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ABSTRACT. Weconsider a compactly coupled system of nonlinear waveequations
with nonlinear feedbacks localized on a part of the boundary. We first linearize
the problem and use a fixed point argument to establish a local existence result,
for arbitrary initial data. We then show that, under some conditions on the
form of the nonlinearity and on the form of the feedbacks, this unique solution
is global and with an exponentially decaying energy.

Keywords: exponential decay, fixed point, global 'existence, local existence,
multiplier method, wave equation

AMS Subject Classification: 35 L 45 - 35 B 40 - 35 L 05 - 35 L 55

1. Introduction. In [1], Aassila studied the following problem

u~ - .6.ul + a(x)(ul - U2) = 0, (x, t) E OxIR+
u~ - .6.u2 + a(x)(u2 - Ul) = 0, (x, t) E OxIR+
Ul = U2 = 0, (x, t) E roxIR+
~ + aiui + 9i(uD = 0, i = 1,2, (x, t) E rl xIR+
Ui(O) = u?, u~(O) = u;' i = 1,2, xE 0

where 0 is a bounded domain ofIRn (n E IN*)with a smooth boundary 80 = rourl
and {ro, rd is a partition of the boundary, a: 0 --+ IR+, aI, a2: rl --+ IR+ and
91,92: IR --+ IR are given functions. They proved an energy decay result of the
strong solution with weak dissipation. In his proof he used the multipliers method
introduced by Komornik in [14] and Lions in [20].

This type of problems is motivated by similar problems in ordinary differential
equations for coupled oscillators. It has an application in engineering such as in
the case of isolation of objects from outside disturbances,. Also, modeling structures
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like beams or plates sandwiched with rubber or similar materials lead to equations
similar to the above system (See [2], [15] and the references therein).

Several authors have considered the issue of the energy decay for solutions of
systems with boundary dissipation. In this regard we mention the work of Conrad
and Rao [8], Komornik and Zuazua [12], Komornik [13], Lagnese [16], Lasiecka [17],
Lasiecka and Tataru [18], Lions [20], Zuazua [21, 22] and Zuazua and Liu [23]. In
particular, we shall stress on the work of Bardos, Lebeau and Rauch [5], where
the authors analyzed the observability, controllability and stabilization of solutions
of second-order hyperbolic partial differential equations. They obtained results for
multidimensional problems that are as precise as those in the one-dimensional cases.
Though they treated linear equations, as they pointed out, their results extend to
nonlinear equations by linearization use of the microlocal analysis. .

In fact the result in [1] improves an earlier one by Komornik and Rao [15] in the
sense that the author in [1] allows the dissipative effect, caused by 9i, to be weaker
at the origin and at infinity. At the best of our knowledge, the first works, where the
possibility of splitting the behavior of the nonlinearity at the origin and at infinity
were pointed out, are [11] and [22].

Recently there has been a lot of work on the stabilization of coupled systems.
For instance, the works by Alabau-Boussouira are worth mentioning. This issue
is related with the theory of polarization of waves for systems of wave equations
developed by Burq [7] and Asch and Lebeau [4]. Alabau-Boussouira [3] considered
a coupled system of two linear wave equations with linear weak coupling and only
one damping placed in first equation, and proved some polynomial decay estimates.
The coupling under consideration in the present paper is nonlinear and so is more
challenging.

In this article, we deal with the global existence and energy decay of solutions for
the initial boundary value problem

U~ - ~U1 + b10:(x)f(b1U1 + b2U2) = 0,
u~ - ~U2 + b20:(x)f(b1U1 + b2U2) = 0,
U1 = U2 = 0,
i:+ aiui + 9i(uD = 0, i = 1,2,
Ui(X, 0) = u?(x) u~(x, 0) = U}(x) ,

(x, t) E DxJR+
(x, t) E DxJR+

(x, t) E ro xJR+
(x, t) E rl xJR+

i = 1,2, xE D,

(1.1 )

where D is a bounded domain ofJRn (n E IN*) with a smooth boundary aD = rOurl
where {ro, rd is a partition of the boundary, bl and b2 are constants, 0: : D -t

JR+, aI, a2 : rl -t JR+ and 91,92, f: JR -t JR are given functions.
In system (1.1) we consider more general coupling (represented by the function

f) than the ones studied in [1], [3] and [15]. After proving the well-posedness of
(1.1) by linearizing the problem and using a fixed point argument, we prove, under
some suitable conditions on the coupling function f and the feedbacks 91 and 92,
that the multiplier method introduced by Komornik [14] and Lions [20] is applicable
and (1.1) is exponentially stable.

This work is divided into five parts. In part two we establish a local existence
theorem. In part three we show that this local solution is, in fact, global. In part
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four we prove some decay estimates and in part five, some applications and open
questions are presented and discussed.

2. Local Existence. In order to state and prove our local existence result we
make the following assumptions:

(H1) 0 is smooth and the partition of ao satisfies ro n r1 = 0, such that there
exists Xo in IRnand 8 > ° satisfying (x - xo).v :s ° on ro and (x - xo).v ~ 8> ° on
r1·

(H2) ai E C1(r1) such that ai ~ 0, i = 1,2, on r1.
(H3) The function a E Cl (0) n Loo(O).
(H4) The functions 91 and 92 are nondecreasing, continuous and

9i(S) = ° {:}s = 0, i = 1,2.

Furthermore, there exists a constant d1 > ° such that

19i(S)I:S 1 + d1lsl, i = 1,2, 'is E IR.

(H5) The function f is of class Cl (IR) and satisfying

If(s)1 :s d2lslP, 'is E IR

for some constant d2 > ° and p ~ 1 with (n - 2)p:S n.
Remark 2.1. Assumption (H1) implies that the domain 0 is not simply connected.
This drawback was overcome in [12] using the analysis by Grisvard regarding singu-
larities on interfaces. The assumption (H2) was also weakened in [12]. Recently, an
important progress in this direction has been done by Bey et al [6]. So the general
case where the interface is not ruled out by artificial geometry assumption can be
considered. Because the study of the geometry of the domain is not our main ob-
jective, we shall consider in this paper hypothesis (HI).
Remark 2.2. For alternative conditions on 91 and 92 see [1].
Remark 2.3. Thanks to (H3) and (H5), the coupling in (1.1) is compact. In fact
if we write (1.1) in the form

V' + AV + BV = 0,

where V = (UI, U2,u~, u~), AV = (-u~, -u~, -~U1' -~U2) and

BV = (0,0, b1af(b1u1 + b2U2), b2af(b1u1 + b2U2)),
we easily see that B is a compact operator (See [15], equation (3.2)).

First let us consider the linear problem

u~ - ~U1 = h(x, t), (x, t) E OxIR+
u~ - ~U2 = h(x, t), (x, t) E OxIR+
U1 = U2 = 0, (x, t) E roxIR+ (2.1)
~ + aiUi + 9i(uD = 0, i = 1,2, (x, t) E r1 xIR+
Ui(X,O) = u?(x) u~(x, 0) = u;(x), i = 1,2, xE O.

Lemma 2.1. Assume that (Hi), (H2), (H4) hold and h, h E L2(0 X (0, T)). Then
for any (u?, uD, i = 1,2, in Hf (0) x L2(0), problem (2.1) has a unique solution. 0

UiEC([O, T]; Hfo(0))nc1([0, T]; L2(0)) , i=I,2, (2.2)
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where
Hfo(O) := {v E H1(0) / v = 0 on ro}.

This lemma can be proved by repeating the argument of Theorem 1 in [2] (see also
Theorem 1 in [15]).
Theorem 2.2. Assume that (H1) - (H5) hold. Then for any (u?, uD, i = 1,2, in
Hfo(O) x L2(0), problem (1.1) has a unique solution

Ui E C ([0, T]; Hfo(O)) n Cl ([0, T]; L2(0)), i = 1,2, (2.3)

where T is small enough. Furthermore, if g is globally Lipschitz continuous and

(u?, uD, E (H2(0) n Hfo(O)) x Hfo(O), i = 1,2

and satisfying the compatibility conditions

[}u? 0 1
[}1/ + aiui + gi(Ui) = 0,

then the solution of (1.1) satisfies

i = 1,2, (2.4)

Ui E Loo ([0, T]; H2(0) n Hfo (0)) n W1,oo ([0, T]; Hfo (0))

nw2
,00 ([0, T]; L2(0)), i = 1,2. (2.5)

Proof. For M > 0 large and T > 0, we define a class of functions Z(M, T) which
consists of all functions w = (W1, W2) in

W:= [C ([0, T]; Hfo(O)) n Cl ([0, T]; L2(0))]2

satisfying the initial conditions of (2.1) and

Ilwll~:= max { r (w? + w;2 + IVWl12 + IVW212)(x, t)dx
09~T in

(2.6)

+ r (a1w~ + a2w~)(x, t)dr} :S M2. (2.7)i-.
The set Z(M, T) is nonempty if M is large enough. This follows from the trace
theorem [19]. We also define the map h from Z(M, T) into W by U =: h(<p), where
u is the unique solution of the linear problem

U~ - b.u1 + bla(x)f(b1<P1 + b2<P2)= 0,
u~ - b.u2 + b2a(x)f(b1<P1 + b2<P2)= 0,
U1 = U2 = 0,
~ + aiui + gi(uD = 0, i = 1,2,
Ui(x, 0) = u? (x ) u~(x, 0) = u; (x),

(x, t) E OxlR+
(x, t) E OxlR+

(x, t) E ro xlR+
(x, t) E r1xlR+

i = 1,2, xE O.

(2.8)

By virtue of (H3) and (H5) and the embedding of Hfo(O) c Lq(O), 1 :S q :S p,
(n - 2)p :S n, we have bia(x)f(b1<Pl + b2<P2)E L2(0 x (0, T)), i = 1,2, so Lemma 2.1
guarantees the existence of a unique solution U = (Ul, U2) E W. We would like to
show, for M sufficiently large and T sufficiently small, that h is a contraction from
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Z(M, T) into itself. For this purpose, we multiply the first and the second equations
in (2.8) by u~ and u~, respectively and integrate over n x (0, T) to get

O:S: ~ r (u~2 + u~2+ IVUll2 + IVU212)dx + ~ r (a1u~ + a2u~)(x, t)drin irl
+ r r (91(uDu~ + 91(U~)U~)(X, t)drdsia i;

:s:~ r [(ui)2 + (u§)2 + IVu~12 + IVugl2]dx + ~ r [a1(u~)2 + a2(ug)2]drin irl
+c fat In (1<P1IP+ 1(/>2IP][lu~1+ lu~l)dxds V t E [0, T], (2.9)

where C is a generic positive constant depending only on p, b1, b2, d1, da, d3, and the
Loo norm of a. To estimate the last term of (2.9), we note that

In I(PIIPlu~ldx:S: (In 1<P112PdX)1/2 (In lu~12dX) 1/2

:s: CIIV<P1IIPllu~lI£2 :s: CMPllu~lI£2 (2.10)
by virtue of (2.6) and (2.7). Therefore (2.9), (2.10), and (H4) yield

lIull~:S: CMPTllullw + ~ r [a1(u~)2 + a2(ug)2]dr2 ir1
+~ In [(ui)2 + (u§)2 + IVu~12 + IVugI2]dx.

By choosing M .large enough and T sufficiently small, we get

lIull~ :s: M2
;

hence u E Z(M, T). Next we verify that h is a contraction. To this end we set
U = u - v and cl>= <P- 'lj;, where u = h(<p) and v = h('lj;). It is straightforward to
verify that U satisfies

v: - flU1 + b1a(x) [f(b1<P1 + b2<P2)- f(b1'lj;1 + b2'lj;2)] = 0,
U~' - flU2 + b2a(x) [f(b1<P1 + b2<P2)- f(b1'lj;1 + b2'lj;2)] = 0,

U1 = U2 = 0, (x, t) E raxlR+

~~i + aiUi + [9i(U~) - 9i(VD] = 0, i = 1,2, (x, t) E r1 xlR+

Ui(X, 0) = U:(x, 0) = 0, i = 1,2, xE n.
By multiplying the first and the second equations in (2.11) by U~ and U~, respec-
tively, integrating over n x (0, t), adding the resulting equalities, and using the fact
that 91 and 92 are nondecreasing we arrive at

IIUII~:S: C fat In If(b1<Pl + b2<P2)- f(b1'lj;1 + b2'lj;2)IIU~ - U~I dxds

:s: C fat (IIU~1I2 + IIU~1I2)1Icl>1I2n/(n-2)

(x, t) E nxlR+
(x, t) E nxlR+

(2.11)

(2.12)
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x{II(I>III~(pl_l)+ 114>211~0Ll)+ II'Ihll~(pl_l)+ II'Ihll~(pl_l)}ds.
The Sobolev embedding (Hfo (D) C L2n/(n-2), n > 2) and condition on p in (H5)
give

IIUII~ :S CTMp-lllUllwll<I>llw;
Thus we have

hence

IIUllw :SCT Mp-lll<I>llw. (2.13)

By choosing T so small that CTMp-l < 1, estimate (2.13) shows that h is a con-
traction. The contraction mapping theorem guarantees the existence of a unique
u satisfying u = h(u). Obviously it is a solution of (1.1). The uniqueness of this
solution follows from the inequality (2.12). The extra regularity (2.5) of the solution
can be established in a standard way (see [9] for instance). The proof is completed.

3. Global existence. In this section, we establish a global existence result. For
this aim we set F(s) = J; f(T)dT
Theorem 3.1. Assume that {Hi} - {H5} and F(s) 2: ° hold. Then, for any initial
data (u?,uD E Hfo(D) x L2(D),i = 1,2, the solution {2.3} is global; i.e

u := (Ul, U2) E C ([0, 00); Hfo(D))2 n Cl ([0, 00); L2(D))2. (3.1)

Proof. To establish (3.1), it suffices to show that the solution (2.3) remains
bounded, independently of T, in its space. So we have to prove that there exists a
constant K independent of T such that

r (u~2+ u~2+ IVUll2 + IVU212)dx + r (aluf + a2u~)dr:s K, V t 2: o. (3.2)in irl
To achieve this we only have to multiply the first and the second equations in (1.1)
by u~ and u~ respectively and integrate over D x [0, t] to get

~ r (u~2+ u~2 + IVUll2 + IVU212)dx + ~ r (aluf + a2u~)drin i;
+ r a(x)F(blUl + b2u2)dx + t r (gl(uDu~ + g2(u~)u~)drdsin ia i.

:S ~l {(ui)2 + (u~)2 + IVu~12+ IVugl2}dx

+~ r {al(u~)2 + a2(ug)2}dr = K, Vt E [0, T]i;
which yields (3.1). The theorem is proved.
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4. Decay of energy. We define the energy of (1.1) by

E(t) = ~ r {u~2 + u~2 + l'VUll2+ l'VU212+ 2aF(b1u1 + b2u2)}dx
2 in

11 2 2+2 (a1u1 +a2u2)dr
rl

where F is the function defined in Section 3 satisfying

1
0:::; F(s) :::;2bsf(s), s» 1

(4.1)

(4.2)

Remark 4.1. As an example of such function we can take f(s) = alslP-1s with
a 2: 0 and p > 1. Then (4.2) and (H5) are satisfied with b = (p + 1)/2.

Concerning the functions gl and g2, we assume that there exist two positive
constants Cl and C2such that

i = 1,2. (4.3)

We have the following stabilization result for system (1.1)
Theorem 4.1. Assume that max{lla11Ivx>(rl)' Ila21ILOO(r1)}is small enough and

sup (a(x)(b - 1)n - (x - xo).'Va(x)) 2: (3 > O. (4.4)
n

Then there exist two positive constants c and w independent of t and the initial
data, such that the energy (4.1) satisfies the following decay estimate

E(t) :::;ce-wt
, vt » O. (4.5)

Remark 4.2. This result can be generalized to the internal feedback case.
Remark 4.3. Using the techniques in [8,10,13]' we may consider more general non
degenerate nonlinearities at the origin and obtain similar exponential and polyno-
mial decay results. To keep this paper short, we restrict ourselves to the case (4.3).
Remark 4.4. If a is constant then (4.4) is always satisfied.
Proof (of Theorem 4.1). We are going to show that, for any 0 :::;S < 00,

fsOC! E(t) :::;cE(S) (4.6)

Here and in what follows, c denotes a generic positive constant and E denotes diverse
positive "small enough" constants. The inequality (4.6) gives (4.5) thanks to the
following
Lemma 4.2: ( [14], Theorem 9.1). Let E: IR+ --t IR+ be a nonincreasing abso-
lutely continuous function satisfying (4.5). Then E satisfies (4.4)

Thanks to the fact that gl, g2 are nondecreasing, a simple computation yields

(4.7)

hence E is nonincreasing.
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To prove (4.6), we denote by m = x - Xo and multiply the first two equations in
(1.1) by

2m . VUi + (n - EO)Ui, i = 1,2,
respectively, where EOE]O, 1] will be chosen later. By integrating over n x [8, TJ, we
obtain

(4.8)
where

Ii:= fsT 10 u~(2m· VUi + (n - EO)Ui)dxdt, i = 1,2,

Ji:= fsT 10 u( -.6.ui)(2m· VUi + (n - EO)Ui)dxdt, i = 1,2

and

L:= fsT 10 af(b1u1 +b2U2)[b1(2m· VU1 +(n-Eo)u1)+b2(2m· VU2+(n-Eo)u2)]dxdt.

Using the boundary conditions, we estimate the above integrals as follows

Ii:= fsT 10 u~'(2m' VUi + (n - EO)Ui)dxdt

= [ r u~(2m. VUi + (n - EO)Ui)dX]t=T - rT r (m· V(uD2 + (n - EO) lu~12)dxdt
in t=S is in

= EO t: r lu~12 dxdt _ rT r (m· v) lu~12drdt
~ ~ ~ ~l

+ [ r u~(2m' VUi + (n - EO)Ui)dx]t=T .
in t=S

We estimate the last term in this inequality in the following manner

10(2m· VUi + (n - Eo)ud2dx -10 (2m· VUi)2dx

= 10 ((n - Eo)2luil2 + 2(n - Eo)m· V(Ui)2) dx

= r ((n - Eo)2luil2 - 2(n - Eo)n IUiI2) dx + 2(n - EO) r (m· v) IUil2 drin ir1

= (EO+ n)(Eo - n) r IUil2 dx + 2(n - EO) r (m· v) IUil2 drin i.
:S 2(n - Eo)R r IUil2 dri;

where R = IlmIILOO(n). Hence

r (2m. VUi + (n - EO)Ui)2dx:S r (2m· VUi)2dx + 2(n - Eo)R r IUil2 zr. (4.9)in in irl
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We then use Young's inequality and (4.10) to get, for any e > 0,

110 u~(2m . 'VUi + (n - CO)Ui)dXI

< ~ 10lu~12 dx + 2~ (10(2m.'VUi)2dx + 2(n - co)R hI jUij2 dr)

< r (~ lu~12 + 2R2j'VUij2) dx + R (n - co) c r j'VUij2dxin 2 c c in
where i: is the smallest positive constant satisfying

r jvj2 dr 5,c r j'Vvj2dx, Vv E Hfo ([2) .irl in
By choosing

we obtain

110 u~(2m' 'VUi + (n - cO)Ui)dxl5, 2 R [R + ~(n - co)] E(t) = cE(t).

Therefore we arrive, using the fact that E is nonincreasing, at

t, 2:: -cE(S) - R 1sT hI lu:12
drdt + eo 1sT 10 lu:12

dxdt. (4.10)

In the other hand, by the generalized Green formula and the identities

2'VUi.'V (m· 'VUi) 2j'VUij2 + m.'V (j'VUij2)
'VUi = (OIlUi) u, on ro,

we infer

Ji -1sT 10(6.ui) (2m . 'VUi + (n - cO)Ui) dxdt

(2 - co) rT r j'VUij2dxdt _ 2 rT r (m.v)j'VUij2drdtis in is iro
+ rT r ((m.v)j'Vuij2 - (n - CO)UiOIlUi - 2(m.'Vui)oIlUi) drdt.is i.

Thanks to (HI), we have m.u 2::8> 0 on rI, then, using the definitions of ro and
rI, we deduce that

Ji 2:: (2 - co) 1sT 10 j'VUij2dxdt

+1sT hI (8j'VUij2 - (n - cO)UiOIlUi - 8j'VUij2 - ~2 (OIlUi)2) drdt
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SO

Ji ~ (2 - EO)fsT in l'VUil2dxdt - fsT hI ((n - EO)UiOvUi + ~2 (OVUi)2) drdt.

(4.11)
Next we exploit (4.2) and the fact that F(O) = 0 to estimate

L=

= fsT in af(b1Ul +b2U2) [b1{2m.'VUl + (n - EO)Ul + b2(2m.'VU2 + (n - EO)U2}]dxdt

~ (n - Eo)b 1s
T in 2aF(b1Ul + b2U2)dxdt + fsT in 2am.'V (F(b1Ul + b2U2)) dxdt

~ [(n - Eo)b - n] fsT in 2aF(b1Ul +b2u2)dxdt-1s
T in (2m.'Va) F(b1Ul +b2U2)dxdt

+ rT r 2a(x) (m.v) F(b1Ul + b2U2)drdtis i;
then, since m.i/ ~ 0 on rI, we conclude that

L ~ 2 fsT in ((3 - bEoa)F(b1ul + b2U2)dxdt, (4.12)

where (3 is given in (4.4). Combining (4.10) - (4.12) and taking in account the fact
that Il + I2 + J1 + h + L = 0, we arrive at

1s
T in [Eo(lu~12+ lu~12)+ (2 - Eo)(I'VUlI2+ l'VU212)

+2((3 - bEoa)F(b1ul + b2U2)] dxdt :S cE(S) (4.13)

+ 1s
T hI [R(lu~12 + lu~12)+ (n - EO)(UIOvUl + U20vU2) + ~2 [(OvUl)2 + (OVU2)2]]

drdt.
By recalling the boundary conditions and using Young's inequality, we have

R
2

2 ( ') R
2

( I ) 2(n - EO)UiOvUi + T (OvUi) = -(n - EO)Ui aiui + 9i(Ui) + T aiui + 9i(Ui)

R2 2 2R2 I R2
I 2

= (Tai + EO- n)ailuil + (-8-ai + Eo- n)Ui9i( Ui) + T (9i(Ui)) (4.14)

R2 2 2 ( ') 2 R
2

2 ( ') 2:S (Ta+Eo-n)ailuil +Eoailuil +c 9i(Ui) = (Ta+2Eo-n)ailuil +c 9i(Ui)
where

a = max{llalIILOO(r1),Ila21ILOO(r1)}'
By inserting (4.14) in (4.13), we obtain

1s
T in [Eo(lu~12+ lu~12)+ (2 -:-Eo)(I'VUlI2+ l'VU212)

+2((3 - bEoa)F(b1ul + b2U2)] dxdt (4.15)
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+ 1sT £1 [R(lu; 12+ lu~12) + C (91 (u;) r + c (92 (u~)r]drdt.

If a is small enough so that a < Sn] R2 we then choose eo > 0 so small that

R2
2eo < n--a6 ' j3 - beoa > O.

Consequently (4.15) becomes

Finally, using (4.3) and (4.7), we arrive at

Hence (4.15) yields f{ E(t)dt :S cE(S). By letting T go to 00, we arrive at (4.6).
This completes the proof of Theorem 4.1.
Remark 4.5. Following the proof carefully, it is easy to notice, from (4.15),
that sUPn (a(x)(b - l)n - (x - xo).'Va(x)) and n - ~2 a can be taken negative and
bounded below by constants depending on the initial data and n. In this case the
third and the fourth terms in the LHS of (4.15) will be majorized by the second one,
using the embedding and Poincare's inequality.

5. Applications. In [10], the first author considered the following coupled (Wave-
Petrovsky) system:

in n x JR+
in n x JR+
on I' x JR+

i=1,2, in n
(5.1)

where n is a bounded domain in JRn, with a smooth boundary rand 1/ is the
outward unit normal vector to I'. For 91 and 92 continuous, increasing, satisfying
91 (0) = 92(0) = 0, and a : n -+ JR a bounded function, he proved a global existence
and a regularity result. He also established, under suitable growth conditions on 91
and 92, decay results for weak, as well as strong, solutions. Precisely, he showed
that the solution decays exponentially if 91 and 92 behaves like a linear function,
whereas the decay is of a polynomial order otherwise. Using the method developed
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in this paper, we can extend these results to the more general coupled system:

U~ + ~2U1 + b1a(x)f(b1U1 + b2U2) + 91(U~) = 0, in n x lR+
u~ - ~U2 + b2a(x)f(b1U1 + b2U2) = 0, in n x lR+
~ = U1 = 0, on I' x lR+
U2 = 0, on ro x n+
~ + a2u2 + 91 (u;) = 0, on r1 x lR+
Ui(X,O) = u?(x), u~(x, 0) = u[(x), i = 1,2, in n

with the same hypotheses (HI) - (H5) above. In this case we define the energy of
(5.2) by

E(t): = ~ r (u~2 + u;2 + (~U1)2 + l\7u212 + 2aF(b1u1 + b2U2)) dx + ~ r a2u~dr2 In 2 Jr1

and we obtain similar results to the one in Theorem 4.1. The method developed in
this paper is direct and very flexible; it can be applied to various coupled systems
of PDE's (Wave-Wave, Petrovsky-Petrovsky, Wave-Petrovsky) with internal or
boundary feedbacks.
Open questions. The main restrictive assumption under which the stability
result is valid is the particular coupling function represented by f(b1U1 + b2U2),
this choice is in order to define an appropriate energy to our systems. It would be
very interesting (in particular from the point of view of applications) to explore
more general coupling functions f( U1, U2), where f is a two-variable function and to
know if our system can be polynomially stable by only one control; that is 91 = 0
(or 92 = 0). In the negative-answer case, one might be interested in knowing if
other weaker stability estimates can be proved using more sophisticated tools as
general multipliers. In the case where f is linear, F. Alabau-Boussouira [3Jproved
that this system can not be exponentially stable by only one control, and proved
some polynomial decay estimates in the case of linear feedback. Another good
open question concerns the stability of our system in the situation, where the
two controls are not defined on the same boundary region. This is a challenging
question and, at the best of our knowledge, no result exists concerning stability of
coupled hyperbolic equations defined in the same domain with different regions of
controls.

(5.2)
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