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Invariant Gibbs measures for dispersive PDEs

Chapter 3 : Almost sure global wellposedness of the
LLL equation below L2(C)
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In this chapter, we show how we can use a Gibbs measure to prove almost sure
global existence results. We will present the method on the Landau Lowest
Level (LLL) equation. The results are taken from Germain-Hani-Thomann and
some analysis from Germain-Hani-Thomann and Gérard-Germain-Thomann.

For 1 ≤ p ≤ +∞ we define the Bargmann-Fock spaces

F p(C) =
{
u(z) = e−

|z|2
2 f (z) , f entire holomorphic

}
∩ Lp(C) .

In the sequel we consider the Lowest Landau Level equation which reads{
i∂tu = Π(|u|2u), (t, z) ∈ R× C,
u(0, z) = u0(z),

(LLL)

where Π is the orthogonal projector on F 2(C).

Laurent THOMANN Gibbs measures for PDEs



This equation is used in the description of fast rotating Bose-Einstein
condensates, see e.g. the book of Aftalion and references therein.

The equation (LLL) can be obtained as the restriction of the continuous
resonant equation (CR) which was introduced by Faou-Germain-Hani and
further studied by Germain-Hani-Thomann.
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Let z = x + iy . Denote by H the harmonic oscillator H = −∂2
x − ∂2

y + x2 + y2.
A Hilbertian basis of normalized eigenfunctions of H for F 2(C) is given by the
so-called special Hermite functions defined for n ≥ 0 by

ϕn(z) =
1√
πn!

zne−|z|
2/2,

and which satisfy
Hϕn = 2(n + 1)ϕn.

Therefore, every u ∈ F 2(C) can be decomposed in a series

u =
+∞∑
n=0

cnϕn. (1)

We are able to explicitly compute the kernel of Π

+∞∑
n=0

ϕn(z)ϕn(w) =
1
π

( +∞∑
n=0

1
n!

(zw)n
)
e−|z|

2/2−|w|2/2 =
1
π
ezw−|z|

2/2−|w|2/2.

As a consequence,

[Πu](z) =
1
π
e−
|z|2
2

∫
C
ezw−

|w|2
2 u(w) dL(w),

where dL stands for the Lebesgue measure on C.
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We define the trilinear operator T by

T (u1, u2, u3) = Π(u1u2u3). (3)

The equation (LLL) is Hamiltonian : indeed, introducing the functional

E(u1, u2, u3, u4)
def
= 〈T (u1, u2, u3) , u4〉L2(C)

=

∫
C

(u1u2u3u4)(z)dL(z)

and setting

E(u) := E(u, u, u, u) =

∫
C
|u(z)|4dL(z) = ‖u‖4L4(C),

then (LLL) derives from the Hamiltonian E given the symplectic form

ω(f , g) = Im

∫
C
f g dL,

so that (LLL) is equivalent to

i∂tu =
1
2
∂E(u)

∂ū
.
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The family (ϕn)n≥0 is particularly well adapted in the study of the operator T
since on has

T (ϕn1 , ϕn2 , ϕn3) = αn1,n2,n3,n4ϕn4 , n4 = n1 + n2 − n3, (4)

with

αn1,n2,n3,n4 = E(ϕn1 , ϕn2 , ϕn3 , ϕn4) =
π

2
(n1 + n2)!

2n1+n2
√
n1!n2!n3!n4!

1n1+n2=n3+n4 .

We can prove that eitHT (u1, u2, u3) = T (eitHu1, eitHu2, eitHu3), and therefore
with the change of unknowns v = eitHu we see that (LLL) is equivalent to the
equation

i∂tv + Hv = Π(|v |2v), (t, z) ∈ R× C. (5)
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Some deterministic results

Well-posedness of the LLL equation
Define the harmonic Sobolev spaces for s ∈ R, by

Hs = Hs(C) =
{
u ∈ S ′(C), Hs/2u ∈ L2(C)

}
.

This is a weighted Sobolev norm. In the Bargmann-Fock space, it simply
corresponds to a weighted L2-norm. Set 〈z〉 = (1 + |z |2)1/2, then we have

Lemma
Let s ∈ R. There exists C > 0 such that for all u ∈ F 2(C) ∩Hs(C)

1
C
‖〈z〉su‖L2(C) ≤ ‖u‖Hs (C) ≤ C‖〈z〉su‖L2(C).

Exercise
Prove the previous lemma in the particular case where s ∈ 2N. Hint : use the
decomposition (2), and the relations zϕn =

√
n + 1ϕn+1 and

Hϕn = 2(n + 1)ϕn.
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Proposition

The following quantities are conservation laws for (LLL) :

E(u) =

∫
C
|u(z)|4dL(z) (Hamiltonian)

M(u) =

∫
C
|u(z)|2dL(z) (Mass)

P(u) =

∫
C

(|z |2 − 1)|u(z)|2 dL(z) (Angular momentum)

Q(u) =

∫
C
z |u|2(z)dL(z) (Magnetic momentum).

Notice that the H1 norm is also preserved, since in coordinates we can check
that ∫

C
|H1/2u(z)|2dL(z) = 2

∫
C
|z |2|u(z)|2 dL(z) = 2(P(u) + M(u)).
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An important tool in the study of the (LLL) equation are the hypercontractivity
inequalities of Carlen.

Proposition

Assume that 1 ≤ p ≤ q ≤ ∞. Then F p(C) ⊂ F q(C) and( q

2π

)1/q
‖u‖Lq(C) ≤

( p

2π

)1/p
‖u‖Lp(C), (6)

with optimal constants.

This result can be understood as smoothing estimate in the Lp scale. Compare
with the Khintchine Lemma.
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Proof : We prove prove the result for p = 1 and q = +∞. Write
u(z) = f (z)e−|z|

2/2 where f is entire. By the Cauchy formula, for all r > 0,

|f (0)| ≤ 1
2π

∫ 2π

0
|f (reiθ)|dθ.

Thus by integration in r > 0

|f (0)|
∫ +∞

0
re−r2/2dr ≤ 1

2π

∫ 2π

0

∫ +∞

0
|f (reiθ)|re−r2/2drdθ,

in other words

|u(0)| = |f (0)| ≤ 1
2π

∫ 2π

0

∫ +∞

0
|f (reiθ)|re−r2/2drdθ =

=
1
2π

∫
C
|f (z)|e−|z|

2/2dL(z) =
1
2π
‖u‖L1(C).

More generally, for any z ∈ C and f we apply the previous inequality to the
entire function

w 7−→ f (z − w)ewz−|z|2/2,

and deduce the announced bound ‖u‖L∞(C) ≤
1
2π
‖u‖L1(C). �
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As a consequence, we observe that for all u ∈ F 2(C)

E(u) = ‖u‖4L4(C) ≤
1
2π
‖u‖4L2(C).

We refer to the book [Zhu] for more analysis on Bargmann-Fock spaces.

Exercise

1. Show that with a slight modification in the previous proof one can also
obtain the case q =∞ and any p ≥ 1.

2. Prove directly the inequality (6) for (q, p) = (∞, 2). Hint : use the identity∫
C
e−|w|

2+aw+cw dL(w) = πeac .
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We are now able to show that (LLL) is globally well-posed in F p(C) with
2 ≤ p ≤ 4.

Proposition (Gérard-Germain-LT)

Assume that 2 ≤ p ≤ 4. The equation (LLL) is globally well-posed for data in
F p(C) and such data lead to solutions in C∞

(
R,F p(C)

)
.

Moreover, there exists C = C(‖u0‖Lp(C)) > 0 such that

‖u(t)− u0‖Lp(C) ≤ C |t|4/p−1, ‖u(t)− u0‖L2(C) ≤ C |t|, ∀t ∈ R. (7)
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Proof : Local well-posedness is obtained by a fixed point argument from the
following a priori estimate : using successively the boundedness of Π, Hölder’s
inequality, and (6),∥∥Π(|u|2u)

∥∥
Lp
≤ C1

∥∥|u|2u∥∥
Lp

= C1‖u‖3L3p ≤ C2‖u‖2L4‖u‖Lp .

The previous inequality shows that the lifespan of the solution only depend on
the L4 norm which is preserved, hence we get global well-posedness.

Let us now prove the bound (7). We write u = u0 + v , then for t ≥ 0 we have

v(t) = −i
∫ t

0
T (u0 + v)(s)ds.

We take the L2-norm and get with the help of (6)

‖v(t)‖L2(C) ≤ C1t‖u0+v‖3L6(C) ≤ C2t(‖u0‖3L6(C)+‖v‖
3
L6(C)) ≤ C3t(‖u0‖3Lp(C)+‖v‖3L4(C)).

Therefore, by the conservation of the energy, we obtain ‖v(t)‖L2(C) ≤ Ct which
is the second bound. The first bound follows from interpolation with the
energy. �
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KAM results for a perturbed equation
In the sequel, we consider the (non-local) perturbation of the (LLL) equation

i∂tu + νMu = εΠ(|u|2u), (t, z) ∈ R× C, (8)

where ν, ε > 0 are small and where M is the (Hermite) multiplier, defined by
Mϕj = ξjϕj with −1 ≤ ξj ≤ 1.

Notice that M and H commute and that we have the following conservation
laws :∫
C
|u(z)|2dL(z),

∫
C
uHu(z)dL(z), ν

∫
C
uMu(z)dL(z)+ε

∫
C
|u(z)|4dL(z),

which are the L2 and H1 norms as well the Hamiltonian (there are other
conservation laws).

Using the commutation of M and H, as well as the relation

eitHT (u1, u2, u3) = T (eitHu1, eitHu2, eitHu3),

we see that (10) is equivalent to the equation (v = eitHu)

i∂tv + Hv + νMv = Π(|v |2v), (t, z) ∈ R× C. (9)
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The abstract KAM result of Grébert-Thomann can directly be applied to the
equation (11) and hence (10)

Theorem
Let n ≥ 1 be an integer and set A = [−1, 1]n+1. There exist ε0 > 0, ν0 > 0,
C0 > 0 and, for each ε < ε0, a Cantor set Aε ⊂ A of asymptotic full measure
when ε→ 0, such that for each ξ ∈ Aε and for each C0ε ≤ ν < ν0, the
solution of

i∂tu + νMu = εΠ(|u|2u), (t, z) ∈ R× C, (12)

with initial datum

u0(z) =
n∑

j=0

I
1/2
j e iθjϕj(z), (13)

with (I0, · · · , In) ⊂ (0, 1]n+1 and θ ∈ Tn+1, is quasi periodic with a quasi period
ω? close to ω0 = (2j + 2)nj=0 : |ω? − ω0| < Cν.
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Control of Sobolev norms for a perturbed equation

We define the Hermite multiplier M by Mϕj = mjϕj , where (mj)j∈N is a
bounded sequence of real numbers chosen in the following classes : for any
k ≥ 1, we define the class

Wk =
{

(mj)j∈N : mj =
m̃j

(j + 1)k
with m̃j ∈ [−1/2, 1/2]

}
which is endowed with the product Lebesgue (probability) measure. Consider
the problem

i∂tu + Mu = Π(|u|2u), (t, z) ∈ R× C. (14)
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The following almost global existence result is proved in
[Grébert-Imekraz-Paturel].

Theorem
Let k, r ∈ N. There exists a set Bk ⊂ Wk of measure 1 such that if
(mj)j∈N ∈ Bk there exists s0 ∈ N such that for any s ≥ s0, there are ε0 > 0,
c > 0, such that for any ε ∈ (0, ε0), for any u0 ∈ Hs(C) with

‖u0‖Hs (C) ≤ ε,

the equation (14) with initial datum u0 has a unique global solution
u ∈ C∞

(
R,Hs(C)

)
and it satisfies

‖u(t)‖Hs (C) ≤ 2ε, |t| ≤ cε−r .

To prove this result, we apply the result of Grébert-Imekraz-Paturel to the
equation i∂tv + Hv + Mv = Π(|v |2v), obtained with the change unknown
v = eitHu.
This result shows that if the initial condition is strongly localised in space, then
the corresponding solution remains localised for large times.
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Statement of the probabilistic results

Set
X 0

hol(C) :=
(
∩σ>0 H−σ(C)

)
∩ (O(C)e−|z|

2/2).

Define γ ∈ L2(Ω;X 0(C)) by

γ(ω, z) =
+∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z),

and for β > 0 we define γβ = γ/
√
β. Consider the Gaussian probability measure

µβ = (γβ)#p := p ◦ γ−1
β .

We will check later that µβ is a probability measure on X 0
hol(C). Let

2 < p ≤ +∞, then for almost all ω ∈ Ω,

γ(ω, .) ∈ F p(C) but γ(ω, .) /∈ F 2(C).

As a consequence µβ(L2(C)) = 0.
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Notice that since (LLL) conserves the H1(C) norm, µβ is formally invariant by
its flow. More generally, we can define a family (ρβ)β>0 of probability measures
on X 0

hol(C) which are formally invariant by (LLL) in the following way : define
for β > 0 the measure ρβ by

dρβ(u) = Cβe−βE(u)dµβ(u), (15)

where Cβ > 0 is a normalising constant. By the Kakutani theorem and its
corollary, the measures ρβ are mutually singular. Actually, the (ρβ)β>0 are the
Gibbs measures of the equation (5).
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We are now able to state the following global existence result, which also gives
some qualitative information on the long time dynamics.

Theorem (Germain-Hani-LT)

Let β > 0. There exists a set Σ ⊂ X 0
hol(C) of full ρβ measure so that for every

u0 ∈ Σ the equation (LLL) with initial condition u(0) = u0 has a unique global
solution u(t) = Φ(t, u0) such that for any 0 < s < 1/2

u(t)− u0 ∈ C
(
R;Hs(C)

)
.

Moreover, for all σ > 0 and t ∈ R

‖u(t)‖L3(C) + ‖u(t)‖H−σ(C) ≤ C
(
Λ(u0, σ) + ln1/2 (1 + |t|

))
, (16)

where the constant Λ(u0, σ) satisfies the bound
µβ
(
u0 : Λ(u0, σ) > λ

)
≤ Ce−cλ2

. Furthermore, the measure ρβ is invariant by
Φ : for any ρβ measurable set A ⊂ Σ and for any t ∈ R,

ρβ(A) = ρβ(Φ(t,A)).

Finally, for all t ∈ R
‖u(t)‖L4(C) = ‖u0‖L4(C).
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The same result (with the ad hoc measures µ and ρ) holds for the perturbed
equations (11) and (14).

Remark
By the Birkhoff-Kintchine Theorem we have for all k ≥ 1

1
T

∫ T

0
‖u(t)‖kH−σ(C)dt −→ Gk(u0), when T −→ +∞, (17)

and the fonction Gk is a conservation law : for all t ∈ R, Gk(u(t)) = Gk(u0).
Moreover ∫

H−σ
Gk(u)dµ(u) =

∫
H−σ

‖u‖kH−σ(C)dµ(u).

One even has

1
T

∫ T

0
e

1
2 ‖u(t)‖2

H−σ (C)dt −→ G∞(u0), when T −→ +∞,

By the theorem, there may be initial conditions such that ‖u(t)‖H−σ(C) may
grow like ln1/2(t), but not many since in mean it stays bounded, by (17).
Compare with the bound obtained from the deterministic result.
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Remark
Formally, the (LLL) equation looks like the Szegö equation introduced and
studied by Gérard and Grellier, but their properties are different. For instance,
unlike (16) there is no nonlinear smoothing for the Szegö equation, as was
shown by Oh, therefore it is not clear if an analogous result holds for the Szegö
equation.

Remark
Let us compare the types of results given by the KAM method, the Birkhoff
normal form method and the probabilistic methods :

I Smooth vs rough solutions
I Randomness
I Resonances ?
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Let us conclude this section with a few reference concerning the use of Gibbs
measure in the construction of global strong solutions to PDEs. In a compact
setting : Lebowitz-Rose-Speer, Bourgain, Zhidkov, Tzvetkov, Burq-Tzvetkov,
Oh, Burq-Thomann-Tzvetkov, Deng, Nahmod et al, Suzzoni,
Deng-Tzvetkov-Visciglia, Bourgain-Bulut, Richards and others.

There are also other types of a.s. global wellposedness results, without the use
of invariant measures, mainly for the wave equation, but we do not comment
on them.
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Sketch of the proof of the global wellposedness result

In the sequel we fix β = 1 (say) and write µ = µβ , ρ = ρβ . We only prove the
result for s = 0.

Lemma
The measure µ is a probability measure on X 0

hol(C).

Proof : It is enough to show that γ ∈ X 0
hol(C), p-a.s. First, for all σ > 0 we have∫

Ω

‖γ‖2H−σ(C)dp(ω) =

∫
Ω

+∞∑
n=0

|gn|2(
2(n + 1)

)σ+1 dp(ω) = C
+∞∑
n=0

1
(n + 1)σ+1 < +∞,

therefore γ ∈
⋂
σ>0 L

2(Ω ; H−σ(C)
)
. Next, for all A ≥ 1 there exists a set

ΩA ⊂ Ω such that p(Ωc
A) ≤ exp (−Aδ) and for all ω ∈ ΩA, ε > 0, n ≥ 0

|gn(ω)| ≤ CA(n + 1)ε.

Then for ω ∈
⋃

A≥1 ΩA,
+∞∑
n=0

zngn(ω)√
(n + 1)!

∈ O(C). �
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We first define a smooth version of the usual spectral projector. Let
χ ∈ C∞0 (−1, 1), so that 0 ≤ χ ≤ 1, with χ = 1 on [− 1

2 ,
1
2 ]. We define the

operators SN = χ
(

H
N+1

)
as

SN

( ∞∑
n=0

cnϕn

)
=
∞∑
n=0

χ
( n + 1
N + 1

)
cnϕn.

Then for all 1 < p < +∞, the operator SN is bounded in Lp(C). This result
does not hold true if one replaces SN with a crude frequency truncation.
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Local existence

Recall the definition of T in (3). It will be useful to work with an
approximation of (LLL). We consider the dynamical system given by the
Hamiltonian EN(u) := E(SNu). This system reads{

i∂tuN = TN(uN), (t, z) ∈ R× C,
uN(0, z) = u0(z),

(18)

and TN(uN) := SNT (SNu, SNu, SNu).

Denote by Ek the space on C spanned by ϕk . Observe that (18) is a finite
dimensional dynamical system on

⊕N
k=0 Ek and that the projection of uN(t) on

its complement is constant. For N ≥ 0 we define the measures ρN by

dρN(u) = CNe−EN (u)dµ(u),

where CN > 0 is a normalising constant. We have the following result
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{
i∂tuN = TN(uN), (t, z) ∈ R× C,
uN(0, z) = u0(z).

(15)

Lemma
The system (18) is globally well-posed in L2(C). Moreover, the measures ρN
are invariant by its flow denoted by ΦN .

Proof : The global existence follows from the conservation of ‖uN‖L2(C). The
invariance of the measures is a consequence of the Liouville theorem and the
conservation of

∑∞
k=0 λk |ck |2 by the flow of (LLL). �
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We now state a result concerning dispersive bounds of Hermite functions

Lemma
For all 2 ≤ p ≤ +∞,

‖ϕn‖Lp(C) ≤ Cn
1
2p−

1
4 . (19)

Proof : By Stirling, we easily get that ‖ϕn‖L∞(C) ≤ Cn−
1
4 , which is (19) for

p = +∞ ; the estimate for 2 ≤ p ≤ ∞ follows by interpolation. �
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Lemma

(i) For all 2 < p < +∞

∃C > 0, ∃c > 0,∀λ ≥ 1, ∀N ≥ 1,

µ
(
u ∈ X 0

hol(C) : ‖SNu‖Lp(C) > λ
)
≤ Ce−cλ2

,

µ
(
u ∈ X 0

hol(C) : ‖u‖Lp(C) > λ
)
≤ Ce−cλ2

.
(20)

(ii) For all 2 < p < +∞, there exists δ > 0 such that

∃C > 0, ∃ c > 0, ∀λ ≥ 1, ∀N ≥ N0 ≥ 1,

µ
(
u ∈ X 0

hol(C) : ‖(SN − SN0)u‖Lp(C) > λ
)
≤ Ce−cNδ0λ

2
. (21)
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Proof : We have that

µ
(
u ∈ X 0

hol(C) : ‖u‖Lp(C) > λ
)

= p
(∥∥∥ ∞∑

n=0

gn(ω)√
2(n + 1)

ϕn(z)
∥∥∥
Lp(C)

> λ
)
.

Let q ≥ p ≥ 2. Recall here the Khintchine inequality : there exists C > 0 such
that for all real k ≥ 2 and (an) ∈ `2(N)

∥∥∑
n≥0

gn(ω) an
∥∥
Lkp
≤ C
√
k
(∑

n≥0

|an|2
) 1

2
, (22)

if the gn are iid normalized Gaussians.
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Applying it to (22) we get

‖
∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z)‖Lqω ≤ C
√
q
( ∞∑

n=0

|ϕn(z)|2

2(n + 1)

)1/2
,

and using twice the Minkowski inequality for q ≥ p gives

‖
∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z)‖LqωL
p
z
≤ ‖

∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z)‖Lpz Lqω

≤ C
√
q
( ∞∑

n=0

‖ϕn(z)‖2Lp(C)

〈n〉

)1/2
. (23)

We are now ready to prove (20). Since we have ‖ϕn‖Lp(C) ≤ Cn
1
2p−

1
4 , we get

from (23)

‖
∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z)‖LqωL
p
z
≤ C
√
q .
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The Bienaymé-Tchebichev inequality gives then

p

(
‖
∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z)‖Lp(C) > λ

)
≤ (λ−1‖

∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z)‖LqωL
p
z
)q

≤ (Cλ−1√q)q .

Thus by choosing q = δλ2 ≥ 4, for δ small enough, we get the bound

p
(
‖
∞∑
n=0

gn(ω)√
2(n + 1)

ϕn(z)‖Lp(C) > λ
)
≤ Ce−cλ2

,

which was the claim. �
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Remark
From the previous result we deduce that on the support of µ (resp. ρ) we have
u ∈ L4(C), thus we get a global existence result. However the invariance of the
measures is not directly implied.

Lemma
Let p ∈ [1,∞[, then when N −→ +∞.

CNe−EN (u) −→ Ce−E(u) in Lp(dµ(u)).

In particular, for all measurable sets A ⊂ X 0
hol(C),

ρN(A) −→ ρ(A).
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Proof : Denote by GN(u) = e−EN (u) and G(u) = e−E(u). By (21), we deduce
that EN(u) −→ E(u) in measure, w.r.t. µ. In other words, for ε > 0 and N ≥ 1
we denote by

AN,ε =
{
u ∈ X 0

hol(C) : |GN(u)− G(u)| ≤ ε},

then µ(Ac
N,ε) −→ 0, when N −→ +∞. Since 0 ≤ G ,GN ≤ 1,

‖G − GN‖Lpµ ≤ ‖(G − GN)1AN,ε‖Lpµ + ‖(G − GN)1Ac
N,ε
‖Lpµ

≤ ε
(
µ(AN,ε )

)1/p
+ 2
(
µ(Ac

N,ε)
)1/p ≤ Cε,

for N large enough. Finally, we have when N −→ +∞

CN =
( ∫

e−EN (u)dµ(u)
)−1 −→

( ∫
e−E(u)dµ(u)

)−1
= C ,

and this ends the proof. �
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We look for a solution to (LLL) of the form u = u0 + v , thus v has to satisfy{
i∂tv = T (u0 + v), (t, z) ∈ R× C,
v(0, z) = 0,

(24)

with T (u) = T (u, u, u). Similarly, we introduce{
i∂tvN = TN(u0 + vN), (t, z) ∈ R× C,
v(0, z) = 0.

(25)

Recall that equation (25) is globally well posed in L2(C), and its flowmap is
denoted by ΦN .
Let σ > 0 and let us define

A(R) =
{
u0 ∈ X 0

hol(C) : ‖u0‖H−σ(C) + ‖u0‖L3(C) ≤ R1/2}.
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Then we have the following result

Lemma
There exist c,C > 0 so that for all N ≥ 0

ρN
(
A(R)c

)
≤ Ce−cR , ρ

(
A(R)c

)
≤ Ce−cR , µ

(
A(R)c

)
≤ Ce−cR . (26)

Proof : Observe that we have ρN
(
A(R)c

)
, ρ
(
A(R)c

)
≤ Cµ

(
A(R)c

)
. The result

is therefore given by (20). �
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Proposition

There exists c > 0 such that, for any R > 1 c0 > 0, setting τ(R) = cR−2, for
any u0 ∈ A(R) there exists a unique solution v ∈ L∞([−τ, τ ]; L2(C)) to the
equation (24) and a unique solution vN ∈ L∞([−τ, τ ]; L2(C)) to the
equation (25) which furthermore satisfy

‖v
∥∥
L∞([−τ,τ ];L2(C))

≤ c0R
−1/2, ‖vN

∥∥
L∞([−τ,τ ];L2(C))

≤ c0R
−1/2.

As a consequence, for all |t| ≤ cR−2, if c0 � 1

Φ(t, u0) ∈ A(R + 1), ΦN(t, u0) ∈ A(R + 1). (27)
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Proof : We only consider the equation (24), the other case being similar by the
boundedness of SN on Lp(C). We define the space

Z(τ) =
{
v ∈ C

(
[−τ, τ ]; L2(C)

)
s.t. v(0) = 0 and ‖v‖Z(τ) ≤ c0R

−1/2},
with ‖v‖Z(τ) = ‖v‖L∞

[−τ,τ ]
L2(C), and for u0 ∈ A(R) we define the operator

K(v) = −i
∫ t

0
T (u0 + v)ds.

We will show that K has a unique fixed point v ∈ Z(τ).

We have

‖K(v)‖Z(τ) ≤ τ
∥∥T (u0 + v)

∥∥
Z(τ)

≤ Cτ
(
‖T (u0, u0, u0)‖Z + ‖T (u0, u0, v)‖Z + ‖T (u0, v , v)‖Z

+ ‖T (v , v , v)‖Z
)
.
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We estimate each term. The conjugation plays no role, so we forget it. We only
detail the first and the last term.
• Estimate of the trilinear term in v : by the hypercontractivity estimates

‖T (v , v , v)‖L2(C) ≤ C‖v‖3L6(C) ≤ C‖v‖3L2(C).

• Estimate of the constant term in v : for u0 in A(R)

‖T (u0, u0, u0)‖L2(C) ≤ C‖u0‖3L6(C) ≤ C‖u0‖3L3(C) ≤ CR3/2,

(recall here that the bound ‖u0‖L2(C) is forbidden since ‖u0‖L2(C) = +∞ on the
support of µ.)

With these estimates at hand, the result follows by the Picard fixed point
theorem. �
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Approximation and invariance of the measure

Lemma
Fix R ≥ 0. Then for all ε > 0, there exists N0 ≥ 0 such that for all u0 ∈ A(R)
and N ≥ N0 ∥∥Φ(t, u0)− ΦN(t, u0)

∥∥
L∞([−τ1,τ1];L2(C))

≤ ε,

where τ1 = cR−2 for some c > 0.

Laurent THOMANN Gibbs measures for PDEs



Proof : We have

v − vN = −i
∫ t

0

[
SN

(
T (u0 + v)− T (u0 + vN)

)
+ (1− SN)T (u0 + v)

]
ds.

Then we get

‖v − vN‖Z(τ) ≤ CτR2‖v − vN‖Z(τ) +

∫ τ

−τ
‖(1− SN)T (u0 + v)‖L2(C)ds,

which in turn implies when CτR2 ≤ 1/2

‖v − vN‖Z(τ) ≤ 2
∫ τ

−τ
‖(1− SN)T (u0 + v)‖L2(C)ds.

Here we need a bit a compactness to conclude. We refer to
[Germain-Hani-Thomann] for the details. �
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Let Di,j = (i + j1/2)1/2, with i , j ∈ N and set Ti,j =
∑j
`=1 τ1(Di,`). Let

ΣN,i :=
{
u0 : ∀j ∈ N, ΦN(±Ti,j , u0) ∈ A(Di,j+1)

}
,

and
Σi := lim sup

N→+∞
ΣN,i , Σ :=

⋃
i∈N

Σi .

Proposition

The following holds true :

(i) The set Σ is of full ρ measure.

(ii) For all u0 ∈ Σ, there exists a unique global solution u = u0 + v to (LLL).
This defines a global flow Φ on Σ.

(iii) For all measurable set A ⊂ Σ, and all t ∈ R,

ρ(A) = ρ
(
Φ(t,A)

)
.

The proof of (ii) relies on the invariance of the measure ρN under the flow ΦN .
A repeated use of the approximation result will be crucial to prove (iii).

Laurent THOMANN Gibbs measures for PDEs



Let us show how one uses the Gibbs measure to define a global flow and to get
the quantitative bound in ln1/2(t) in the main theorem.

Let c > 0 be given by (26). For T ≤ ecR/2 we define the set of the good data

ΣR =

[T/τ ]⋂
k=−[T/τ ]

ΦN

(
− kτ,BR

)
. (28)

Now we crucially use the invariance of the measure and get

ρN(X 0
hol(R)\ΣR) ≤ (2[T/τ ] + 1)ρN(X 0(R)\BR)

≤ CR2ecR/2e−cR ≤ Ce−cR/4,

which shows that ΣR is a big subset of X 0
hol(R) when R −→ +∞.

Now, by the
definition (29) of ΣR and (27), we deduce that for all |t| ≤ T and u0 ∈ ΣR

‖ΦN(t, u0)‖H−σ(C) ≤ (R + 1)1/2.

In particular, for |t| = T ∼ ecR/2

‖ΦN(t, u0)‖H−σ(C) ≤ C(ln |t|+ 1)1/2,

and this bound is uniform in N ≥ 1. The term ln1/2(t) is reminiscent from the
large deviation estimates involving Gaussian random variables.
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