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ABSTRACT 

We consider in this paper  the evolution system y"  - Ay  -- 0, where A = 

Oi(a,jOj) and aij  E CI (R+ ;  W I ' ° ° ( ~ ) ) N W l ' ° c ( ~  × ~:~+), with initial data  

given by (Y0, Yl) E L2(~) × H -1 (~) and the nonhomogeneous condition 

y -- v on F×]0, T[. Exact controllability means that  there exist a time 

T > 0 and a control v such that  y(T, v) = y'(T, v) = 0. The main result 

of this paper  is to prove that  the above system is exactly controllable 

when T is "sufficiently large". Moreover, we obtain sharper  estimates on 

T. 

1. I n t r o d u c t i o n  a nd  s t a t e m e n t  o f  t h e  resu l t s  

Let ~ be a non-empty, bounded, open set in R n (n C N*), with boundary F of 

class C 2, and denote v(x) = (Vl(X), . . . ,  vn(x)) the outward unit normal vector 

to F. 

Let A = Oi(aijOj) be a second-order elliptic differential operator with coeffi- 

cients a~j E C 1 (R+; W 1'~ (~ ) )NW 1,~ (~t × R +) where R + = [0, + ~ )  (throughout 

this paper  we use the summation convention for repeated indices), such that  

(1.1) aij = aj~ and aij~i~j ~_ O~I~I 2 in ~ × R + 

for some a > 0 and for all ~ = (~1, . . . ,  ~n) e R n. 
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Consider the problem 

(1.2) 
y " -  Ay = 0 in ~ x R + ,  
y = v  o n F x R  +, 
y(0) = Yo and y'(0) = Yl in f~, 

where'  = O/Ot and y(0) and y'(0) denote, respectively, the functions x ,  ) y(x, O) 
and x ,  ) y'(x,O). 

The problem of exact controllability for system (1.2) states as follows: given 

T > 0 large enough, is it possible, for every initial data (Y0, Yl) from a suitable 

space, to find a corresponding control v deriving the system to rest at time T, 

i.e., such that the solution y of (1.2) satisfies 

y ( T ) = y ' ( T ) = O  i n f ' ?  

Concerning the exact controllability for system (1.2) we note that the case 

where a~j is independent of the time t was studied by Avellaneda and Lin [1], 

Ho [3, 4], Komornik [5] and Lions [7], and the case aij = 5ija(t) was studied 

by MunSz Rivera [9]. The objective of this paper is to show that this system is 

exactly controllable in the general case. For that we use the Hilbert Uniqueness 

Method (HUM) introduced by Lions [8] and a new approach given by Guesmia 

[2]. 
Let us define u as the solution of the following system: 

(1.3) 
u " -  Au = 0 in ~ x R + ,  
u = 0 on F x R +, 
u ( 0 ) = u o a n d u ' ( 0 ) = u l  i n ~ .  

The well-posedness of the problem (1.3) can be established by standard methods 

of evolution systems (cf. Pazy [10], ch. 5); we omit the details. This problem is 

well-posed in the following sense: 

* For every (u0, Ul) E H~(f~) x L2(f~), the system (1.3) has a unique solution 

(defined in a suitable weak sense) satisfying 

u • C(R+; H01 (12)) N CI(R+; L2(f~)), 

w h e r e H ~ ( ~ ) = { v • H l ( f ~ ) : v = 0  onF}.  

* If (u0, ul) • H2(f~) Yl H~(f~) x H~(f~) then the solution (called a strong 

solution) is more regular: 

c(R+; H2(U) n/{o  (U)) n HoffU)) n C2(R+; L2(U)). 
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* The energy of the (weak) solution, defined by the formula 

(1.4) E(t) = -~ (lu'l 2 + a~jOiuO~u)dx, t e R +, 

is a positive function and satisfies the identity 

1/~a~jOiuOjudx, Vt e R+; (1.5) E'(t) = 

then our system is not conservative (that is, the energy is not a constant fuac- 

tion) in general. The observability inequalities (1.13) below are generally more 

challenging to achieve than in the case of conservative systems as in [3, 4, 5, 7]. 

Fix a point x ° C ]R n and, putting re(x) -- x - x  °, R = IIm[IL~(a). We determine 

the sets 

(1.6) F o = { x E F :  m(x) .u (x )<O} and F I = F \ F o .  

(For example, we may always choose Fo = 0 and F1 = F.) 

Remark: As an example of the existence of such a point x ° we can consider 

the following domain: ~ = ftl  \ (to where ~1 and Fro are two open domains star 

chapped with respect to x °, with boundary F1 and Fo, respectively, and ft0 C ill- 

By our choice of x ° we easily get that the hypotheses on F1 and Fo hold. 

Let 7, ~ > 0 and ~ _> 0 denote the real numbers such that 

(1.7) (2a~j - mkOkaij)~i~j > "yaij~i~j in ~ × R +, 

(1.8) (mk~k) 2 _< flaij~i~j in ~ × R + 

and 

(1.9) la~j~j l  <_ ~aij~i~j in ~ × R + 

for all ~ E R '~. (Because ft is a bounded set, a~j E W I ' ~ ( ~  × R +) and, by (1.1), 

then fl and )~ exist always.) Assume that 

(1.10) 9' _< 2n, 

(1.11) 4A_~___~ < 1 

and let T E R + such that 

1 (1 4 A v ~ )  (1.12) T > - ~ l o g  ~ / .  

If ~ = 0, then we take T > 4x/~/7. 

First, we will prove the following observability result. 
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THEOREM 1.1: Assume (1.1), (1.6), (1.10)-(1.12). Then there exist two posi- 

tive constants cl and c2 such that every strong solution of (1.3) satisfies the 

inequalities 

(1.13) clE(O) <_ aijOiuOjudFdt <_ c2E(O). 
1 

Remarks: * Applying the same density argument as before, the estimates (1.13) 

remain valid for weak solutions, too, because for every weak solution of (1.3), the 

second estimate in (1.13) allows us to define the trace of aijOiuOju on F1 x R + 

as an element of L~oc(rl × R+). 
• If A = 0 (i.e. a~j = 0) then the condition on T reduces to T > 4 v ~ / %  In 

this case, we obtain a better  condition on T than the one given by Ho [4]. 

• The first inequality in (1.13) cannot hold for arbitrarily small T. In [5], 

Komornik shows that the condition T > 4 v ~ 7  is the best possible if 

and A = A (i.e., aij = 5ij, A = 0, ~/= 2). 

• The observability inequalities (1.13), which yield energy decay (stabilization) 

results, will be proved under the restrictive condition (1.7). This condition has 

been assumed for the first time in Komornik [5]. The general case remains open. 

On the other hand, it is possible to consider more general conditions than (1.7) 

and (1.9); we take ~(t) and A(t) as two functions on time t. To keep this paper 

from becoming too long, we consider only the case of (1.7) and (1.9). 

• Theorem 1.1 means that in some sense the observation of the solution in 

a neighbourhood of the boundary during a sufficiently large time allows one to 

determine the initial data. Indeed, if two solutions coincide in this set, then the 

boundary integral in (1.13) for their difference vanishes and therefore the initial 

energy of their difference is equal to zero by the first inequality in (1.13). From 

the unicity of the solution, this implies that the two solutions correspond in fact 

to the same initial data and hence they are identical. 

Applying the Hilbert Uniqueness Method (HUM) introduced by Lions [6, 8] 

we shall deduce from Theorem 1.1 an exact controllability result for the system 

(1.2). 

THEOREM 1.2: Assume (1.1), (1.6), (1.10)-(1.12). Then for any given (Yo, Yl) E 

L 2 (ft) x H - 1  (~) there exists a corresponding control function v C L2oc (JR+; L 2 (F)) 

such that the solution of (1.2) satisfies 

(1.14) y(T) = y'(T) = 0 in ~. 
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Moreover, we may assume that v vanishes outside ofFx x (0, T). 

Remark: Because our system (1.2) is linear, then Theorem 1.2 implies that, 

for any given (Yo, Yl), (90, Yl) E L2(fl) x H - l ( f l ) ,  there exists a corresponding 
control function v C L~oc(~+; L2(P)) such that the solution of (1.2) satisfies the 

final condition (see Guesmia [2]) 

y(T)=90, yt(T)=yl  ingt. 

2. Obse rvab i l i t y :  P r o o f  of  T h e o r e m  1.1 

First we prove the following lemma. 

LEMMA 2.1: We have 

(2.1) 

(2.2) 

-hE(t)<_E'(t)<_hE(t) V t E R  +, 

e-~E(O) <_ E(t) <_ e~E(O) Vt ~ W .  

Proof'. From (1.4), (1.5) and (1.9) we obtain (2.1). By Gronwall's inequality we 
deduce (2.2) from (2.1). Hence the lemma follows. 

Now we prove Theorem 1.1. Fix an arbitrary function h E (WI '~ (~) )  ~ and a 

number T > 0. We deduce from (1.3) that 

0 = hkOku)(u" -- Oi(a~jOju))dxdt 

= [ f  hkOkuu'dxlT--~oT~rhkOkuaijOjuuidFdt 
LJg t 3 0 

+ ~oT ]~ (OihkaijOjUOkU + hkaijOjuOiOku-- ~hkOklu'12) dxdt. 

Since (using the symmetry of ais) 

1 1 
(2.3) aijOjuOiOku = ~Ok(aijOjuO~u) - ~(Okaij)OiuOyu, 

integrating by parts the last two terms in the last integral and then multiplying 
by 2, we obtain the following identity: 

(2.4) fTfr(2hkOkuaijOjuui+(h.u)(]u'i2--aijO, uOju))dFdt 

T T 

=[]~2hkOkuu'dx]-jo do f /a hkOkaijOiuOjudxdt 

+ fo f(2O, h a, + (div h)(,u'l 2 -a i ,  OiuOju))dxdt. 
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Using the assumption hk C WI'~(f l ) ,  aij E WI'°~(~ × R + ) ,  the condition (1.1) 

and the estimate (2.2), the right-hand side of (2.4) can be easily majorized by 

cE(0), where c is a positive constant. Furthermore, we deduce from the homo- 

geneous Dirichlet boundary condition in (1.3) that 

u t = 0  and Okuvi=O~uvkvi=O~uvk onF ,  

and hence 

hkOkuaijOjuvi = ( h.v)aijOiuOju. 
Therefore the left-hand side of (2.4) reduces to 

LT l; (h.ix)aijO~uOjudFdt. 

Choosing h such that h = v on F, the second inequality in (1.13) follows with 

C 2 = C .  

Choosing now h(x) = m(x) the identity (2.4) reduces to 

LT ir( h.v)aijOiuOjudFdt 

LJ~ J0 ((2 - n)aiSOiuOju -f- nlu t )dxdt 

Furthermore, we also deduce from (1.3) that 

o = LT illu(u" - Oi(a~jOju))dxdt 
T T T 

T T 

= [S~ u~'a,],o + ,o [ , .  [ (.,,o,.oju_ lu'l:)a.at 
Multiplying this equality by n - 7/2 and combining with the preceding identity 

we obtain that  

LT L ( h.ix)aijO, uOjuddt 

=[in(2hkOku+(n--~)u)u'dx]:--LTSahk(Oka,j)OiuOj udxdt 

T 7 U 7 1 u ' 1 2 " d x d t  I t )  +L ~ ((2-7)a~'°~°j +3 
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since, using (1.7), (1.6) and (1.4), we obtain 
(2.5) 

fo [fo 1 R aiiOiuOjudFdt >_ ~/ E(t)dt - (2hkOkU + (n -- ~)u)u'dxdtjo b 

Let us majorize the last integral. We have 

112h~Oku + ( n  - ~ / 2 ) ' ~ I I L ( ~ )  - 112hkOkullL(~) 

= / ( ( n  - "#2 )~  ~ + 4(n - "ff2)h~Oku~)d~ 

=/~  ((n-'Y/2)2u2- 2(n-~//2)nu2)dx + fr  2(n-~//2)hkvku2dF 

= (~2 /4  - n 2) f~ u2dx < 0 

(cf. (1.10)). Therefore, using (1.8) and (1.4) we obtain 

< 1 v~fn]u,12dx" 
(2.6) < v~ / (a,jO, uO~u + lu'l=)d~ = 2V/-~E(t). 

Therefore we deduce from (2.5) and (2.6) the inequality 

(2.7) R 1 aijOduOjudFdt >_ ~t E(t)dt - 2V/'~(E(0) + E(T)). 

Suppose that E(T) > E(O). Now from (2.1) we have 

1 E(t) >_ ~ ( ( 1 -  e-~t)E(t)) ', Vt >_ O. 

Then from (2.7) we obtain 

R f T  f aijOiucO, udFdt >_ ( ~ ( 1 -  e -~T) -4V/-~)E(T) 
J 0  J F 1  

_> ( ~ ( 1 - e  -xT) - 4 v ~ ) E ( 0 )  

and the first estimate of (1.13) follows with 

e-~) Rye. el : ~-~(1 - 

(From (1.12) we have cl > 0.) With the same reasoning we can argue the case 
for E(T) < E(0), and the proof is thus complete. 

We give now an equivalent form of the integral in (1.13). 
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LEMMA 2.2: Assume (1.1) and put 

r/ E a 2 
- -  II ullL~(rx~+). 

i , j  

Then every strong solution of (1.3) satisfies on r x R + the inequalities 

(2.s)  ai,0 u0,  _< Ioijoj ,,I 2 <_ 

Applying the same density argument as before, the estimates (2.8) remain valid 

for the weak solution, too. 

Proof'. The proof of the second inequality does not use the boundary condition: 

]a,jOjuu,,2 < ElaijOju, 2< _ ( Elaijl2) ( ElOju]2) < - ~aijOjuOiu. 
i i , j  j 

For the proof of the reverse inequality, first we note that  thanks to the boundary 

conditions in (1.3) we have 

a,jOjuOiu = (aijOjup,)O,u <_ la,jOju.,llo. l 
_< la , jo; , . , l ( ivul2){  ___ laijOju,,l( a jOj O, ) ½ 

and the first inequality in (2.8) follows. 

3. C o n t r o l l a b i l i t y :  P r o o f  o f  T h e o r e m  1.2 

The main idea is to seek a control in the form 

aijOjuui on r t x ] 0 ,  T[ 
(3.1) v = 

0 on r x R + \ I"lX]0, T[  

where u is the solution of (1.3) for some suitable initial data. Thanks to Theorem 

1.1 and Lemma 2.2 these controls have the required regularity in Theorem 1.2 

for all weak solutions of (1.3). Let us define z as the solution of 

(3.2) { z " -  Az  = 0 in ~ x R +, 
z = v on F x R +, 
z(T)=z'(T)=O i n a .  

I t  is well known that  v E L 2 (F × R + ) for all weak solutions u of (1.3) and system 

(3.2) has only one solution, z E C(R+;L2(~t)).  Let us multiply the equation in 
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(1.3) by z and integrate by parts formally. We obtain 

T 
0 = f o  / f  z(uU -- Oi(aijOju)) dxdt 

= (z" -- Oi(aijOjz))udxdt + (zu' - z'u)dx 
0 

using definition (3.1) of v and systems (1.3) and (3.2), we obtain 

foT frllaijOjuvi]2d['d$: ~(z'(O)uo-z(O)ul)dX. 

Hence, putting 

g - -  Hol(f~) × n2(f~) and g '  = g - l ( ~ )  x n2(~) 

and setting 

A(uo, ul) = (z'(0), -z (0) )  

for brevity, we have 

(3.3) (A(uo, Ul),(Uo, Ul)IH,,H : fOT ~Fl[aijOjulji[2dFd$. 

Obviously, A: H -+ H '  is a bounded linear map. Applying HUM, it is sufficient to 
show tha tA  is onto. Indeed, then for any given (Y0, Y~) E L2(f~) × H - l ( ~ )  it will 
suffice to choose the control v defined by (3.1), where u is the solution of (1.3) 
corresponding to (u0, uz) = A-I (yI , -Yo) ,  and then the function z defined by 
system (3.2) satisfies (z(0), z'(0)) = (Y0, Yl), taking v defined by (3.1) in system 
(1.2). By uniqueness of solutions for linear hyperbolic systems, we conclude that 
y -- z, and from (3.2) the result (1.14) follows. 

Applying the first estimate of (1.13) in Theorem 1.1 and Lemma 2.2, we con- 
clude from identity (3.3) that A is coercive. Applying the Lax-Milgram theorem 
we conclude that A is an isomorphism. 

The proof of Theorem 1.2 is now complete. 
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