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In this paper, we consider a second-order abstract linear equation with infinite memory and time delay
terms. Under appropriate assumptions on the convolution kernel and on the weight of the delay, we prove
the well-posedness and the exponential stability of the system. Our stability estimate proves that the
unique dissipation given by the memory term is strong enough to stabilize exponentially the system in
presence of delay. Some applications are also given.
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1. Introduction

Let H be a real Hilbert space with inner product and related norm denoted by 〈·, ·〉 and ‖ · ‖, respectively.
Let A : D(A) → H be a self-adjoint linear positive definite operator with domain D(A) ⊂ H such that
the embedding is dense and compact. Let τ ∈]0, +∞[, μ ∈ R

∗ and g : R+ → R+ be a given function.
We consider the following class of second-order linear integro-differential equations:

utt(t) + Au(t) −
∫ +∞

0
g(s)Au(t − s) ds + μut(t − τ) = 0, ∀ t > 0 (1.1)

with initial conditions

{
u(−t) = u0(t) ∀ t ∈ R+,

ut(0) = u1, ut(t − τ) = f0(t − τ) ∀ t ∈]0, τ [,
(1.2)

where (u0, u1, f0) are given initial data belonging to a suitable space (see Section 2) and u : R+ → H
is the state (unknown) of the system (1.1 and 1.2). The infinite integral and the constant τ represent,
respectively, the memory term and time delay. For a generic function f , the notation fy means the deriva-
tive of f with respect to y. When f has only one variable, the derivative of f is noted by f ′.
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508 A. GUESMIA

Equation (1.1) can describe the dynamics of linear viscoelastic solids, a generalized Kirchhoff vis-
coelastic beam with memory and systems governing the longitudinal motion of a viscoelastic config-
uration obeying a nonlinear Boltzmann’s model; see, for example, Fabrizio et al. (2010), Giorgi et al.
(2001), Muñoz Revira & Grazia Naso (2010) and Pata (2006) for more details concerning the physical
phenomena which are modelled by differential equations with memory.

The subject of our paper is the well-posedness and asymptotic behaviour as time goes to infinity of
solutions of (1.1 and 1.2) under appropriate assumptions on the operator A, the convolution kernel g
and the constant μ.

The questions related to well-posedness and stability/instability of evolution equations with delay or
memory have attracted considerable attention in recent years and many authors have shown that delays
can destabilize a system that is asymptotically stable in the absence of delays and presence of memory.
Before we state and prove our main results, let us first recall some works related to the problem we
address.

In the absence of the delay term in (1.1) (i.e. μ = 0):

utt(t) + Au(t) −
∫ +∞

0
g(s)Au(t − s) ds = 0 ∀ t > 0, (1.3)

a large amount of literature is available on this model, addressing problems of the existence, uniqueness
and asymptotic behaviour in time (see Dafermos, 1970; Fabrizio & Lazzari, 1991; Liu & Zheng, 1996;
Giorgi et al., 2001; Chepyzhov & Pata, 2006; Muñoz Revira & Grazia Naso, 2007; Pata, 2010; Guesmia,
2011 and the references cited therein). The nonlinear one-dimensional viscoelastic wave equation has
been investigated by Dafermos (1970). He showed that the energy of the problem tends to zero asymp-
totically under the Dirichlet boundary conditions, but no decay rate was given in Dafermos (1970).
Under the condition

∃δ > 0 : g′(s) � −δg(s) ∀ s ∈ R+, (1.4)

the exponential decay of solutions of (1.3) was obtained in Fabrizio & Lazzari (1991), Giorgi et al.
(2001), Liu & Zheng (1996) and Muñoz Revira & Grazia Naso (2007) (in different contexts and using
different approaches). In Chepyzhov & Pata (2006), it was proved that the weaker condition

∃δ1 � 1, ∃δ2 > 0 : g(t + s) � δ1 e−δ2tg(s) ∀ t ∈ R+ for a.e. s ∈ R+ (1.5)

is necessary for (1.3) to be exponentially stable. In the particular case of the wave equation, it was
proved in Pata (2010) that the exponential stability holds if and only if g satisfies (1.5) and the set
{s ∈ R+ : g′(s) < 0} has positive Lebesgue measure. When g has a general growth at infinity, a general
decay estimate of the solutions of (1.3) was established in Guesmia (2011).

When
∫ +∞

0 is replaced by
∫ t

0 in (1.3):

utt(t) + Au(t) −
∫ t

0
g(s)Au(t − s) ds = 0 ∀ t > 0, (1.6)

the stability of (1.6) has received considerable attention and there is now a large literature on this subject,
where different decay estimates were obtained depending on the growth of g at infinity, see in this regard
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WELL-POSEDNESS AND EXPONENTIAL STABILITY OF AN ABSTRACT EVOLUTION 509

Berrimi & Messaoudi (2006), Cavalcanti et al. (2002), Cavalcanti & Oquendo (2003), Guesmia et al.
(2011), Messaoudi (2008a,b), Messaoudi & Tatar (2003, 2007) and the references cited therein. For the
particular case of the wave equation with (internal or boundary) finite memory, see Aassila et al. (2000,
2002), Cavalcanti et al. (2008), Said-Houari & Falcão Nascimento (2013) and Vicente (2009). See also
Guesmia & Messaoudi (2012) for the wave equation with complementary finite and infinite memories.

When the memory term is replaced by But in (1.1):

utt(t) + Au(t) + But(t) + μut(t − τ) = 0 ∀ t > 0, (1.7)

where B is a given operator, there exist in the literature different stability/instability results of (1.7)
depending, in particular, on the connection between B and μ; see Datko et al. (1986), Datko (1991) and
Nicaise et al. (2009) for the one-dimensional wave equation with internal and/or boundary feedback and
constant delay, Ammari et al. (2010), Nicaise & Pignotti (2006, 2008, 2011) and Nicaise et al. (2011)
for the N-dimensional case, and Fridman et al. (2010) and Nicaise & Valein (2010) for the general
system (1.7) with constant or variable delay. These results show that the damping But is strong enough
to stabilize (1.7) provided that |μ| is small enough with respect to B (in some sense).

Recently, the wave equation in N-dimensional bounded domain with constant delay, finite memory
and linear frictional damping was considered in Kirane & Said-Houari (2011); that is,

utt(x, t) − Δu(x, t) +
∫ t

0
g(s)Δu(x, t − s) ds + μ1ut(x, t) + μ2ut(x, t − τ) = 0 ∀ t > 0, (1.8)

and the exponential stability of (1.8) was proved under the assumption 0 � μ2 � μ1. The same result
was obtained in Said-Houari (2011) in the case of Timoshenko systems. As is indicated in Kirane &
Said-Houari (2011), the case μ1 = 0 is an open problem. We recall that (1.8) is instable if 0 � μ1 � μ2

and g = 0 (see Nicaise & Pignotti, 2006).
As a consequence of the results of the papers cited above, a small delay time is a source of insta-

bility. Consequently, to stabilize a hyperbolic system involving input delay terms, control terms (such
as memory or frictional damping) will be necessary. According to this observation, two main questions
naturally arise:

• Is it possible for the memory term, which plays solely the role of dissipation for (1.1 and 1.2), to
build the robustness of controllers against delay and stabilize (1.1 and 1.2) exponentially? As far as
we know, this situation has never been considered before in the literature.

• Is it possible to get an exponential decay rate of solutions explicitly in terms of, in particular, the
connection between the delay and the memory terms?

One of the main goal of this paper is to give satisfactory answers to the above two questions. In
addition, the method presented in the proof is considerably simple and allows one to consider various
practical applications.

The plan of the paper is as follows. In Section 2, we give appropriate assumptions on A and g,
and state and prove the well-posedness of (1.1 and 1.2). While Section 3 is devoted to the proof of
the exponential stability of (1.1 and 1.2) under an additional smallness condition on |μ|. In Section 4,
we give some applications of (1.1 and 1.2). Finally, in Section 5, we discuss some general issues and
indicate some open questions.
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510 A. GUESMIA

2. Well-posedness

In this section, we state some assumptions on A and g, and prove the global existence, uniqueness and
smoothness of the solution of (1.1 and 1.2). We assume that

(A1) There exists a positive constant a satisfying

a‖w‖2 � ‖A1/2w‖2 ∀ w ∈ D(A1/2). (2.1)

(A2) g is of class C1(R+) and satisfies, for a positive constant δ,

g′(s) � −δg(s) ∀ s ∈ R+. (2.2)

(A3) The function g is integrable on R+ and is such that

g0 :=
∫ +∞

0
g(s) ds ∈]0, 1[. (2.3)

Following a method devised in the pioneering paper of Dafermos (1970) (see also Pata, 2006;
Muñoz Revira & Grazia Naso, 2007, 2010; Fabrizio et al., 2010) and the idea of Nicaise & Pignotti
(2006) (see also Nicaise & Pignotti, 2008, 2011; Nicaise et al., 2009, 2011; Nicaise & Valein, 2010) to
treat the memory and delay terms by considering two new auxiliary variables η and z, we will formulate
the system (1.1–1.2) in the following abstract linear first-order system:{

Ut(t) = (A + B)U (t) ∀ t > 0,

U (0) = U0,
(2.4)

where U = (u, ut, η, z)�, U0 = (u0(0), u1, η0, z0)
� ∈ H ,

H = D(A1/2) × H × L2
g(R+, D(A1/2)) × L2(]0, 1[, H)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η(t, s) = u(t) − u(t − s) ∀ t, s ∈ R+,

η0(s) = η(0, s) = u0(0) − u0(s) ∀ s ∈ R+,

z(t, p) = ut(t − τp) ∀ t ∈ R+, ∀ p ∈]0, 1[,

z0(p) = z(0, p) = f0(−τp) ∀ p ∈]0, 1[.

(2.5)

The sets L2
g(R+, D(A1/2)) and L2(]0, 1[, H) are the weighted spaces with respect to the measures g(s) ds

and dp, respectively, defined by

L2
g(R+, D(A1/2)) =

{
w : R+ → D(A1/2),

∫ +∞

0
g(s)‖A1/2w(s)‖2 ds < +∞

}

and

L2(]0, 1[, H) =
{

w : ]0, 1[→ H ,
∫ 1

0
‖w(p)‖2 dp < +∞

}
,
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endowed with the inner products

〈w1, w2〉L2
g(R+,D(A1/2)) =

∫ +∞

0
g(s)〈A1/2w1(s), A1/2w2(s)〉 ds

and

〈w1, w2〉L2(]0,1[,H) =
∫ 1

0
〈w1(p), w2(p)〉 dp.

The operators A and B are linear and given by

A

⎛
⎜⎜⎝

w1

w2

w3

w4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w2

−(1 − g0)Aw1 −
∫ +∞

0
g(s)Aw3(s) ds − |μ|w2 − μw4(1)

−∂w3

∂s
+ w2

− 1

τ

∂w4

∂p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.6)

and

B(w1, w2, w3, w4)
� = |μ|(0, w2, 0, 0)�. (2.7)

The domains D(A ) and D(B) of A and B, respectively, are given by

D(A ) =

⎧⎪⎪⎨
⎪⎪⎩

(w1, w2, w3, w4)
� ∈ H ,

∂w4

∂p
∈ L2(]0, 1[, H),

∂w3

∂s
∈ L2

g(R+, D(A1/2)),

w2 ∈ D(A1/2), (1 − g0)w1 +
∫ +∞

0
g(s)w3(s) ds ∈ D(A), w3(0) = 0, w4(0) = w2

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

and D(B) = H . Bearing in mind the definition (2.5) of η and z, we have{
ηt(t, s) + ηs(t, s) = ut(t) ∀ t, s ∈ R+,

η(t, 0) = 0 ∀ t ∈ R+
(2.9)

and {
τ zt(t, p) + zp(t, p) = 0 ∀ t ∈ R+, ∀ p ∈]0, 1[,

z(t, 0) = ut(t) ∀ t ∈ R+.
(2.10)

Therefore, we conclude from (2.9 and 2.10) that the systems (1.1 and 1.2) and (2.4) are equivalent.
Clearly, thanks to (2.3), H endowed with the inner product

〈(w1, w2, w3, w4)
�, (w̃1, w̃2, w̃3, w̃4)

�〉H = (1 − g0)〈A1/2w1, A1/2w̃1〉 + 〈w2, w̃2〉
+ 〈w3, w̃3〉L2

g(R+,D(A1/2)) + τ |μ|〈w4, w̃4〉L2(]0,1[,H)

is a Hilbert space and D(A ) ⊂ H with dense embedding. The well-posedness of problem (2.4) is
ensured by the following theorem.
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512 A. GUESMIA

Theorem 2.1 Assume that (A1)–(A3) hold. Then, for any U0 ∈ H , the system (2.4) has a unique weak
solution

U ∈ C(R+, H ).

Moreover, if U0 ∈ D(A ), then the solution of (2.4) satisfies (classical solution)

U ∈ C1(R+, H ) ∩ C(R+, D(A )).

Proof. To prove Theorem 2.1, we use the semigroup approach. So, first, we show that the linear oper-
ator A is dissipative. Indeed, let W = (w1, w2, w3, w4)

� ∈ D(A ), then

〈A W , W〉H = +
〈

−(1 − g0)Aw1 −
∫ +∞

0
g(s)Aw3(s) ds − |μ|w2 − μw4(1), w2

〉

+ (1 − g0)〈A1/2w2, A1/2w1〉 +
〈

−∂w3

∂s
+ w2, w3

〉
L2

g(R+,D(A1/2))

+ τ |μ|
〈

− 1

τ

∂w4

∂p
, w4

〉
L2(]0,1[,H)

. (2.11)

It is clear that, thanks to the definition of A1/2 and the fact that H is a real Hilbert space,

〈−(1 − g0)Aw1, w2〉 = −(1 − g0)〈A1/2w2, A1/2w1〉,〈
−

∫ +∞

0
g(s)Aw3(s) ds, w2

〉
= −〈w2, w3〉L2

g(R+,D(A1/2))

and

〈−|μ|w2, w2〉 = −|μ|‖w2‖2.

On the other hand, the Cauchy–Schwarz and Young’s inequalities imply that

〈−μw4(1), w2〉 � |μ|
2

(‖w4(1)‖2 + ‖w2‖2).

Integrating by parts and using the fact that w3(0) = 0 (definition of D(A )) give

〈
−∂w3

∂s
, w3

〉
L2

g(R+,D(A1/2))

� 1

2

∫ +∞

0
g′(s)‖A1/2w3(s)‖2 ds.

Also recalling that w4(0) = w2 (definition of D(A )), we may write

τ |μ|
〈

− 1

τ

∂w4

∂p
, w4

〉
L2(]0,1[,H)

= |μ|
2

(−‖w4(1)‖2 + ‖w4(0)‖2) = |μ|
2

(−‖w4(1)‖2 + ‖w2‖2).
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Consequently, inserting these six formulas in the previous identity (2.11) and using the fact that g is
non-increasing (according to (2.2)), we have

〈A W , W〉H � 1

2

∫ +∞

0
g′(s)‖A1/2w3(s)‖2 ds � 0, (2.12)

which means that A is dissipative.
Next, we shall prove that Id − A is surjective. Indeed, let F = (f1, f2, f3, f4)� ∈ H , we show that

there exists W = (w1, w2, w3, w4)
� ∈ D(A ) satisfying

(Id − A )W = F, (2.13)

which is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2 = w1 − f1,

w3 + ∂w3

∂s
= f3 + w1 − f1,

w4 + 1

τ

∂w4

∂p
= f4,

((1 − g0)A + (1 + |μ|) Id)w1 +
∫ +∞

0
g(s)Aw3(s) ds = (1 + |μ|)f1 + f2 − μw4(1).

(2.14)

We note that the second equation in (2.14) with w3(0) = 0 has a unique solution

w3 =
(∫ s

0
ey(f3(y) + w1 − f1) dy

)
e−s. (2.15)

On the other hand, the third equation in (2.14) with w4(0) = w2 = w1 − f1 has a unique solution

w4 =
(

w1 − f1 + τ

∫ p

0
f4(y) eτydy

)
e−τp. (2.16)

Next, plugging (2.15) and (2.16) into the fourth equation in (2.14), we get

(lA + (|μ| + e−τμ + 1) Id)w1 = f̃ , (2.17)

where

l = 1 − g0 +
∫ +∞

0
g(s) e−s

(∫ s

0
ey dy

)
ds = 1 −

∫ +∞

0
g(s) e−s ds

((2.3) implies that l > 0) and

f̃ = f2 + (|μ| + e−τμ + 1)f1 −
∫ +∞

0
g(s) e−s

(∫ s

0
eyA(f3(y) − f1) dy

)
ds − τμ e−τ

∫ 1

0
f4(y) eτy dy.

We have just to prove that (2.17) has a solution w1 ∈ D(A1/2) and replace in (2.15), (2.16) and the first
equation in (2.14) to obtain W ∈ D(A ) satisfying (2.13). Since, applying the Lax–Milgram theorem and
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514 A. GUESMIA

classical regularity arguments, we conclude that (2.17) has a unique solution w1 ∈ D(A1/2) satisfying,
using (2.15),

(1 − g0)w1 +
∫ +∞

0
g(s)w3(s) ds ∈ D(A).

This proves that Id − A is surjective. Finally, (2.12) and (2.13) mean that −A is maximal monotone
operator. Then, using Lummer–Phillips theorem (see Pazy, 1983), we deduce that A is an infinitesimal
generator of a linear C0-semigroup on H .

On the other hand, it is clear that the linear operator B is Lipschitz continuous. Finally, also A + B
is an infinitesimal generator of a linear C0-semigroup on H (see Pazy, 1983, Chapter 3, Theorem 1.1).
Consequently, (2.4) is well-posed in the sense of Theorem 2.1 (see Pazy, 1983; see also Komornik,
1994). �

3. Exponential stability

In this section, we investigate the asymptotic behaviour of the solution of problem (2.4). In fact, using
the energy method to produce a suitable Lyapunov functional, we will prove that, under a smallness
condition on |μ|, the solution of (2.4) decays to zero as t tends to infinity; that is,

lim
t→+∞ ‖U (t)‖2

H = 0, (3.1)

and the decay of ‖U ‖2
H is at least exponential. Our result reads as follows.

Theorem 3.1 Assume that (A1)–(A3) hold. Then there exists a positive constant δ0 independent of μ

such that, if
|μ| < δ0, (3.2)

then, for any U0 ∈ H , there exist positive constants δ1 and δ2 (depending on ‖U0‖H , a, g0, g(0), δ, τ

and μ) such that the solution of (2.4) satisfies

‖U (t)‖2
H � δ2 e−δ1t ∀ t ∈ R+. (3.3)

Proof. Assume that (A1)–(A3) are satisfied and let U0 ∈ D(A ), so that all the calculations below are
justified. By a simple density argument, (3.3) remains valid for any weak solution (U0 ∈ H ). We start
our proof by providing a bound on the derivative of the energy functional E associated with the solution
of (2.4) corresponding to U0

E(t) = 1

2
‖U (t)‖2

H = 1

2
(‖ut(t)‖2 + (1 − g0)‖A1/2u(t)‖2) + τ |μ|

2

∫ 1

0
‖z(t, p)‖2 dp

+ 1

2

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds ∀ t ∈ R+. (3.4)

Using (2.4), (2.7) and (2.12), we obtain

E′(t) � 1

2

∫ +∞

0
g′(s)‖A1/2η(t, s)‖2 ds + |μ|‖ut(t)‖2 ∀ t ∈ R+. (3.5)

Note that, in contrast to the situation where we have a frictional damping in (1.7 and 1.8) and no
delay in (1.3) and (1.6), the inequality (3.5) shows that E′ is not negative in general, and therefore the
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system (2.4) is, in general, not necessarily dissipative with respect to E. In order to continue the proof
of Theorem 3.1, we need the following four lemmas. �

Lemma 3.2 Let us define the functional

I1(t) = −
〈

ut(t),
∫ +∞

0
g(s)η(t, s) ds

〉
∀ t ∈ R+.

Then

I ′
1(t) � −(g0 − ε)‖ut(t)‖2 + ε‖A1/2u(t)‖2 + c1

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds

− c2

∫ +∞

0
g′(s)‖A1/2η(t, s)‖2 ds + μ

〈
z(t, 1),

∫ +∞

0
g(s)η(t, s) ds

〉
∀ t ∈ R+, (3.6)

where (the constants a and g0 are defined in (2.1) and (2.3), respectively)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε = g0(1 − g0)

2(2 + g0)
,

c1 = g0 + 1

2
(1 − g0)(2 + g0),

c2 = g(0)(2 + g0)

2ag0(1 − g0)
.

(3.7)

Proof. As in Messaoudi (2008a,b) and Muñoz Revira & Grazia Naso (2007), multiplying (1.1) by∫ +∞
0 g(s)η(t, s) ds, we obtain

0 =
〈

utt(t),
∫ +∞

0
g(s)η(t, s) ds

〉
+ (1 − g0)

〈
Au(t),

∫ +∞

0
g(s)η(t, s) ds

〉

+
〈∫ +∞

0
g(s)Aη(t, s) ds,

∫ +∞

0
g(s)η(t, s) ds

〉
+

〈
μut(t − τ),

∫ +∞

0
g(s)η(t, s) ds

〉
.

Using the definition of A1/2, we obtain

0 =
〈

utt(t),
∫ +∞

0
g(s)η(t, s) ds

〉
+ (1 − g0)

〈
A1/2u(t),

∫ +∞

0
g(s)A1/2η(t, s) ds

〉

+
〈∫ +∞

0
g(s)A1/2η(t, s) ds,

∫ +∞

0
g(s)A1/2η(t, s) ds

〉

+
〈

μut(t − τ),
∫ +∞

0
g(s)η(t, s) ds

〉
. (3.8)
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On the other hand, by using the fact that ηt(t, s) = −ηs(t, s) + ut(t), we find〈
utt(t),

∫ +∞

0
g(s)η(t, s) ds

〉
= ∂

∂t

〈
ut(t),

∫ +∞

0
g(s)η(t, s) ds

〉
−

〈
ut(t),

∫ +∞

0
g(s)ηt(t, s) ds

〉

= −I ′
1(t) − g0‖ut(t)‖2 +

〈
ut(t),

∫ +∞

0
g(s)ηs(t, s) ds

〉
.

Integrating by parts with respect to s in the infinite memory integral, and using the fact that
lims→+∞ g(s) = 0 and η(t, 0) = 0, we obtain〈

utt(t),
∫ +∞

0
g(s)η(t, s) ds

〉
= −I ′

1(t) − g0‖ut(t)‖2 −
〈

ut(t),
∫ +∞

0
g′(s)η(t, s) ds

〉
. (3.9)

Exploiting (3.8–3.9) and the fact that ut(t − τ) = z(t, 1), we deduce that

I ′
1(t) = −g0‖ut(t)‖2 + μ

〈
z(t, 1),

∫ +∞

0
g(s)η(t, s) ds

〉
−

〈
ut(t),

∫ +∞

0
g′(s)η(t, s) ds

〉

+ (1 − g0)

〈
A1/2u(t),

∫ +∞

0
g(s)A1/2η(t, s) ds

〉

+
〈∫ +∞

0
g(s)A1/2η(t, s) ds,

∫ +∞

0
g(s)A1/2η(t, s) ds

〉
. (3.10)

Using Cauchy–Schwarz and Young’s inequalities for the last three terms of (3.10), and (2.1) to estimate
‖η(t, s)‖2 by (1/a)‖A1/2η(t, s)‖2, we obtain, for ε defined in (3.7) (ε is a positive constant according
to (2.3)),

−
〈

ut(t),
∫ +∞

0
g′(s)η(t, s) ds

〉
� ε‖ut(t)‖2 + 1

4ε

(∫ +∞

0

√
−g′(s)

√
−g′(s)‖η(t, s)‖ ds

)2

� ε‖ut(t)‖2 − g(0)

4aε

∫ +∞

0
g′(s)‖A1/2η(t, s)‖2 ds,

(1 − g0)

〈
A1/2u(t),

∫ +∞

0
g(s)A1/2η(t, s) ds

〉

� ε‖A1/2u(t)‖2 + (1 − g0)
2

4ε

(∫ +∞

0

√
g(s)

√
g(s)‖A1/2η(t, s)‖ ds

)2

� ε‖A1/2u(t)‖2 + g0(1 − g0)
2

4ε

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds

and 〈∫ +∞

0
g(s)A1/2η(t, s) ds,

∫ +∞

0
g(s)A1/2η(t, s) ds

〉
�

(∫ +∞

0

√
g(s)

√
g(s)‖A1/2η(t, s)‖ ds

)2

� g0

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds.
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Inserting these three inequalities into (3.10), we obtain (3.6) with c1 and c2 defined in (3.7) (c1 and c2

are positive constants thanks to (A1)–(A3)). �

Lemma 3.3 Define the functional

I2(t) = 〈ut(t), u(t)〉 ∀ t ∈ R+.

Then

I ′
2(t) � ‖ut(t)‖2 − (1 − g0 − ε)‖A1/2u(t)‖2 − μ〈z(t, 1), u(t)〉

+ c3

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds ∀ t ∈ R+, (3.11)

where ε is defined in (3.7) and

c3 = 2 + g0

2(1 − g0)
. (3.12)

Proof. Multiplying (1.1) by u, we find

0 = 〈utt(t), u(t)〉 + (1 − g0)〈Au(t), u(t)〉 +
〈∫ +∞

0
g(s)Aη(t, s) ds, u(t)

〉
+ 〈μut(t − τ), u(t)〉.

Consequently, using the definition of A1/2 and the fact that ut(t − τ) = z(t, 1), we have

0 = ∂

∂t
〈ut(t), u(t)〉 − ‖ut(t)‖2 + (1 − g0)‖A1/2u(t)‖2

+
〈∫ +∞

0
g(s)A1/2η(t, s) ds, A1/2u(t)

〉
+ 〈μz(t, 1), u(t)〉,

which implies that

I ′
2(t) = ‖ut(t)‖2 − (1 − g0)‖A1/2u(t)‖2

− μ〈z(t, 1), u(t)〉 −
〈∫ +∞

0
g(s)A1/2η(t, s) ds, A1/2u(t)

〉
. (3.13)

By using Cauchy–Schwarz and Young’s inequalities for the last term of (3.13), we obtain (as in the
proof of (3.6))

−
〈∫ +∞

0
g(s)A1/2η(t, s) ds, A1/2u(t)

〉
� ε‖A1/2u(t)‖2 + g0

4ε

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds.

Reporting this inequality in (3.13) and using the definition of ε in (3.7), (3.11) holds. �

Now, as in Fridman et al. (2010) and Nicaise et al. (2011), we prove the following estimate.
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Lemma 3.4 The functional

I3(t) =
∫ 1

0
e−2τp‖z(t, p)‖2 dp ∀ t ∈ R+,

satisfies

I ′
3(t) � −2 e−2τ

∫ 1

0
‖z(t, p)‖2 dp + 1

τ
‖ut(t)‖2 − e−2τ

τ
‖z(t, 1)‖2 ∀ t ∈ R+. (3.14)

Proof. Using (2.10), the derivative of I3 entails

I ′
3(t) = 2

∫ 1

0
e−2τp〈zt(t, p), z(t, p)〉 dp

= − 2

τ

∫ 1

0
e−2τp〈zp(t, p), z(t, p)〉 dp

= − 1

τ

∫ 1

0
e−2τp ∂

∂p
(‖z(t, p)‖2) dp.

Then, by integrating by parts and z(t, 0) = ut(t), the above formula can be rewritten as

I ′
3(t) = −2

∫ 1

0
e−2τp‖z(t, p)‖2 dp + 1

τ
‖ut(t)‖2 − e−2τ

τ
‖z(t, 1)‖2,

which gives (3.14), since e−2τp � e−2τ , for any p ∈]0, 1[. �

Lemma 3.5 There exists a positive constant δ0 independent of μ such that, if (3.2) holds, then there
exist positive constants ε1 and δ1 such that the functional

F = E + ε1

(
I1 + ε2 + g0(1 − g0)

2(1 − g0 − ε)
I2 + τ(ε2 − 2ε + g0(1 − g0))

8(1 − g0 − ε)
I3

)
(3.15)

satisfies F ∼ E and
F ′(t) � −δ1F(t) ∀ t ∈ R+. (3.16)

Proof. Let ε1 > 0, which will be fixed later carefully. The constants (ε2 + g0(1 − g0))/2(1 − g0 − ε)

and τ(ε2 − 2ε + g0(1 − g0))/8(1 − g0 − ε) are positive according to (2.3) and the choice of ε in (3.7).
Then, combining (3.5), (3.6), (3.11) and (3.14), we obtain

F ′(t) � −ε1

((
c4 − |μ|

ε1

)
‖ut(t)‖2 + c5‖A1/2u(t)‖2 + c6

∫ 1

0
‖z(t, p)‖2 dp

+c5

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds + c7‖z(t, 1)‖2

)

+
(

1

2
− ε1c2

) ∫ +∞

0
g′(s)‖A1/2η(t, s)‖2 ds + ε1c8

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds

+ με1

〈
z(t, 1), −c9u(t) +

∫ +∞

0
g(s)η(t, s) ds

〉
∀ t ∈ R+, (3.17)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c4 = 3(ε2 − 2ε + g0(1 − g0))

8(1 − g0 − ε)
,

c5 = ε2 − 2ε + g0(1 − g0)

2
,

c6 = τ(ε2 − 2ε + g0(1 − g0))

4(1 − g0 − ε)
e−2τ ,

c7 = ε2 − 2ε + g0(1 − g0)

8(1 − g0 − ε)
e−2τ ,

c8 = c1 + c5 + ε2 + g0(1 − g0)

2(1 − g0 − ε)
c3,

c9 = ε2 + g0(1 − g0)

2(1 − g0 − ε)
.

(3.18)

Bearing in mind (2.3), (3.7) and (3.12), the constants ci (i = 4, . . . , 9) are positive and independent of
μ. On the other hand, (2.2) implies that

ε1c8

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds +

(
1

2
− ε1c2

)∫ +∞

0
g′(s)‖A1/2η(t, s)‖2 ds

�
(

1

2
− ε1c10

) ∫ +∞

0
g′(s)‖A1/2η(t, s)‖2 ds,

where (noting that c10 is also independent of μ)

c10 = c2 + c8

δ
. (3.19)

Next, the use of Cauchy–Schwarz and Young’s inequalities and (2.1) to estimate ‖η(t, s)‖2 and ‖u(t)‖2

by (1/a)‖A1/2η(t, s)‖2 and (1/a)‖A1/2u(t)‖2, respectively, gives (as in the proof of (3.6))

με1

〈
z(t, 1), −c9u(t) +

∫ +∞

0
g(s)η(t, s) ds

〉

� ε1c7‖z(t, 1)‖2 + ε1μ
2

4c7

(
c9‖u(t)‖ +

∫ +∞

0
g(s)‖η(t, s)‖ ds

)2

� ε1c7‖z(t, 1)‖2 + ε1μ
2

2ac7

(
c2

9‖A1/2u(t)‖2 + g0

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds

)

� ε1c7‖z(t, 1)‖2 + ε1μ
2c11

(
‖A1/2u(t)‖2 +

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds

)
,

where (noting that c11 is also independent of μ)

c11 = 1

2ac7
max{c2

9, g0}. (3.20)
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Therefore, inserting the last two inequalities in (3.17) and using the definition (3.4) of E, we obtain

F ′(t) � −ε1c12E(t) +
(

1

2
− ε1c10

)∫ +∞

0
g′(s)‖A1/2η(t, s)‖2ds ∀ t ∈ R+, (3.21)

where

c12 = 2 min

{
c4 − |μ|

ε1
,

c6

τ |μ| , c5 − μ2c11

}
. (3.22)

Finally, by definition of E, I1, I2 and I3, we have, using again Cauchy–Schwarz and Young’s inequali-
ties, (2.1) and (2.3),

|I1(t)| =
∣∣∣∣
〈

ut(t),
∫ +∞

0
g(s)η(t, s) ds

〉∣∣∣∣
� 1

2

(
‖ut(t)‖2 + g0

a

∫ +∞

0
g(s)‖A1/2η(t, s)‖2 ds

)

� max
{

1,
g0

a

}
E(t), (3.23)

|I2(t)| = |〈ut(t), u(t)〉|

� 1

2

(
‖ut(t)‖2 + 1

a
‖A1/2u(t)‖2

)

� max

{
1,

1

a(1 − g0)

}
E(t) (3.24)

and

|I3(t)| =
∫ 1

0
e−2τp‖z(t, p)‖2 dp �

∫ 1

0
‖z(t, p)‖2 dp � 2

τ |μ|E(t). (3.25)

Therefore, (3.23–3.25) imply that

|I1(t) + ε2 + g0(1 − g0)

2(1 − g0 − ε)
I2 + τ(ε2 − 2ε + g0(1 − g0))

8(1 − g0 − ε)
I3(t)| � c13E(t),

where

c13 = max
{

1,
g0

a

}
+ ε2 + g0(1 − g0)

2(1 − g0 − ε)
max

{
1,

1

a(1 − g0)

}
+ ε2 − 2ε + g0(1 − g0)

4|μ|(1 − g0 − ε)
, (3.26)

which, using (3.15), gives

(1 − ε1c13)E(t) � F(t) � (1 + ε1c13)E(t) ∀ t ∈ R+. (3.27)

Now, we assume that |μ| satisfies (3.2) with

δ0 = min

{√
c5

c11
,

c4

2c10
,

c4 − ((ε2 − 2ε + g0(1 − g0))/4(1 − g0 − ε))

max{1, g0/a} + ((ε2 + g0(1 − g0))/2(1 − g0 − ε)) max{1, 1/a(1 − g0)}
}

(3.28)
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and we fix ε1 such that

|μ|
c4

< ε1 < min

{
1

2c10
,

1

c13

}
. (3.29)

First, from (3.7) and (3.18), we conclude that

c4 − ε2 − 2ε + g0(1 − g0)

4(1 − g0 − ε)
= ε2 − 2ε + g0(1 − g0)

8(1 − g0 − ε)
> 0,

and then δ0 is a positive constant and independent of μ. Second, (3.2), (3.28) and (3.29) imply:

(i) ε1 exists,

(ii) c4 − |μ|/ε1 > 0 and c5 − μ2c11 > 0, which gives c12 > 0, in view of (3.22),

(iii) 1 − ε1c13 > 0, which gives F ∼ E thanks to (3.27),

(iv) 1
2 − ε1c10 > 0, which implies that the last term of (3.21) is non-positive (note that g in non-
increasing), and then, using (3.21) and (3.27), (3.16) holds with δ1 = ε1c12/(1 + ε1c13).

This finishes the proof of Lemma 3.5. �

Now, going back to the proof of Theorem 3.1, we have to just integrate the differential inequal-
ity (3.16) over [0, t] to obtain

F(t) � F(0) e−δ1t ∀ t ∈ R+.

Consequently, using (3.4) and (3.27), we find

‖U (t)‖2
H = 2E(t) � 2

1 − ε1c13
F(t) � 2

1 − ε1c13
F(0) e−δ1t ∀ t ∈ R+,

which gives (3.3) with δ2 = (2/(1 − ε1c13))F(0). Thus the proof of Theorem 3.1 is completed.

4. Applications

We present in this section some extensions and particular applications included in our abstract
equation (1.1).

4.1 More general model

Our results hold for the more general form

utt(t) + Au(t) −
∫ +∞

0
g(s)Bu(t − s) ds + Cut(t − τ) = 0 ∀ t > 0, (4.1)

where B : D(B) → H is a self-adjoint linear positive definite operator having domain D(A) ⊂ D(B) ⊂ H
with dense and compact embeddings and C : H → H is a self-adjoint linear operator such that, for some
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positive constants a0, a1, a2 and a3,

‖v‖2 � a0‖B1/2v‖2 � a1‖A1/2v‖2 � a2‖B1/2v‖2 ∀ v ∈ D(A1/2) (4.2)

and
‖Cv‖2 � a3‖v‖2 ∀ v ∈ H

with g0 ∈]0, 1/a1[ and a3 (which plays the role of |μ|) is small enough so that (3.2) holds for |μ| = a3.

4.2 Finite memory

Our model (1.1) includes the case of finite memory

utt(t) + Au(t) −
∫ t

0
g(s)Au(t − s) ds + μut(t − τ) = 0 ∀ t > 0.

This equation corresponds to (1.1) with a null past history; that is u0 ≡ 0.

4.3 Wave equation

In this application, as well as in the next two ones, let α be a positive constant and Ω ⊂ R
n be an open

bounded domain with smooth boundary Γ , where n ∈ N
∗.

Our results hold for the following wave equation with Dirichlet boundary condition:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt(x, t) − αΔu(x, t) + α

∫ +∞

0
g(s)Δu(x, t − s) ds + μut(x, t − τ) = 0, Ω × R+,

u(x, t) = 0, Γ × R+,

u(x, −t) = u0(x, t), ut(x, 0) = u1(x), Ω × R+,

ut(x, t − τ) = f0(x, t − τ), Ω×]0, τ [,

(4.3)

which is equivalent to (1.1 and 1.2) with A = −αΔ, D(A) = H2(Ω) ∩ H1
0 (Ω), H = L2(Ω) and

〈w1, w2〉 = ∫
Ω

w1w2 dx.
We can also consider the general wave equation A = −∑n

i,j=1(∂/∂xi)(aij(∂/∂xj)) with variable coef-
ficients aij depending only on the space variable and satisfying classical smoothness, symmetry and
coercivity conditions.

4.4 Petrovsky-type system

Our results also hold for the following Petrovsky system with Dirichlet and Neumann boundary condi-
tions:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

utt(x, t) + αΔ2u(x, t) − α

∫ +∞

0
g(s)Δ2u(x, t − s) ds + μut(x, t − τ) = 0, Ω × R+,

u(x, t) = ∂u

∂ν
(x, t) = 0, Γ × R+,

u(x, −t) = u0(x, t), ut(x, 0) = u1(x), Ω × R+,

ut(x, t − τ) = f0(x, t − τ), Ω×]0, τ [,

(4.4)

which is equivalent to (1.1 and 1.2) with A = αΔ2, D(A) = H4(Ω) ∩ H2
0 (Ω) and H = L2(Ω).
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4.5 Coupled systems

We can also consider the following coupled wave–wave, Petrovsky–Petrovsky and wave–Petrovsky
systems with Dirichlet and Neumann boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) − αΔw(x, t) + α

∫ +∞

0
g(s)Δw(x, t − s) ds + μwt(x, t − τ) + dv(x, t) = 0, Ω × R+,

vtt(x, t) − βΔv(x, t) + β

∫ +∞

0
g(s)Δv(x, t − s) ds + μvt(x, t − τ) + dw(x, t) = 0, Ω × R+,

w(x, t) = v(x, t) = 0, Γ × R+,

(w(x, −t), v(x, −t)) = (w0(x, t), v0(x, t)), (wt(x, 0), vt(x, 0)) = (w1(x), v1(x)), Ω × R+,

(wt(x, t − τ), vt(x, t − τ)) = (k0(x, t − τ), h0(x, t − τ)), Ω×]0, τ [,

(4.5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) + αΔ2w(x, t) − α

∫ +∞

0
g(s)Δ2w(x, t − s) ds + μwt(x, t − τ) + dv(x, t) = 0, Ω × R+,

vtt(x, t) + βΔ2v(x, t) − β

∫ +∞

0
g(s)Δ2v(x, t − s) ds + μvt(x, t − τ) + dw(x, t) = 0, Ω × R+,

w(x, t) = v(x, t) = ∂w

∂ν
(x, t) = ∂v

∂ν
(x, t) = 0, Γ × R+,

(w(x, −t), v(x, −t)) = (w0(x, t), v0(x, t)), (wt(x, 0), vt(x, 0)) = (w1(x), v1(x)), Ω × R+,

(wt(x, t − τ), vt(x, t − τ)) = (k0(x, t − τ), h0(x, t − τ)) Ω×]0, τ [
(4.6)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) − αΔw(x, t) + α

∫ +∞

0
g(s)Δw(x, t − s) ds + μwt(x, t − τ) + dv(x, t) = 0, Ω × R+,

vtt(x, t) + βΔ2v(x, t) − β

∫ +∞

0
g(s)Δ2v(x, t − s) ds + μvt(x, t − τ) + dw(x, t) = 0, Ω × R+,

w(x, t) = v(x, t) = ∂v

∂ν
(x, t) = 0, Γ × R+,

(w(x, −t), v(x, −t)) = (w0(x, t), v0(x, t)), (wt(x, 0), vt(x, 0)) = (w1(x), v1(x)), Ω × R+,

(wt(x, t − τ), vt(x, t − τ)) = (k0(x, t − τ), h0(x, t − τ)), Ω×]0, τ [,
(4.7)

where α and β are positive constants, and d is a constant with |d| small enough such that (2.1)
holds. Systems (4.5–4.7) are equivalent to (1.1 and 1.2) with u = (w, v), f0 = (k0, h0), H = (L2(Ω))2,
〈(w1, w̃1), (w2, w̃2)〉 = ∫

Ω
(w1w2 + w̃1w̃2) dx,

Au =

⎧⎪⎨
⎪⎩

−(αΔw, βΔv) + d(v, w) in the case of (4.5),

(αΔ2w, βΔ2v) + d(v, w) in the case of (4.6),

(−αΔw, βΔ2v) + d(v, w) in the case of (4.7)
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and

D(A) =

⎧⎪⎪⎨
⎪⎪⎩

(H2(Ω) ∩ H1
0 (Ω))2 in the case of (4.5),

(H4(Ω) ∩ H2
0 (Ω))2 in the case of (4.6),

(H2(Ω) ∩ H1
0 (Ω)) × (H4(Ω) ∩ H2

0 (Ω)) in the case of (4.7).

5. General comments and open problems

We give in this last section some general comments and open problems.

(1) It is interesting to determine the biggest value of δ0 in (3.2) for which the exponential
stability (3.3) of (1.1 and 1.2) holds. On the other hand, is the system (1.1 and 1.2) instable
when |μ| is not small enough? Some instabilities hold for (1.7) if |μ| is not small enough (see
Nicaise & Pignotti, 2006).

(2) Assumption (4.2) implies that A and B are equivalent. When C = 0, some (non-exponential)
decay estimates of (4.1) have been proved in Guesmia (2011) and Muñoz Revira & Grazia Naso
(2007, 2010) even if the last inequality of (4.2) does not hold. We do not know if such decay
estimates can be proved in case of presence of delay in (4.1); that is, C |= 0.

(3) Condition (2.2) implies that g converges to zero at infinity at least exponentially. Does the strong
stability (3.1) of system (1.1 and 1.2) still hold for g converging to zero at infinity less faster than
exponentially, and what is the decay estimate satisfied by ‖U ‖2

H in this case?

(4) Our results do not include the case of wave equation and Petrovsky systems (4.3) and (4.4), for
example, with boundary memory and delay, or internal memory and boundary delay, or con-
versely. It is interesting to study these situations.

(5) Another interesting question concerns the stability of coupled systems like (4.5–4.7) with two
delays and one memory considered only on one equation of the system.
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