AU, U〉H = 1

2

∫ ∞

0
g′(s)

∥
∥ηx

∥
∥2 ds ≤ 0. (2.28)

Hence, A is a dissipative operator, since g is non-increasing.
Next, we show that 0 ∈ ρ (A), where ρ (A) is the resolvent set of A, that is, for any

F = ( f1, · · · , f7) ∈ H, there exists U ∈ D (A) satisfying

AU = F. (2.29)

Let us treat the case (2.3). The other two cases (2.2) and (2.4) can be treated exactly in the same way.
First, using (2.13) and (2.15), the first, third and fifth equations in (2.29) are equivalent to

ϕ̃ = f1, ψ̃ = f3 and w̃ = f5, (2.30)

and then

ϕ̃ ∈ H1 and ψ̃ , w̃ ∈ H0. (2.31)

Second, using the second equality in (2.30), the last equation in (2.29) (with f̃ = ψ̃) is reduced to

ηs = f3 − f7.

A direct integration proves that the unique solution η of this equation satisfying η(s = 0) = 0 is
given by

η(s) = sf3 −
∫ s

0
f7(τ ) dτ . (2.32)

Because g is integrable, f3 ∈ H0 and f7 ∈ Lg, we see that ηs ∈ Lg and η(x = 0) = 0. On the other hand,
the right-hand inequality in (2.25) leads to

s �→ sf3 ∈ Lg. (2.33)

Moreover, by a direct integration, we remark that the right-hand inequality in (2.21) implies that

∫ ∞

τ

g(s) ds ≤ 1

β2
g(τ ), τ ∈ R+,
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then exploiting this inequality, Fubini theorem and Hölder’s inequality, we get

∫ 1

0

∫ ∞

0
g(s)

∣
∣
∣
∣

∫ s

0
f7x(τ ) dτ

∣
∣
∣
∣

2

dsdx ≤
∫ ∞

0
g(s)

∫ s

0

∥
∥ f7x(τ )

∥
∥2 dτds

≤
∫ ∞

0

∥
∥ f7x(τ )

∥
∥2

∫ ∞

τ

g(s) dsdτ

≤ 1
β2

∫ ∞

0
g(τ )

∥
∥ f7x(τ )

∥
∥2 dτ

≤ 1
β2

‖ f7‖2
Lg

< ∞,

since f7 ∈ Lg. Therefore,

s �→
∫ s

0
f7(τ ) dτ ∈ Lg. (2.34)

Consequently, (2.32), (2.33) and (2.34) prove that η ∈ Lg.
Third, from (2.32), we see that the second, fourth and sixth equations in (2.29) are reduced to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k
(
ϕx + ψ + w

)

x = ρ1 f2,

(b − g0)ψxx − k
(
ϕx + ψ + w

) = ρ2 f4 −
∫ ∞

0
g(s)

(

sf3 −
∫ s

0
f7(τ ) dτ

)

xx
ds,

k0wxx − k
(
ϕx + ψ + w

) − δw = ρ3 f6.

(2.35)

Finally, (2.29) has a solution U ∈ D (A) if and only if (2.35) has a solution

(ϕ, ψ , w) ∈ H1 × H0 × H0 (2.36)

satisfying

ϕx(0) = ψx(1) = wx(1) = 0 (2.37)

and the regularity AU ∈ H required in D (A) (in case (2.3)), that is

ϕxx, wxx ∈ L2(0, 1) and (b − g0)ψxx +
∫ ∞

0
g(s)ηxx ds ∈ L2(0, 1). (2.38)

By considering the variational formulation of (2.35) in H1 × H0 × H0 and using (2.20), the
Lax–Milgram theorem and classical elliptic regularity arguments, it follows that (2.35) admits a unique
solution (ϕ, ψ , w) satisfying (2.36), (2.37) and (2.38). This proves that (2.29) has a unique solution
U ∈ D (A). By the resolvent identity, we have λI −A is surjective, for any λ > 0 (Liu & Zheng, 1999),
where I denotes the identity operator. So, the Lumer–Phillips theorem implies that A is the infinitesimal
generator of a linear C0 semigroup of contractions on H and D(A) is dense in H. So, Theorem 2.1 holds
(Pazy, 1983). �

The proof of our stability results is based on the following frequency domain theorems:
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Theorem 2.2 (Huang, 1985 and Prüss, 1984) A C0 semigroup of contractions on a Hilbert space H
generated by an operator A is exponentially stable if and only if

iR ⊂ ρ (A) and sup
λ∈R

∥
∥
∥(iλI − A)−1

∥
∥
∥
L(H)

< ∞. (2.39)

Theorem 2.3 (Liu & Rao, 2005) If a bounded C0 semigroup etA on a Hilbert space H generated by an
operator A satisfies, for some j ∈ N

∗,

iR ⊂ ρ (A) and sup
|λ|≥1

1

λj

∥
∥
∥(iλI − A)−1

∥
∥
∥
L(H)

< ∞, (2.40)

then, for any m ∈ N
∗, there exists a positive constant cm such that

∥
∥
∥etAU0

∥
∥
∥
H

≤ cm

∥
∥U0

∥
∥

D(Am)

(
ln t

t

)m

j ln t, U0 ∈ D
(
Am)

, t > 0. (2.41)

3. Strong stability

In this section, we prove our first stability result concerning the strong stability of our C0 semigroup etA

generated by the operator A.

Theorem 3.1 Assume that (H) holds. Then, for any U0 ∈ H, the solution U of (2.12) in cases (2.3)
and (2.4) satisfies

lim
t→∞ ‖U(t)‖H = 0. (3.1)

However, (3.1) holds in case (2.2) if moreover

(
ρ3b

ρ2
− k0

)(π

2
+ mπ

)2 �= δ, m ∈ N. (3.2)

Remark 2 Condition (3.2) holds if, for example,

b

ρ2
= k0

ρ3
, (3.3)

which means that the speeds of wave propagations of the last two equations in (2.1) are equal. The
property (3.3) holds in fact from the physical point of view.

Proof. (Theorem 3.1) A C0 semigroup of contractions etA generated by an operator A on a Hilbert
space H is strongly stable if A has no imaginary eigenvalues and σ(A) ∩ iR is countable, where σ(A)

is the spectrum set of A (Arendt & Batty, 1988). According to the fact that 0 ∈ ρ (A) (proved in
Section 2) and since D(A) has a compact embedding into H, the linear bounded operator A−1 is a
bijection between H and D(A), and A−1 is a compact operator, which implies that σ(A) is discrete
and has only eigenvalues. Consequently, to get (3.1), we only have to prove that there is no imaginary
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eigenvalues for A, that is

ker (iλI − A) = {0}. (3.4)

In Section 2, we have proved (3.4) for λ = 0. So let λ ∈ R
∗ and

U = (
ϕ, ϕ̃, ψ , ψ̃ , w, w̃, η

) ∈ D(A)

such that

i λ U − AU = 0. (3.5)

We have to prove that U = 0. From (2.28), we have

0 = Re iλ ‖U‖2
H = Re 〈iλU, U〉H = Re 〈AU, U〉H = 1

2

∫ ∞

0
g′(s)‖ηx‖2 ds.

Therefore, using the second inequality in (2.21),

0 ≤ ‖η‖2
Lg

=
∫ ∞

0
g(s)‖ηx‖2 ds ≤ −1

β2

∫ ∞

0
g′(s)‖ηx‖2 ds = 0,

so

η = 0. (3.6)

By the last equation in (3.5), we find

f̃ = 0, (3.7)

where f̃ is defined in (2.10). Now, we discuss the case of each system alone.

3.1. Case (2.2)

In virtue of (2.10), (2.13), (2.14), (3.7) and the first equation in (3.5), we have

ϕ = ϕ̃ = 0. (3.8)

Then (3.5), (3.6) and (3.8) lead to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ̃ = iλψ , w̃ = iλw,

(ψ + w)x = 0,

bψxx − k(ψ + w) = −ρ2λ
2ψ ,

k0wxx − k(ψ + w) − δw = −ρ3λ
2w.

(3.9)

The third equation in (3.9) implies that ψ + w is a constant. Because ψ + 3w vanishes at x = 0,
then we get

ψ + w = 0. (3.10)
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Combining (3.10) and the fourth equation in (3.9), we obtain

ψxx + ρ2

b
λ2ψ = 0. (3.11)

This implies that, for c1, c2 ∈ C,

ψ(x) = c1 cos

(√
ρ2

b
λ2x

)

+ c2 sin

(√
ρ2

b
λ2x

)

.

The boundary condition ψ (0) = 0 leads to c1 = 0, and then

ψ(x) = c2 sin

(√
ρ2

b
λ2x

)

. (3.12)

Assume by contradiction that c2 �= 0. Because ψx(1) = 0, we have

∃m ∈ N :

√
ρ2

b
λ2 = π

2
+ mπ . (3.13)

Therefore, combining (3.10) and (3.12) and using the last equation in (3.9), we see that

(
ρ2k0

b
− ρ3

)

λ2 + δ = 0. (3.14)

So, combining (3.13) and (3.14), we get

(
ρ3b

ρ2
− k0

)(π

2
+ mπ

)2 = δ,

which is a contradiction with (3.2). Consequently, c2 = 0 and hence

ψ = 0. (3.15)

Using (3.10) and the first two equations in (3.9) we obtain

w = ψ̃ = w̃ = 0. (3.16)

So, according to (3.6), (3.8), (3.15) and (3.16), we conclude that U = 0.

3.2. Case (2.3)

From (2.10), (2.13), (2.15), (3.7) and the third equation in (3.5), we have

ψ = ψ̃ = 0. (3.17)
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Then (3.5), (3.6) and (3.17) lead to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ̃ = iλϕ, w̃ = iλw,

k(ϕx + w)x = −ρ1λ
2ϕ,

ϕx + w = 0,

k0wxx − k(ϕx + w) − δw = −ρ3λ
2w.

(3.18)

The third and fourth equations in (3.18) implies that

ϕ = w = 0, (3.19)

and then the first and second equations in (3.18) lead to

ϕ̃ = w̃ = 0. (3.20)

The above properties (3.6), (3.17), (3.19) and (3.20) show that U = 0.

3.3. Case (2.4)

As in the previous case, (2.10), (2.13), (2.16), (3.7) and the fifth equation in (3.5) give

w = w̃ = 0. (3.21)

Then (3.5), (3.6) and (3.21) lead to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ̃ = iλϕ, ψ̃ = iλψ ,

k(ϕx + ψ)x = −ρ1λ
2ϕ,

bψxx − k(ϕx + ψ) = −ρ2λ
2ψ ,

ϕx + ψ = 0.

(3.22)

The third and fifth equations in (3.22) imply that

ϕ = ψ = 0; (3.23)

hence, the first two equations in (3.22) lead to

ϕ̃ = ψ̃ = 0. (3.24)

So (3.6), (3.21), (3.23) and (3.24) prove that U = 0.
Finally, (3.4) holds and thus the proof of Theorem 3.1 is ended.

4. Exponential stability

In this section, we show that (2.12) in cases (2.3) and (2.4) is exponentially stable if the three speeds of
wave propagations are equal, that is we have the following theorem:
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Theorem 4.1 We assume that (H) holds and

k

ρ1
= b

ρ2
= k0

ρ3
. (4.1)

Then there exist two positive constants C0 and C1 such that the C0-semigroup etA on H in cases (2.3)
and (2.4) satisfies the estimate

∥
∥etA∥

∥L(H) ≤ C1e−C0t, t > 0. (4.2)

Proof. Using Theorem 2.2, we have to show (2.39). We have already proved in Section 3 that

iR ⊂ ρ (A) (4.3)

So we only need to prove that

sup
|λ| ≥ 1

∥
∥
∥(iλI − A)−1

∥
∥
∥L(H) < ∞. (4.4)

Let us prove (4.4) by contradiction. Assume that (4.4) does not hold, then there exist two sequences(
Un

)

n ⊂ D (A) and
(
λn

)

n ⊂ R satisfying

∥
∥ Un

∥
∥
H = 1, n ∈ N, (4.5)

lim
n→∞

∣
∣λn

∣
∣ = ∞ (4.6)

and

lim
n→∞

∥
∥
(
iλn I − A

)
Un

∥
∥
H = 0. (4.7)

Let Un =
(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, ηn

)
. Using (2.13)–(2.16), we notice that the limit (4.7) implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − ϕ̃n → 0 in H1,

iλnρ1ϕ̃n − k
(
ϕnx + ψn + wn

)

x + G1,nxx → 0 in L2 (0, 1) ,

iλnψn − ψ̃n → 0 in H0,

iλnρ2ψ̃n − bψnxx + k
(
ϕnx + ψn + wn

) + G2,nxx → 0 in L2 (0, 1) ,

iλnwn − w̃n → 0 in H0,

iλnρ3w̃n − k0wnxx + k
(
ϕnx + ψn + wn

) + δwn + G3,nxx → 0 in L2 (0, 1) ,

iλnηn + ηns − f̃n → 0 in Lg

(4.8)
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as when n goes to infinity, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fn = ϕn, f̃n = ϕ̃n, G2,n = G3,n = 0 and G1,n = g0 fn −
∫ ∞

0
gηn ds in case (2.2),

fn = ψn, f̃n = ψ̃n, G1,n = G3,n = 0 and G2,n = g0 fn −
∫ ∞

0
gηn ds in case (2.3),

fn = wn, f̃n = w̃n, G1,n = G2,n = 0 and G3,n = g0 fn −
∫ ∞

0
gηn ds in case (2.4)

(4.9)

and η is defined in (2.7). We will prove that

∥
∥Un

∥
∥
H −→ 0, (4.10)

which gives a contradiction with (4.5). Using (2.28), we get

Re
〈(

i λn I − A
)

Un, Un

〉

H = Re
(

iλn

∥
∥Un

∥
∥ 2
H − 〈

AUn, Un

〉

H

)
= −1

2

∫ ∞

0
g′(s)‖ηnx‖2 ds.

So (4.5) and (4.7) imply that
∫ ∞

0
g′(s)‖ηnx‖2 ds −→ 0. (4.11)

But, using the second inequality in (2.21), we have

0 ≤
∫ ∞

0
g(s)‖ηnx‖2 ds ≤ −1

β2

∫ ∞

0
g′(s)‖ηnx‖2 ds, (4.12)

then (4.11) and (4.12) give
∫ ∞

0
g(s)‖ηnx‖2 ds −→ 0,

hence

ηn −→ 0 in Lg. (4.13)

Using (4.5) and (4.6), we get from the last limit in (4.8) that

〈(
iλnηn + ηns − iλn fn + iλn fn − f̃n

)
, ifn

〉

Lg
−→ 0. (4.14)

On the other hand, using (4.8)3 in case (2.3), and (4.8)5 in case (2.4), we get (notice that the case (2.2)
is not concerned by Theorem 4.1)

〈(
iλn fn − f̃n

)
, ifn

〉

Lg
−→ 0. (4.15)
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So (4.6), (4.14) and (4.15) imply that

〈
ηn, fn

〉

Lg
− i

λn

〈
ηns, fn

〉

Lg
− 〈

fn, fn
〉

Lg
−→ 0. (4.16)

We see that

− 〈
fn, fn

〉

Lg
= −g0

∥
∥ fnx

∥
∥ 2. (4.17)

On the other hand, (4.5) and (4.13) imply that

〈
ηn, fn

〉

Lg
−→ 0. (4.18)

Moreover, integrating by part with respect to s, applying Cauchy–Schwartz inequality and using the first
inequality in (2.21) and the fact that

ηnx(x, 0) = 0 and lim
s→∞ g(s) = 0, (4.19)

we get

∣
∣
∣
〈
ηns, fn

〉

Lg

∣
∣
∣ =

∣
∣
∣
∣

〈

fnx,
∫ ∞

0
(−g′(s))ηnx ds

〉∣
∣
∣
∣

≤ ‖ fnx‖
∫ ∞

0
(−g′(s))‖ηnx‖ ds

≤ √
g(0)‖ fnx‖

(∫ ∞

0
(−g′(s))‖ηnx‖2 ds

) 1
2

≤ √
β1g(0)‖ fnx‖‖ηn‖Lg

,

(4.20)

and then, according to (4.5) and (4.13),

〈
ηns, fn

〉

Lg
−→ 0. (4.21)

Consequently, (4.16), (4.17), (4.18), (4.21) and since g0 > 0 (hypothesis (H)) lead to

fnx −→ 0 in L2 (0, 1) . (4.22)

Moreover, because fn vanishes at x = 0 (notice that fn = ψn in case (2.3), and fn = wn in case (2.4)),
then

fn −→ 0 in L2 (0, 1) . (4.23)

Multiplying (4.8)1, (4.8)3 and (4.8)5 by
1

λn
and using (4.6) and (4.22), we obtain

1

λn
f̃nx −→ 0 in L2 (0, 1) . (4.24)



LAMINATED TIMOSHENKO BEAMS 19

Similarily, multiplying (4.8)1, (4.8)3 and (4.8)5 by
1

λn
and using (4.5) and (4.6), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

ϕn −→ 0 in L2 (0, 1) ,

ψn −→ 0 in L2 (0, 1) ,

wn −→ 0 in L2 (0, 1) .

(4.25)

Moreover, using (4.5), we deduce from (4.8)1, (4.8)3 and (4.8)5 that

(λnϕn)n, (λnψn)n and (λnwn)n are bounded in L2 (0, 1) . (4.26)

Now, we distinguish the cases (2.3) and (2.4).

4.1. Case (2.3)

We have in this case fn = ψn, f̃n = ψ̃n and G1,n = G3,n = 0. Taking the inner product of (4.8)4 with iψ̃n
λn

in L2 (0, 1), integrating by parts and using the boundary conditions, we see that

ρ2

∥
∥
∥ψ̃n

∥
∥
∥

2 +
〈
(
bψnx − G2,nx

)
,

iψ̃nx

λn

〉

+ k

〈
(
ϕnx + ψn + wn

)
,

iψ̃n

λn

〉

−→ 0.

Using (4.5), (4.6) and (4.24), we obtain

ψ̃n −→ 0 in L2 (0, 1) , (4.27)

and with (4.8)3, we find

λnψn −→ 0 in L2 (0, 1) . (4.28)

Taking the inner product of
(
ϕnx + ψn + wn

)
with iλnψ̃n in L2 (0, 1), integrating by parts and using the

boundary conditions, we have

〈 (
ϕnx + ψn + wn

)
, iλnψ̃n

〉 = −〈
iλnϕnx, ψ̃n

〉 − 〈
iλnψn, ψ̃n

〉 − 〈
iλnwn, ψ̃n

〉

= 〈 (
iλnϕn − ϕ̃n

)
, ψ̃nx

〉 + 〈
ϕ̃n, ψ̃nx

〉 − 〈(
iλnψn − ψ̃n

)
, ψ̃n

〉

− ∥
∥ψ̃n

∥
∥2 − 〈

w̃n, ψ̃n

〉 − 〈 (
iλnwn − w̃n

)
, ψ̃n

〉

= −〈 (
iλnϕnx − ϕ̃nx

)
, ψ̃n

〉 + 〈
ϕ̃n, ψ̃nx

〉 − 〈(
iλnψn − ψ̃n

)
, ψ̃n

〉

− ∥
∥ψ̃n

∥
∥2 − 〈

w̃n, ψ̃n

〉 − 〈(
iλnwn − w̃n

)
, ψ̃n

〉
.

Then, by using (4.5), (4.8)1, (4.8)3, (4.8)5 and (4.27), we deduce that

〈 (
ϕnx + ψn + wn

)
, iλnψ̃n

〉 − 〈
ϕ̃n, ψ̃nx

〉 −→ 0. (4.29)
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Taking the inner product of ϕ̃n with ψ̃nx in L2 (0, 1), we arrive at

〈
ϕ̃n, ψ̃nx

〉 =
〈

ϕ̃n,

(

ψ̃nx − iλnψnx + iλnψnx − iλn

b
G2,nx + iλn

b
G2,nx

)〉

= −〈
ϕ̃n,

(
iλnψnx − ψ̃nx

)〉 +
〈

ϕ̃n,
iλn

b

(
bψnx − G2,nx

)
〉

+
〈

ϕ̃n,
iλn

b
G2,nx

〉

,

then, by (4.5) and (4.8)3, we have

〈

ϕ̃n,
iλn

b

(
bψnx − G2,nx

)
〉

+
〈

ϕ̃n,
iλn

b
G2,nx

〉

− 〈
ϕ̃n, ψ̃nx

〉 −→ 0. (4.30)

Taking the inner product of (4.8)2 with 1
b

(
bψnx − G2,nx

)
in L2 (0, 1), integrating by parts and using the

boundary conditions, we find

〈

iλnρ1ϕ̃n,
1

b

(
bψnx − G2,nx

)
〉

+ k

〈
(
ϕnx + ψn + wn

)
,

1

b

(
bψnxx − G2,nxx

)
〉

−→ 0,

which implies that

− ρ1

〈

ϕ̃n,
iλn

b

(
bψnx − G2,nx

)
〉

+ k

〈
(
ϕnx + ψn + wn

)
,
−1

b

(
iλnρ2ψ̃n − bψnxx + k

(
ϕnx + ψn + wn

) + G2,nxx

)〉

+ ρ2k

b

〈
λn

(
ψn + wn

)
, iψ̃n

〉 + ρ2k

b

〈
ϕnx, iλnψ̃n

〉 + k2

b
‖ϕnx + ψn + wn‖2 −→ 0.

Using (4.5), (4.8)4, (4.26) and (4.27), we find

− ρ1

〈

ϕ̃n,
iλn

b

(
bψnx − G2,nx

)
〉

+ ρ2k

b

〈
ϕnx, iλnψ̃n

〉
+ k2

b
‖ϕnx + ψn + wn‖2 −→ 0. (4.31)

Using the definition of G2,n in (4.9) in case (2.3), integrating by parts (with respect to s) and using the
boundary conditions, we get

〈

ϕ̃n,
iλn

b
G2,nx

〉

=
〈

ϕ̃n,
1

b

(

ig0λnψnx −
∫ ∞

0
g
(

iλnηnx + ηnxs − ψ̃nx − ηnxs + ψ̃nx

)
ds

)〉

= −
〈

ϕ̃n,
1

b

(∫ ∞

0
g
(

iλnηnx + ηnxs − ψ̃nx

)
ds

)〉

+
〈
ϕ̃n,

g0

b

(
iλnψnx − ψ̃nx

)〉 +
〈

ϕ̃n,
−1

b

∫ ∞

0
g′ηnx d s

〉

;
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therefore, from (4.5), (4.8)3, (4.8)7 and (4.11), we obtain

〈

ϕ̃n,
iλn

b
G2,nx

〉

−→ 0. (4.32)

Then, multiplying (4.29) by −ρ2k
b , and (4.30) by ρ1, adding the obtained limits and (4.31) and using

(4.32), we find

(
ρ2k

b
− ρ1

)
〈
ϕ̃n, ψ̃nx

〉 + k2

b

∥
∥
(
ϕnx + ψn + wn

)∥
∥ 2 + iρ2k

b

〈
λnψn + λnwn, ψ̃n

〉 −→ 0. (4.33)

So, because ρ2k
b − ρ1 = 0 (according to (4.1)), we get from (4.25), (4.26), (4.27) and (4.33) that

ϕnx −→ 0 in L2 (0, 1) , (4.34)

and using (4.6) and (4.8)1, we get

ϕ̃nx

λn
−→ 0 in L2 (0, 1) . (4.35)

Multiplying (4.8)2 by iϕ̃n
λn

, integrating by parts and using the boundary conditions, we arrive at

ρ1

∥
∥ϕ̃n

∥
∥ 2 + k

〈
(
ϕnx + ψn + wn

)
,

iϕ̃nx

λn

〉

−→ 0, (4.36)

then, using (4.5) and (4.35), we have

ϕ̃n −→ 0 in L2 (0, 1) , (4.37)

and therefore, using (4.8)1,

λnϕn −→ 0 in L2 (0, 1) . (4.38)

Taking the inner product of (4.8)6 with
(
ϕnx + ψn + wn

)
in L2 (0, 1), integrating by parts and using the

boundary conditions, we get

〈
iλnρ3w̃n, ϕnx

〉 + 〈
iλnρ3w̃n, ψn

〉 + 〈
iλnρ3w̃n, wn

〉

+ k0

〈
wnx,

(
ϕnx + ψn + lwn

)

x

〉 + k
∥
∥
(
ϕnx + ψn + lwn

)∥
∥2 −→ 0,

then

− λnρ3

〈
w̃n, iϕnx

〉 − ρ3

〈
w̃n,

(
iλnψn − ψ̃n

)〉 − ρ3

〈
w̃n, ψ̃n

〉 − ρ3

〈
w̃n,

(
iλnwn − w̃n

)〉 − ρ3

∥
∥w̃n

∥
∥2

− k0

k

〈
wnx,

[
iλnρ1ϕ̃n − k

(
ϕnx + ψn + wn

)

x

]〉 + k0

k

〈
wnx, iλnρ1ϕ̃n

〉 + k
∥
∥ϕnx + ψn + lwn

∥
∥2 −→ 0,



22 A. GUESMIA

using (4.5), (4.8)2, (4.8)3, (4.8)5, (4.25), (4.27) and (4.34), we get

− ρ3λn

〈
w̃n, iϕnx

〉 − ρ3

∥
∥w̃n

∥
∥ 2 + ρ1k0

k
λn

〈
wnx, iϕ̃n

〉 −→ 0. (4.39)

Integrating by parts and using the boundary conditions, we obtain

λn

〈
wnx, iϕ̃n

〉 = − 〈(
iλnwnx − w̃nx

)
, ϕ̃n

〉 − 〈
w̃nx, ϕ̃n

〉 = − 〈(
iλnwnx − w̃nx

)
, ϕ̃n

〉 + 〈
w̃n, ϕ̃nx

〉

= − 〈(
iλnwnx − w̃nx

)
, ϕ̃n

〉 − 〈
w̃n,

(
iλnϕnx − ϕ̃nx

)〉 + 〈
w̃n, iλnϕnx

〉
.

Therefore, from (4.5), (4.8)1 and (4.8)5, we see that

λn

〈
wnx, iϕ̃n

〉 − λn

〈
w̃n, iϕnx

〉 −→ 0, (4.40)

so, multiplying (4.40) by −ρ3 and inserting the obtained limit into (4.39), we obtain

λn

k

(
k0ρ1 − kρ3

) 〈
wnx, iϕ̃n

〉 − ρ3

∥
∥w̃n

∥
∥ 2 −→ 0. (4.41)

Thus, because k0ρ1 − kρ3 = 0 (condition (4.1)), we get from (4.41) that

w̃n −→ 0 in L2 (0, 1) , (4.42)

and by (4.8)5 and (4.42), we deduce that

λnwn −→ 0 in L2 (0, 1) . (4.43)

Taking the inner product of (4.8)6 with wn in L2 (0, 1), integrating by parts and using the boundary
conditions, we get

− ρ3

〈
w̃n, iλnwn

〉 + k0

∥
∥wnx

∥
∥ 2 + 〈

k
(
ϕnx + ψn + wn

) + δwn, wn

〉 −→ 0, (4.44)

and by using (4.5), (4.25) and (4.43), we conclude from (4.44) that

wnx −→ 0 in L2 (0, 1) . (4.45)

A combination of (4.13), (4.22), (4.25), (4.27), (4.34), (4.37), (4.42) and (4.45) lead to (4.10), which is a
contradiction with (4.5). Hence, (4.4) is valid. Consequently, (2.12) in case (2.3) is exponentially stable,
that is (4.2) holds.
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4.2. Case (2.4)

We have in this case fn = wn, f̃n = w̃n and G1,n = G2,n = 0. The proof is very similar to the one given
in Section 4.1 for the case (2.3).

Taking the inner product of (4.8)6 with iw̃n
λn

in L2 (0, 1), integrating by parts and using the boundary
conditions, (4.5), (4.6) and (4.24), we obtain

w̃n −→ 0 in L2 (0, 1) , (4.46)

and with (4.8)5, we find

λnwn −→ 0 in L2 (0, 1) . (4.47)

Taking the inner product of
(
ϕnx + ψn + wn

)
with iλnw̃n in L2 (0, 1), integrating by parts and using the

boundary conditions, (4.5), (4.8)1, (4.8)3, (4.8)5 and (4.46), we deduce that (as for (4.29))

〈(
ϕnx + ψn + wn

)
, iλnw̃n

〉 − 〈
ϕ̃n, w̃nx

〉 −→ 0. (4.48)

Taking the inner product of ϕ̃n with w̃nx in L2 (0, 1), and exploiting (4.5), (4.8)5 and (4.25), we have (as
for (4.30))

〈

ϕ̃n,
iλn

k0

(
k0wnx − G3,nx

)
〉

+
〈

ϕ̃n,
iλn

k0
G3,nx

〉

− 〈
ϕ̃n, w̃nx

〉 −→ 0. (4.49)

Taking the inner product of (4.8)2 with 1
k0

(
k0ψnx − G3,nx

)
in L2 (0, 1), integrating by parts and using

the boundary conditions, (4.5), (4.8)6, (4.25), (4.26) and (4.46), we find (as for (4.31))

− ρ1

〈

ϕ̃n,
iλn

k0

(
k0wnx − G3,nx

)
〉

+ k2

k0
‖ϕnx + ψn + wn‖2 + ρ3k

k0

〈
ϕnx, iλnw̃n

〉 −→ 0. (4.50)

Using the definition of G3,n in (4.9) in case (2.4), integrating by parts (with respect to s) and using the
boundary conditions, (4.5), (4.8)7 and (4.11), we obtain (as for (4.32))

〈

ϕ̃n,
iλn

k0
G3,nx

〉

−→ 0. (4.51)

Then, multiplying (4.48) by −ρ3k
k0

, and (4.49) by ρ1, adding the obtained limits and (4.50) and using
(4.51), we find (as for (4.33))

(
ρ3k

k0
− ρ1

)
〈
ϕ̃n, w̃nx

〉 + k2

k0

∥
∥
(
ϕnx + ψn + wn

)∥
∥ 2 + iρ3k

k0

〈
λnψn + λnwn, w̃n

〉 −→ 0. (4.52)

So, because ρ3k
k0

− ρ1 = 0 (according to (4.1)), we get from (4.25), (4.26), (4.46) and (4.52) that (4.34)
holds, and so we get (4.35).

Multiplying (4.8)2 by iϕ̃n
λn

, integrating by parts and using the boundary conditions, (4.5) and (4.35),
we arrive at (4.37), and therefore, using (4.8)1, (4.38) holds.
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Taking the inner product of (4.8)4 with
(
ϕnx + ψn + wn

)
in L2 (0, 1), integrating by parts, using the

boundary conditions, (4.5), (4.8)2, (4.8)3, (4.8)5, (4.25), (4.34) and (4.46), we get

− ρ2λn

〈
ψ̃n, iϕnx

〉 − ρ2

∥
∥ψ̃n

∥
∥2 + ρ1b

k
λn

〈
ψnx, iϕ̃n

〉 −→ 0. (4.53)

Integrating by parts and using the boundary conditions, (4.5), (4.8)1 and (4.8)3, we see that (as for
(4.40))

λn

〈
ψnx, iϕ̃n

〉 − λn

〈
ψ̃n, iϕnx

〉 −→ 0, (4.54)

so, multiplying (4.54) by −ρ2 and inserting the obtained limit into (4.53), we obtain

λn

k

(
bρ1 − kρ2

) 〈
ψnx, iϕ̃n

〉 − ρ2

∥
∥ψ̃n

∥
∥2 −→ 0. (4.55)

Thus, because bρ1 − kρ2 = 0 (in virtue of condition (4.1)), we get from (4.55) that (4.27) holds, and so
(4.28) is valid.

Taking the inner product of (4.8)4 with ψn in L2 (0, 1), integrating by parts and using the boundary
conditions, we find (as for (4.44))

−ρ2

〈
ψ̃n, iλnψn

〉 + b
∥
∥ψnx

∥
∥ 2 + k

〈(
ϕnx + ψn + wn

)
, ψn

〉 −→ 0;

therefore, using (4.5), (4.25) and (4.28), we get

ψnx −→ 0 in L2 (0, 1) . (4.56)

A combination of (4.13), (4.22), (4.25), (4.27), (4.34), (4.37), (4.46) and (4.56) lead to (4.10), which is a
contradiction with (4.5). Hence, (4.4) is valid. Consequently, (2.12) in case (2.4) is exponentially stable.
The proof of Theorem 4.1 is now completed.

5. Polynomial stability

We prove in this section that the infinite memory is strong enough to stabilize (2.12) at least
polynomially even if (4.1) does not hold. Our result is stated as follows:

Theorem 5.1 We assume that (H) holds. Then, for any m ∈ N
∗, there exists a constant cm > 0 such

that

∀U0 ∈ D(Am), ∀t > 0, ‖U(t)‖H ≤ cm

∥
∥U0

∥
∥

D(Am)

(
ln t

t

)m

j ln t (5.1)

in cases (2.3) and (2.4) with j = 10. Moreover, (5.1) holds in case (2.2) with j = 4 if in addition (3.2) is
satisfied.

Remark 3 The estimate (5.1) implies that

∀m ∈ N
∗, ∀U0 ∈ D(Am), ∀ε > 0, ∃Cm,ε,U0

> 0 : ‖U(t)‖H ≤ Cm,ε,U0
t

−m
j +ε , t > 0,
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with j = 10 in cases (2.3) and (2.4), and j = 4 in case (2.2). So, for classical solutions (m = 1), the

decay rate of t �→ ‖U(t)‖H is arbitrarily close to t
−1

j .

Proof. (Theorem 5.1) Using Theorem 2.3, we need to show (4.3) and

sup
|λ| ≥ 1

1

λj

∥
∥
∥(iλI − A)−1

∥
∥
∥L(H) < ∞. (5.2)

We have already proved (4.3) in Section 3. Now, we establish (5.2) by contradiction. Assume that (5.2)
is false, then there exist sequences

(
Un

)

n ⊂ D (A) and
(
λn

)

n ⊂ R satisfying (4.5), (4.6) and

lim
n→∞ λj

n

∥
∥
(
iλn I − A

)
Un

∥
∥
H = 0. (5.3)

Let Un = (ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, ηn). According to (2.13)–(2.16), the limit (5.3) implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
j
n
[
iλnϕn − ϕ̃n

] → 0 in H1,

λ
j
n
[
iλnρ1ϕ̃n − k

(
ϕnx + ψn + wn

)

x + G1,nxx

] → 0 in L2 (0, 1) ,

λ
j
n

[
iλnψn − ψ̃n

]
→ 0 in H0,

λ
j
n

[
iλnρ2ψ̃n − bψnxx + k

(
ϕnx + ψn + wn

) + G2,nxx

]
→ 0 in L2 (0, 1) ,

λ
j
n
[
iλnwn − w̃n

] → 0 in H0,

λ
j
n
[
iλnρ3w̃n − k0wnxx + k

(
ϕnx + ψn + wn

) + δwn + G3,nxx

] → 0 in L2 (0, 1) ,

λ
j
n

[
iλnηn + ηns − f̃n

]
→ 0 in Lg,

(5.4)

where fn, f̃n, G1,n, G2,n and G3,n are defined in (4.9). We will prove (4.10), which gives a contradiction
with (4.5). Using (2.28), we find

Re
〈
λj

n

(
i λn I − A

)
Un, Un

〉

H
= Re

(
iλj+1

n

∥
∥Un

∥
∥ 2
H − λj

n

〈
AUn, Un

〉

H

)
= −λ

j
n

2

∫ ∞

0
g′(s)‖ηnx‖2 ds.

So (4.5) and (5.3) imply that

λj
n

∫ ∞

0
g′(s)‖ηnx‖2 ds −→ 0. (5.5)

Then multiplying (4.12) by |λn|j and using (5.5), we obtain

λj
n

∫ ∞

0
g(s)‖ηnx‖2 ds −→ 0,

hence

λ
j
2
n ηn −→ 0 in Lg. (5.6)
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Using (4.5) and (4.6), we get from the last limit in (5.4) that

λ
j
2 −1
n

〈(
iλnηn + ηns − iλn fn + iλn fn − f̃n

)
, i fn

〉

Lg
−→ 0. (5.7)

On the other hand, using (5.4)1 in case (2.2), (5.4)3 in case (2.3) and (5.4)5 in case (2.4), we get

λ
j
2 −1
n

〈(
iλn fn − f̃n

)
, i fn

〉

Lg
−→ 0. (5.8)

So (5.7) and (5.8) lead to

〈

λ
j
2
n ηn, fn

〉

Lg

− iλ
j
2 −1
n

〈
ηns, fn

〉

Lg
− λ

j
2
n

〈
fn, fn

〉

Lg
−→ 0. (5.9)

We note that

− λ
j
2
n

〈
fn, fn

〉

Lg
= −g0λ

j
2
n

∥
∥ fnx

∥
∥2 . (5.10)

On the other hand, (4.5) and (5.6) imply that

〈

λ
j
2
n ηn, fn

〉

Lg

−→ 0. (5.11)

Moreover, using (4.20), we find

∣
∣
∣
∣λ

j
2 −1
n

〈
ηns, fn

〉

Lg

∣
∣
∣
∣ ≤ √

β1g(0)|λn|
j
2 −1‖ fnx‖‖ηn‖Lg

,

and then, according to (4.5), (4.6) and (5.6),

λ
j
2 −1
n

〈
ηns, fn

〉

Lg
−→ 0. (5.12)

Consequently, (5.9)–(5.12) and since g0 > 0 (hypothesis (H)) lead to

|λn|
j
4 fnx −→ 0 in L2 (0, 1) . (5.13)

Moreover, because fn vanishes at x = 1 (in case (2.2)) or at x = 0 (in cases (2.3) and (2.4)), then

|λn|
j
4 fn −→ 0 in L2 (0, 1) . (5.14)

Multiplying (5.4)1 in case (2.2), (5.4)3 in case (2.3) and (5.4)5 in case (2.4) by |λn|−
3j
4 −1 and using (4.6),

we conclude from (5.13) and (5.14) that

|λn|
j
4 −1 f̃nx → 0 in L2 (0, 1) (5.15)
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and

|λn|
j
4 −1 f̃n −→ 0 in L2 (0, 1) . (5.16)

Multiplying (5.4)1, (5.4)3 and (5.4)5 by λ
−j−1
n , and using (4.5) and (4.6), we obtain (4.25). Multiplying

(5.4)1, (5.4)3 and (5.4)5 by λ
−j
n , multiplying (5.4)2, (5.4)4 and (5.4)6 by λ

−j−1
n and using (4.5) and (4.6),

we get, respectively,
(
λnϕn

)

n ,
(
λnψn

)

n and
(
λnwn

)

n are bounded in L2 (0, 1) (5.17)

and

(
1

λn
(kϕn − G1,n)xx

)

n
,

(
1

λn
(bψn − G2,n)xx

)

n
and

(
1

λn
(k0wn − G3,n)xx

)

n
are bounded in L2 (0, 1) .

(5.18)

Now, we distinguish the cases (2.2), (2.3) and (2.4). We will apply several multipliers and use some
arguments of Guesmia (2017b).

5.1. Case (2.2) (j = 4, fn = ϕn, f̃n = ϕ̃n and G2,n = G3,n = 0)

Taking the inner product of (5.4)2 with
iϕ̃n

λ3
n

in L2 (0, 1), using (4.5), (4.6) and (4.9), integrating by parts

and using the boundary conditions, we have

ρ1

∥
∥λnϕ̃n

∥
∥ 2 + 〈

kλn

(
ϕnx + ψn + wn

)
, iϕ̃nx

〉 −
〈

λn

(

g0fnx −
∫ ∞

0
gηnxds

)

, iϕ̃nx

〉

→ 0. (5.19)

So, using (4.5), (5.6), (5.13), (5.15), (5.17) and (5.19), we deduce that

λnϕ̃n −→ 0 in L2 (0, 1) , (5.20)

and by (4.6) and (5.4)1, we find

λ2
nϕn −→ 0 in L2 (0, 1) . (5.21)

Taking the inner product of (5.4)2 with
1

λ4
n

(
kψnx + kwnx

)
in L2 (0, 1) and using (4.5), (4.6) and (4.9),

we arrive at

ρ1

〈
iλnϕ̃n,

(
kψnx + kwnx

)〉 + (g0 − k)
〈
ϕnxx,

(
kψnx + kwnx

)〉

− ∥
∥kψnx + kwnx

∥
∥2 −

〈∫ ∞

0
g(s)ηnxx ds,

(
kψnx + kwnx

)
〉

→ 0. (5.22)

Integrating by parts and using the boundary conditions, we find

〈
ϕnxx,

(
kψnx + kwnx

)〉 = −
〈

λnϕnx,

(

k
ψnxx

λn
+ k

wnxx

λn

)〉

(5.23)
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and

〈∫ ∞

0
g(s)ηnxx ds,

(
kψnx + kwnx

)
〉

= −
〈

λn

∫ ∞

0
g(s)ηnx ds,

(

k
ψnxx

λn
+ k

wnxx

λn

)〉

. (5.24)

Multiplying (5.4)4 and (5.4)6 by
1

λ5
n

and using (4.6) and (4.9), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

iρ2ψ̃n − b
ψnxx

λn
+ k

λn

(
ϕnx + ψn + wn

) → 0 in L2 (0, 1) ,

iρ3w̃n − k0
wnxx

λn
+ k

λn

(
ϕnx + ψn + wn

) + δ

λn
wn → 0 in L2 (0, 1) .

Exploiting (4.5) and (4.6), we get

(
1

λn
ψnxx

)

n
and

(
1

λn
wnxx

)

n
are bounded in L2 (0, 1) . (5.25)

Then, using (5.6), (5.13), (5.23), (5.24) and (5.25), we deduce that

〈
ϕnxx,

(
kψnx + kwnx

)〉 → 0 and

〈∫ ∞

0
g(s)ηnxx ds,

(
kψnx + kwnx

)
〉

→ 0, (5.26)

so, exploiting (4.5), (5.20), (5.22) and (5.26), we have

ψnx + wnx → 0 in L2 (0, 1) . (5.27)

Taking the inner product of (5.4)4 with
ψn

λ4
n

in L2 (0, 1), using (4.5), (4.6) and (4.9), integrating by parts

and using the boundary conditions, we obtain

−ρ2

〈
ψ̃n,

(
iλnψn − ψ̃n

)〉 − ρ2

∥
∥ψ̃n

∥
∥2 + b

∥
∥ψnx

∥
∥2 + k

〈(
ϕnx + ψn + wn

)
, ψn

〉 → 0,

then, using (4.5), (4.6), (4.25) and (5.4)3, we find

b
∥
∥ψnx

∥
∥2 − ρ2

∥
∥ψ̃n

∥
∥2 → 0. (5.28)

Taking the inner product of (5.4)6 with
wn

λ4
n

in L2 (0, 1), using (4.5), (4.6) and (4.9), integrating by parts

and using the boundary conditions, we observe that

−ρ3

〈
w̃n,

(
iλnwn − w̃n

)〉 − ρ3

∥
∥w̃n

∥
∥2 + k0

∥
∥wnx

∥
∥2 + k

〈(
ϕnx + ψn + wn

)
, wn

〉 + δ
∥
∥wn

∥
∥2 → 0.

By (4.5), (4.6), (4.25) and (5.4)5, we deduce that

k0

∥
∥wnx

∥
∥2 − ρ3

∥
∥w̃n

∥
∥2 → 0. (5.29)
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Taking the inner product of (5.4)4 with
wn

λ4
n

and (5.4)6 with
ψn

λ4
n

in L2 (0, 1), using (4.5), (4.6) and (4.9),

integrating by parts and using the boundary conditions, we obtain

−ρ2

〈
ψ̃n,

(
iλnwn − w̃n

)〉 − ρ2

〈
ψ̃n, w̃n

〉 + b
〈
ψnx, wnx

〉 + k
〈(
ϕnx + ψn + wn

)
, wn

〉 → 0

and

−ρ3

〈
w̃n,

(
iλnψn − ψ̃n

)〉 − ρ3

〈
w̃n, ψ̃n

〉 + k0

〈
wnx, ψnx

〉 + 〈
k
(
ϕnx + ψn + wn

) + δwn, ψn

〉 → 0,

then, using (4.5), (4.6), (4.25), (5.4)3 and (5.4)5, we obtain

−ρ2

〈
ψ̃n, w̃n

〉 + b
〈
ψnx, wnx

〉 → 0 and − ρ3

〈
ψ̃n, w̃n

〉 + k0

〈
ψnx, wnx

〉 → 0,

which imply that
(

ρ2

b
− ρ3

k0

)
〈
ψ̃n, w̃n

〉 → 0 and

(
b

ρ2
− k0

ρ3

)
〈
ψnx, wnx

〉 → 0. (5.30)

We distinguish two cases.

Case 1:
b

ρ2
�= k0

ρ3
. From (5.30), we see that

〈
ψ̃n, w̃n

〉
→ 0 and

〈
ψnx, wnx

〉 → 0. (5.31)

Therefore, taking the inner product in L2 (0, 1) of (5.27), first, with ψnx, and, second, with wnx, we
obtain

ψnx → 0 and wnx → 0 in L2 (0, 1) , (5.32)

and then, by (5.28), (5.29) and (5.32), we find

ψ̃n → 0 and w̃n → 0 in L2 (0, 1) . (5.33)

Finally, combining (4.25), (5.6), (5.13), (5.16), (5.32) and (5.33), we get (4.10), which is a contradiction
with (4.5), so (5.2) holds. Consequently, (5.1) in case (2.2) with j = 4 is satisfied.

Case 2:
b

ρ2
= k0

ρ3
. Using (4.6) and (4.9), and multiplying (5.4)4 and (5.4)6 by 1

bλ2
n

and 1
k0λ

2
n
,

respectively, we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ2
n

[

− iρ2

b
λn

(
iλnψn − ψ̃n

)
− ρ2

b
λ2

nψn − ψnxx + k

b

(
ϕnx + ψn + wn

)
]

→ 0 in L2 (0, 1) ,

λ2
n

[

− iρ2

b
λn

(
iλnwn − w̃n

) − ρ2

b
λ2

nwn − wnxx + k

k0

(
ϕnx + ψn + wn

) + δ
k0

wn

]

→ 0 in L2 (0, 1) ,
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so, using (5.4)3 and (5.4)5, we find

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ2
n

[

−ρ2

b
λ2

nψn − ψnxx + k

b

(
ϕnx + ψn + wn

)
]

→ 0 in L2 (0, 1) ,

λ2
n

[

−ρ2

b
λ2

nwn − wnxx + k

k0

(
ϕnx + ψn + wn

) + δ
k0

wn

]

→ 0 in L2 (0, 1) .

(5.34)

Then, multiplying (5.34)1 and (5.34)2 by 1
λ2

n
, using (4.6), (4.25) and (5.13), we get

ρ2

b
λ2

nψn + ψnxx → 0 in L2 (0, 1) and
ρ2

b
λ2

nwn + wnxx → 0 in L2 (0, 1) . (5.35)

The sum and difference of (5.35)1 and (5.35)2 give
⎧
⎪⎨

⎪⎩

ρ2

b
λ2

n

(
ψn + wn

) + ψnxx + wnxx → 0 in L2 (0, 1) ,

ρ2

b
λ2

n

(
ψn − wn

) + ψnxx − wnxx → 0 in L2 (0, 1) .
(5.36)

Taking the inner product in L2 (0, 1) of (5.36)1 and (5.36)2 with ψn + wn, using (4.5), integrating by
parts and using the boundary conditions, we get

ρ2

b

∥
∥λnψn + λnwn

∥
∥2 − ‖ψnx + wnx‖2

L2(0,1)
→ 0

and
ρ2

b

〈
λ2

n

(
ψn − wn

)
,
(
ψn + wn

)〉 − 〈(
ψnx − wnx

)
,
(
ψnx + wnx

)〉 → 0,

then, using (4.5) and (5.27), we obtain

λnψn + λnwn → 0 in L2 (0, 1) and
∥
∥λnψn

∥
∥2 − ∥

∥λnwn

∥
∥2 → 0. (5.37)

Taking the inner product in L2 (0, 1) of (5.34)1 and (5.34)2 with wn and ψn, respectively, integrating by
parts and using (4.5) and the boundary conditions, we get

− ρ2

b
λ4

n

〈
ψn, wn

〉 + λ2
n

〈
ψnx, wnx

〉 − k

b

〈
λ2

nϕn, wnx

〉
+ k

b

〈
λnψn, λnwn

〉 + k

b

∥
∥λnwn

∥
∥2 → 0 (5.38)

and

− ρ2

b
λ4

n

〈
ψn, wn

〉 + λ2
n

〈
ψnx, wnx

〉 − k

k0

〈
ψnx, λ2

nϕn

〉
+ k

k0

∥
∥λnψn

∥
∥2 + k + δ

k0

〈
λnψn, λnwn

〉 → 0. (5.39)

Then, taking the difference between (5.38) and (5.39) and using (4.5) and (5.21), we find

k

b

∥
∥λnwn

∥
∥2 − k

k0

∥
∥λnψn

∥
∥2 +

(
k

b
− k + δ

k0

)
〈
λnψn, λnwn

〉 → 0. (5.40)
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By taking the inner product in L2 (0, 1) of (5.37)1 with λnψn, and using (5.17), we have

∥
∥λnψn

∥
∥2 + 〈

λnψn, λnwn

〉 → 0. (5.41)

Multiplying (5.37)2 by k
b and adding (5.40), we get

k

(
1

b
− 1

k0

)
∥
∥λnψn

∥
∥2 +

(
k

b
− k + δ

k0

)
〈
λnψn, λnwn

〉

L2(0,1)
→ 0. (5.42)

Therefore, multiplying (5.41) by k+δ
k0

− k
b and adding (5.42), we obtain

δ

k0

∥
∥λnψn

∥
∥2 → 0.

Then

λnψn → 0 in L2 (0, 1) (5.43)

and, using (5.37)1,

λnwn → 0 in L2 (0, 1) . (5.44)

Using (4.6), (5.4)3, (5.4)5, (5.43) and (5.44), we deduce that

ψ̃n → 0 in L2 (0, 1) and w̃n → 0 in L2 (0, 1) . (5.45)

Taking the inner product in L2 (0, 1) of (5.35)1 and (5.35)2 with ψn and wn, respectively, integrating by
parts and using (4.5) and the boundary conditions, we get

ρ2

b

∥
∥λnψn

∥
∥2 − ∥

∥ψnx

∥
∥2 → 0 and

ρ2

b

∥
∥λnwn

∥
∥2 − ∥

∥wnx

∥
∥2 → 0,

then, from (5.43) and (5.44), we conclude that

ψnx → 0 in L2 (0, 1) and wnx → 0 in L2 (0, 1) . (5.46)

Finally, (4.25), (5.6), (5.13), (5.16), (5.45) and (5.46) imply (4.10), which is a contradiction with (4.5).

Thus, in both cases
b

ρ2
�= k0

ρ3
and

b

ρ2
= k0

ρ3
, (5.2) holds, and so (5.1) is satisfied in case (2.2) with j = 4.

5.2. Case (2.3) (j = 10, fn = ψn, f̃n = ψ̃n and G1,n = G3,n = 0)

Taking the inner product of (5.4)4 with
1

λ10
n

ϕnx in L2 (0, 1), integrating by parts and using (4.5), (4.6)

and the boundary conditions, we get

iρ2

〈
λnψ̃n, ϕnx

〉 + 〈
k
(
ψn + wn

)
, ϕnx

〉 + k
∥
∥ϕnx

∥
∥2 +

〈

λn

(
bψnx − G2,nx

)
,

1

λn
ϕnxx

〉

→ 0,
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then, using (4.25), (5.6), (5.13), (5.16) and (5.18), we deduce that

ϕnx → 0 in L2 (0, 1) , (5.47)

which implies that, using (4.6) and (5.4)1,

1

λn
ϕ̃nx → 0 in L2 (0, 1) . (5.48)

Dividing (5.4)4 by λ10
n and using (4.25), (5.16) and (5.47), we deduce that

bψnxx − G2,nxx → 0 in L2 (0, 1) . (5.49)

Taking the inner product of (5.4)4 with
ϕnx

λ9
n

in L2 (0, 1), integrating by parts and using (4.5), (4.6) and

the boundary conditions, we get

− ρ2

〈
ψ̃n, λn

(
iλnϕnx − ϕ̃nx

)〉 + ρ2

〈
λnψ̃nx, ϕ̃n

〉

+
〈

λ2
n

(
bψnx − G2,nx

)
,
ϕnxx

λn

〉

+ kλn

∥
∥ϕnx

∥
∥2 + k

〈
λn

(
ψn + wn

)
, ϕnx

〉 −→ 0;

hence, using (5.4)1, (5.6), (5.13), (5.15), (5.17), (5.18) and (5.47), we obtain

|λn|
1
2 ϕnx −→ 0 in L2 (0, 1) . (5.50)

Therefore, according to the boundary conditions, (5.50) leads to

|λn|
1
2 ϕn −→ 0 in L2 (0, 1) . (5.51)

Taking the inner product of (5.4)2 with
ϕn

λ9
n

in L2 (0, 1), integrating by parts and using (4.5), (4.6) and

the boundary conditions, we get

−ρ1

〈
ϕ̃n, λn

(
iλnϕn − ϕ̃n

)〉 − ρ1λn

∥
∥ϕ̃n

∥
∥2 + kλn

∥
∥ϕnx

∥
∥2 + k

〈(
λnψn + λnwn

)
, ϕnx

〉 −→ 0,

so, using (5.4)1, (5.17), (5.47) and (5.50), we deduce that

|λn|
1
2 ϕ̃n −→ 0 in L2 (0, 1) , (5.52)

which implies that, using (4.6) and (5.4)1,

|λn|
3
2 ϕn −→ 0 in L2 (0, 1) . (5.53)
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Multiplying (5.4)2 by
∣
∣λn

∣
∣ −10− 1

2 and using (4.6), we get

iρ1
λn

∣
∣λn

∣
∣ 1

2

ϕ̃n − k
ϕnxx

∣
∣λn

∣
∣ 1

2

− k
ψnx

∣
∣λn

∣
∣ 1

2

− k
wnx

∣
∣λn

∣
∣ 1

2

−→ 0 in L2 (0, 1) ,

then, using (4.5), (4.6) and (5.52), we obtain

ϕnxx
∣
∣λn

∣
∣

1
2

−→ 0 in L2 (0, 1) . (5.54)

Integrating by parts and using the boundary conditions, we have

λn

〈(
ϕnx + ψn + wn

)

x , ϕ̃n

〉 = −λn

〈(
ϕnx + ψn + wn

)
, ϕ̃nx

〉

= −1

k

〈

λ2
n

[
iλnρ2ψ̃n − bψnxx + k

(
ϕnx + ψn + wn

) + G2,nxx

]
,
ϕ̃nx

λn

〉

− 1

k

〈
iλnρ2ψ̃n, λn

(
iλnϕnx − ϕ̃nx

)〉 + 1

k

〈

|λn|
5
2
(
bψnx − G2,nx

)
,

iϕnxx

|λn|
1
2

〉

+ 1

k

〈(
bψnxx−G2,nxx

)
, λn

(
iλnϕnx−ϕ̃nx

)〉− λ3
n

k|λn|3
〈
iρ2|λn|

3
2 ψ̃nx, i|λn|

3
2 ϕn

〉
,

then, using (5.4)1, (5.4)4, (5.6), (5.13), (5.15), (5.16), (5.48), (5.49), (5.53) and (5.54), we find

λn

〈(
ϕnx + ψn + wn

)

x , ϕ̃n

〉 −→ 0. (5.55)

Taking the inner product of (5.4)2 with
ϕ̃n

λ9
n

in L2 (0, 1) and using (4.5) and (4.6), we get

ρ1i
∥
∥λnϕ̃n

∥
∥2 − kλn

〈(
ϕnx + ψn + wn

)

x , ϕ̃n

〉 −→ 0,

then, using (5.55), we obtain

λnϕ̃n −→ 0 in L2 (0, 1) , (5.56)

and so (5.4)1 implies that

λ2
nϕn −→ 0 in L2 (0, 1) . (5.57)

Taking the inner product of (5.4)2 with
ϕn

λ8
n

in L2 (0, 1), integrating by parts and using (4.5) and (4.6), we

get

k
∥
∥λnϕnx

∥
∥2 +

〈
iρ1λnϕ̃n − k

(
ψnx + wnx

)
, λ2

nϕn

〉
−→ 0;
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therefore, according to (5.56) and (5.57), we find

λnϕnx −→ 0 in L2 (0, 1) . (5.58)

Taking the inner product of (5.4)2 with
wnx

λ10
n

in L2 (0, 1) and using (4.5) and (4.6), we get

ρ1

〈
iλnϕ̃n, wnx

〉 − k
〈
ϕnxx, wnx

〉 − k
∥
∥wnx

∥
∥2 − k

〈
ψnx, wnx

〉 → 0,

then, integrating by parts and using the boundary conditions, we obtain

ρ1

〈
iλnϕ̃n, wnx

〉 + k

〈

λnϕnx,
wnxx

λn

〉

− k
∥
∥wnx

∥
∥2 − k

〈
ψnx, wnx

〉 → 0,

so, using (5.13), (5.18), (5.56) and (5.58), we deduce that

wnx −→ 0 in L2 (0, 1) . (5.59)

Taking the inner product of (5.4)6 with
wn

λ10
n

in L2 (0, 1), integrating by parts and using (4.5) and (4.6)

and the boundary conditions, we get

−ρ3

〈
w̃n,

(
iλnwn − w̃n

)〉 − ρ3

∥
∥w̃n

∥
∥2 + k0

∥
∥wnx

∥
∥2 + 〈

k
(
ϕnx + ψn + wn

) + δwn, wn

〉 −→ 0;

hence, using (5.4)5, (4.25) and (5.59), we get

w̃n −→ 0 in L2 (0, 1) . (5.60)

A combination of the limits (4.25), (5.6), (5.13), (5.16), (5.47), (5.52), (5.59) and (5.60) leads to (4.10),
which is a contradiction with (4.5). Consequently, (5.2) holds, and so (5.1) is satisfied in case (2.3) with
j = 10.

5.3. Case (2.4) (j = 10, fn = wn, f̃n = w̃n and G1,n = G2,n = 0)

The proof is very similar to the one given in Section 5.2. Taking the inner product of (5.4)6 with
1

λ10
n

ϕnx

in L2 (0, 1), integrating by parts and using (4.5), (4.6) and the boundary conditions, we get

iρ3

〈
λnw̃n, ϕnx

〉 + 〈
k
(
ψn + wn

)
, ϕnx

〉 + k
∥
∥ϕnx

∥
∥2 +

〈

λn

(
k0wnx − G3,nx

)
,

1

λn
ϕnxx

〉

−→ 0,

then, using (4.25), (5.6), (5.13), (5.16) and (5.18), we deduce (5.47), and so (5.48) holds.
Dividing (5.4)6 by λ10

n and using (4.6), (4.25), (5.16) and (5.47), we deduce that

k0wnxx − G3,nxx → 0 in L2 (0, 1) . (5.61)
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Taking the inner product of (5.4)6 with
ϕnx

λ9
n

in L2 (0, 1), integrating by parts and using (4.5), (4.6) and

the boundary conditions, we get

− ρ3

〈
w̃n, λn

(
iλnϕnx − ϕ̃nx

)〉 + ρ3

〈
λnw̃nx, ϕ̃n

〉

+
〈

λ2
n

(
k0wnx − G3,nx

)
,
ϕnxx

λn

〉

+ kλn

∥
∥ϕnx

∥
∥2 + k

〈
λn

(
ψn + wn

)
, ϕnx

〉 −→ 0;

hence, using (5.4)1, (5.6), (5.13), (5.15), (5.17), (5.18) and (5.47), we obtain (5.50). Therefore, according
to the boundary conditions, (5.50) leads to (5.51). Therefore, (5.52), (5.53) and (5.54) hold using the
same proof as in Section 5.2.

Integrating by parts and using the boundary conditions, we have

λn

〈(
ϕnx + ψn + wn

)

x , ϕ̃n

〉 = −λn

〈(
ϕnx + ψn + wn

)
, ϕ̃nx

〉

= −1

k

〈

λ2
n

[
iλnρ3w̃n − k0ψnxx + k

(
ϕnx + ψn + wn

) + δwn + G3,nxx

]
,
ϕ̃nx

λn

〉

+ δ

k

〈

wn,
ϕ̃nx

λn

〉

− 1

k

〈
iλnρ3w̃n, λn

(
iλnϕnx − ϕ̃nx

)〉

+ 1

k

〈

|λn|
5
2
(
k0ψnx − G3,nx

)
,

iϕnxx

|λn|
1
2

〉

+ 1

k

〈(
k0wnxx − G3,nxx

)
, λn

(
iλnϕnx − ϕ̃nx

)〉

− λ3
n

k|λn|3
〈
iρ3|λn|

3
2 w̃nx, i|λn|

3
2 ϕn

〉
,

then, using (5.4)1, (5.4)6, (5.6), (5.13), (5.15), (5.16), (5.48), (5.53), (5.54) and (5.61), we find (5.55),
and therefore (5.56), (5.57) and (5.58) are valid (as in Section 5.2).

Taking the inner product of (5.4)2 with
ψnx

λ10
n

in L2 (0, 1) and using (4.5) and (4.6), we get

ρ1

〈
iλnϕ̃n, ψnx

〉 − k
〈
ϕnxx, ψnx

〉 − k
∥
∥ψnx

∥
∥2 − k

〈
wnx, ψnx

〉 → 0,

then, integrating by parts and using the boundary conditions, we obtain

ρ1

〈
iλnϕ̃n, ψnx

〉 + k

〈

λnϕnx,
ψnxx

λn

〉

− k
∥
∥ψnx

∥
∥2 − k

〈
wnx, ψnx

〉 → 0,

so, using (5.13), (5.18), (5.56) and (5.58), we deduce that

ψnx −→ 0 in L2 (0, 1) . (5.62)
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Taking the inner product of (5.4)4 with
ψn

λ10
n

in L2 (0, 1), integrating by parts and using (4.5) and (4.6)

and the boundary conditions, we get

−ρ2

〈
ψ̃n,

(
iλnψn − ψ̃n

)〉
− ρ2

∥
∥ψ̃n

∥
∥2 + b

∥
∥wnx

∥
∥2 + 〈

k
(
ϕnx + ψn + wn

)
, ψn

〉 −→ 0;

hence, using (4.25), (5.4)3 and (5.62), we get

ψ̃n −→ 0 in L2 (0, 1) . (5.63)

The limits (4.25), (5.6), (5.13), (5.16), (5.47), (5.52), (5.62) and (5.63) imply (4.10), which is a
contradiction with (4.5). Consequently, (5.2) holds, and so (5.1) is satisfied in case (2.4) with j = 10.

Now, the proof of Theorem 5.1 is completed.

6. Lack of exponential stability

We prove in this section that (2.12) is not exponentially stable in case (2.2) independently of the
parameters, and in cases (2.3) and (2.4) if (4.1) is not satisfied. Namely, we have the following theorem:

Theorem 6.1 We assume that (H) holds. Then the semigroup associated with (2.12) in case (2.2) is
not exponentially stable. However, the semigroup associated with (2.12) in cases (2.3) and (2.4) is not
exponentially stable if moreover (4.1) does not hold.

Proof. We use Theorem 2.2 by proving that the second condition in (2.39) is not satisfied. We have
to prove that there exists a sequence (λn)n ⊂ R such that

lim
n→∞

∥
∥
∥
(
iλnI − A

)−1
∥
∥
∥L(H) = ∞,

which is equivalent to find a sequence (Fn)n ⊂ H satisfying

∥
∥Fn

∥
∥
H ≤ 1, n ∈ N (6.1)

and

lim
n→∞ ‖ (

iλnI − A
)−1

Fn‖H = ∞. (6.2)

For this purpose, let

Un = (
iλnI − A

)−1
Fn, n ∈ N. (6.3)

Then we have to find sequences (λn)n ⊂ R, (Fn)n ⊂ H and (Un)n ⊂ D (A) satisfying (6.1),

lim
n→∞ ‖Un‖H = ∞ and iλnUn − AUn = Fn, n ∈ N. (6.4)

Taking

Un = (
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, ηn

)
and Fn = (

f1,n, · · · , f7,n

)
.
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Then we have from (2.13)–(2.16) and (6.4) the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − ϕ̃n = f1,n,

iρ1λnϕ̃n − k
(
ϕnx + ψn + wn

)

x + G1,nxx = ρ1 f2,n,

iλnψn − ψ̃n = f3,n,

iρ2λnψ̃n − bψnxx + k
(
ϕnx + ψn + wn

) + G2,nxx = ρ2 f4,n,

iλnwn − w̃n = f5,n,

iρ3λnw̃n − k0wnxx + k
(
ϕnx + ψn + wn

) + δwn + G3,nxx = ρ3 f6,n,

iλnηn + ηns − f̃n = f7,n,

(6.5)

where f̃n, G1,n, G2,n and G3,n are defined in (4.9), and ηn is defined in term of fn similarly to η in (2.7).
To simplify the formulas, we put

N = (2n + 1)π

2
. (6.6)

Choosing

f1,n = f2,n = f3,n = f5,n = f7,n = 0, f4,n(x) = c1 sin (Nx) and f6,n(x) = c2 sin (Nx) , (6.7)

where c1 and c2 are constants satisfying

ρ2|c1|2 + ρ3|c2|2 ≤ 1. (6.8)

The choices (6.7) and (6.8) imply that (Fn)n ⊂ H and

∥
∥Fn

∥
∥2
H=ρ2

∥
∥ f4,n

∥
∥2 +ρ3

∥
∥ f6,n

∥
∥2 =

(
ρ2|c1|2 + ρ3|c2|2

)∫ 1

0
sin2 (Nx) dx ≤ ρ2|c1|2 +ρ3|c2|2 ≤1, n ∈ N,

so (6.1) holds. On the other hand, the system (6.5) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃n = iλnϕn, ψ̃n = iλnψn, w̃n = iλnwn,

−ρ1λ
2
nϕn − k

(
ϕnx + ψn + wn

)

x + G1,nxx = 0,

−ρ2λ
2
nψn − bψnxx + k

(
ϕnx + ψn + wn

) + G2,nxx = c1ρ2 sin (Nx) ,

−ρ3λ
2
nwn − k0wnxx + k

(
ϕnx + ψn + wn

) + δwn + G3,nxx = c2ρ3 sin (Nx) ,

iλnηn + ηns − iλn fn = 0,

(6.9)
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where fn is defined in (4.9). We choose

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕn(x) = αn cos (Nx) , ϕ̃n(x) = iαnλn cos (Nx) ,

ψn(x) = θn sin (Nx) , ψ̃n(x) = iθnλn sin (Nx) ,

wn(x) = τn sin (Nx) , w̃n(x) = iτnλn sin (Nx) ,

ηn(x, s) = (
1 − e−iλns

)
fn(x),

(6.10)

where (αn)n, (θn)n and (τn)n are sequences of constants to be fixed later. These choices guarantee that
(Un)n ⊂ D (A) and the first three equations and the last one in (6.9) are satisfied. Thus, (6.9) holds if
its fourth, fifth and sixth equations are satisfied. Using the definition of ηn in (6.10), we get

g0 fnxx −
∫ ∞

0
gηnxx ds = g0 fnxx −

∫ ∞

0

(
1 − e−iλns

)
g(s)fnxx ds =

(∫ ∞

0
g(s)e−iλns ds

)

fnxx, (6.11)

then, from (6.10) and (6.11), we observe that the fourth, fifth and sixth equations in (6.9) are satisfied if

⎧
⎪⎪⎨

⎪⎪⎩

[(
k − ε1μn

)
N2 − ρ1λ

2
n

]
αn − kNθn − kNτn = 0,

−kNαn + [
(b − ε2μn)N

2 − ρ2λ
2
n + k

]
θn + kτn = c1ρ2,

−kNαn + kθn + [
(k0 − ε3μn)N

2 − ρ3λ
2
n + k + δ

]
τn = c2ρ3,

(6.12)

where we denote

μn =
∫ ∞

0
g(s)e−iλns ds (6.13)

and (according to the definition of fn, G1,n, G2,n and G3,n in (4.9))

⎧
⎪⎪⎨

⎪⎪⎩

ε1 = 1 and ε2 = ε3 = 0 in case (2.2),

ε2 = 1 and ε1 = ε3 = 0 in case (2.3),

ε3 = 1 and ε1 = ε2 = 0 in case (2.4).

Because g is integrable on R+ and |e−iλns| = 1, n ∈ N, then (μn)n exists. On the other hand, integrating
by parts and using the fact that g is non-increasing and lims→∞ g(s) = 0, we get

∣
∣μn

∣
∣ =

∣
∣
∣
∣

1

iλn

(

g(0) +
∫ ∞

0
g′(s)e−iλns ds

)∣
∣
∣
∣

≤ 1

|λn|
(

g(0) +
∫ ∞

0
|g′(s)| ds

)

≤ 1

|λn|
(

g(0) −
∫ ∞

0
g′(s) ds

)

≤ 2g(0)

|λn|
;
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therefore, if (λn)n satisfies limn→∞ |λn| = ∞, then

lim
n→∞ μn = 0. (6.14)

Now, we distinguish the cases (2.2), (2.3) and (2.4).

6.1. Case (2.2) (ε1 = 1 and ε2 = ε3 = 0 in (6.12))

We distinguish three subcases.
Subcase 1: k

ρ1
�= b

ρ2
. Let us choose

λn =
√

b

ρ2
N (6.15)

and c1 and c2 such that

c2 = ρ2

ρ3
c1 and 0 < |c1| ≤

√
ρ3

ρ2(ρ2 + ρ3)
, (6.16)

so (6.8) holds. Thanks to these choices, we see that (6.12) is satisfied for

τn = 0, θn = c1ρ2

(
1

k
− ρ2

ρ1b + ρ2μn

)

and αn = −c1ρ
2
2

(ρ1b + ρ2μn)N
. (6.17)

Because k
ρ1

�= b
ρ2

and thanks to (6.14) and (6.16), we have

lim
n→∞ θn = c1ρ2

(
1

k
− ρ2

ρ1b

)

�= 0. (6.18)

Therefore, from the definition of N in (6.6) and (λn)n in (6.15), we obtain

lim
n→∞ |λnθn| = ∞. (6.19)

On the other hand, we have

∥
∥Un

∥
∥2
H ≥ ρ2

∥
∥ψ̃n

∥
∥2 = ρ2|λn|2

∥
∥ψn

∥
∥2 ≥ ρ2|λnθn|2

∫ 1

0
sin2 (Nx) dx

= ρ2

2
|λnθn|2

∫ 1

0
[1 − cos (2Nx)] dx

= ρ2

2
|λnθn|2.

Then (6.19) leads to the limit in (6.4). Consequently, there exist sequences
(
Fn

)

n ⊂ H and
(
λn

)

n ⊂ R

satisfying (6.1) and (6.2). Hence, Theorem 2.2 implies that (2.12) is not exponentially stable in case
(2.2) with k

ρ1
�= b

ρ2
.
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Subcase 2: k
ρ1

�= k0
ρ3

. Let us set

λn =
√

k0

ρ3
N2 + δ

ρ3

and c1 and c2 as in (6.16). Then (6.12) is satisfied for

θn = 0, τn = c1ρ2

(
1

k
− ρ3

ρ1k0 + ρ1δ

N2 + ρ3μn

)

and αn = −c1ρ2ρ3

(ρ1k0 + ρ1δ

N2 + ρ3μn)N
. (6.20)

According to (6.14), (6.16) and the definition of N in (6.6), we get

lim
n→∞ τn = c1ρ2

(
1

k
− ρ3

ρ1k0

)

�= 0, (6.21)

since k
ρ1

�= k0
ρ3

, and then

lim
n→∞ |λnτn| = ∞. (6.22)

On the other hand, as in the previous subcase 1, we have

∥
∥Un

∥
∥2
H ≥ ρ3

∥
∥w̃n

∥
∥2 = ρ3|λn|2

∥
∥wn

∥
∥2 = ρ3|λnτn|2

∫ 1

0
sin2 (Nx) dx = ρ3

2
|λnτn|2.

Then (6.22) implies the limit in (6.4). Finally, we conclude that (2.12) is not exponentially stable in case
(2.2) with k

ρ1
�= k0

ρ3
.

Subcase 3: k
ρ1

= b
ρ2

= k0
ρ3

. Let’s take

λn =
√

k

ρ1
N (6.23)

and c1 and c2 such that

c2 = ρ2(δ + 1)

ρ3
c1 and 0 < |c1| ≤

√
ρ3

ρ2((δ + 1)2ρ2 + ρ3)
, (6.24)

which gives (6.8). These choices imply that (6.12) is satisfied for

τn = c1ρ2, θn = c1ρ2

(
1

k
− 1

k + μn
− 1

)

and αn = −c1ρ2

(k + μn)N
.

It is clear that (6.22) is valid, and so the proof can be carried out as in subcase 2.
Finally, (2.12) in case (2.2) is not exponentially stable independently of the values of k, b, k0, ρ1, ρ2

and ρ3.
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6.2. Case (2.3) (ε2 = 1 and ε1 = ε3 = 0 in (6.12))

We have assumed that (4.1) does not hold, so we again distinguish the two subcases k
ρ1

�= k0
ρ3

and

[ k
ρ1

= k0
ρ3

and k
ρ1

�= b
ρ2

].

Subcase 1: k
ρ1

�= k0
ρ3

. The proof is identical to the one given in Section 6.1 case 2 by considering the
same choices of λn, c1 and c2, so (6.12) is satisfied for αn, θn and τn defined in (6.20) with μn replaced
by 0, and then (6.21) and (6.22) hold.

Subcase 2: k
ρ1

= k0
ρ3

and k
ρ1

�= b
ρ2

. We choose

λn =
√

k

ρ1
N2 + k√

ρ1ρ3
N + δ

ρ3
, c1 = 0 (6.25)

and c2 such that

0 < |c2| ≤ 1√
ρ3

(6.26)

in order to get (6.8). These choices show that (6.12)1 and (6.12)3 are satisfied for

τn = −
(√

ρ1

ρ3
+ ρ1δ

ρ3kN

)

αn − θn and θn = ρ1

ρ3k

(
δ

N2

√
ρ1

ρ3
+ k − δ

N

)

αn + c2
√

ρ1ρ2

kN
,

and (6.12)2 holds if moreover αn = a1
a2

, where

a1 = c2
√

ρ1ρ3

k

(

b − ρ2k

ρ1
− μn − ρ2k√

ρ1ρ3N
− ρ2δ

ρ3N2

)

and

a2 = k + k

N

√
ρ1

ρ3
+ ρ1δ

ρ3N2
+ ρ1

ρ3k

(
δ

N

√
ρ1

ρ3
+ k − δ

)(
ρ2k

ρ1
− b + μn + ρ2k√

ρ1ρ3N
+ ρ2δ

ρ3N2

)

.

Using (6.14), (6.26) and the definition of N in (6.6), we obtain

lim
n→∞ |αn| =

|c2|√ρ1ρ3

∣
∣
∣
ρ2k
ρ1

− b
∣
∣
∣

|k̃| if k̃ := k2 + ρ1

ρ3
(k − δ)

(
ρ2k

ρ1
− b

)

�= 0

and

lim
n→∞ |αn| = ∞ if k̃ = 0.

So, because k
ρ1

�= b
ρ2

, we conclude from the definition of (λn)n in (6.25) that, in both cases k̃ = 0 and

k̃ �= 0,

lim
n→∞ |λnαn| = ∞. (6.27)
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On the other hand, we have
∥
∥Un

∥
∥2
H ≥ ρ1

∥
∥ϕ̃n

∥
∥2 = ρ1|λn|2

∥
∥ϕn

∥
∥2

≥ ρ1|λnαn|2
∫ 1

0
cos2 (Nx) dx = ρ1

2
|λnαn|2

∫ 1

0
[1 + cos (2Nx)] dx = ρ1

2
|λnαn|2.

Therefore, (6.27) leads to the limit in (6.4). Consequently, as in the previous cases, we deduce that (2.12)
is not exponentially stable in case (2.3) if (4.1) does not hold.

6.3. Case (2.4) (ε3 = 1 and ε1 = ε2 = 0 in (6.12))

We have assumed that (4.1) does not hold, so we distinguish the two subcases k
ρ1

�= b
ρ2

and [ k
ρ1

= b
ρ2

and k
ρ1

�= k0
ρ3

].

Subcase 1: k
ρ1

�= b
ρ2

. The proof is identical to the one given in Section 6.1 case 1 by considering the
same choices of λn, c1 and c2, so (6.12) is satisfied for αn, θn and τn given in (6.17) with μn replaced by
0, and then (6.18) and (6.19) hold.

Subcase 2: k
ρ1

= b
ρ2

and k
ρ1

�= k0
ρ3

. We consider the choices

λn =
√

k

ρ1
N2 + k√

ρ1ρ2
N + δ

ρ3
, c2 = 0 (6.28)

and c1 such that

0 < |c1| ≤ 1√
ρ2

, (6.29)

which gives (6.8). These choices imply that (6.12)1 and (6.12)3 hold for

θn = −
(√

ρ1

ρ2
+ ρ1δ

ρ3kN

)

αn − τn and τn =
kN + k

√
ρ1
ρ2

+ ρ1δ
ρ3N

(
k0 − ρ3k

ρ1
− μn

)
N2 − ρ3k√

ρ1ρ2
N

αn,

and (6.12)2 is satisfied if, in addition,

αn = c1ρ2

⎡

⎢
⎣

2δ
√

ρ1ρ2

ρ3
+ δ2ρ1ρ2

kρ2
3 N

+
(

k
√

ρ2
ρ1

+ k
N + ρ2δ

ρ3N

) (
k + k

N

√
ρ1
ρ2

+ ρ1δ

ρ3N2

)

k0 − ρ3k
ρ1

− μn − ρ3k
N

√
ρ1ρ2

⎤

⎥
⎦

−1

.

Using (6.14), (6.29) and the definition of N in (6.6), we find

lim
n→∞ |αn| = |c1|

|k̃|
√

ρ2

ρ1
if k̃ := k2

ρ1k0 − ρ3k
+ 2δ

ρ3
�= 0,
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and

lim
n→∞ |αn| = ∞ if k̃ = 0

(k̃ has a meaning because ρ1k0 − ρ3k �= 0). So, in both cases k̃ = 0 and k̃ �= 0, (6.27) is valid.
Consequently, as in the Section 6.2 case 2, we deduce that (2.12) is not exponentially stable in case
(2.4) if (4.1) does not hold. The proof of Theorem 6.1 is now completed.

7. Frictional damping case

Our results of Sections 2–6 also hold when the infinite memory is replaced by a frictional damping, that
is when γ ft with γ > 0 is considered instead of the infinite integral in (2.1), where f is defined in (2.8).
More precisely, we consider (2.1) with

F2 = F3 = 0 and F1 = γ ϕt (7.1)

or

F1 = F3 = 0 and F2 = γψt (7.2)

or

F1 = F2 = 0 and F3 = γ wt (7.3)

with the boundary conditions (2.5) and the initial data

{
(ϕ, ψ , w)(x, 0) = (ϕ0, ψ0, w0)(x), x ∈ (0, 1),

(ϕt, ψt, wt)(x, 0) = (ϕ1, ψ1, w1)(x), x ∈ (0, 1).
(7.4)

We give here a brief idea of the proof which is one given in Sections 2–6.

7.1. Well-posedness

As in Section 2, let

f =

⎧
⎪⎨

⎪⎩

ϕ in case (7.1),

ψ in case (7.2),

w in case (7.3),

f̃ =

⎧
⎪⎨

⎪⎩

ϕ̃ in case (7.1),

ψ̃ in case (7.2),

w̃ in case (7.3),

ϕ̃ = ϕt, ψ̃ = ψt, w̃ = wt (7.5)

and

{
U = (ϕ, ϕ̃, ψ , ψ̃ , w, w̃),

U0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1).
(7.6)
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System (2.1) in cases (7.1), (7.2) and (7.3) with boundary conditions (2.5) and initial data (7.4) can be
written in the form (2.12), where

AU =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕ̃

k
ρ1

(ϕx + ψ + w)x

ψ̃

1
ρ2

[
b ψxx − k (ϕx + ψ + w)

]

w̃

1
ρ3

[
k0wxx − k (ϕx + ψ + w) − δ w

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ BU (7.7)

and

BU =
(

0, − γ

ρ1
ϕ̃, 0, 0, 0, 0

)T

in case (7.1),

BU =
(

0, 0, 0, − γ

ρ2
ψ̃ , 0, 0

)T

in case (7.2) and

BU =
(

0, 0, 0, 0, 0, − γ

ρ3
w̃

)T

in case (7.3). We consider the energy Hilbert space (H1 and H0 are defined in (2.17))

H = H1 × L2(0, 1) × H0 × L2(0, 1) × H0 × L2(0, 1)

equipped with the inner product, for any

U1 = (ϕ1, ϕ̃1, ψ1, ψ̃1, w1, w̃1), U2 = (ϕ2, ϕ̃2, ψ2, ψ̃2, w2, w̃2) ∈ H,

〈U1, U2〉H = k〈(ϕ1x + ψ1 + w1), (ϕ2x + ψ2 + w2)〉 + b〈ψ1x, ψ1x〉 + k0〈w1x, w2x〉
+ δ〈w1, w2〉 + ρ1〈ϕ̃1, ϕ̃2〉 + ρ2〈ψ̃1, ψ̃2〉 + ρ3〈w̃1, w̃2〉. (7.8)

The domain D(A) of A is given by

D(A) = {U ∈ H, AU ∈ H, ϕx(0) = ψx(1) = wx(1) = 0}. (7.9)

The well-posedness results are given in the following theorem:

Theorem 7.1 For any m ∈ N and U0 ∈ D(Am), system (2.12) admits a unique solution U satisfying
(2.27).
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Proof. As in Section 2, it is sufficient to prove that A is dissipative and 0 ∈ ρ (A). First, direct
calculations give

〈AU, U〉H = −γ ‖ f̃ ‖2 ≤ 0, (7.10)

where f̃ is defined in (7.5).
Second, let F = ( f1, · · · , f6) ∈ H. We prove that there exists U ∈ D (A) satisfying (2.29). Let us

consider the case (7.2). The other two cases (7.1) and (7.3) can be treated exactly in the same way. The
first, third and fifth equations in (2.29) are equivalent to (2.30), and then (2.31) holds. Therefore, from
(2.30), we see that the second, fourth and sixth equations in (2.29) are reduced to

⎧
⎪⎪⎨

⎪⎪⎩

k
(
ϕx + ψ + w

)

x = ρ1f2,

bψxx − k
(
ϕx + ψ + w

) = ρ2f4 + γ f3,

k0wxx − k
(
ϕx + ψ + w

) − δw = ρ3f6.

(7.11)

Finally, (2.29) has a solution U ∈ D (A) if and only if (7.11) admits a solution (ϕ, ψ , w) satisfying
(2.36), (2.37) and

ϕxx, ψxx, wxx ∈ L2(0, 1). (7.12)

By considering the variational formulation of (7.11) in H1 × H0 × H0 and using Lax–Milgram theorem
and classical elliptic regularity arguments, it follows that (7.11) admits a unique solution (ϕ, ψ , w)

satisfying (2.36), (2.37) and (7.12). This proves that (2.29) has a unique solution U ∈ D (A). Thus,
0 ∈ ρ (A).

Consequently, we conclude that A is the infinitesimal generator of a linear C0 semigroup of
contractions on H and D(A) is dense in H. So, Theorem 7.1 holds. �

7.2. Strong stability

In this subsection, we prove that (3.1) holds also in cases (7.1), (7.2) and (7.3). More precisely, we have
the following result:

Theorem 7.2 For any U0 ∈ H, the solution U of (2.12) in cases (7.2) and (7.3) satisfies (3.1). However,
(3.1) holds in case (7.1) if (3.2) is satisfied.

Proof. As in Section 3, to get (3.1), we only have to prove (3.4). We have proved (3.4) for λ = 0 in
Section 7.1. So let λ ∈ R

∗ and

U =
(
ϕ, ϕ̃, ψ , ψ̃ , w, w̃

)
∈ D(A),

satisfying (3.5). From (7.10), we have

0 = Re iλ ‖U‖ 2
H = Re 〈iλU, U〉H = Re 〈AU, U〉H = −γ ‖f̃ ‖2.

This leads to (3.7). Consequently, the proof can be carried out as in Section 3. �

7.3. Exponential stability

In this section, we establish the following exponential stability result:
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Theorem 7.3 We assume that (4.1) holds. Then (2.12) in cases (7.2) and (7.3) is exponentially stable.

Proof. As in Section 4, we will apply Theorem 2.2 by proving (2.39). Condition (4.3) has already
been proved in Section 7.2. So we only need to prove (4.4). Assume that (4.4) does not hold, then
there exist sequences

(
Un

)

n ⊂ D (A) and
(
λn

)

n ⊂ R satisfying (4.5), (4.6) and (4.7). Let Un =
(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n

)
. The limit (4.7) implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − ϕ̃n → 0 in H1,

iλnρ1ϕ̃n − k
(
ϕnx + ψn + wn

)

x + ε1γ ϕ̃n → 0 in L2 (0, 1) ,

iλnψn − ψ̃n → 0 in H0,

iλnρ2ψ̃n − bψnxx + k
(
ϕnx + ψn + wn

) + ε2γ ψ̃n → 0 in L2 (0, 1) ,

iλnwn − w̃n → 0 in H0,

iλnρ3w̃n − k0wnxx + k
(
ϕnx + ψn + wn

) + δwn + ε3γ w̃n → 0 in L2 (0, 1) ,

(7.13)

where
⎧
⎪⎪⎨

⎪⎪⎩

ε1 = 1 and ε2 = ε3 = 0 in case (7.1),

ε2 = 1 and ε1 = ε3 = 0 in case (7.2),

ε3 = 1 and ε1 = ε2 = 0 in case (7.3).

(7.14)

We will prove (4.10), which gives a contradiction with (4.5). Using (7.10), we get

Re
〈(

i λn I − A
)

Un, Un

〉

H = Re
(

iλn

∥
∥Un

∥
∥ 2
H − 〈

AUn, Un

〉

H

)
= γ ‖f̃n‖2.

So (4.5) and (4.7) imply that

f̃n −→ 0 in L2 (0, 1) . (7.15)

Therefore, from (7.13)1, (7.13)3 and (7.13)5, we get

λnfn −→ 0 in L2 (0, 1) , (7.16)

where fn is defined in (7.5). Multiplying (7.13)2, (7.13)4 and (7.13)6 by ϕn, ψn and wn, respectively,
integration by parts and using (4.5), we see that

〈(

iρ1ϕ̃n − k

λn
ψnx − k

λn
wnx + ε1γ

λn
ϕ̃n

)

, λnϕn

〉

+ k‖ϕnx‖ −→ 0,

〈(

iρ2ψ̃n + k

λn

(
ϕnx + ψn + wn

) + ε2γ

λn
ψ̃n

)

, λnϕn

〉

+ b‖ψnx‖ −→ 0
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and
〈(

iρ3w̃n + k

λn

(
ϕnx + ψn + wn

) + ε3γ

λn
w̃n + δ

λn
wn

)

, λnϕn

〉

+ k0‖wnx‖ −→ 0.

So, using (4.5), (4.6) and (7.16), we arrive at (4.22). The proof of Theorem 7.3 can be then finalized as
in Section 4. �

7.4. Polynomial stability

In this section, we prove the following improved polynomial decay rate of (2.12) in cases (7.1), (7.2)
and (7.3) compared to the one given in (5.1):

Theorem 7.4 For any m ∈ N
∗, there exists a constant cm > 0 such that (5.1) is satisfied in cases (7.2)

and (7.3) with j = 8. However, (5.1) holds in case (7.1) with j = 2 if (3.2) is satisfied.

Proof. Using Theorem 2.3, we need to show (4.3) and (5.2), where j = 2 in case (7.1) and j = 8 in
cases (7.2) and (7.3). Condition (4.3) was proved in Section 7.2. As in Section 5, we establish (5.2) by
contradiction. Assume that (5.2) is false, then there exist sequences

(
Un

)

n ⊂ D (A) and
(
λn

)

n ⊂ R

satisfying (4.5), (4.6) and (5.3). Let Un =
(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n

)
. The limit (5.3) implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
j
n
[
iλnϕn − ϕ̃n

] → 0 in H1,

λ
j
n
[
iλnρ1ϕ̃n − k

(
ϕnx + ψn + wn

)

x + ε1γ ϕ̃n

] → 0 in L2 (0, 1) ,

λ
j
n

[
iλnψn − ψ̃n

]
→ 0 in H0,

λ
j
n

[
iλnρ2ψ̃n − bψnxx + k

(
ϕnx + ψn + wn

) + ε2γ ψ̃n

]
→ 0 in L2 (0, 1) ,

λ
j
n
[
iλnwn − w̃n

] → 0 in H0,

λ
j
n
[
iλnρ3w̃n − k0wnxx + k

(
ϕnx + ψn + wn

) + δwn + ε3γ w̃n

] → 0 in L2 (0, 1) ,

(7.17)

where ε1, ε2 and ε3 are defined in (7.14). We will prove (4.10), which gives a contradiction with (4.5).
Using (7.10), we get

Re
〈
λj

n

(
i λn I − A

)
Un, Un

〉

H
= Re

(
iλj+1

n

∥
∥Un

∥
∥ 2
H − λj

n

〈
AUn, Un

〉

H

)
= γ λj

n‖f̃n‖2.

So (4.5) and (5.3) imply that

λ
j
2
n f̃n −→ 0 in L2 (0, 1) . (7.18)

Multiplying (7.17)1, (7.17)3 and (5.4)5 by |λn|−
j
2 and using (4.6) and (7.18), we get

λ
j
2 +1
n fn −→ 0 in L2 (0, 1) . (7.19)
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nultiplying (7.17)2, (7.17)4 and (7.17)6 by λ
− j

2 +1
n ϕn, λ

− j
2 +1

n ψn and λ
− j

2 +1
n wn, respectively, integration

by parts and using (4.5) and (4.6), we see that

〈
(
iλnρ1ϕ̃n − kψnx − kwnx + ε1γ ϕ̃n

)
, λ

j
2 +1
n ϕn

〉

+ kλ
j
2 +1
n ‖ϕnx‖2 −→ 0,

〈(
iλnρ2ψ̃n + k

(
ϕnx + ψn + wn

) + ε2γ ψ̃n

)
, λ

j
2 +1
n ψn

〉

+ bλ
j
2 +1
n ‖ψnx‖2 −→ 0

and
〈
(
iλnρ3w̃n + k

(
ϕnx + ψn + wn

) + ε3γ w̃n + δwn

)
, λ

j
2 +1
n wn

〉

+ k0λ
j
2 +1
n ‖wnx‖2 −→ 0,

so, using (4.5), (7.18) and (7.19), we get

|λn|
j
4 + 1

2 fnx −→ 0 in L2 (0, 1) . (7.20)

We note that (7.20) with j = 2 and j = 8 is identical to (5.13) with j = 4 and j = 10, respectively. Now,
the proof of Theorem 7.4 can be finished as in Section 5. �

7.5. Lack of exponential stability

As in Section 6, we have the following theorem:

Theorem 7.5 The semigroup associated with (2.12) in case (7.1) is not exponentially stable. However,
the semigroup associated with (2.12) in cases (7.2) and (7.3) is not exponentially stable if (4.1) does not
hold.

Proof. As in Section 6, we use Theorem 2.2 by proving that the second condition in (2.39) is not
satisfied, that is we have to find sequences (λn)n ⊂ R and (Fn)n ⊂ H such that the sequence

(
Un

)

n
defined in (6.3) satisfies (6.4). Taking

Un =
(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n

)
and Fn = (

f1,n, · · · , f6,n

)
.

then we have the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − ϕ̃n = f1,n,

iρ1λnϕ̃n − k
(
ϕnx + ψn + wn

)

x + ε1γ ϕ̃n = ρ1f2,n,

iλnψn − ψ̃n = f3,n,

iρ2λnψ̃n − bψnxx + k
(
ϕnx + ψn + wn

) + ε2γ ψ̃n = ρ2f4,n,

iλnwn − w̃n = f5,n,

iρ3λnw̃n − k0wnxx + k
(
ϕnx + ψn + wn

) + δwn + ε3γ w̃n = ρ3f6,n.

(7.21)
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We consider the notation (6.6) and the choices (6.7), (6.8) and (6.10) (without f7,n and ηn). Then (7.21)

is satisfied if (6.12) holds with μn = −iγ λn
N2 instead of (6.13). So, distinguishing the same cases and

using the same choices of αn, θn, τn, f4,n, f6,n and λn as in Section 6 (so (6.14) is satisfied), Theorem 7.5
follows. �

8. Comments and issues

1. Our results in cases (2.3), (2.4), (7.2) and (7.3) remain valid for δ = 0, as well as the lack
of exponential stability result in cases (2.2) and (7.1). However, our strong and polynomial
stability results in cases (2.2) and (7.1) remain valid for δ = 0 if b

ρ2
�= k0

ρ3
(condition (3.2) with

δ = 0).

2. Our results hold true for one of the following Dirichlet–Neumann boundary conditions:

⎧
⎪⎨

⎪⎩

ϕx(0, t) = ϕx(1, t) = ψ(0, t) = ψ(1, t) = w(0, t) = w(1, t), t ∈ R+,

ϕ(0, t) = ϕ(1, t) = ψx(0, t) = ψx(1, t) = wx(0, t) = wx(1, t), t ∈ R+,

ϕ(0, t) = ϕx(1, t) = ψx(0, t) = ψ(1, t) = wx(0, t) = w(1, t), t ∈ R+.

(8.1)

The question is posed when (ϕ and ψ) or (ϕ and w) have the same boundary conditions at 0 or at
1 and also when ψ and w have different boundary conditions at 0 or at 1. It will be interesting to
consider this kind of boundary conditions, in particular, the homogeneous Dirichlet boundary
conditions for all ϕ, ψ and w at 0 and/or at 1.

3. Proving the stability under only one boundary control would be of great importance.

4. The condition (2.21) is the simplest standard one on the relaxation function g. Seeking the
largest class possible of kernels was not among the objectives of this paper. But we think that
it will be possible to weaken (2.21) and get the strong and polynomial stability (perhaps with
smaller decay rates than the ones given in this paper). For this issue, we refer the readers
to Guesmia (2014), Guesmia & Messaoudi (2014) and Guesmia et al. (2012) in case of
Timoshenko beams and to Guesmia (2017a), Guesmia & Kafini (2015) and Guesmia & Kirane
(2016) in case of Bresse system.

5. The infinite memory and the frictional damping lead to the same strong and exponential
stability results. However, the obtained polynomial decay rate under the frictional damping is
better than the one obtained under the infinite memory. In both infinite memory and frictional
damping cases, the decay rates given in (5.1) can be probably improved. In general, when the
exponential stability is not satisfied, obtaining the optimal decay rate of solutions is, in our
opinion, a very nice and hard question
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