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Invariant Gibbs measures for dispersive PDEs

Chapter 4 : Global weak probabilistic solutions of the
LLL equation below H~1(C)

THOMANN Gibbs measures for PDEs



White noise measure and global weak solutions for LLL

Up to now, we have considered strong probabilistic solutions. We show here
how we can construct global probabilistic solutions to PDEs thanks to
compactness methods in the space of measures. As an application, we will
construct a global dynamics on the support of the white noise measure of the
LLL equation which lives at the very low regularity H~*(C).

Our aim is now to construct weak solutions to the Lowest Landau Level
equation

{ i0ew =N(Jul*u),  (t,2) eRxC, (LLL)

u(0, z) = wo(z),

on the support of the white noise measure.
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Denote by (es)n>0 a Hilbertian basis of L2(0,1) and consider independent
standard Gaussians (gn)»>0 on a probability space (2, 7, p). Then it is
well-known that the random series

+o0 t
Bt = zg,,/ e,,(s)ds
n=0 0

converges in L?(Q, F, p) and defines a Brownian motion. The white noise
measure is then defined by the map

W W(t,w) = %(w) =5 ga(w)en(®). (1)
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Now consider a Hilbert space K which is a space of functions on a manifold M
and consider a Hilbertian basis (e,)s>0 of K.

We define the mean-zero Gaussian white noise (measure) on K as
pw=po W™ where

W(x,w) = Zgn )en(x).

Notice that this measure is independent of the choice of the Hilbertian basis
of K.

For more details on Gaussian measures on Hilbert spaces, we refer to [Janson].
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Recall the definition of the harmonic Sobolev spaces : for s € R we define
H* =H°(C) = {u e S'(C), H'?u e L*(C)},
and the norm on F?(C) NH*(C) is a weighted L>-norm.
Consider the Gaussian random variable
_ N~ 2780(w) \ 127 /2
n(w,z) = Zgn(wson _\F(;W)e ,

and the measure ;1 = p o 1. We can show that the measure 1 is a probability
measure on

Xl (C) = (Na>1 H77(C)) N (O(C)e7/2).

We have already seen that, for any 2 < p < 400, n(w,.) ¢ FP(C) for a.a.
we Q.
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Since ||u|| 2(c) is preserved by (LLL), p is formally invariant under (LLL). We
are not able to define a flow at this level of regularity, however using
compactness arguments combined with probabilistic methods, we will construct
weak solutions.

Theorem (Germain-Hani-LT)

There exists a set £ C X, (C) of full 1 measure so that for every ug € ¥ the
equation (LLL) with initial condition u(0) = uo has a solution

ue () C(R;H°(C)).

The distribution of the random variable u(t) is equal to y (and thus
independent of t € R) :

L (u(t)) = th;,i (u(0)) =p, VteR.

hol
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The proof is based on a compactness argument in the space of measures (the
Prokhorov theorem) combined with a representation theorem of random
variables (the Skorohod theorem).

This approach has been first applied to the Navier-Stokes and Euler equations
in Albeverio-Cruzeiro and Da Prato-Debussche and extended to dispersive
equations by Burg-Thomann-Tzvetkov. See also Germain-Hani-Thomann,
Oh-Thomann and Oh-Richards-Thomann. For results in a non compact setting,
see Suzzoni.
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The proof is based on a compactness argument in the space of measures (the
Prokhorov theorem) combined with a representation theorem of random
variables (the Skorohod theorem).

This approach has been first applied to the Navier-Stokes and Euler equations
in Albeverio-Cruzeiro and Da Prato-Debussche and extended to dispersive
equations by Burg-Thomann-Tzvetkov. See also Germain-Hani-Thomann,
Oh-Thomann and Oh-Richards-Thomann. For results in a non compact setting,
see Suzzoni.

For the Szegd equation, using that the H*/?(T) norm is preserved by the flow,
the method used in the proof of the main theorem allows to construct a global
dynamics in (), .o C(R; H; °(T)). See Burg-Thomann-Tzvetkov for details.
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The Prokhorov and Skorokhod theorems

We state two basic results, concerning the convergence of random variables. To
begin with, recall the following definition

Definition

Let S be a metric space and (pn)n>1 a family of probability measures on the
Borel o—algebra B(S). The family (pn) on (S, B(S)) is said to be tight if for
any & > 0 one can find a compact set K. C S such that py(K:) > 1 — & for all
N> 1.

Then, we have the following compactness criterion

Theorem (Prokhorov)

Assume that the family (pn)n>1 of probability measures on the metric space S
is tight. Then it is weakly compact, i.e. there is a subsequence (Ni)i>1 and a
limit measure ps, such that for every bounded continuous function F : S — R,

lim /F(X)dek(X):/F(X)dpoo(X).

k—oo Jg s
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Let us make a remark on the case S = RY. The measure given by the theorem
allows mass concentration in a point and the tightness condition forbids the
escape of mass to infinity.

The Prokhorov theorem is of different nature compared to the compactness
theorems giving the deterministic weak solutions : In the latter case there can
be a loss of energy. A weak limit of L? functions may lose some mass whereas
in the Prokhorov theorem a limit measure is a probability measure.
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We now state the Skorokhod theorem

Theorem (Skorokhod)

Assume that S is a separable metric space. Let (pn)n>1 and ps be probability
measures on S. Assume that py —> poo weakly. Then there exists a probability
space on which there are S—valued random variables (Yn)n>1, Yoo such that
L(Yn)=pn forall N> 1, L(Ys) = poc and Yy — Yo a.s.
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We now state the Skorokhod theorem

Theorem (Skorokhod)

Assume that S is a separable metric space. Let (pn)n>1 and ps be probability
measures on S. Assume that py —> poo weakly. Then there exists a probability
space on which there are S—valued random variables (Yn)n>1, Yoo such that
L(Yn)=pn forall N> 1, L(Ys) = poc and Yy — Yo a.s.

We illustrate this result with two elementary but significant examples :

> Assume that S = R. Let (Yn)i<n<oo be standard Gaussians, i.e.
L(Yn) = L(Ys) = Nr(0,1). Then the convergence in law obviously
holds, but in general we can not expect the almost sure convergence of the
Yu to Yoo (define for example Yy = (—=1)"Y,.).
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> Assume that S = R. Let (Yn)i1<n<oo be random variables. For any
random variable Y on R we denote by Fy(t) = P(Y < t) its cumulative
distribution function. Here we assume that for all 1 < N < oo, Fy,, is
bijective and continuous, and we prove the Skorokhod theorem in this
case. Let U be a r.v. so that £(U) is the uniform distribution on [0, 1] and
define the r.v. Yy = F;NI(U). We now check that the Yy satisfy the
conclusion of the theorem. To begin with,

Fy, (£) = P(Yn < t) = P(U < Fy, (1)) = Fy, (1),

therefore we have for 1 < N < oo, £(Yn) = £(Yn). Now if we assume
that Yy — Y in law, we have for all t € R, Fy, (t) — Fy, (t) and in
particular YN —_— YOo almost surely.
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General strategy of the proof

Let (2, F,p) be a probability space and (g,,(w))n>1 a sequence of independent
complex normalised Gaussians, g, € Nc(0,1). Let M be a Riemanian compact
manifold and let (e,)n>1 be an Hilbertian basis of L?(M) (with obvious
changes, we can allow n € Z). Consider one of the equations mentioned in the
introduction. Denote by

X7 =X (M) = ﬂ H™(M).

T<0o
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The general strategy for proving a global existence result is the following :

Step 1 : The Gaussian measure p : We define a measure 1 on X7 (M) which
is invariant by the flow of the linear part of the equation. The index 0. € R is
determined by the equation and the manifold M. Indeed this measure can be

defined as p = po~y~t, where v € L?(Q; H7(M)) for all o < 0. is a Gaussian
random variable which takes the form

) = 3 e (),

n>1

Here the (\,) satisfy A\, ~ cn®, a > 0 and are given by the linear part and the
Hamiltonian structure of the equation. Notice in particular that for all
measurable F : X7¢(M) — R

/ F(u)du(u) = / F(7(w, ) dp(w)- ®)
Xc(M) Q
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Step 2 : The invariant measure py : By working on the Hamiltonian
formulation of the equation, we introduce an approximation of the initial
problem which has a global flow ®, and for which we can construct a measure
pn on X7<(M) which has the following properties

(/) The measure py is a probability measure which is absolutly continuous
with respect to p

don(u) = Wn(u)du(u).
(i) The measure py is invariant by the flow ®y by the Liouville theorem.
(iif) There exists W # 0 such that for all p > 1, W(u) € LP(du) and

Vy(u) — V(u), in LP(du).

(In particular [[Wn(u)|[5 < C uniformly in N > 1.) This enables to define
a probability measure on X7¢(M) by

dp(u) = W(u)dp(w),

which is formally invariant by the equation.
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Step 3 : The measure vy : We abuse notation and write

C([-T, T X7 (M) = () C([-=T, T]; H7(M)).

o<oc

We denote by vy = py o @' the measure on C([— T, T]; X°¢(M)), defined as
the image measure of py by the map

X%(M) — C([-T, T]; X7¢(M))
v o o— b (t, v).

In particular, for any measurable F : C([-T, T]; X7(M)) — R

~/C([—T,T];X"c) F(u)dvw(v) :/ F(®n(t,v))dpn(v). (3)

X%c
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Assume that the corresponding sequence of measures (vy) is tight in

C([-T, T]; H7(M)) for all o < o (this has to be shown for the considered
equation). Therefore, for all o < o, by the Prokhorov theorem, there exists a
measure v, = v on C([—T, T]; H?(M)) so that the weak convergence holds
(up to a sub-sequence) : For all 0 < o, and all bounded continuous
F:C([-T,Tl; H*(M)) — R

Jim- /C () FO) = /C () O
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Assume that the corresponding sequence of measures (vy) is tight in

C([-T, T]; H7(M)) for all o < o (this has to be shown for the considered
equation). Therefore, for all o < o, by the Prokhorov theorem, there exists a
measure v, = v on C([—T, T]; H?(M)) so that the weak convergence holds
(up to a sub-sequence) : For all 0 < o, and all bounded continuous
F:C([-T,Tl; H*(M)) — R

Jim- /C () FO) = /C () O

At this point, observe that if o1 < 02, then vy, = Vs, On

C([-T, T]; H?*(M)). Moreover, by the standard diagonal argument, we can
ensure that v is a measure on C([—T, T]; X7¢(M)).

Finally, with the Skorokhod theorem, we can construct a sequence of random
variables which converges to a solution of the initial problem.
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We now state a result which will be useful in the sequel. Assume that ppy
satisfies the properties mentioned in Step 2.

Proposition

Let o < oc. Let p>2 and r > p. Then for all N > 1

i, < CT?lvilng

”HUHL‘.’rH;’ L

Letq>1,p>2andr > p. Then forall N > 1

Mullizsslle < CT2)llIvIILg
T VN

L;L

In case W < C, one can take r = p in the previous inequalities.
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Proof : We apply (3) with the function v +— F(u) = ||u|| Here and after,

P
_ Lo HZ
we make the abuse of notation

HHUHL"HUHLP = ||UHL'3, LP-HT -
T Ly, nET X

Then

p _ p d
R PN 20

= [ ot don()

= [ [ ronte izt doniv)

[ 1] 1onte iz donto] 4)

where in the last line we used Fubini.
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Now we use the invariance of py under ®p, and we deduce that for all
te[-T,T]

| tontelzgdon) = [ VI don(v)
Xoc X%c

Therefore, from (4) and Hélder we obtain with 1/r1 +1/r» =1

ol e = 2T [ IvIEedon()

27 [ vl n(v)dn(v)
X%c

2T V[I7rs o W (V)] 2

IN

Now, let r > p, take rn = r/p and we can conclude since Wy(v) € L(dp).
For the proof of the second estimate, we proceed similarly. We take

F(u) = ”uH‘L)’;.LZ in (3), and use the same arguments as previously. O
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The probabilistic argument of convergence

Definition of T (u, u, u) on the support of u Denote by Ex the space on C
spanned by ¢k. For N > 0, denote by Ny the orthogonal projector on the space
@2’20 Ei (in this section, we do not need the smooth cut-offs Sy). In the
sequel, we denote by T (u) = T (u, u, u) and Ty(u) = NyT (Myu, Nyu, Nyu)

Proposition

For all p>2 and o > 1, the sequence (Tn(u)) ., is a Cauchy sequence in

LP(Xpof s B, dp; H°(C)). Namely, for all p > 2, there exist § > 0 and C > 0
so that for all1 < M < N,

/Xﬂ [ Tn(u) = Taa(u)llf, o oy d(ur) < CM~2.

hol

We denote by T (u) = T (u, u, u) the limit of this sequence and we have for all
p=>2
1T 3-2(c) < G- ()
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Proof : By the Proposition on the Wiener chaos, we only have to prove the
statement for p = 2.
Firstly, by definition of the measure

[ ) = o) B i) = [ 1o () = T () - ()

Xhol

Therefore, it is enough to prove that (7n(n)) is a Cauchy sequence in

L2(; H7(C)).
Let 1 < M < N and fix ¢ > 1. Then an explicit computation gives

N>1

1Tn(n) = T 5o c) =

N
71'2 Z 1 Z (nl + n2)! (ml + m2)! 8n18nz8n38my Bmaz 8ms
(

- 64 - 2° pard p+ ].)‘7 2n1+n22m1+m2p! \/n1! na! n3! \/m]_' ma! m3!

(n, m)EAM N><A( P)

where A%‘;?N is the set defined by

A(I\Z)N {”€N3 st. 0<m <N, m+nm—n=pec{0...N},

(n1>M or np>M or ns >M or p>I\/I)}.
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Now we take the integral over Q. Here, the key fact is to use that the (gn)n>0
are independent and centred Gaussians : we deduce that each term in the r.h.s.
vanishes, unless

Case 1 : (n1, n2,n3) = (m1, mz, m3) or (ny, n2, n3) = (mz, my, m3)
or

Case 2 : (n1, n2, m1) = (n3, ma, m3) or (n1, n2, mz) = (n3, my, ms) or
(n1, n2, m3) = (my, n3, mz2) or (n1, n2, ms) = (mz2, n3, my).

With a careful inspection of each contribution, we are able to bound the
different sums. [J
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Study of the measure vy
Let N > 1. We then consider the following approximation of (LLL)
{ idru = Tn(u), (t,z) € RxC, ©)

u(0,2) = w(z) € Xh;,l.

The equation (6) is an ODE in the frequencies less than N, whereas for the
large frequencies, the solution is constant in time : (1 — My)u(t) = (1 — MNy)uwo
and for all t € R.

The main motivation to introduce this system is the following proposition

Proposition

The equation (6) has a global flow ®y. Moreover, the measure y is invariant
under &y : For any Borel set A C Xh;,l and for all t € R, u(d)N(t, A)) = N(A).
In particular if Zx—1(v) = p then for all t € R, Zx—1(Pn(t,v)) = p.

Proof : The proof is a direct application of the Liouville theorem. (]
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We denote by vy the measure on C([—T, T]; X,}), defined as the image
measure of u by the map

Xoot > C(=T T X))
v o o— b (t, v).

Let o > 1 and p > 2. Then there exists C > 0 so that for all N > 1

HHUHWI””H;”HL" <C (7)
T VN
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Proof : Firstly, we have that foroc > 1, p>2and N > 1
HHUHL‘;.’H;”HL’;N <C
Indeed, by the definition of vy and the invariance of p by ®y we have
lullig, i sme = @TVPvll g e = Tl gr=e
Then, by the Khintchine inequality, for all p > 2
Mligrme < Cy/BlIlgm < €.

Next, we show that HHBtuHLpr HL” < C. By definition of vy
Tz vy

Oru = / Owu||?, . dun(u
102y (o 100 o)

_ / 190V, o dp(v).

hol
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Now, since ®y(t, v) satisfies (6) and by the invariance of 1, we have

00l e = [ ITRONME DI, du(v)

hol

2 [ T}, oduv).

Xhol

and conclude with (5) and proposition defining 7 (u). O
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The convergence argument

We are able to establish the following tightness result for the measures vy.

Proposition

Let T > 0 and o > 1. Then the family of measures
(vw)nz1 with vy = Lo g0 (un(t)it € [T, T])
is tight in C([~T, T]; = °(C)).

Proof : Let 0 > 1. Fix 0 > s’ > s" > 1 and a > 0.
We define the space C3H ™ =C*([-T, T]; H ° (C)) by the norm
Ju(ts) = u(t2)|l,,

sup

+ [|u|
ty,t2€[—T,T], t1#t2 |t1 - t2|a H ‘

”“”cgu—s’ = L‘;OHZ_SI’

and it is classical that the embedding C$H ™ C C([-T,TL;H7(C)) is
compact.
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We now claim that there exists 0 < o < 1 so that for all p > 1 we have the
bound
agy—s < C.
HuHLﬁNcTH 1< C (8)
With an interpolation argument we obtain that for some p > 1
HU”caH o < CH“H

6
o 6l < Cllullippe-or + Clltllysos o

for some small oz > 0. By (7) we then deduce (9).
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We now claim that there exists 0 < o < 1 so that for all p > 1 we have the
bound
HUHLIFchchH—s/ <C. (9)
With an interpolation argument we obtain that for some p > 1
0
llegsesr < Cluls i lalyarr—o < Cllullingsr + Clull g

for some small oz > 0. By (7) we then deduce (9).

Next, let 6 > 0 and define the subset of C+H 7
Ks={u€Cri ™" st ||ullogy-o < s,

endowed with the natural topology of C+H 7. Thanks to the previous
considerations, the set Ks is compact. Finally, by Markov and (9) we get that

on(KS) < 8lull 3 cars < OC,
YN

which shows the tightness of (vy). O
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The result of the previous proposition enables us to use the Prokhorov
theorem : For each T > 0 there exists a sub-sequence vy, and a measure v on
the space C([—T, T]; X, ) so that for all 7 > 1 and all bounded continuous
function F: C([-T, T, "(C)) — R

F(u)duvy, (u F(u)dv(u).
/C([T,T];’HT(C)) (u)dom( )_>/C([T,T];’HT(C)) (u)do )
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The result of the previous proposition enables us to use the Prokhorov
theorem : For each T > 0 there exists a sub-sequence vy, and a measure v on
the space C([—T, T]; X, ) so that for all 7 > 1 and all bounded continuous
function F: C([-T, T, "(C)) — R

F(u)duvy, (u F(u)dv(u).
/C([T,T];’HT(C)) (u)dom( )_>/C([T,T];’HT(C)) (u)do )

By the Skohorod theorem, there exists a probability space (ﬁ,f, P), a sequence

of random variables (up,) and a random variable & with values in

C([~T, T]; X,,) so that

f(UNk; te[-T, T]) = f(u/vk; te[-T, T]) =up,, Z(ﬁ; te[-T, T]) =,
(12)

and forall 7 >1

iy, — U, p—as.in C([-T,T;H™"(C)). (13)
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We now claim that Zx—1(un, (t)) = Lx-1(tn, (t)) = p, forall t € [T, T]
and k > 1. Indeed, for all t € [T, T], the evaluation map

Re: C(I-T, TL: X,o}) —  Xpo!
u — u(t,.),

is well defined and continuous.

Thus, for all t € [~ T, T], un,(t) and up, (t) have same distribution (R:)xvn, .
We then obtain that this distribution is u.

Thus from (13) we deduce that

Ly (u(t))=p, Vte[-T,T] (14)
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Let k > 1 and t € R and consider the r.v. X given by
t
X = un(£) = Roum, (8)) + 7 | Ta(un)ds.
0

Define X, similarly to Xi with up, replaced with dpy,. Then by (12),
gCTX*l(XNk) = gch—l(XNk) = do.

In other words, )~(;< =0 p—a.s. and up, satisfies the following equation p—a.s.

i (6) = Ro(an, (0) 1 | o (i, ) . (15)
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We now show that we can pass to the limit k — 400 in (15) in order to show
that v is p—a.s. a solution to (LLL) written in integral form as :

(t) = Ro((t)) — i/OtT(mds. (16)

Firstly, from (13) we deduce the convergence of the linear terms in
equation (15) to those in (16).

The following lemma gives the convergence of the nonlinear term.

Lemma

Up to a sub-sequence, the following convergence holds true

T (G, ) — T(@), P—as. in ([T, T;H °(C)).
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Proof : In order to simplify the notations, in this proof we drop the tildes and
write N, = k. Let M > 1 and write

77<(Uk) - T(U) = (ﬁ(Uk) - T(Uk)) + (T(Uk) - TM(Uk))+
+ (TI\/I(Uk) — TM(U)) + (TM(U) — T(u)).

To begin with, by continuity of the product in finite dimension, when
k — 400

Tu(ue) — Tu(u), p—as.in L*([-T,T]; % 7(C)).

We now deal with the other terms. It is sufficient to show the convergence in
the space X := L*(Q x [~ T, T]; L~ 7(C)), since the almost sure convergence
follows after exaction of a sub-sequence.
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By definition and the invariance of 1 we obtain

H Tm(u) — T (uk) Hi

/ (| Taa(v) = T(v) || 725y deie(v)
C([-T,T:x—1) Tz

: du(g)

L2H; 7

/X*’-(C) H Tm (‘Dk(t,g)) — T(¢7k(t, g))

/xa(@ | Tin(8) = T(8)) 3 (&)
- 2T/X’1((C) ” Tu(g) — T(8) H'Z;-L;Ud,u(g),

which tends to 0 uniformly in kK > 1 when M — 400, according to
proposition on the Cauchy sequence.
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By definition and the invariance of 1 we obtain

H Tm(u) — T (uk) Hi

/ [ T(v) — T() [ 0 ()
C([-T,T];X—1) Tz

: du(g)

L2H; 7

/X*’-(C) H Tm (‘Dk(t,g)) — T(¢7k(t, g))

/xa(@ | Tin(8) = T(8)) 3 (&)
- 2T/X’1((C) ” Tu(g) — T(8) H'Z;-L;Ud,u(g),

which tends to 0 uniformly in kK > 1 when M — 400, according to
proposition on the Cauchy sequence.

The term || Tm(u) — T(u) ||, is treated similarly. Finally, with the same
argument we show

7o) = T(wo) [l < €[ Tu(8) = T(8) [ 3.5,

which tends to 0 when kK — +o00. This completes the proof. O
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Conclusion of the proof of the main theorem

Define up = u(0) := Ro(&). Then by (14), Zx-1( o) = p and by the previous
arguments, there exists ' C Q such that p(€’) = 1 and for each w’ € , the
random variable U satisfies the equation

U:Ho—i/tT(mdt, (t,z) e Rx C. (17)
0

Set ¥ = iio(€), then u(X) = p(Q’) = 1.
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Conclusion of the proof of the main theorem

Define up = u(0) := Ro(&). Then by (14), Zx-1( o) = p and by the previous
arguments, there exists ' C Q such that p(€’) = 1 and for each w’ € , the
random variable U satisfies the equation

U:Ho—i/tT(mdt, (t,z) e Rx C. (18)
0

Set ¥ = 1io(€), then u(X) = p(Q’) = 1. It remains to check that we can
construct a global dynamics. Take a sequence Ty — +o0o, and perform the
previous argument for T = Ty. For all N > 1, let ¥y be the corresponding set
of initial conditions and set ¥ = NyenXy. Then p(X) =1 and for all tp € X,
there exists

i€ C(R; Xpo ),

which solves (18). This completes the proof. O
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