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Abstract For every d ≥ 1, we consider the d-dimensional Hermitian fractional
Brownian motion (HfBm), that is the process with values in the space of (d × d)-
Hermitian matrices and with upper-diagonal entries given by complex fractional
Brownian motions of Hurst index H ∈ (0, 1).

We follow the approach of [A. Deya and R. Schott: On the rough paths approach
to non-commutative stochastic calculus, JFA (2013)] to define a natural integral with
respect to the HfBm when H > 1

3 , and identify this interpretation with the rough
integral with respect to the d2 entries of the matrix. Using this correspondence, we
establish a convenient Itô–Stratonovich formula for the Hermitian Brownian motion.

Finally, we show that at least when H ≥ 1
2 , and as the size d of the matrix tends

to infinity, the integral with respect to the HfBm converges (in the tracial sense)
to the integral with respect to the so-called non-commutative fractional Brownian
motion.
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1 Introduction

We propose to investigate some integration issues related to the so-called Hermitian
fractional Brownian motion, that is the fractional extension of Dyson’s celebrated
Hermitian Brownian motion [7]. The specific definition of the Hermitian fractional
Brownian motion (HfBm in the sequel) naturally goes as follows. For some fixed
parameter H ∈ (0, 1), consider first two independent families (x(i, j))i≥j≥1 and
(x̃(i, j))i≥j≥1 of independent fractional Brownian motions with common Hurst index
H, defined on a classical probability space (Ω,F ,P). Then, for every fixed (finite)
dimension d ≥ 1, we define the (d-dimensional) HfBm of Hurst index H as the
process X(d) with values in the space of the (d × d)-Hermitian matrices and with
upper-diagonal entries given for every t ≥ 0 by

X
(d)
t (i, j) := 1√

2d
(
xt(i, j) + ı x̃t(i, j)

)
for 1 ≤ j < i ≤ d ,

X
(d)
t (i, i) := xt(i, i)√

d
for 1 ≤ i ≤ d .

(1)

Observe that the classical Hermitian Brownian motion is then nothing but the HfBm
of Hurst index H = 1

2 .

The HfBm (or more precisely its direct counterpart in the space of symmetric
matrices) was already at the core of the analysis of [14,15], through the consideration
of the associated Dyson process (that is, the process derived from the eigenvalues
of X(d)

t ) and the stochastic dynamics governing it. We will here follow a slightly
different direction and rather focus on integration with respect to X(d) itself, seen
as a process with values in a non-commutative algebra. In fact, our objectives can
essentially be summarized along two (related) lines of research:

(i) First, and in the continuation of [4–6], we propose to develop a pathwise approach
to integration with respect to X(d), that is a pathwise way to interpret the integral
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0 AudX(d)

u Bu, for A,B in a suitable class of matrix-valued processes, and where
AudX(d)

u Bu is simply understood as a product of (d×d)-matrices. Note that as soon
as H 6= 1

2 , the entries of X(d) no longer satisfy the martingale property, so that the
integral

∫ 1
0 AudX(d)

u Bu cannot be (componentwise) interpreted in the classical Itô
sense anymore. We will overcome this difficulty by following the developments of
[4] on rough pathwise integration in a general algebra, which will at least cover the
situation where H > 1

3 . Our aim here is also to point out the fact that the result-
ing construction coincides with the rough-path interpretation of the integral with
respect to the d2-dimensional process {X(d)(i, j)}1≤i,j≤d, which allows us to make a
link between the considerations of [4] and the more classical rough-paths approach
to finite-dimensional integration (as displayed in [9] or more recently in [8]). As an il-
lustration of the possibilities offered by the pathwise approach, we will finally exhibit
a clear Itô–Stratonovich conversion formula for the Hermitian Brownian motion (see
Proposition 2 below).

(ii) Then, in the framework of non-commutative probability theory and at least
when H ≥ 1

2 , we intend to emphasize the relevance of the HfBm as a matrix model
(or a matrix approximation) for the so-called non-commutative fractional Brownian
motion (NC-fBm in the sequel). Let us recall that the NC-fBm has first been in-
troduced in [13] as a natural fractional extension of the celebrated free Brownian
motion, and then further studied in [6,12,15]. In Section 3 below, we will exhibit a
convergence result (as the dimension d goes to infinity) at the level of the processes
themselves, but also at the level of the stochastic integrals these processes generate,
which will both illustrate the robustness of the approximation and the consistency
of the stochastic integrals. The convergence will therein be interpreted in the tracial
sense, and the result thus gives a thorough account on the asymptotic behaviour of
the mean spectral distribution of the processes under consideration (either X(d) or
the integrals it generates).

The study is naturally organized along the above two-part splitting: in Section
2, we focus on integration with respect to the HfBm for some fixed finite dimension
d ≥ 1, while in Section 3, we examine the limit of these objects (from a spectral
perspective) as d goes to infinity, and make the link with the non-commutative
fractional Brownian motion.

Throughout the paper, we will denote the increments of any vector-valued path
(gt)t≥0 by δgst := gt − gs, for all s, t ≥ 0.

2 Integration with respect to HfBm

Our first objective is to provide a clear interpretation of the integral against the
HfBm X(d), for some fixed dimension d ≥ 1. To be more specific, we are interested
in the interpretation of the product model

∫
AudX(d)

u Bu, for processes A,B taking
values in a class of (d× d)-matrices to be determined.

To this end, we propose to adapt the developments of [4, Section 4] (about rough
integration in a general algebra) to the setting under consideration, that is to the



4 Aurélien Deya

algebra A(d) := Cd,d and the driving process X(d), along an almost sure formulation
(due to the deterministic framework of [4, Section 4]).

For this adaptation to be possible, we need to assume, throughout the section,
that X(d) is a HfBm of Hurst index H > 1

3 . Also, we fix 1
3 < γ < H, and recall that

in this case, X(d) is a γ-Hölder process (a.s.).

2.1 Rough-path approach to integration with respect to X(d)

We denote by (Eij)1≤i,j≤d the canonical basis ofA(d), and consider the norm ‖U‖2 :=∑d
i,j=1 |U(i, j)|2 for every U ∈ A(d). In the same way, we consider, for all U ∈

(A(d))⊗2 and U ∈ (A(d))⊗3, the standard norms

‖U‖2 :=
d∑

i,j,k,`=1

|U((i, j), (k, `))|2 , ‖U‖2 :=
d∑

i,j,k,`,m,n=1

|U((i, j), (k, `), (m,n))|2 ,

where U((i, j), (k, `)) and U((i, j), (k, `), (m,n)) refer of course to the coordinates of
U and U in the canonical bases (Eij ⊗ Ek`) and (Eij ⊗ Ek` ⊗ Emn).

The product interactions between A(d), (A(d))⊗2 and (A(d))⊗3 will all be denoted
by ]. To be more specific, we define the operation ] as the linear extension of

(U1 ⊗ U2)]Y = Y ](U1 ⊗ U2) := U1Y U2 , U1, U2, Y ∈ A(d) ,

or as the linear extension of

Y ](U1 ⊗ U2 ⊗ U3) := (U1Y U2)⊗ U3 , (U1 ⊗ U2 ⊗ U3)]Y := U1 ⊗ (U2Y U3) .

2.1.1 Product Lévy area

The following central object appears in [4, Section 4] as a natural “product” version
of the classical Lévy area at the core of rough paths theory:

Definition 1 We call product Lévy area above X(d) any process {Xst}0≤s≤t≤1 with
values in L(A(d) ⊗A(d),A(d)) such that, almost surely:
(i) (2γ-roughness) There exists a constant c > 0 such that for all 0 ≤ s ≤ t ≤ 1 and
U ∈ A(d) ⊗A(d),

‖Xst[U]‖ ≤ c |t− s|2γ‖U‖ . (2)

(ii) (Product Chen identity) For all 0 ≤ s ≤ u ≤ t ≤ 1 and U ∈ A(d) ⊗A(d),

Xst[U]−Xsu[U]−Xut[U] = (U]δX(d)
su ) δX(d)

ut . (3)

In the finite-dimensional setting that we consider here, there is in fact a one-
to-one correspondence between the set of product Lévy areas above X(d) and the
set of (classical) Lévy areas above the d2-dimensional process (X(d)(i, j))1≤i,j≤d.
Let us recall here that, along the standard terminology of rough paths theory, a
(classical) Lévy area above (X(d)(i, j))1≤i,j≤d is a two-parameter path (X2

st)s,t∈[0,1]
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with values in (A(d))⊗2 such that for all 0 ≤ s ≤ u ≤ t ≤ 1 and 1 ≤ i, j, k, ` ≤ d,
‖X2

st‖ ≤ c |t− s|2γ and

X2
st((i, j), (k, `))−X2

su((i, j), (k, `))−X2
ut((i, j), (k, `)) = δX(d)

su (i, j)δX(d)
ut (k, `) .

The following (readily-checked) property thus makes a first link between the
algebra approach of [4, Section 4] and the standard finite-dimensional rough-path
formalism:

Lemma 1 There is a one-to-one relation X2 7→ X between the set of (classical)
Lévy areas above the d2-dimensional process (X(d)(i, j))1≤i,j≤d and the set of product
Lévy areas above X(d), given by the formula: for all 0 ≤ s ≤ t ≤ 1, 1 ≤ i, j ≤ d and
U, V ∈ A(d),

Xst

[
U ⊗ V

]
(i, j) :=

d∑
k,`1,`2=1

U(i, k)V (`1, `2)X2
st((k, `1), (`2, j)) . (4)

2.1.2 Controlled biprocesses and integration

Following again the ideas of [4], let us now turn to the presentation of the class
of integrands we shall focus on. As usual, a few topological considerations need to
be introduced first. For V := (A(d))⊗n (n = 1, 2, 3), we denote by C1([0, 1];V ) the
set of continuous V -valued maps on [0, 1], and by C2([0, 1];V ) the set of continuous
V -valued maps on the simplex {0 ≤ s ≤ t ≤ 1} that vanish on the diagonal. Then
for every α ∈ (0, 1), we define the α-Hölder space Cα1 ([0, 1];V ), resp. Cα2 ([0, 1];V ), as
the subset of paths h ∈ C1([0, 1];V ), resp. h ∈ C2([0, 1];V ), for which the following
seminorm is finite:

N [h; Cα1 ([0, 1];V )] := sup
0≤s<t≤1

‖δhst‖
|t− s|α

, resp. N [h; Cα2 ([0, 1];V )] := sup
0≤s<t≤1

‖hst‖
|t− s|α

.

Definition 2 We call controlled biprocess on [0, 1] any process

U ∈ Cγ1 ([0, 1]; (A(d))⊗2)

whose increments can be expanded as

(δU)st = (δX(d))st]UX,1s + UX,2s ](δX(d))st + U[
st , 0 ≤ s ≤ t ≤ 1 , (5)

for some processes UX,1,UX,2 ∈ Cγ1 ([0, 1]; (A(d))⊗3) and U[ ∈ C2γ
2 ([0, 1]; (A(d))⊗2).

In the sequel, we denote by Q the space of controlled biprocesses on [0, 1].

Of course, the conditions in the above definition must all be understood in an
almost-sure sense. A basic example of such a controlled biprocess is provided by the
path Ut := P (X(d)

t )⊗Q(X(d)
t ), for fixed polynomials P,Q. It is indeed easy to check

that the increments of U can be expanded as in (5), with

UX,1s := ∂P
(
X(d)
s

)
⊗Q

(
X(d)
s

)
, UX,2s := P

(
X(d)
s

)
⊗ ∂Q

(
X(d)
s

)
,

where, in this algebra setting, we define the derivative ∂P (X) as the linear extension
of the formula ∂Xm =

∑m−1
i=0 Xi⊗Xm−1−i. More examples of controlled biprocesses,

related to the so-called controlled processes, can be derived from [4, Proposition 4.10].
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In this finite-dimensional setting, controlled biprocesses happen to be a particular
case of X(d)-controlled path (in the sense of Gubinelli [9]), which allows us to go
ahead with the analogy between [4] and standard rough paths theory:

Lemma 2 Let U ∈ Q with decomposition (5). Then for all fixed 1 ≤ i, j ≤ d, the
(d2-dimensional) path (U((i, k), (`, j)))1≤k,`≤d is controlled (in the classical sense of
[8, Definition 4.6]) with respect to (X(m,n))1≤m,n≤d, with Gubinelli derivative given
for all s ∈ [0, 1] and 1 ≤ k, `,m, n ≤ d by

U′s((i, j); (k, `), (m,n)) := UX,1s ((i,m), (n, k), (`, j)) + UX,2s ((i, k), (`,m), (n, j)) .

Given a product Lévy area X above X(d), we denote the “dual” of X as X∗, that
is

X∗st[U ⊗ V ] := Xst[V ∗ ⊗ U∗]∗ , for all U, V ∈ A(d) .

Our interpretation of the integral against X(d) can now be read as follows (as an
application of [4, Proposition 4.12]):

Proposition 1 Let X be a product Lévy area above X(d). Then for every U ∈ Q
with decomposition (5), all 0 ≤ s ≤ t ≤ 1 and every subdivision Dst = {t0 = s <
t1 < . . . < tn = t} of [s, t] with mesh |Dst| tending to 0, the corrected Riemann sum∑

ti∈Dst

{
Uti](δX(d))titi+1 + [Xtiti+1 × Id](UX,1ti

) + [Id×X∗titi+1
](UX,2ti

)
}

(6)

converges almost surely in A(d) as |Dst| → 0. We call the limit the rough integral
(from s to t) of U against X := (X(d),X), and denote it by

∫ t
s

Uu]dXu.

Using straightforward pathwise expansions, this interpretation can again be re-
lated to more standard rough constructions:

Lemma 3 Assume that we are given a product Lévy area X above X(d) and consider
X := (X(d),X). Then for all U ∈ Q and 1 ≤ i, j ≤ d, one has almost surely(∫ 1

0
Uu]dXu

)
(i, j) =

∫ 1

0

d∑
k,`=1

Uu((i, k), (`, j))dX(d)
u (k, `) , (7)

where the latter integral is interpreted as the rough integral (in the sense of [8, The-
orem 4.10]) of the controlled path (U((i, k), (`, j)))1≤k,`≤d (along Lemma 2), consid-
ering the (classical) Lévy area derived from X through relation (4).

Remark 1 We have chosen to express these integration results in an almost-sure
way, but, using again the considerations of [4, Section 4] and under suitable moment
conditions on the integrands, this rough approach could also easily be formulated
in some Lp(Ω)-sense. For instance, if we assume that the random constant c in (2)
admits finite moments of any order, and if the expansion (5) of the integrand U is
such that

E
[∣∣N [UX,i; Cγ1 ([0, 1]; (A(d))⊗3)]

∣∣r] <∞ and E
[∣∣N [U[; C2γ

2 ([0, 1]; (A(d))⊗2)]
∣∣r] <∞

for every r ≥ 1, then the convergence in Proposition (1) holds true in Lp(Ω) as well,
for every p ≥ 1. This is in fact a direct consequence of the control derived from the
so-called sewing map ([4, Theorem 4.2]).
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Remark 2 The above Definition 1, Definition 2 and Proposition 1 are thus essentially
borrowed from [4, Section 4], where integration with respect to a Hölder driver X
in a general algebra A is considered. It is worth mentioning however that additional
“adaptedness” conditions arise in [4]: for instance, it is therein assumed that for
every t ∈ [0, 1], Ut, resp. UX,1t ,UX,2t , in (5) belongs to the algebra At generated by
(Xu)0≤u≤t, resp. to the tensor productAt⊗At, and conditions (2)-(3) only need to be
satisfied for U ∈ As⊗As. The latter restriction turns out to be fundamental when it
comes to the construction of a product Lévy area above the free Brownian motion (see
[4, Section 5.1]), the q-Brownian motion (see [5, Section 3]) or the non-commutative
fractional Brownian motion (see [6, Section 3]). This is no longer the case in the
finite-dimensional setting of the HfBm, thanks to the coordinates correspondence
(4), and we thus got rid of the adaptedness conditions in the above formulation.

2.2 Canonical product Lévy area

For every d ≥ 1, we can apply the result of [3, Theorem 2] to assert that the (d(d+1))-
dimensional process

{x(i, j), x̃(i, j)}1≤j≤i≤d

behind X(d) (along definition (1)) generates a canonical (classical) Lévy area. De-
noting the components of this Lévy area as∫ t

s

δxsu(i, j) dxu(k, `) ,
∫ t

s

δxsu(i, j) dx̃u(k, `) ,∫ t

s

δx̃su(i, j) dxu(k, `) ,
∫ t

s

δx̃su(i, j) dx̃u(k, `) ,
(8)

we can then naturally lift this extension at the level of X(d) through the formula

X2,(d)
t ((i, j), (k, `)) :=

∫ t

s

δX(d)
su (i, j)dX(d)

u (k, `) , 1 ≤ i, j, k, ` ≤ d , (9)

which now admits a straightforward interpretation: for instance, if i ≥ j and k ≥ `,

X2,(d)
st ((i, j), (k, `)) =

∫ t

s

(
δxsu(i, j) + ı δx̃su(i, j)

)
d
(
xu(k, `) + ı x̃u(k, `)

)
:=
∫ t

s

δxsu(i, j) dxu(k, `) + ı

∫ t

s

δxsu(i, j) dx̃u(k, `)

+ ı

∫ t

s

δx̃su(i, j) dxu(k, `) −
∫ t

s

δx̃su(i, j) dx̃u(k, `) .

It is readily checked that X2,(d) defines a (classical) Lévy area above X(d), with
which we can immediately associate, through (4), a product Lévy area X(d) above
X(d). The resulting rough integral(∫ 1

0
Uu]dX(d)

u

)
, where X(d) := (Xd,X(d)) and U ∈ Q , (10)

then offers what can be regarded as a “canonical” interpretation of the integral
against the HfBm of Hurst index H > 1

3 .
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2.3 A matrix Itô–Stratonovich formula

In the specific Brownian situation, that is when H = 1
2 , the integrals in (8) can

either be understood as Itô or as Stratonovich integrals. Let us respectively denote
by X(d),I and X(d),S the product Lévy areas associated with each of these inter-
pretations, and then set X(d),I := (X(d),X(d),I), X(d),S := (X(d),X(d),S). Owing to
the consistency result of Lemma 3, we can assert that for any adapted controlled
byprocess U (i.e., U and UX,1,UX,2 in (5) are adapted to the filtration generated
by {x(i, j), x̃(i, j)}1≤j≤i≤d), the rough integral

∫ 1
0 Uu]dX(d),I

u , resp.
∫ 1

0 Uu]dX(d),S
u ,

coincides with the standard (componentwise) Itô, resp. Stratonovich, interpretation,
a property which we can summarize as

∫ 1

0
Uu]dX(d),I

u =
∫ 1

0
Uu]dX(d)

u , resp.
∫ 1

0
Uu]dX(d),S

u =
∫ 1

0
Uu](◦dX(d)

u ) .

(11)
Let us now rely on the above pathwise matrix approach (i.e., on the interpreta-
tion of these integrals as almost-sure limits of the sum in (6)) in order to estab-
lish an Itô–Stratonovich formula, that is a convenient description of the difference∫ 1

0 Uu](◦dX(d)
u )−

∫ 1
0 Uu]dX(d)

u . In fact, it is now clear that the fundamental differ-
ence between these two integrals lies at the level of the related product Lévy areas,
and therefore we only need to focus on the difference X(d),S

st −X(d),I
st :

Lemma 4 Assume that H = 1
2 . Then, for all 0 ≤ s ≤ t ≤ 1 and all random

variables U, V in A(d), one has almost surely

X(d),S
st

[
U ⊗ V

]
= X(d),I

st

[
U ⊗ V

]
+ 1

2(t− s)Trd(V )U , (12)

where Trd(A) := 1
d

∑d
i=1 A(i, i).

Proof. The identity essentially follows from the application of the classical 1d Itô–
Stratonovich formula to the Lévy areas in (8), which, at the level of X(d), yields the
two (almost sure) conversion formulas

∫ t

s

δX(d)
su (k, `1)(◦dX(d)

u (`2, j)) =
∫ t

s

δX(d)
su (k, `1)dX(d)

u (`2, j) if (`2, j) 6= (`1, k) ,

(13)
and∫ t

s

δX(d)
su (k, `1)(◦dX(d)

u (`1, k)) =
∫ t

s

δX(d)
su (k, `1)dX(d)

u (`1, k) + 1
2d (t− s) . (14)

Indeed, for (13), observe first that if {`2, j} 6= {`1, k}, then the components of
X(d)(k, `1) and X(d)(`2, j) are independent (complex) Brownian motions, so that
the related Itô and Stratonovich integrals do coincide (a.s.). On the other hand, if
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k > `1, one has a.s.∫ t

s

δX(d)
su (k, `1)(◦dX(d)

u (k, `1)) =
∫ t

s

δX
(d)
su (`1, k)(◦dX(d)

u (`1, k))

= 1
2d

∫ t

s

(δxsu(k, `1) + ı δx̃su(k, `1)) ◦ d(xu(k, `1) + ı x̃u(k, `1))

= 1
2d

[{∫ t

s

δxsu(k, `1)dxu(k, `1) + 1
2(t− s)

}
+ ı

∫ t

s

δxsu(k, `1)dx̃u(k, `1)

+ ı

∫ t

s

δx̃su(k, `1)dxu(k, `1)−
{∫ t

s

δx̃su(k, `1)dx̃u(k, `1) + 1
2(t− s)

}]
=
∫ t

s

δX(d)
su (k, `1)dX(d)

u (k, `1) .

As for (14), one has a.s., and along the same computations: for k > `1,∫ t

s

δX(d)
su (k, `1)(◦dX(d)

u (`1, k)) =
∫ t

s

δX
(d)
su (`1, k)(◦dX(d)

u (k, `1))

= 1
2d

∫ t

s

(δxsu(k, `1) + ı δx̃su(k, `1)) ◦ d(xu(k, `1)− ı x̃u(k, `1))

= 1
2d

[{∫ t

s

δxsu(k, `1)dxu(k, `1) + 1
2(t− s)

}
− ı
∫ t

s

δxsu(k, `1)dx̃u(k, `1)

+ ı

∫ t

s

δx̃su(k, `1)dxu(k, `1) +
{∫ t

s

δx̃su(k, `1)dx̃u(k, `1) + 1
2(t− s)

}]
=
∫ t

s

δX(d)
su (k, `1)dX(d)

u (k, `1) + 1
2d (t− s) ,

with a similar identity when k = `1.
Based on (13)-(14), we obtain a.s.

X(d),S
st

[
U ⊗ V

]
(i, j) =

d∑
k,`1,`2=1

U(i, k)V (`1, `2)
∫ t

s

δX(d)
su (k, `1)(◦dX(d)

u (`2, j))

=
d∑

k,`1,`2=1
(`2,j) 6=(`1,k)

U(i, k)V (`1, `2)
∫ t

s

δX(d)
su (k, `1)dX(d)

u (`2, j)

+
d∑
`=1

U(i, j)V (`, `)
{∫ t

s

δX(d)
su (k, `)dX(d)

u (`, k) + 1
2d (t− s)

}
=

d∑
k,`1,`2=1

U(i, k)V (`1, `2)
∫ t

s

δX(d)
su (k, `1)dX(d)

u (`2, j) + 1
2(t− s)

(1
d

d∑
`=1

V (`, `)
)
U(i, j)

= X(d),I
st

[
U ⊗ V

]
(i, j) + 1

2(t− s)Trd(V )U(i, j) ,

which corresponds to the desired identity. ut
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Injecting identity (12) into (6) immediately allows us to extend the conversion
formula to a general level:

Proposition 2 Assume that H = 1
2 . Then, for every adapted controlled process

U ∈ Q with decomposition (5), one has almost surely∫ 1

0
Uu](◦dX(d)

u ) =
∫ 1

0
Uu]dX(d)

u + 1
2

∫ 1

0
du
[
Id× Trd × Id

](
UX,1u + UX,2u

)
. (15)

In particular, for all polynomials P,Q, one has almost surely∫ 1

0
P (X(d)

u )(◦dX(d)
u )Q(X(d)

u ) =
∫ 1

0
P (X(d)

u )dX(d)
u Q(X(d)

u )

+ 1
2

∫ 1

0
du
[
Id× Trd × Id

]
(∂P (X(d)

u )⊗Q(X(d)
u ) + P (X(d)

u )⊗ ∂Q(X(d)
u )) .

(16)

Identity (15), and even more explicitly identity (16), thus corresponds to the
matrix extension of the classical Itô–Stratonovich formula∫ 1

0
P (X(1)

u )(◦dX(1)
u )Q(X(1)

u ) =
∫ 1

0
P (X(1)

u )dX(1)
u Q(X(1)

u )

+ 1
2

∫ 1

0
du (P ′(X(1)

u )Q(X(1)
u ) + P (X(1)

u )Q′(X(1)
u )) .

On the other hand, formulas (15)-(16) can somehow be seen as the finite-dimensional
(and almost sure) counterpart of the Itô–Stratonovich formula for the free Brownian
motion (see [4, Proposition 5.6]). The latter analogy will actually be emphasized
through the convergence result in the subsequent Proposition 5 (observe in particular
the similarity between formulas (16) and (41)).

Remark 3 The above reasoning thus provides us with an illustration of the possibil-
ities offered by the rough approach to stochastic integration with respect to X(d).
Based on the interpretation of Proposition 1, we have indeed easily derived the gen-
eral identity (16) from the sole consideration of second-order objects. Proving this
identity directly, that is through the stochastic componentwise interpretation of the
integrals in (16) (with use of the classical 1d Itô–Stratonovich conversion formula),
would have been a much tougher task for polynomials P,Q of high degrees.

3 From Hermitian to non-commutative fractional Brownian motion

Our aim now is to study the transition, as the dimension parameter d goes to infinity,
from the HfBm to the so-called non-commutative fractional Brownian motion, and
see how the convergence can be extended at the level of the related integrals.

The asymptotic behaviour of the HfBm (or more precisely its “symmetric” coun-
terpart) was already at the center of the investigations in [15], at least when H > 1

2
and when focusing on the set of (random) measures {µ(d)

t }t≥0 generated by the spec-
trum of {X(d)

t }t≥0 (note also that the convergence results of [15] do not apply to the
integrals generated by X(d)).
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We will here follow a slightly different approach and rather study convergence
in the sense of non-commutative probability, which, to our opinion, yields a better
account of the mean spectral dynamics of the processes under consideration. Thus,
as a first step, and for the sake of clarity, we need to briefly recall a few basics on
the non-commutative probability setting (see [11] for more details).

Definition 3 We call a non-commutative probability space any pair (A, ϕ) such
that:
(1) A is a unital algebra over C endowed with an antilinear ∗-operation X 7→ X∗

satisfying (X∗)∗ = X and (XY )∗ = Y ∗X∗ for all X,Y ∈ A.
(2) ϕ : A → C is a positive trace on A, that is a linear map satisfying ϕ(1) = 1,
ϕ(XY ) = ϕ(Y X) and ϕ(X∗X) ≥ 0 for all X,Y ∈ A.

A classical way to “embed” the set of d× d random matrices (i.e., the set where
X(d) lives) into such a structure is to consider the trace given by the mean value of
the standard matrix trace. To be more specific, for each fixed d ≥ 1, we focus on
the unital algebraMd(L∞−(Ω)) of matrices with complex random entries admitting
finite moments of all orders, and set, for every A ∈Md(L∞−(Ω)),

ϕd
(
A
)

:= 1
d
E
[
Trd(A)

]
, where Trd(A) := 1

d

d∑
i=1

A(i, i) . (17)

Beyond the fact that ϕd indeed satisfies the conditions in the above item (2) (making
the pair (Md(L∞−(Ω)), ϕd) a non-commutative probability space), the interest in
this particular trace lies of course in its close relation with the mean spectral distribu-
tion measure: for any A ∈ Md(L∞−(Ω)) with (random) eigenvalues {λi(A)}1≤i≤d,
it is indeed readily checked that

ϕd
(
Ar
)

= E
[ ∫

C
zr µA(dz)

]
where µA := 1

d

d∑
i=1

δλi(A) .

Along this observation, a natural way to reach our objective, that is to catch (the
asymptotic behaviour of) the mean spectral dynamics of the process X(d) is to study
(the asymptotic behaviour of) the quantities

ϕd
(
X

(d)
t1
· · ·X(d)

tr

)
, (18)

for all possible r ≥ 1 and t1, . . . , tr ≥ 0. For the same reasons, we will then be
interested in the limit, as d→∞, of the “moments”

ϕd

((∫ 1

0
P (X(d)

u )dX(d)
u Q(X(d)

u )
)r)

, r ≥ 1 , (19)

where the integral is defined through the considerations of the previous section.
Our description of the limits (for (18) or for (19)) will again involve objects in

some non-commutative probability space. To be more specific, we will rely on the
following usual convergence interpretation:
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Definition 4 Let (A(n), ϕ(n)) be a sequence of non-commutative probability spaces,
and let U ∈ A, where (A, ϕ) is another non-commutative probability space. A se-
quence of elements U (n) ∈ A(n) is said to converge to U (in the sense of non-
commutative probability) if for every integer r ≥ 1,

ϕ(n)((U (n))r) n→∞−→ ϕ
((
U
)r)

.

In a similar way, we say that a sequence of paths {Y (n)
t }t≥0 in A(n) converges (in

the sense of non-commutative probability) to a path {Yt}t≥0 in A if for every integer
r ≥ 1 and all times t1, . . . , tr ≥ 0,

ϕ(n)(Y (n)
t1
· · ·Y (n)

tr

) n→∞−→ ϕ
(
Yt1 · · ·Ytr

)
.

3.1 An extension of Voiculescu’s theorem

Let us turn here to the presentation of the central combinatorial lemma that will
serve us for the analysis of both (18) and (19). This result consists in fact in an
easy extension of Voiculescu’s fundamental theorem ([16]) to a more general class
of Gaussian matrices. For a clear statement, we need to introduce a few additional
notations.

First, for every even integer r ≥ 1, let us denote by P2(r) the set of pairings of
{1, . . . , r}, i.e. the set of partitions of {1, . . . , r} with blocks of two elements only, and
by NC2(r) the subset of non-crossing pairings, i.e. the subset of pairings π ∈ P2(r)
for which there is no 1 ≤ p < q ≤ r such that π(p) > π(q). Occasionally, we will
identify a pairing π ∈ P2(r) with a permutation of {1, . . . , r}, by setting

(π(p) := q, π(q) := p) if and only if (p, q) ∈ π . (20)

For every permutation σ of {1, . . . , r}, we denote by ](σ) the number of cycles in
σ, and we recall that the genus of a pairing π ∈ P2(r) (identified with a permutation
along (20)) is then defined by the formula

genus(π) := 1
2

( r
2 + 1− ](γ ◦ π)

)
,

where γ stands for the specific permutation of {1, . . . , r} given by γ := (1 2 · · · r), i.e.
γ(i) = i+ 1 for i = 1, . . . , r − 1 and γ(r) = 1. With this notation in hand, the three
following properties, borrowed from [11, Lecture 22], turn out to be the keys toward
Voiculescu’s result:

Lemma 5 (i) For all r, d ≥ 1 and every permutation σ of {1, . . . , r}, it holds that

d∑
i1,...,ir=1

1{i1=iσ(1)} · · ·1{ir=iσ(r)} = d](σ) .

(ii) For all even r ≥ 1 and π ∈ P2(r), one has genus(π) ∈ N and 0 ≤ genus(π) ≤ r
4 .

(iii) For all even r ≥ 1 and π ∈ P2(r), one has genus(π) = 0 if and only if π ∈
NC2(r).
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The desired central lemma now reads as follows (recall that, for the whole Section
3, the notation ϕd refers to the trace on Md(L∞−(Ω)) defined by (17)):

Lemma 6 Fix d ≥ 1, as well as an arbitrary time-index set I, and consider, on a
classical probability space (Ω,F ,P), a Gaussian family {Mt(i, j)}t∈I,1≤i,j≤d of ran-
dom variables with covariance of the form

E
[
Ms(i, j)Mt(k, `)

]
= 1
d
cM (s, t)1i=`1j=k , (21)

for some time-covariance function cM : I2 → R. Then for all r ≥ 1 and t1, . . . , tr ∈ I,
it holds that

ϕd
(
Mt1 · · ·Mtr

)
=

r/4∑
g=0

d−2g
∑

π∈P2(r)
genus(π)=g

∏
(p,q)∈π

cM (tp, tq) . (22)

Proof. As we evoked it earlier, the argument is a mere adaptation of the proof of
Voiculescu’s fundamental result. To be more specific, we will follow the lines of the
proof of [11, Theorem 22.24]. Let us first expand the quantity under consideration
using the standard Wick formula for Gaussian variables, which, combined with (21),
yields

ϕd
(
Mt1 · · ·Mtr

)
= 1
d

d∑
i1,...,ir=1

E
[
Mt1 (i1, i2)Mt2 (i2, i3) · · ·Mtr (ir, i1)

]
= 1
d

d∑
i1,...,ir=1

∑
π∈P2(r)

∏
(p,q)∈π

E
[
Mtp(ip, ip+1)Mtq (iq, iq+1)

]
=

∑
π∈P2(r)

( 1
d1+ r

2

d∑
i1,...,ir=1

∏
(p,q)∈π

1{ip=iq+1}1{ip+1=iq}

)( ∏
(p,q)∈π

cH(tp, tq)
)
,

where we have used the convention ir+1 := i1. Identifying pairings with permutations
along (20) and using the specific permutation γ := (1 2 . . . r), we can easily rewrite
the previous quantity as

ϕd
(
Mt1 · · ·Mtr

)
=

∑
π∈P2(r)

( 1
d1+ r

2

d∑
i1,...,ir=1

∏
(p,q)∈π

1{ip=i(γ◦π)(p)}1{i(γ◦π)(q)=iq}

)( ∏
(p,q)∈π

cH(tp, tq)
)

=
∑

π∈P2(r)

( 1
d1+ r

2

d∑
i1,...,ir=1

1{i1=i(γ◦π)(1)} · · ·1{ir=i(γ◦π)(r)}

)( ∏
(p,q)∈π

cH(tp, tq)
)
.
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Finally, we can successively lean on the results of items (i) and (ii) in Lemma 5 to
assert that

ϕd
(
Mt1 · · ·Mtr

)
=

∑
π∈P2(r)

d−2 genus(π)
( ∏

(p,q)∈π

cH(tp, tq)
)

=
r/4∑
g=0

d−2g
∑

π∈P2(r)
genus(π)=g

( ∏
(p,q)∈π

cH(tp, tq)
)
,

which corresponds to the desired identity. ut

The covariance of the Gaussian family {X(d)
t (i, j)}1≤i,j≤d,t≥0 generated by the

HfBm is precisely of the form (21). To be more specific, it is readily checked that for
all s, t ≥ 0 and 1 ≤ i, j, k, ` ≤ d, one has

E
[
X(d)
s (i, j)X(d)

t (k, `)
]

= 1
d
cH(s, t)1i=`1j=k , (23)

where cH refers to the classical fractional covariance of index H, that is

cH(s, t) := 1
2
{
s2H + t2H − |t− s|2H

}
. (24)

We are thus in a position to apply Lemma 6 and assert that for all r ≥ 1, t1, . . . , tr ≥
0,

ϕd
(
X

(d)
t1
· · ·X(d)

tr

)
=

r/4∑
g=0

d−2g
∑

π∈P2(r)
genus(π)=g

∏
(p,q)∈π

cH(tp, tq) . (25)

The identification of the limit of X(d) (as d goes to infinity) is now straightforward.
Appealing indeed to the result of item (iii) in Lemma 5, we are naturally led to the
consideration of the non-commutative fractional Brownian motion:

Definition 5 In a NC-probability space (A(∞), ϕ∞), and for every H ∈ (0, 1), we
call a non-commutative fractional Brownian motion (NC-fBm) of Hurst index H

any collection {X(∞)
t }t≥0 of self-adjoint elements in A(∞) such that, for every even

integer r ≥1 and all t1, . . . , tr ≥ 0, one has

ϕ∞
(
X

(∞)
t1
· · ·X(∞)

tr

)
=

∑
π∈NC2(r)

∏
{p,q}∈π

cH(tp, tq) , (26)

and ϕ∞
(
X

(∞)
t1
· · ·X(∞)

tr

)
= 0 whenever r is an odd integer.

For every fixed H ∈ (0, 1), the existence of such a NC-fBm (living in some non-
commutative probability space) is guaranteed by the general results of [2]. Letting d
tend to infinity in (25), we immediately get, thanks to Lemma 5, item (iii):
Proposition 3 For every H ∈ (0, 1), and as d → ∞, X(d) converges, in the sense
of non-commutative probability, to a NC-fBm of same Hurst index H.

Our objective in the sequel is to show that, at least when H ≥ 1
2 , this convergence

result can be extended at the level of the integral driven by X(d), as defined in (10).
The limit will naturally involve some integral driven by a NC-fBm X(∞), that we
will be able to interpret thanks to the results of [6].
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3.2 Convergence of the integral in the Young case: H > 1
2

The aim here is to establish the following (expected) result:

Proposition 4 When H > 1
2 , and for all polynomials P,Q, one has, in the sense

of non-commutative probability,∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

) d→∞−→ ∫ 1

0
P
(
X(∞)
u

)
dX(∞)

u Q
(
X(∞)
u

)
, (27)

where the integral in the left-hand side is interpreted via (10) and the integral in the
limit is interpreted through [6, Proposition 2.5].

Our strategy toward (27) consists in trying to reduce the problem to the poly-
nomial convergence of Proposition 3 (that is, the convergence of all joint finite “mo-
ments” of X(d), in the sense of Definition 4). We will thus rely on a polynomial
approximation of the integrals in (27):

Lemma 7 Assume that H > 1
2 . Then for all fixed 1 ≤ d ≤ ∞, 1 ≤ r < ∞ and all

polynomials P,Q, it holds that

ϕd

((∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

))r)
= lim
n→∞

ϕd

(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
, (28)

where tni := i
2n for i = 0, . . . , 2n.

Proof. For 1 ≤ d <∞, observe first that for all A,B ∈Md(L∞−(Ω)),

∣∣ϕd(Ar −Br)∣∣ ≤ 1
d
E
[
‖A−B‖2] 1

2

r−1∑
m=0

E
[
‖A‖4m] 1

4 E
[
‖B‖4(r−1−m)] 1

4 , (29)

which, by Proposition 1 and Remark 1, entails that

ϕd

((∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

))r)
= lim
n→∞

ϕd

(( 2n−1∑
i=0

{
P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

)
+ [X(d)

tn
i
tn
i+1
× Id](UX,1tn

i
) + [Id×X(d),∗

tn
i
tn
i+1

](UX,2tn
i

)
})r)

, (30)

with UX,1s := ∂P (X(d)
s ) ⊗ Q(X(d)

s ) and UX,2s := P (X(d)
s ) ⊗ ∂Q(X(d)

s ). Now we can
lean on standard estimates for the canonical Lévy areas (8) behind X(d) to assert
that for all 0 < κ < H and 0 ≤ s ≤ t ≤ 1,∣∣[X(d)

st × Id](UX,1s )
∣∣ ≤ Cd,κ|t− s|2κ and

∣∣[Id×X(d),∗
st ](UX,2s )

∣∣ ≤ Cd,κ|t− s|2κ ,
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for some random variable Cd,κ admitting finite moments of any order. Picking κ ∈
( 1

2 , H) and using again (29), we can conclude that the limit of the sum in (30) reduces
in fact to the limit of the Riemann sum in (28), as desired.

For d = ∞, the convergence is a straightforward consequence of [6, Proposition
2.5]. ut

Proof of Proposition 4. Based on Proposition 3 and approximation (28) (which holds
for both finite d and for d = ∞), the problem reduces to justifying some limit
interchange, and to this end, we are going to show that

sup
n≥0

∣∣∣∣ϕd(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
− ϕ∞

(( 2n−1∑
i=0

P
(
Xtn

i

)
δX

(∞)
tn
i
tn
i+1
Q
(
Xtn

i

))r)∣∣∣∣ d→∞−→ 0 . (31)

By Proposition 3, this convergence is known to be true for every fixed n ≥ 0. For a
uniform result, let us first write, if P (X) =

∑
p≥0 apX

p and Q(X) =
∑

q≥0 bqX
q,

ϕd

(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
=

2n−1∑
i1,...,ir=0

∑
p1,...,pr≥0

∑
q1,...,qr≥0

ap1 · · · aprbq1 · · · bqr

ϕd

({(
X

(d)
ti1

)p1
δX

(d)
ti1 ti1+1

(
X

(d)
ti1

)q1} · · ·{(X(d)
tir

)pr
δX

(d)
tir tir+1

(
X

(d)
tir

)qr})
. (32)

Then observe that the covariance of the Gaussian family{
X

(d)
ti1

(k, `), δX(d)
ti1 ti1+1

(k, `), . . . , X(d)
tir

(k, `), δX(d)
tir tir+1

(k, `)
}

1≤k,`≤d (33)

involved in (32) can clearly be written as in (21), for some suitable time-covariance
function c, and therefore we can apply Lemma 6 to deduce that, if R := (p1 + q1 +
1) + . . .+ (pr + qr + 1),

ϕd

({(
X

(d)
ti1

)p1
δX

(d)
ti1 ti1+1

(
X

(d)
ti1

)q1} · · ·{(X(d)
tir

)pr
δX

(d)
tir tir+1

(
X

(d)
tir

)qr})
=

R/4∑
g=0

d−2g
∑

π∈P2(R)
genus(π)=g

Cπ , (34)

where Cπ = Cπ((p1, . . . , pr), (q1, . . . , qr), (ti1 , . . . , tir )) is naturally obtained as the
product (along the pairs in π) of the time-covariances associated with the product
of variables in the left-hand side.

Noting that the time-covariance function c of the family in (33) is in fact nothing
but the covariance of the family{

X
(∞)
ti1

, δX
(∞)
ti1 ti1+1

, . . . , X
(∞)
tir

, δX
(∞)
tir tir+1

}
,
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we can write

ϕd

({(
X

(d)
ti1

)p1
δX

(d)
ti1 ti1+1

(
X

(d)
ti1

)q1} · · ·{(X(d)
tir

)pr
δX

(d)
tir tir+1

(
X

(d)
tir

)qr})
− ϕ∞

({(
X

(∞)
ti1

)p1
δX

(∞)
ti1 ti1+1

(
X

(∞)
ti1

)q1} · · ·{(X(∞)
tir

)pr
δX

(∞)
tir tir+1

(
X

(∞)
tir

)qr})
=

R/4∑
g=1

d−2g
∑

π∈P2(R)
genus(π)=g

Cπ .

At this point, let us recall that since H > 1
2 , the increments of a fractional Brow-

nian motion of Hurst index H are positively correlated, that is, if x is such a
fractional process (defined on some classical probability space (Ω,F ,P)), one has
E
[
δxu1u2δxv1v2

]
≥ 0 for all u1 ≤ u2, v1 ≤ v2. In particular, the time-covariances

involved in Cπ are all positive, making Cπ positive too, so that for all g ≥ 1,∣∣∣ ∑
π∈P2(R)

genus(π)=g

Cπ

∣∣∣ ≤ ∑
π∈P2(R)

Cπ . (35)

Going back to (32), we thus have, setting dP := deg(P ) and dQ := deg(Q),

∣∣∣∣ϕd(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
− ϕ∞

(( 2n−1∑
i=0

P
(
X

(∞)
tn
i

)
δX

(∞)
tn
i
tn
i+1
Q
(
X

(∞)
tn
i

))r)∣∣∣∣
≤
( r

4 (dP+dQ)∑
g=1

d−2g
)

( 2n−1∑
i1,...,ir=0

∑
p1,...,pr≥0

∑
q1,...,qr≥0

|ap1 | · · · |apr ||bq1 | · · · |bqr |
∑

π∈P2(R)

Cπ

)

≤
( r

4 (dP+dQ)∑
g=1

d−2g
)
E
[( 2n−1∑

i=0

|P |(xti)δxtiti+1 |Q|(xti)
)r]

,

where the polynomials |P |, |Q| are defined as |P |(X) =
∑

p≥0 |ap|X
p and |Q|(X) =∑

q≥0 |bq|X
q. The uniform convergence statement (31) now comes from the fact that,

by standard results on Young integration with respect to the fractional Brownian
motion of index H > 1

2 , one has

sup
n≥0

E
[( 2n−1∑

i=0

|P |(xti)δxtiti+1 |Q|(xti)
)r]

< ∞ . (36)

Once endowed with (31), we can successively assert that
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lim
d→∞

ϕd

((∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

))r)
(37)

= lim
d→∞

lim
n→∞

ϕd

(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
(by (28) with d <∞)

= lim
n→∞

lim
d→∞

ϕd

(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
(by (31))

= lim
n→∞

ϕ∞

(( 2n−1∑
i=0

P
(
X

(∞)
tn
i

)
δX

(∞)
tn
i
tn
i+1
Q
(
X

(∞)
tn
i

))r)
(by Proposition 3)

= ϕ∞

((∫ 1

0
P
(
X(∞)
u

)
dX(∞)

u Q
(
X(∞)
u

))r)
(by (28) with d =∞) , (38)

which corresponds to the desired conclusion. ut

3.3 Convergence of the integral in the Brownian case

Recall that when H = 1
2 and for 1 ≤ d < ∞, the integral with respect to X(d)

can either be interpreted in the Itô sense (and denoted by
∫ 1

0 Uu]dX(d)
u ) or in the

Stratonovich sense (and denoted by
∫ 1

0 Uu](◦dX(d)
u )). The main convergence result

in this situation can then be stated as follows:

Proposition 5 When H = 1
2 , and for all polynomials P,Q, one has, in the sense

of non-commutative probability,∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

) d→∞−→ ∫ 1

0
P
(
X(∞)
u

)
dX(∞)

u Q
(
X(∞)
u

)
, (39)

where the latter integral is interpreted through the result of [6, Proposition 2.6] (or
equivalently, through the result of [1, Corollary 3.2.2]). Besides,∫ 1

0
P
(
X(d)
u

)
(◦dX(d)

u )Q
(
X(d)
u

) d→∞−→ ∫ 1

0
P
(
X(∞)
u

)
(◦dX(∞)

u )Q
(
X(∞)
u

)
, (40)

where the latter “Stratonovich” integral is defined as∫ t

s

P (X(∞)
u )(◦dX(∞)

u )Q(X(∞)
u ) :=

∫ t

s

P (X(∞)
u )dX(∞)

u Q(X(∞)
u )

+ 1
2

∫ t

s

du
(
Id× ϕ∞ × Id

)[
∂P (X(∞)

u )⊗Q(X(∞)
u ) + P (X(∞)

u )⊗ ∂Q(X(∞)
u )

]
.

(41)

Let us again point out the similarity between the two Itô–Stratonovich formulas
(16) and (41), and the underlying “transformation” of the matrix trace Trd in (16)
into the non-commutative trace ϕ∞ in (41).

In order to show (39) and (40), we will use the same general idea as in the
previous section, namely a polynomial approximation of the integrals. Our starting
result is here the following one:
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Lemma 8 Assume that H = 1
2 . Then for all fixed 1 ≤ d ≤ ∞, 1 ≤ r < ∞ and all

polynomials P,Q, it holds that

ϕd

((∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

))r)
= lim
n→∞

ϕd

(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
(42)

and

ϕd

((∫ 1

0
P
(
X(d)
u

)
(◦dX(d)

u )Q
(
X(d)
u

))r)
= lim
n→∞

ϕd

((∫ 1

0
P
(
X(d,n)
u

)
dX(d,n)

u Q
(
X(d,n)
u

))r)
, (43)

where, for each 1 ≤ d ≤ ∞ and n ≥ 1, X(d,n) stands for the linear interpolation of
X(d) along the subdivision (tni ), that is

X
(d,n)
t := X

(d)
tn
i

+ 2n(u− tni )δX(d)
tn
i
tn
i+1

for t ∈ [tni , tni+1] . (44)

Proof. For 1 ≤ d < ∞, we can use (29) to reduce the problem to the consideration
of the moments

E
[∥∥∥∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

)
−

2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

)∥∥∥r]
and

E
[∥∥∥∫ 1

0
P
(
X(d)
u

)
(◦dX(d)

u )Q
(
X(d)
u

)
−
∫ 1

0
P
(
X(d,n)
u

)
dX(d,n)

u Q
(
X(d,n)
u

)∥∥∥r]
for any r ≥ 1. The fact that these quantities converge to 0 as n → ∞ (for any
r ≥ 1) is then a standard approximation result from Brownian analysis, and (42)-
(43) immediately follow.

For d =∞, the assertion can be readily derived from [6, Proposition 2.6]. ut

Proof of Proposition 5. Endowed with (42)-(43), and keeping the polynomial conver-
gence of Proposition 3 in mind, it suffices, as before, to show that

sup
n≥0

∣∣∣∣ϕd(( 2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

))r)
− ϕ∞

(( 2n−1∑
i=0

P
(
Xtn

i

)
δX

(∞)
tn
i
tn
i+1
Q
(
Xtn

i

))r)∣∣∣∣ d→∞−→ 0 . (45)

and that

sup
n≥0

∣∣∣∣ϕd((∫ 1

0
P
(
X(d,n)
u

)
dX(d,n)

u Q
(
X(d,n)
u

))r)
− ϕ∞

((∫ 1

0
P
(
X(∞,n)
u

)
(◦dX(∞,n)

u )Q
(
X(∞,n)
u

))r)∣∣∣∣ d→∞−→ 0 . (46)



20 Aurélien Deya

For (45), we can easily follow the lines of the proof of Proposition 4, using the fact
that the increments of a (standard) Brownian motion x are also positively correlated,
together with the standard uniform control

sup
n≥0

E
[( 2n−1∑

i=0

|P |(xti)δxtiti+1 |Q|(xti)
)r]

< ∞ ,

for any r ≥ 1.
In fact, this strategy can be applied to prove (46) as well, by noting on the one

hand that the expansion of the moment

ϕd

((∫ 1

0
P
(
X(d,n)
u

)
dX(d,n)

u Q
(
X(d,n)
u

))r)
= ϕd

(( 2n−1∑
i=0

∫ tni+1

tn
i

duP
(
X

(d)
tn
i

+ 2n(u− tni )δX(d)
tn
i
tn
i+1

)
(
2nδX(d)

tn
i
tn
i+1

)
Q
(
X

(d)
tn
i

+ 2n(u− tni )δX(d)
tn
i
tn
i+1

))r)
still gives rise to the consideration of positively-correlated variables, and on the other
hand that

sup
n≥0

E
[∣∣∣ ∫ 1

0
|P |
(
x(n)
u

)
dx(n)

u |Q|
(
x(n)
u

)∣∣∣r] < ∞ , (47)

where x(n) stands for the linear interpolation of a (standard) Brownian motion x
along (tni ).

Combining (42)-(43) with (45)-(46), we can then switch the order of the limits
just as in (37)-(38), by considering the “Riemann-sum” approximation

2n−1∑
i=0

P
(
X

(d)
tn
i

)
δX

(d)
tn
i
tn
i+1
Q
(
X

(d)
tn
i

)
in the Itô case (39), and the “Wong-Zakaï” approximation∫ 1

0
P
(
X(d,n)
u

)
dX(d,n)

u Q
(
X(d,n)
u

)
in the Stratonovich case (40). ut

3.4 About the extension of the convergence result to H ∈ ( 1
3 ,

1
2 )

When H ∈ ( 1
3 ,

1
2 ), and for any finite d ≥ 1, we have seen that we can still define the

integral
∫ 1

0 P (X(d)
u )dX(d)

u Q(X(d)
u ) through the considerations of Section 2, that is as

the rough integral∫ 1

0
P (X(d)

u )dX(d)
u Q(X(d)

u ) :=
∫ 1

0
(P (X(d)

u )⊗Q(X(d)
u ))]dX(d)

u ,
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where X(d) := (Xd,X(d)) and X(d) is the product Lévy area derived from the canon-
ical Lévy areas in (8). Besides, thanks to the continuity of the rough constructions,
it can be shown that the so-defined integral satifies, for every r ≥ 1,

ϕd

((∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

))r)
= lim
n→∞

ϕd

((∫ 1

0
P
(
X(d,n)
u

)
dX(d,n)

u Q
(
X(d,n)
u

))r)
, (48)

where X(d,n) is the linear interpolation introduced in (44), which thus extends the
approximation property (43).

These results happen to remain true for d = ∞, that is for a NC-fBm X(∞) of
Hurst index H ∈ ( 1

3 ,
1
2 ). Indeed, as stated in [6, Proposition 2.9], we can also define

the integral ∫ 1

0
P (X(∞)

u )dX(∞)
u Q(X(∞)

u )

through some rough construction (using the “canonical” product Lévy area above
X(∞) exhibited in [6, Proposition 2.8]), and it holds that

ϕ∞

((∫ 1

0
P
(
X(∞)
u

)
dX(∞)

u Q
(
X(∞)
u

))r)
= lim
n→∞

ϕ∞

((∫ 1

0
P
(
X(∞,n)
u

)
dX(∞,n)

u Q
(
X(∞,n)
u

))r)
, (49)

for every r ≥ 1.

Combining (48)-(49) with the polynomial convergence of Proposition 3 (valid for
every H ∈ (0, 1)), the problem reduces, as before, to justifying the fact that we can
switch the limits in d and in n, along the same procedure as in (37)-(38). Unfortu-
nately, the arguments that we have used to this end in the proofs of Proposition 4 and
Proposition 5 (leading to a uniform-in-n convergence as d→∞) are no longer valid
when H < 1

2 , since the (disjoint) increments of the fractional Brownian motion are
then known to be negatively correlated. In other words, we can no longer ensure that
the quantity Cπ in (34) (or rather its counterpart when considering the approxima-
tion

∫ 1
0 P
(
X

(d,n)
u

)
dX(d,n)

u Q
(
X

(d,n)
u

)
) is always positive, which annihilates estimate

(35) and the possibility to go back to the 1d situation (i.e., to the consideration of
the uniform estimate (47), with x a fBm of Hurst index H ∈ ( 1

3 ,
1
2 )).

In fact, using Lemmas 5-6 and setting dP := deg(P ), dQ := deg(Q), we can write
the difference under consideration as

ϕd

((∫ 1

0
P
(
X(d,n)
u

)
dX(d,n)

u Q
(
X(d,n)
u

))r)
− ϕ∞

((∫ 1

0
P
(
X(∞,n)
u

)
dX(∞,n)

u Q
(
X(∞,n)
u

))r)
=

r
4 (dP+dQ)∑

g=1

d−2gϕ(g)
∞

((∫ 1

0
P
(
X(∞,n)
u

)
dX(∞,n)

u Q
(
X(∞,n)
u

))r)
,
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where for every fixed genus g ≥ 1, the quantity ϕ(g)
∞
(
...
)

is formally defined through
the linear extension of the formula

ϕ(g)
∞
(
X

(∞)
t1
· · ·X(∞)

tr

)
=

∑
π∈P2(r)

genus(π)=g

∏
(p,q)∈π

cH(tp, tq) .

Accordingly, for the desired uniform-in-n convergence to be true (allowing to switch
the limits in d, n), it would be sufficient to show that for all fixed genus g ≥ 1 and
order r ≥ 1,

sup
n≥0

∣∣∣ϕ(g)
∞

((∫ 1

0
P
(
X(∞,n)
u

)
dX(∞,n)

u Q
(
X(∞,n)
u

))r)∣∣∣ <∞ .

When g = 0, this uniform estimate is a consequence of (49), and thus follows from
the (sophisticated) considerations of [6]. We could then be tempted to try to extend
the latter considerations to every g ≥ 1 (starting from some kind of “NC-fBm with
genus g” in a NC-probability space). Unfortunately, when doing so, one soon realizes
that, contrary to ϕ(0)

∞ , the above functional ϕ(g)
∞ (for g ≥ 1) cannot be extended into

a genuine positive trace, in the sense of Definition 3, item (2). For instance, noting
that the sole pairing π ∈ P2(4) with genus 1 is the one given by {{1, 3}, {2, 4}}, one
has

ϕ(1)
∞

((
X

(∞)
1 X

(∞)
2 −X(∞)

2 X
(∞)
1

)(
X

(∞)
1 X

(∞)
2 −X(∞)

2 X
(∞)
1

)∗)
= ϕ(1)

∞
(
X

(∞)
1 X

(∞)
2 X

(∞)
2 X

(∞)
1
)
− ϕ(1)

∞
(
X

(∞)
1 X

(∞)
2 X

(∞)
1 X

(∞)
2
)

− ϕ(1)
∞
(
X

(∞)
2 X

(∞)
1 X

(∞)
2 X

(∞)
1
)

+ ϕ(1)
∞
(
X

(∞)
2 X

(∞)
1 X

(∞)
1 X

(∞)
2
)

= 2{cH(1, 2)2 − cH(1, 1)cH(2, 2)} = 2{24H−2 − 22H} = 22H+1{22H−2 − 1} < 0 .

This observation rules out the possibility to consider the non-commutative probabil-
ity setting when g ≥ 1 and so to adapt the developments of [6].

As a result, when H ∈ ( 1
3 ,

1
2 ), the convergence property (understood in the sense

of non-commutative probability)∫ 1

0
P
(
X(d)
u

)
dX(d)

u Q
(
X(d)
u

) d→∞−→ ∫ 1

0
P
(
X(∞)
u

)
dX(∞)

u Q
(
X(∞)
u

)
still remains a conjecture for the moment.
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14. D. Nualart and V. Pérez-Abreu: On the eigenvalue process of a matrix fractional Brownian

motion. Stoch. Process. Appl. 124 (2014), 4266–4282.
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