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Invariant Gibbs measures for dispersive PDEs

Chapter 4 : Global weak probabilistic solutions of the
LLL equation below H−1(C)
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White noise measure and global weak solutions for LLL

Up to now, we have considered strong probabilistic solutions. We show here
how we can construct global probabilistic solutions to PDEs thanks to
compactness methods in the space of measures. As an application, we will
construct a global dynamics on the support of the white noise measure of the
LLL equation which lives at the very low regularity H−1(C).

Our aim is now to construct weak solutions to the Lowest Landau Level
equation {

i∂tu = Π(|u|2u), (t, z) ∈ R× C,
u(0, z) = u0(z),

(LLL)

on the support of the white noise measure.
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Denote by (en)n≥0 a Hilbertian basis of L2(0, 1) and consider independent
standard Gaussians (gn)n≥0 on a probability space (Ω,F , p). Then it is
well-known that the random series

Bt =
+∞∑
n=0

gn

∫ t

0
en(s)ds

converges in L2(Ω,F , p) and defines a Brownian motion. The white noise
measure is then defined by the map

ω 7−→W (t, ω) =
dBt

dt
(ω) =

+∞∑
n=0

gn(ω)en(t). (1)
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Now consider a Hilbert space K which is a space of functions on a manifold M
and consider a Hilbertian basis (en)n≥0 of K.

We define the mean-zero Gaussian white noise (measure) on K as
µ = p ◦W−1, where

W (x , ω) =
+∞∑
n=0

gn(ω)en(x).

Notice that this measure is independent of the choice of the Hilbertian basis
of K.

For more details on Gaussian measures on Hilbert spaces, we refer to [Janson].
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Recall the definition of the harmonic Sobolev spaces : for s ∈ R we define

Hs = Hs(C) =
{
u ∈ S ′(C), Hs/2u ∈ L2(C)

}
,

and the norm on F 2(C) ∩Hs(C) is a weighted L2-norm.

Consider the Gaussian random variable

η(ω, z) =
+∞∑
n=0

gn(ω)ϕn(z) =
1√
π

( +∞∑
n=0

zngn(ω)√
n!

)
e−|z|

2/2,

and the measure µ = p ◦ η−1. We can show that the measure µ is a probability
measure on

X−1
hol (C) :=

(
∩σ>1 H−σ(C)

)
∩ (O(C)e−|z|

2/2).

We have already seen that, for any 2 ≤ p < +∞, η(ω, .) /∈ F p(C) for a.a.
ω ∈ Ω.
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Since ‖u‖L2(C) is preserved by (LLL), µ is formally invariant under (LLL). We
are not able to define a flow at this level of regularity, however using
compactness arguments combined with probabilistic methods, we will construct
weak solutions.

Theorem (Germain-Hani-LT)

There exists a set Σ ⊂ X−1
hol (C) of full µ measure so that for every u0 ∈ Σ the

equation (LLL) with initial condition u(0) = u0 has a solution

u ∈
⋂
σ>1

C
(
R ;H−σ(C)

)
.

The distribution of the random variable u(t) is equal to µ (and thus
independent of t ∈ R) :

L
X−1
hol

(
u(t)

)
= L

X−1
hol

(
u(0)

)
= µ, ∀ t ∈ R.
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The proof is based on a compactness argument in the space of measures (the
Prokhorov theorem) combined with a representation theorem of random
variables (the Skorohod theorem).

This approach has been first applied to the Navier-Stokes and Euler equations
in Albeverio-Cruzeiro and Da Prato-Debussche and extended to dispersive
equations by Burq-Thomann-Tzvetkov. See also Germain-Hani-Thomann,
Oh-Thomann and Oh-Richards-Thomann. For results in a non compact setting,
see Suzzoni.

Remark
For the Szegö equation, using that the H1/2(T) norm is preserved by the flow,
the method used in the proof of the main Theorem allows to construct a global
dynamics in

⋂
σ>0 C

(
R ;H−σ+ (T)

)
. See Burq-Thomann-Tzvetkov for details.
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The Prokhorov and Skorokhod theorems

We state two basic results, concerning the convergence of random variables. To
begin with, recall the following definition

Definition
Let S be a metric space and (ρN)N≥1 a family of probability measures on the
Borel σ−algebra B(S). The family (ρN) on (S ,B(S)) is said to be tight if for
any ε > 0 one can find a compact set Kε ⊂ S such that ρN(Kε) ≥ 1− ε for all
N ≥ 1.

Then, we have the following compactness criterion

Theorem (Prokhorov)

Assume that the family (ρN)N≥1 of probability measures on the metric space S
is tight. Then it is weakly compact, i.e. there is a subsequence (Nk)k≥1 and a
limit measure ρ∞ such that for every bounded continuous function F : S → R,

lim
k→∞

∫
S

F (x)dρNk (x) =

∫
S

F (x)dρ∞(x).
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Remark
Let us make a remark on the case S = Rd . The measure given by the theorem
allows mass concentration in a point and the tightness condition forbids the
escape of mass to infinity.
The Prokhorov theorem is of different nature compared to the compactness
theorems giving the deterministic weak solutions : In the latter case there can
be a loss of energy. A weak limit of L2 functions may lose some mass whereas
in the Prokhorov theorem a limit measure is a probability measure.
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We now state the Skorokhod theorem

Theorem (Skorokhod)

Assume that S is a separable metric space. Let (ρN)N≥1 and ρ∞ be probability
measures on S . Assume that ρN −→ ρ∞ weakly. Then there exists a probability
space on which there are S−valued random variables (YN)N≥1, Y∞ such that
L(YN) = ρN for all N ≥ 1, L(Y∞) = ρ∞ and YN −→ Y∞ a.s.

We illustrate this result with two elementary but significant examples :
I Assume that S = R. Let (YN)1≤N≤∞ be standard Gaussians, i.e.
L(YN) = L(Y∞) = NR(0, 1). Then the convergence in law obviously
holds, but in general we can not expect the almost sure convergence of the
YN to Y∞ (define for example YN = (−1)NY∞).
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I Assume that S = R. Let (YN)1≤N≤∞ be random variables. For any
random variable Y on R we denote by FY (t) = P(Y ≤ t) its cumulative
distribution function. Here we assume that for all 1 ≤ N ≤ ∞, FYN is
bijective and continuous, and we prove the Skorokhod theorem in this
case. Let U be a r.v. so that L(U) is the uniform distribution on [0, 1] and
define the r.v. ỸN = F−1

YN
(U). We now check that the ỸN satisfy the

conclusion of the theorem. To begin with,

FỸN
(t) = P(ỸN ≤ t) = P(U ≤ FYN (t)) = FYN (t),

therefore we have for 1 ≤ N ≤ ∞, L(YN) = L(ỸN). Now if we assume
that YN −→ Y∞ in law, we have for all t ∈ R, FYN (t) −→ FY∞(t) and in
particular ỸN −→ Ỹ∞ almost surely.
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General strategy of the proof

Let (Ω,F , p) be a probability space and
(
gn(ω)

)
n≥1 a sequence of independent

complex normalised Gaussians, gn ∈ NC(0, 1). LetM be a Riemanian compact
manifold and let (en)n≥1 be an Hilbertian basis of L2(M) (with obvious
changes, we can allow n ∈ Z). Consider one of the equations mentioned in the
introduction. Denote by

Xσ = Xσ(M) =
⋂
τ<σ

Hτ (M).

Laurent THOMANN Gibbs measures for PDEs



The general strategy for proving a global existence result is the following :

Step 1 : The Gaussian measure µ : We define a measure µ on Xσ(M) which
is invariant by the flow of the linear part of the equation. The index σc ∈ R is
determined by the equation and the manifoldM. Indeed this measure can be
defined as µ = p ◦ γ−1, where γ ∈ L2(Ω; Hσ(M)

)
for all σ < σc is a Gaussian

random variable which takes the form

γ(ω, x) =
∑
n≥1

gn(ω)

λn
en(x).

Here the (λn) satisfy λn ∼ cnα, α > 0 and are given by the linear part and the
Hamiltonian structure of the equation. Notice in particular that for all
measurable F : Xσc (M) −→ R∫

Xσc (M)

F (u)dµ(u) =

∫
Ω

F
(
γ(ω, ·)

)
dp(ω). (2)
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Step 2 : The invariant measure ρN : By working on the Hamiltonian
formulation of the equation, we introduce an approximation of the initial
problem which has a global flow ΦN , and for which we can construct a measure
ρN on Xσc (M) which has the following properties

(i) The measure ρN is a probability measure which is absolutly continuous
with respect to µ

dρN(u) = ΨN(u)dµ(u).

(ii) The measure ρN is invariant by the flow ΦN by the Liouville theorem.

(iii) There exists Ψ 6≡ 0 such that for all p ≥ 1, Ψ(u) ∈ Lp(dµ) and

ΨN(u) −→ Ψ(u), in Lp(dµ).

(In particular ‖ΨN(u)‖Lpµ ≤ C uniformly in N ≥ 1.) This enables to define
a probability measure on Xσc (M) by

dρ(u) = Ψ(u)dµ(u),

which is formally invariant by the equation.
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Step 3 : The measure νN : We abuse notation and write

C
(
[−T ,T ];Xσc (M)

)
=
⋂
σ<σc

C
(
[−T ,T ];Hσ(M)

)
.

We denote by νN = ρN ◦ Φ−1
N the measure on C

(
[−T ,T ];Xσc (M)

)
, defined as

the image measure of ρN by the map

Xσc (M) −→ C
(
[−T ,T ];Xσc (M)

)
v 7−→ ΦN(t, v).

In particular, for any measurable F : C
(
[−T ,T ];Xσc (M)

)
−→ R∫

C
(

[−T ,T ];Xσc
) F (u)dνN(u) =

∫
Xσc

F
(
ΦN(t, v)

)
dρN(v). (3)
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Assume that the corresponding sequence of measures (νN) is tight in
C
(
[−T ,T ];Hσ(M)

)
for all σ < σc (this has to be shown for the considered

equation). Therefore, for all σ < σc , by the Prokhorov theorem, there exists a
measure νσ = ν on C

(
[−T ,T ];Hσ(M)

)
so that the weak convergence holds

(up to a sub-sequence) : For all σ < σc and all bounded continuous
F : C

(
[−T ,T ];Hσ(M)

)
−→ R

lim
N→∞

∫
C
(

[−T ,T ];Hσ
) F (u)dνN(u) =

∫
C
(

[−T ,T ];Hσ
) F (u)dν(u).

At this point, observe that if σ1 < σ2, then νσ1 ≡ νσ2 on
C
(
[−T ,T ];Hσ1(M)

)
. Moreover, by the standard diagonal argument, we can

ensure that ν is a measure on C
(
[−T ,T ];Xσc (M)

)
.

Finally, with the Skorokhod theorem, we can construct a sequence of random
variables which converges to a solution of the initial problem.
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We now state a result which will be useful in the sequel. Assume that ρN
satisfies the properties mentioned in Step 2.

Proposition

Let σ < σc . Let p ≥ 2 and r > p. Then for all N ≥ 1∥∥‖u‖Lp
T
Hσx

∥∥
L
p
νN

≤ CT 1/p∥∥‖v‖Hσx ∥∥Lrµ .
Let q ≥ 1, p ≥ 2 and r > p. Then for all N ≥ 1∥∥‖u‖Lp

T
L
q
x

∥∥
L
p
νN

≤ CT 1/p∥∥‖v‖Lqx∥∥Lrµ .
In case ΨN ≤ C , one can take r = p in the previous inequalities.
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Proof : We apply (3) with the function u 7−→ F (u) = ‖u‖p
L
p
T
Hσx

. Here and after,
we make the abuse of notation∥∥‖u‖Lp

T
Hσx

∥∥
L
p
νN

= ‖u‖LpνN L
p
T
Hσx
.

Then

‖u‖p
L
p
νN

L
p
T
Hσx

=

∫
C
(

[−T ,T ];Xσc
) ‖u‖pLp

T
Hσx

dνN(u)

=

∫
Xσc
‖ΦN(t, v)‖p

L
p
T
Hσx

dρN(v)

=

∫
Xσc

[ ∫ T

−T

‖ΦN(t, v)‖pHσx dt
]
dρN(v)

=

∫ T

−T

[ ∫
Xσc
‖ΦN(t, v)‖pHσx dρN(v)

]
dt, (4)

where in the last line we used Fubini.
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Now we use the invariance of ρN under ΦN , and we deduce that for all
t ∈ [−T ,T ] ∫

Xσc
‖ΦN(t, v)‖pHσx dρN(v) =

∫
Xσc
‖v‖pHσx dρN(v).

Therefore, from (4) and Hölder we obtain with 1/r1 + 1/r2 = 1

‖u‖p
L
p
νN

L
p
T
Hσx

= 2T
∫
Xσc
‖v‖pHσx dρN(v)

= 2T
∫
Xσc
‖v‖pHσx ΨN(v)dµ(v)

≤ 2T‖v‖p
L
pr1
µ Hσx

‖ΨN(v)‖Lr2µ .

Now, let r > p, take r1 = r/p and we can conclude since ΨN(v) ∈ Lr2(dµ).
For the proof of the second estimate, we proceed similarly. We take
F (u) = ‖u‖p

L
p
T
L
q
x
in (3), and use the same arguments as previously. �
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The probabilistic argument of convergence

Definition of T (u, u, u) on the support of µ Denote by Ek the space on C
spanned by ϕk . For N ≥ 0, denote by ΠN the orthogonal projector on the space⊕N

k=0 Ek (in this section, we do not need the smooth cut-offs SN). In the
sequel, we denote by T (u) = T (u, u, u) and TN(u) = ΠNT (ΠNu,ΠNu,ΠNu)

Proposition

For all p ≥ 2 and σ > 1, the sequence
(
TN(u)

)
N≥1 is a Cauchy sequence in

Lp
(
X−1

hol ,B, dµ;H−σ(C)
)
. Namely, for all p ≥ 2, there exist δ > 0 and C > 0

so that for all 1 ≤ M < N,∫
X−1
hol

‖TN(u)− TM(u)‖pH−σ(C)
dµ(u) ≤ CM−δ.

We denote by T (u) = T (u, u, u) the limit of this sequence and we have for all
p ≥ 2

‖T (u)‖LpµH−σ(C) ≤ Cp. (5)
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Proof : By the Proposition on the Wiener chaos, we only have to prove the
statement for p = 2.
Firstly, by definition of the measure µ∫
X−1
hol

‖TN(u)−TM(u)‖2H−σ(C)dµ(u) =

∫
Ω

‖TN
(
η(ω)

)
−TM

(
η(ω)

)
‖2H−σ(C)dp(ω).

Therefore, it is enough to prove that
(
TN(η)

)
N≥1 is a Cauchy sequence in

L2(Ω;H−σ(C)
)
.

Let 1 ≤ M < N and fix σ > 1. Then an explicit computation gives

‖TN(η)− TM(η)‖2H−σ(C) =

=
π2

64 · 2σ
N∑

p=0

1
(p + 1)σ

∑
(n,m)∈A(p)

M,N
×A

(p)
M,N

(n1 + n2)! (m1 + m2)! gn1gn2gn3gm1gm2gm3

2n1+n22m1+m2p!
√
n1! n2! n3!

√
m1!m2!m3!

where A
(p)
M,N is the set defined by

A
(p)
M,N =

{
n ∈ N3 s.t. 0 ≤ nj ≤ N, n1 + n2 − n3 = p ∈ {0 . . .N},(

n1 > M or n2 > M or n3 > M or p > M
)}
.
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Now we take the integral over Ω. Here, the key fact is to use that the (gn)n≥0

are independent and centred Gaussians : we deduce that each term in the r.h.s.
vanishes, unless

Case 1 : (n1, n2, n3) = (m1,m2,m3) or (n1, n2, n3) = (m2,m1,m3)

or

Case 2 : (n1, n2,m1) = (n3,m2,m3) or (n1, n2,m2) = (n3,m1,m3) or
(n1, n2,m3) = (m1, n3,m2) or (n1, n2,m3) = (m2, n3,m1).

With a careful inspection of each contribution, we are able to bound the
different sums. �
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Study of the measure νN
Let N ≥ 1. We then consider the following approximation of (LLL){

i∂tu = TN(u), (t, z) ∈ R× C,

u(0, z) = u0(z) ∈ X−1
hol .

(6)

The equation (6) is an ODE in the frequencies less than N, whereas for the
large frequencies, the solution is constant in time : (1− ΠN)u(t) = (1− ΠN)u0

and for all t ∈ R.

The main motivation to introduce this system is the following proposition

Proposition

The equation (6) has a global flow ΦN . Moreover, the measure µ is invariant
under ΦN : For any Borel set A ⊂ X−1

hol and for all t ∈ R, µ
(
ΦN(t,A)

)
= µ

(
A
)
.

In particular if LX−1(v) = µ then for all t ∈ R, LX−1(ΦN(t, v)) = µ.

Proof : The proof is a direct application of the Liouville theorem. �
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We denote by νN the measure on C
(
[−T ,T ];X−1

hol

)
, defined as the image

measure of µ by the map

X−1
hol −→ C

(
[−T ,T ];X−1

hol

)
v 7−→ ΦN(t, v).

Lemma
Let σ > 1 and p ≥ 2. Then there exists C > 0 so that for all N ≥ 1∥∥‖u‖

W
1,p
T
H−σz

∥∥
L
p
νN

≤ C . (7)
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Proof : Firstly, we have that for σ > 1, p ≥ 2 and N ≥ 1∥∥‖u‖
L
p
T
H−σz

∥∥
L
p
νN

≤ C .

Indeed, by the definition of νN and the invariance of µ by ΦN we have

‖u‖
L
p
νN

L
p
T
H−σz

= (2T )1/p‖v‖
L
p
µH
−σ
z

= (2T )1/p‖η‖
L
p
pH
−σ
z
.

Then, by the Khintchine inequality, for all p ≥ 2

‖η‖
L
p
pH
−σ
z
≤ C
√
p‖η‖

L2
pH
−σ
z
≤ C .

Next, we show that
∥∥‖∂tu‖Lp

T
H−σz

∥∥
L
p
νN

≤ C . By definition of νN

‖∂tu‖p
L
p
νN

L
p
T
H−σz

=

∫
C
(

[−T ,T ];X−1
hol

) ‖∂tu‖p
L
p
T
H−σz

dνN(u)

=

∫
X−1
hol

‖∂tΦN(t, v)‖p
L
p
T
H−σz

dµ(v).
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Now, since ΦN(t, v) satisfies (6) and by the invariance of µ, we have

‖∂tu‖p
L
p
νN

L
p
T
H−σz

=

∫
X−1
hol

‖TN(ΦN(t, v))‖p
L
p
T
H−σz

dµ(v)

= 2T
∫
X−1
hol

‖TN(v)‖p
H−σz

dµ(v),

and conclude with (5) and proposition defining T (u). �
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The convergence argument

We are able to establish the following tightness result for the measures νN .

Proposition

Let T > 0 and σ > 1. Then the family of measures

(νN)N≥1 with νN = LCTH−σ
(
uN(t); t ∈ [−T ,T ]

)
is tight in C

(
[−T ,T ];H−σ(C)

)
.

Proof : Let σ > 1. Fix σ > s ′ > s ′′ > 1 and α > 0.
We define the space CαTH−s′ = Cα

(
[−T ,T ];H−s′(C)

)
by the norm

‖u‖Cα
T
H−s′ = sup

t1,t2∈[−T ,T ], t1 6=t2

‖u(t1)− u(t2)‖H−s′
z

|t1 − t2|α
+ ‖u‖

L∞
T
H−s′

z
,

and it is classical that the embedding CαTH−s′ ⊂ C
(
[−T ,T ];H−σ(C)

)
is

compact.
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We now claim that there exists 0 < α� 1 so that for all p ≥ 1 we have the
bound

‖u‖LpνN CαTH−s′ ≤ C . (8)

With an interpolation argument we obtain that for some p � 1

‖u‖Cα
T
H−s′ ≤ C‖u‖1−θ

L
p
T
H−s′′ ‖u‖

θ

W
1,p
T
H−σ ≤ C‖u‖Lp

T
H−s′′ + C‖u‖

W
1,p
T
H−σ ,

for some small α > 0. By (7) we then deduce (9).

Next, let δ > 0 and define the subset of CTH−σ

Kδ =
{
u ∈ CTH−σ s.t. ‖u‖Cα

T
H−s′ ≤ δ−1},

endowed with the natural topology of CTH−σ. Thanks to the previous
considerations, the set Kδ is compact. Finally, by Markov and (9) we get that

νN(K c
δ ) ≤ δ ‖u‖L1

νN
Cα
T
H−s′ ≤ δC ,

which shows the tightness of (νN). �
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‖u‖Cα
T
H−s′ ≤ C‖u‖1−θ

L
p
T
H−s′′ ‖u‖

θ

W
1,p
T
H−σ ≤ C‖u‖Lp

T
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W
1,p
T
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The result of the previous proposition enables us to use the Prokhorov
theorem : For each T > 0 there exists a sub-sequence νNk and a measure ν on
the space C

(
[−T ,T ];X−1

hol

)
so that for all τ > 1 and all bounded continuous

function F : C
(
[−T ,T ];H−τ (C)

)
−→ R∫

C
(

[−T ,T ];H−τ (C)
) F (u)dνNk (u) −→

∫
C
(

[−T ,T ];H−τ (C)
) F (u)dν(u).

By the Skohorod theorem, there exists a probability space (Ω̃, F̃ , p̃), a sequence
of random variables (ũNk ) and a random variable ũ with values in
C
(
[−T ,T ];X−1

hol

)
so that

L
(
ũNk ; t ∈ [−T ,T ]

)
= L

(
uNk ; t ∈ [−T ,T ]

)
= νNk , L

(
ũ; t ∈ [−T ,T ]

)
= ν,
(10)

and for all τ > 1

ũNk −→ ũ, p̃− a.s. in C
(
[−T ,T ];H−τ (C)

)
. (11)
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We now claim that LX−1(uNk (t)) = LX−1(ũNk (t)) = µ, for all t ∈ [−T ,T ]
and k ≥ 1. Indeed, for all t ∈ [−T ,T ], the evaluation map

Rt : C
(
[−T ,T ];X−1

hol

)
−→ X−1

hol

u 7−→ u(t, .),

is well defined and continuous.
Thus, for all t ∈ [−T ,T ], uNk (t) and ũNk (t) have same distribution (Rt)#νNk .
We then obtain that this distribution is µ.
Thus from (13) we deduce that

LX−1(ũ(t)) = µ, ∀ t ∈ [−T ,T ]. (14)
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Let k ≥ 1 and t ∈ R and consider the r.v. Xk given by

Xk = uNk (t)− R0(uNk (t)) + i

∫ t

0
TNk (uNk )ds.

Define X̃k similarly to Xk with uNk replaced with ũNk . Then by (12),

LCTX−1(X̃Nk ) = LCTX−1(XNk ) = δ0.

In other words, X̃k = 0 p̃ – a.s. and ũNk satisfies the following equation p̃ – a.s.

ũNk (t) = R0(ũNk (t))− i

∫ t

0
TNk (ũNk )ds. (15)
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We now show that we can pass to the limit k −→ +∞ in (15) in order to show
that ũ is p̃ – a.s. a solution to (LLL) written in integral form as :

ũ(t) = R0(ũ(t))− i

∫ t

0
T (ũ)ds. (16)

Firstly, from (13) we deduce the convergence of the linear terms in
equation (15) to those in (16).

The following lemma gives the convergence of the nonlinear term.

Lemma
Up to a sub-sequence, the following convergence holds true

TNk (ũNk ) −→ T (ũ), p̃− a.s. in L2([−T ,T ];H−σ(C)
)
.
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Proof : In order to simplify the notations, in this proof we drop the tildes and
write Nk = k. Let M ≥ 1 and write

Tk(uk)− T (u) =
(
Tk(uk)− T (uk)

)
+
(
T (uk)− TM(uk)

)
+

+
(
TM(uk)− TM(u)

)
+
(
TM(u)− T (u)

)
.

To begin with, by continuity of the product in finite dimension, when
k −→ +∞

TM(uk) −→ TM(u), p̃− a.s. in L2([−T ,T ];H−σ(C)
)
.

We now deal with the other terms. It is sufficient to show the convergence in
the space X := L2(Ω× [−T ,T ];H−σ(C)

)
, since the almost sure convergence

follows after exaction of a sub-sequence.
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By definition and the invariance of µ we obtain∥∥ TM(uk)− T (uk)
∥∥2
X

=

∫
C([−T ,T ];X−1)

∥∥ TM(v)− T (v)
∥∥2
L2
T
H−σz

dνk(v)

=

∫
X−1(C)

∥∥∥ TM(Φk(t, g)
)
− T

(
Φk(t, g)

) ∥∥∥2

L2
T
H−σz

dµ(g)

=

∫
X−1(C)

∥∥ TM(g)− T (g)
)∥∥2

L2
T
H−σz

dµ(g)

= 2T
∫
X−1(C)

∥∥ TM(g)− T (g)
∥∥2
H−σz

dµ(g),

which tends to 0 uniformly in k ≥ 1 when M −→ +∞, according to
proposition on the Cauchy sequence.

The term
∥∥ TM(u)− T (u)

∥∥
X
is treated similarly. Finally, with the same

argument we show∥∥ Tk(uk)− T (uk)
∥∥
X
≤ C

∥∥ Tk(f )− T (f )
∥∥
L2
µH
−σ
z
,

which tends to 0 when k −→ +∞. This completes the proof. �
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Conclusion of the proof of the main theorem

Define ũ0 = ũ(0) := R0(ũ). Then by (14), LX−1( ũ0 ) = µ and by the previous
arguments, there exists Ω̃′ ⊂ Ω̃ such that p̃(Ω̃′) = 1 and for each ω′ ∈ Ω̃′, the
random variable ũ satisfies the equation

ũ = ũ0 − i

∫ t

0
T (ũ)dt, (t, z) ∈ R× C. (17)

Set Σ = ũ0(Ω′), then µ(Σ) = p̃(Ω̃′) = 1.

It remains to check that we can
construct a global dynamics. Take a sequence TN → +∞, and perform the
previous argument for T = TN . For all N ≥ 1, let ΣN be the corresponding set
of initial conditions and set Σ = ∩N∈NΣN . Then µ(Σ) = 1 and for all ũ0 ∈ Σ,
there exists

ũ ∈ C
(
R ;X−1

hol

)
,

which solves (18). This completes the proof.
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