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Abstract. — We prove the existence of infinite energy global solutions of the cubic
wave equation in dimension greater than 3. The data is a typical element on the support
of suitable probability measures.

Résumé. — On considère l’équation des ondes cubique sur un tore de dimension
supérieure à 3, et on montre l’existence de solutions globales d’énergie infinie. La condi-
tion initiale de l’équation est un élément typique du support d’une mesure de probabilité.

1. Introduction

This paper is a higher dimensional sequel of the recent article [8] by the first and
the third authors (and also of [9, 10, 4]). As such it aims to construct global in
time solutions of the cubic wave equation with low regularity (infinite energy) random
initial data. To the best of our knowledge such a regularity is out of reach of the
present deterministic methods. The major difference between the present paper and
[8] is that here we only establish existence results and in particular no uniqueness
statement is proven. Let us recall that in [8] a suitable uniqueness and a probabilistic
continuity of the flow were proven. This result was followed by more recent results by
Nahmod-Pavlovic-Staffilani [15] on the 2 and 3-dimensional homogeneous Navier-Stokes
equation, where the authors obtain strong (in 2-d) and weak (in 3-d) results, and in turn,
here we are inspired by this latter 3-d weak-existence result. Related weak-existence
results had been already used in the context of the randomly forced Navier-Stokes
equation by Da Prato-Debussche [12] and the Euler equation by Albeverio-Cruzeiro [1],
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using more sophisticated probabilistic tools (Prokhorov and Skorohod Theorems). This
approach may be seen as the analogue in the random setting of the Leray compactness
method for constructing solutions of nonlinear evolution equations. It has the advantage
to require less regularity on the initial data, one allows infinite energy while the Leray
method requires finite energy of the data. It should however be emphasised that as in
the Leray method our approach still makes a crucial use of the energy functional. In
this paper we will only need an invariance property for the linear evolution combined
with large deviation estimates on the nonlinear part which are much easier to achieve
than the invariance properties as in [12, 1]. Let us now describe our model. Let d ≥ 4
and consider the cubic wave equation on the torus Td = (R/2πZ)d

(1.1)

{
∂2
t u−∆u+ u3 = 0, (t, x) ∈ R× Td,

(u, ∂tu)(0, ·) = (u0, u1) ∈ Hs,

where ∆ := ∆Td is the Laplace operator and

Hs = Hs(Td) := Hs(Td)×Hs−1(Td).

Denote by sc = (d − 2)/2 the critical (scaling) Sobolev index for (1.1). Then one
can show that (1.1) is well-posed in Hs for s > sc ([13]) and ill-posed when s < sc
([13, 11, 14]). See the introduction of [8] for more details. The energy of (1.1) reads

E(u) =
1
2

∫
Td

(
|∇u|2 + (∂tu)2

)
+

1
4

∫
Td
u4,

thus with deterministic compactness methods due to Leray (see e.g. Lebeau [14, Section
6] for the application of the method in the context of (1.1)), we can construct global
weak solutions to (1.1) so that(

u, ∂tu
)
∈ Cw

(
R;H1(Td) ∩ L4(Td)

)
× Cw

(
R;L2(Td)

)
,

(here Cw means weak continuity in time) and E(u)(t) ≤ E(u)(0) for all t ∈ R. Observe
that for d > 4 one has 1 < sc and thus the construction of weak solutions works for
data of supercritical regularity with respect to the scaling of the equation. However it
requires finite energy of the initial data. The main goal of this paper is to show that
weak solutions still exist for infinite energy, almost surely with respect to a large class
of probability measures.

Let us now describe precisely the initial data sets (statistical ensembles) that we shall
consider in this article. Here we follow [8]. Let 0 < s < 1 and let (v0, v1) ∈ Hs with
Fourier series

vj(x) = aj +
∑
n∈Zd?

(
bn,j cos(n · x) + cn,j sin(n · x)

)
, j = 0, 1,
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where Zd? = Zd\{0}. Then let
(
αj(ω), βn,j(ω), γn,j(ω)

)
, n ∈ Zd?, j = 0, 1 be a sequence

of independent real random variables given on a probability space (Ω,F ,p) with a joint
distribution θ satisfying

∃ c > 0, ∀ γ ∈ R,
∫ ∞
−∞

eγxdθ(x) ≤ ecγ
2
.

We then define the random variables vωj by

vωj (x) = αj(ω)aj +
∑
n∈Zd?

(
βn,j(ω)bn,j cos(n · x) + γn,j(ω)cn,j sin(n · x)

)
,

and we define the measure µ(v0,v1) on Hs as the image of p under the map

ω 7−→ (vω0 , v
ω
1 ) ∈ Hs.

We then defineMs by
Ms =

⋃
(v0,v1)∈Hs

{
µ(v0,v1)

}
.

For (u0, u1) ∈ Hs, denote by

(1.2) S(t)(u0, u1) = cos
(
t
√
−∆

)
(u0) +

sin
(
t
√
−∆

)
√
−∆

(u1),

the free wave evolution. Then our result reads

Theorem 1.1. — Let d ≥ 4, 0 < s < 1 and µ = µ(v0,v1) ∈ Ms. Then there exists
a set Σ of full µ measure so that for every (u0, u1) ∈ Σ ⊂ Hs the equation (1.1) with
initial condition (u(0), ∂tu(0)) = (u0, u1) has a solution

u(t) = S(t)(u0, u1) + w(t),

where for any ε > 0 (
w, ∂tw

)
∈ C
(
R;H1−ε(Td)×H−ε(Td)

)
.

Moreover, for all t ∈ R

‖(w(t), ∂tw(t))‖H1(Td) ≤ C(M + |t|)
1−s
s

+ε,

‖w(t)‖L4(Td) ≤ C(M + |t|)
1−s
2s

+ε,

with µ(M > λ) ≤ Ce−λδ for some δ > 0.

Remark 1.2. — Let us recall (see [8]) that if the measure µ ∈Ms is constructed using
data (v0, v1) ∈ Hs(Td), then µ(Hs) = 1, while if for some s < σ, we have (v0, v1) /∈
Hσ(Td), then as soon as the random variables (αj , βn,j , γn,j) do not accumulate at 0
(for example, in the case where they are non trivial and identically distributed, then
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µ(Hσ) = 0. On the other hand, under rather weak assumptions, µ(Bs) > 0 for any non
empty open ball Bs ⊂ Hs (see [8, Proposition 1.2]).

Let us now mention two possible extensions of our result. In the case d = 4 one may
expect to get uniqueness by combining the analysis of [8] with the critical H1 theory
for (1.1). One may also expect to include the case s = 0 by elaborating on the arguments
developed in [8] to treat this case. It is not clear to us what happens for s < 0 (and
in [8] as well). In particular we do not know whether s = 0 is the optimal regularity one
may achieve by our approach. Invariant Gibbs measures for dispersive equations were
extensively studied (see e.g. [20, 3, 2, 19, 18, 16, 17, 6] ). In these papers the Gibbs
measure is combined with a suitable local in time result (which can sometimes be quite
involved) to get global existence and uniqueness on the support of the measure. By an
extension of the method (using in particular Skorohod and Prokhorov theorems) we use
in this paper one may construct a dynamics (without any uniqueness) on the support of
a Gibbs measure and prove its invariance. We plan to give several relevant examples of
this observation in [7]. We however do not see how to make work such an approach in
the context of (1.1). Indeed, the present methods of renormalization of Gibbs measures
are restricted to dimensions ≤ 2 (see [3]). Let us also recall that as mentioned above
a global existence based on Gibbs measures only works for a very specific choice of the
initial distribution. On the other hand, it has of course the advantage to give a quite
remarkable dynamical property of the flow.

The rest of the paper is organised as follows. In Section 2 we recall stochastic prop-
erties of the linear flow which were proven in [8]. In Section 3 we study the dynamics
of an approximation of (1.1). Section 4 is devoted to the proof of Theorem 1.1.

Acknowledgements. — We thank Arnaud Debussche for discussions and for pointing
out the reference [12]. The second author is very grateful to Philippe Carmona for many
clarifications on measures.

2. Stochastic estimates on the linear flow

Once for all we fix 0 < s < 1 and µ = µ(v0,v1) ∈ Ms. Recall the definition (1.2)
of the linear wave propagator S(t). In this section we prove estimates which reflect
the invariance of µ under S(t). This is the only measure invariance aspect used in this
paper.

2.1. The projectors. — Denote by Zd? = Zd\{0}. For a Fourier series u

u(x) = a+
∑
n∈Zd?

(
bn cos(n · x) + cn sin(n · x)

)
,
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we denote by Π0(u) = a and for N ≥ 1

ΠN (u) = a+
∑

1≤|n|≤N

(
bn cos(n · x) + cn sin(n · x)

)
and ΠN = 1−ΠN .

Let χ ∈ C∞0 (−1, 1), so that χ ≡ 1 on (−1/2, 1/2). Let us also introduce the smooth
spectral projector

SN (u) ≡ χ(−N−2∆) = a+
∑
n∈Zd?

χ
( |n|2
N2

)(
bn cos(n · x) + cn sin(n · x)

)
,

which will be needed in the next section. This operator has the following property (see
e.g. [5] for a proof).

Lemma 2.1. — Let M be a compact Riemannian manifold. Let ∆ be the Laplace-
Beltrami operator on M . Let 1 ≤ p ≤ ∞ and denote by Lp = Lp(M). Then SN =
χ(−N−2∆) : Lp −→ Lp is continuous and there exists C > 0 so that for every N ≥ 1,

‖SN‖Lp→Lp ≤ C.

Moreover, for all f ∈ Lp, SNf −→ f in Lp, when N −→ +∞.

2.2. The estimates. — Following [8], we introduce the following sets for

δ > 1/2, δ̃ > 1/3, δ̌ > 0, ε > 0

FM =
{

(u0, u1) : ‖ΠM (u0, u1)‖H1(Td) ≤M1−s+ε
}
,

GM =
{

(u0, u1) : ‖ΠM (u0)‖L4(Td) ≤M ε
}
,

HM =
{

(u0, u1) : ‖〈t〉−δS(t)(ΠM (u0, u1))‖L2(Rt;L∞(Td)) ≤M ε−s
}

KM =
{

(u0, u1) : ‖〈t〉−eδS(t)(ΠM (u0, u1))‖L3(Rt;L6(Td)) ≤M ε−s
}

RM =
{

(u0, u1) : ‖〈t〉−δ̌S(t)ΠM (u0, u1)‖L∞(R;L4(Td)) ≤M ε−s
}
,

and EM = FM ∩GM ∩HM ∩KM ∩RM . Then the following result holds true.

Lemma 2.2. — For any ε > 0, there exists ε0 > 0 such that there exist C, c > 0 such
that for every M ≥ 1

µ(F cM ) ≤ Ce−cM2ε0
, µ(GcM ) ≤ Ce−cM2ε0

,

µ(Hc
M ) ≤ Ce−cM2ε0

, µ(Kc
M ) ≤ Ce−cM2ε0

, µ(RcM ) ≤ Ce−cM2ε0
.
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Proof. — This result is very close to [8, Lemma 4.2]. Indeed, the only new point is the
bound on the measure of RM , whose proof follows the same lines as the proof of the
bound on KM , once we notice that by (1-d) Sobolev injection, with p sufficiently large
and such that δ̌ > 1

p , σ >
1
p , σ < s,

(2.1) ‖〈t〉−δ̌S(t)ΠM (u0, u1)‖L∞(R;L4(Td))

≤ C‖(1 + |Dt|)σ〈t〉−δ̌S(t)ΠM (u0, u1)‖Lp(R;L4(Td))

≤ C ′‖〈t〉−δ̌(1 + |Dt|)σS(t)ΠM (u0, u1)‖Lp(R;L4(Td))

≤ C ′‖〈t〉−δ̌(1 + |Dx|)σS(t)ΠM (u0, u1)‖Lp(R;L4(Td)).

3. Uniform bounds on the Sobolev norms, s > 0

For N � 1 we consider the following truncation of (1.1)

(3.1)

{
∂2
t uN −∆uN + SN

(
(SNuN )3

)
= 0, (t, x) ∈ R× Td,

(uN , ∂tuN )(0, ·) = (u0, u1) ∈ Hs.

In fact, equation (3.1) is an ODE in low frequencies, and is the linear wave equation
in high frequencies. Indeed, if K is large enough so that ΠKSN = SN , then the equa-
tion (3.1) is equivalent to the uncoupled system

∂2
t ΠKuN −∆ΠKuN + SN

(
(SNuN )3

)
= 0, (t, x) ∈ R× Td,

(ΠKuN , ∂tΠKuN )(0, ·) = (ΠKu0,ΠKu1),

(Id−ΠK)(uN ) = S(t)
(

(Id−ΠK)u0, (Id−ΠK)u1

)
.

Then from the conservation of the energy

EN (ΠK(uN ))(t) =
1
2

∫
Td

(
(∂tΠKuN )2 + |∇xΠKuN |2 +

1
2

(SNuN )4
)
dx,

we deduce that, for all N ≥ 1, (3.1) admits a global flow ΦN (t). The goal of this section
is to prove the following statement.

Proposition 3.1. — Let 0 < s < 1 and µ ∈ Ms. Then for any ε > 0 there exist
C, δ > 0 such that for every (u0, u1) ∈ Σ, there exists M > 0 such that the family of
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global solution (uN )N∈N to (3.1) satisfies

uN (t) = S(t)Π0(u0, u1) + wN (t),

‖(wN (t), ∂twN (t))‖H1 ≤ C(M s + |t|)
1−s
s

+ε,

‖SN (uN )‖L4(Td) ≤ C(M s + |t|)
1−s
2s

+ε,

with µ(M > λ) ≤ Ce−λδ .

Proof. — We only give the proof for positive times, the analysis for negative times being
analogous. Fix ε > 0 and ε1 > 0 such that

(3.2) ε <
s

2
,

1− s+ ε

s− 2ε
≤ 1− s

s
+ ε1,

and fix δ > 1/2, δ̃ > 1/3 such that

(3.3) (δ − 1
2

)s < 2δε, δ̃ < 1.

We have the following statement.

Lemma 3.2. — For every c > 0 there exists C > 0 such that for every t ≥ 1, every
integer M ≥ 1 such that t ≤ cM s−2ε, every (u0, u1) ∈ EM the solution of (3.1) with
data (u0, u1) satisfies

‖uN (t)− S(t)Π0(u0, u1)‖H1(Td) ≤ CM1−s+ε.

In particular, thanks to (3.2), if t ≈M s−2ε then

‖uN (t)− S(t)Π0(u0, u1)‖H1(Td) . t
1−s
s

+ε1 .

Proof. — For (u0, u1) ∈ EM we decompose the solution of (3.1) with data (u0, u1) as

uN (t) = S(t)ΠM (u0, u1) + wN,M ,

where wN,M solves the problem{
(∂2
t −∆Td)wN,M + SN

(
(SNwN,M + SNS(t)ΠM (u0, u1))3

)
= 0,

(wN,M (0), ∂twN,M (0)) = ΠM (u0, u1).
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Then thanks to an integration by parts and the fact that SN is self adjoint, we get

(3.4)
d
dt
EN (wN,M ) =

=
∫

Td

(
∂2
twN,M∂twN,M +∇xwN,M · ∂t∇xwN,M + (SNwN,M )3∂tSNwN,M

)
dx

=
∫

Td
∂twN,M

(
∂2
twN,M −∆wN,M + SN

(
(SNwN,M )3

))
dx

=
∫

Td
∂twN,M

(
SN
(
(SNwN,M )3

)
− SN

(
(SNS(t)ΠM (u0, u1) + SNwN,M )3

))
dx.

Denote by

gM (t) = ‖S(t)ΠM (u0, u1)‖3L6(Td) and fM (t) = ‖S(t)ΠM (u0, u1)‖L∞(Td).

Therefore from (3.4) and the Cauchy-Schwarz inequality, we deduce that

d
dt
EN (wN,M )

≤ CE1/2
N (wN,M )‖(SNwN,M )3 −

(
SNS(t)ΠM (u0, u1) + SNwN,M

)3‖L2(Td)

≤ CE1/2
N (wN,M )

(
‖S(t)ΠM (u0, u1)‖3L6(Td) + ‖S(t)ΠM (u0, u1)‖L∞(Td)‖SNwN,M‖2L4(Td)

)
≤ CE1/2

N (wN,M )
(
gM (t) + fM (t)E1/2

N (wN,M )
)
,

and with the Gronwall lemma, we obtain

E1/2
N (wN,M )(t) ≤ CeC

R t
0 fM (τ)dτ

(
E1/2
N (wN,M )(0) +

∫ t

0
gM (τ)dτ

)
≤ CeC

R T
0 fM (τ)dτ

(
E1/2
N (wN,M )(0) +

∫ T

0
gM (τ)dτ

)
:= GM (T )(3.5)

(notice that since wN,M (0) does not depend on N , the right-hand side in the last
inequality is also independent on N). We now observe that for (u0, u1) ∈ EM∣∣∣ ∫ t

0
gM (τ)dτ

∣∣∣ ≤ CM3(−s+ε)〈t〉3eδ ≤ CM3(−s+ε)+3eδ(s−2ε) ≤ C,

provided
−s+ ε+ δ̃(s− 2ε) ≤ 0.

The last condition can be readily satisfied according to (3.3).
Next, we have (using Cauchy-Schwarz inequality in time) that for (u0, u1) ∈ EM ,∣∣∣ ∫ t

0
fM (τ)dτ

∣∣∣ ≤ ‖〈τ〉−δfM‖L2(R)〈t〉δ+
1
2 ≤ CM−s+ε〈t〉δ+

1
2 ≤ CM−s+ε+(δ+ 1

2
)(s−2ε) ≤ C,

provided −s+ ε+ (δ + 1
2)(s− 2ε) ≤ 0, a condition which is satisfied thanks to (3.3).
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For (u0, u1) ∈ EM , we have

E1/2(wN,M (0)) ≤ C(‖ΠM (u0, u1)‖H1 + ‖ΠM (u0)‖2L4) ≤ CM1−s+ε,

and coming back to (3.5), we get

(3.6) E1/2(wN,M (t)) ≤ CM1−s+ε.

Recall that

uN (t) = wN,M (t) + S(t)ΠM (u0, u1) = S(t)Π0(u0, u1) + wN,M (t)− S(t)ΠMΠ0(u0, u1).

We have that for a solution to the linear wave equation the linear energy

‖∇xu‖2L2(Td) + ‖∂tu‖2L2(Td)

is independent of time and that if (u, ∂tu) is orthogonal to constants ((u, ∂tu) =
Π0(u, ∂tu)), then this energy controls the H1(Td)-norm, we deduce for (u0, u1) ∈ EM ⊂
FM that

‖S(t)ΠMΠ0(u0, u1)‖H1(Td) ≤ CM1−s+ε

and therefore
‖uN (t)− S(t)Π0(u0, u1)‖H1(Td) ≤ CM1−s+ε .

This completes the proof of Lemma 3.2.

Next we set
EM =

⋂
K≥M

EK ,

where the intersection is taken over the dyadic values of K, i.e. K = 2j with j an
integer. Thus µ(EM ) tends to 1 as M tends to infinity. Using Lemma 3.2, we obtain
that there exists C > 0 such that for every t ≥ 1, every M , every (u0, u1) ∈ EM , and
every N ∈ N,

‖uN (t)− S(t)Π0(u0, u1)‖H1(Td) ≤ C
(
M1−s+ε + t

1−s
s

+ε1
)
.

Furthermore, by (3.6) and the definition of RM , we get that for (u0, u1) ∈ EM , and
t ≤ cM s−2ε

‖SN (uN )‖L4(Td)(t) ≤ ‖SN (wN,M )‖L4(Td)(t) + ‖SN (S(t)ΠM (u0, u1))‖L4(Td)(t)

≤ E1/4(wN,M )(t) +M−s+2ε ≤ CM
1−s+ε

2 .

Finally, we set

E =
∞⋃

M=1

EM .
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We have thus shown the µ almost sure bounds on the possible growths of the Sobolev
norms of the solutions established in the previous section for data in E which is of full
µ measure. This completes the proof of Proposition 3.1.

4. Passing to the limit

4.1. Some deterministic estimates. — We now need an interpolation result. De-
fine the space W 1,∞

T by the norm ‖u‖
W 1,∞
T

= ‖u‖L∞T + ‖∂tu‖L∞T , and denote by Hσ =

Hσ(Td).

Lemma 4.1. — Let T > 0, −∞ < σ2 ≤ σ1 < +∞ and assume that

u ∈ L∞
(
[−T, T ];Hσ1

)
, ∂tu ∈ L∞

(
[−T, T ];Hσ2

)
.

Then for all θ ∈ (0, 1), and all t1, t2 ∈ [−T, T ]

‖u(t1)− u(t2)‖Hθσ1+(1−θ)σ2 ≤ C|t1 − t2|1−θ‖u‖θL∞T Hσ1‖u‖1−θW 1,∞
T Hσ2

.

Proof. — By Hölder we get

‖u(t1)− u(t2)‖Hσ2 = ‖
∫ t2

t1

∂τu(τ)dτ‖Hσ2 ≤ |t1 − t2|‖∂tu‖L∞T Hσ2 .

Next we clearly have
‖u(t1)− u(t2)‖Hσ1 ≤ 2‖u‖L∞T Hσ1 ,

and we conclude using that

‖u‖Hθσ1+(1−θ)σ2 ≤ ‖u‖θHσ1‖u‖1−θHσ2 .

Now for σ ∈ R and α ∈ (0, 1), let us define the space CαTHσ = Cα
(
[−T, T ];Hσ(Td)

)
by the norm

‖u‖CαTHσ = sup
t1,t2∈[−T,T ],t1 6=t2

‖u(t1)− u(t2)‖Hσ
x

|t1 − t2|α
+ ‖u‖L∞T Hσ

x
.

According to Ascoli theorem, we obtain

Lemma 4.2. — For any T > 0, any α > 0 and any ε > 0, the embedding

CαTHσ 7→ C((0, T );Hσ−ε)

is compact.
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4.2. The compactness argument. — According to Proposition 3.1, we know that
almost surely, there exists M ≥ 1 such that the family of solutions to (3.1)

uN (t) = S(t)Π0(u0, u1) + wN (t),

is such that
‖(wN (t), ∂twN (t))‖H1(Td) ≤ C(M s + |t|)

1−s
s

+ε

‖SN (uN )‖L4((0,t)×Td) ≤ C(M s + |t|)
1−s
2s

+ε|t|1/4.
We apply Lemma 4.1 with σ1 = 1 and σ2 = 0 and we deduce that the sequence wN is
for any ε > 0 bounded in Cε/2T H1−ε/2. According to Lemma 4.2 we can almost surely
extract a sequence converging for any T in C

(
(0, T );H1−ε), to a limit that we denote

by w. On the other hand, the sequence SN (uN ) is, for any T bounded in L4
t,x and we

can consequently extract a sequence converging weakly in L4
loc,t,x to a limit that we

denote by u. But for any K ∈ N, if K ≤ N − 2, we have

SK(SN (uN )) = SK(uN ) = SK(S(t)Π0(u0, u1) + wN (t)),

and we deduce that (in distribution sense), SK(SN (uN )) is converging to SK(u) on the
one hand and to SK

(
S(t)(u0, u1) + w

)
on the other hand. Hence

∀K ∈ N, SK(u) = SK
(
S(t)(u0, u1) + w

)
.

We deduce that (in distribution sense) u = S(t)(u0, u1) + w. Now we deduce that
SN (uN ) is converging weakly in L4

loc,t,x and strongly in L2
loc,t,x to u (here by strong

convergence in Lploc,t,x we mean that the convergence is strong on any compact set).
By interpolation, we deduce that SN (uN ) is converging strongly to u in Lploc,t,x for
2 ≤ p < 4. In particular using this property for p = 3, we can pass to the limit in (3.1)
(here we use Lemma 2.1 to pass to the limit in the nonlinear term) and obtain that u
satisfies (1.1). To prove the convergence of ∂twN in C

(
(0, T );H−ε(Td)

)
, we estimate

∂2
twN = ∆wN − SN

(
(SNwN + SNS(t)Π0(u0, u1))3

)
,

in L∞
(
(0, T );H−τ (Td)

)
with τ = max (d/4, 1) (here we use L4/3(Td) ⊂ H−d/4(Td)),

and we can conclude thanks to Lemma 4.1 with σ1 = 0 and σ2 = −τ .
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