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The Khintchine inequality and the Wiener chaos

Let (Ω,F , p) be a probability space, and consider a sequence of independent
standard complex Gaussians gn ∈ NC(0, 1) which means that gn can be written

gn(ω) =
1√
2

(
hn(ω) + i`n(ω)

)
,

where
(
hn(ω), `n(ω)

)
n≥1 are independent standard real Gaussians NR(0, 1).

Then the following result holds true, known as the Paley-Zygmund inequality or
Khintchine inequality

Lemma (Khintchine)

There exists a constant C > 0 such that for all p ≥ 2 and (cn)n∈N ∈ `2(N)

∥∥ +∞∑
n=0

cngn(ω)
∥∥
Lp(Ω)

≤ C
√
p
( +∞∑

n=0

|cn|2
)1/2

. (1)

This result shows that any Lp norm can be controlled by a L2 norm, which is a
genuine smoothing effect. Let us make a parallel with harmonic analysis : in this
context Sobolev inequalities can be used, but at the price of loss of derivatives.
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Actually, the Khintchine lemma holds for more general centered and localised
random variables, like centered Bernoulli r.v. For instance, take cn = 1/(n + 1)
and (gn) a sequence of independent centered Bernoulli r.v. Then the series
+∞∑
n=0

cn diverges, but according to (2) we have |
+∞∑
n=0

cngn(ω)| < +∞, p – a.s., in

other words, randomising the signs makes the series a.s. converge.
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From the Khintchine lemma we can deduce a large deviations estimate.

Corollary (Large deviations)

There exist constants c,C > 0 such that for all (cn)n∈N ∈ `2(N) and λ > 0

p
(
ω ∈ Ω :

∣∣∣ +∞∑
n=0

cngn(ω)
∣∣∣ > λ

)
≤ Ce−cλ2/‖c‖2

`2 . (3)

Proof : Let (cn)n∈N ∈ `2(N), then by (2) we get for all p ≥ 2∥∥ +∞∑
n=0

cngn(ω)
∥∥
Lp(Ω)

≤ C
√
p‖c‖`2 .

Using the Markov inequality, we obtain that for all λ > 0

p
(
ω :

∣∣ +∞∑
n=0

cngn(ω)
∣∣ > λ

)
≤ (λ−1∥∥ +∞∑

n=0

cngn(ω)
∥∥
Lp(Ω)

)p ≤ (Cλ−1√p‖c‖`2)p .

Thus by choosing p = δλ2/‖c‖2`2 , for δ small enough, we get the bound (3). �
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We sometimes need a multilinear version of (2). The result can be proved using
hypercontractivity estimate of the Ornstein-Uhlenbeck semi-group and is
classical in quantum field theory.

Proposition (Wiener Chaos)

Let c(n1, . . . , nk) ∈ C and (gn)n≥0 ∈ NC(0, 1) independent standard Gaussians
and normalised in L2. For k ≥ 1 we define

Sk(ω) =
∑
n∈Nk

c(n1, . . . , nk) gn1(ω) · · · gnk (ω).

Then for all p ≥ 2
‖Sk‖Lp(Ω) ≤ (p − 1)

k
2 ‖Sk‖L2(Ω). (4)

This result means that the nonlinear estimates can be reduced to the case
p = 2. It is useful to control nonlinear terms which are not perfect powers, e.g.∫
T
u2∂x(u2) : this term appears in the study of DNLS.

The explicit bound (4) in k, p implies the large deviation estimate

p
(
ω ∈ Ω :

∣∣∣Sk(ω)
∣∣∣ > λ

)
≤ Ce−cλ2/k

.
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Definition of the Gaussian measure in the case of the torus

Let (Ω,F , p) be a probability space and
(
gn(ω)

)
n≥1 a sequence of independent

complex normalised Gaussians, gn ∈ NC(0, 1). Here we show how we can
construct a Gaussian measure on Hσ(Td).

Consider a Hilbertian basis (en)n≥1 of L2(Td) of eigenfunctions of (1−∆).
Then

(1−∆)en = λ2
nen, n ≥ 1, x ∈ Td ,

and one has λn ∼ cn1/d when n −→ +∞.

For N ≥ 1 we define the random variable

ω 7−→ γN(ω, .) =
N∑

n=1

gn(ω)

λn
en(.).
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Then we have the following result

Proposition

Assume that σ < 1− d/2, then (γN)N≥1 is a Cauchy sequence in
L2(Ω; Hσ(Td)

)
. This enables us to define its limit

ω 7−→ γ(ω, .) =
∑
n≥1

gn(ω)

λn
en(.) ∈ L2(Ω; Hσ(Td)

)
.

Notice that the law of γ does not depend on the choice of the Hilbertian basis
(en)n≥1.
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Proof : We only show that γ ∈ L2(Ω; Hσ(Td)
)
. For σ ∈ R, we compute

‖γ(ω, .)‖2Hσ(Td ) =
∑
n≥1

|gn(ω)|2

λ2−2σ
n

,

thus
‖γ‖2L2(Ω; Hσ(Td )) =

∑
n≥1

1
λ2−2σ
n

, (5)

and we can conclude that the series converges iff σ < 1− d/2, using the
asymptotic formula λn ∼ cn1/d when n −→ +∞. �

Exercise
Let σ ≥ 1− d/2. Show that for almost all ω ∈ Ω, ‖γ(ω, .)‖Hσ(Td ) = +∞.
Hint : with an explicit computation, show that∫

Ω

e
−‖γ(ω,.)‖2

Hσ (Td )dp(ω) = 0.

This result can also be deduced from (5) using general convergence results on
random series in Banach spaces.
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Denote by
Xσ(Td) =

⋂
τ<σ

Hτ (Td).

We then define the Gaussian probability measure µ on X 1−d/2(Td) by

µ = p ◦ γ−1. (6)

In other words, µ is the image of the measure p under the map

Ω −→ X 1−d/2(Td)

ω 7−→ γ(ω, ·) =
∑
n≥1

gn(ω)

λn
en,

which means that for all measurable F : Xσc (Td) −→ R∫
X1−d/2(Td )

F (u)dµ(u) =

∫
Ω

F
(
γ(ω, ·)

)
dp(ω).
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Formally, one has

”dµ =
1
Z
e−H0(c)dcdc ”, H0(c) =

+∞∑
n=1

λ2
n|cn|2, (7)

in other words, µ is the Gibbs measure of the linear Schrödinger equation

i∂tu + (∆− 1)u = 0, (t, x) ∈ R× Td . (8)

Then notation (7) can be understood thanks to the next result.

Proposition

Let D ≥ 1 and denote by (en)1≤n≤D the canonical basis of RD . Define the
measure µ = p ◦ γ−1 by

γ =
D∑

n=1

gn
λn

en.

Then µ is the Gaussian measure

dµ =
1
Z
e−H0(c)dL(c), H0(c) =

D∑
n=1

λ2
n|cn|2,

where dL is the Lebesgue measure in CD .

Laurent THOMANN Gibbs measures for PDEs



Proof : We compute µ(A) for a cuboid A =
D∏

n=1

[αn, βn] ⊂ CD , with

αn = an + icn and βn = bn + idn. We write gn = (hn + i`n)/
√
2 with

hn, `n ∈ NR(0, 1). Then we have

µ(A) = p(γ ∈ A) = p
(
ω : γ(ω) ∈ A)

)
=

∫
Ω

1{γ(ω) ∈ A}dp(ω)

=
D∏

n=1

∫
{ gn(ω)
λn
∈[αn,βn ]}

dp(ω)

=
D∏

n=1

∫
{ hn(ω)√

2λn
∈[an,bn ]}

dp(ω)

∫
{ `n(ω)√

2λn
∈[cn,dn ]}

dp(ω)

=
D∏

n=1

(λ2
n

π

∫ bn

an

∫ dn

cn

e−λ
2
n (x2

n +y2
n )dxndyn

)
=

(
∏D

n=1 λn)2

πD

∫
A

e−
∑D

n=1 λ
2
n |cn|

2
dL(c),

which was the claim. �
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Let’s come back to the measure µ defined in (6). We summarize its main
properties :

• µ(X 1−d/2(Td)) = 1 (µ is a probability measure) ;

• µ(H1−d/2(Td)) = 0 (the support of µ is composed of rough functions, see
the previous exercise). Actually, this shows that the function

x 7−→
∑
n≥1

gn(ω)

λn
en(x) has almost surely the same Sobolev regularity than

the function x 7−→
∑
n≥1

1
λn

en(x). However there is a regularisation at the

Lp scale, as will be seen in Chapter 3 ;

• Let σ < 1− d/2. Then for any open set, B ⊂ Hσ(Td), we have µ(B) > 0 ;

• The previous construction can easily be adapted to the case of a compact
manifoldM, where (en)n≥1 is a Hilbertian basis of L2(M) of
eigenfunctions of the Laplacian :
(1−∆)en = λ2

nen, n ≥ 1. The asymptotic of the λn ∼ cn1/d is given by
the Weyl formula.
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We stress that the support of µ is rough when d ≥ 2. The regularity of the
support of a Gibbs measure is given by the linear part of the equation (even in
the nonlinear case). In general, if there is few dispersion or if the dimension
increases, then the support of the measure becomes rough.

We conclude this paragraph with an elementary result.

Proposition

The measure µ defined in (6) is invariant by the flow of the linear Schrödinger
equation (8).

Proof : Denote by Φ the flow of (8), then

Φ
(
t, γ(ω, x)

)
=
∑
n≥1

e−itλ2
n gn(ω)

λn
en(x),

and we observe that this r.v. has the same law as γ because of the rotation
invariance of the complex Gaussians. �
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Singular measures and perturbations

Consider the family of measures

dµβ =
1
Z β

e−βH0(c)dcdc,

with β > 0. What happens when β varies ? To answer this question we will
need the Kakutani theorem.
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Theorem
Consider the infinite tensor products of probability measures on RN

µi =
⊗
n∈N

µn,i , i = 1, 2.

Then the measures µ1 and µ2 on RN endowed with its cylindrical Borel
σ-algebra are absolutely continuous with respect each other, µ1 � µ2, and
µ2 � µ1, if and only if the following holds :

(i) The measures µn,1 and µn,2 are for each n absolutely continuous with
respect to each other : there exists two functions gn ∈ L1(R, dµn,2),
hn ∈ L1(R, dµn,1) such that

dµn,1 = gndµn,2, dµn,2 = hndµn,1.

(ii) The functions gn are such that the infinite product∏
n∈N

∫
R
g1/2
n dµn,2

is convergent (i.e. positive).
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Theorem
Furthermore, if any of the condition above is not satisfied (i.e. if the two
measures µ1 and µ2 are not absolutly continuous with respect to each other),
then the two measures are mutually singular (µ1 ⊥ µ2) : there exists a set
A ⊂ RN such that

µ1(A) = 1, µ2(A) = 0.
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An application of the previous results yields

Corollary

Let (en)n≥1 be a Hilbertian basis of L2(Td). Then

(i) Consider αn, βn > 0 and the measures µ = p ◦ γ−1 and ν = p ◦ ψ−1 with

γ =
+∞∑
n=1

gn
αn

en, ψ =
+∞∑
n=1

gn
βn

en.

Then the mesures µ and ν are absolutely continuous with respect to each
other if and only if

+∞∑
n=1

(
αn

βn
− 1)2 < +∞.

(ii) Consider λn > 0 and the measures µβ = p ◦ γ−1
β with

γβ =
+∞∑
n=1

gn
βλn

en.

Assume that β 6= β′, then the measures µβ and µβ′ are singular.
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Exercise
Let β, β′ > 0 with β 6= β′. Construct an explicit set A such that µβ(A) = 1
and µβ′(A) = 0.
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An another natural question is the behaviour of µ under transformations.

In the case of translations, the answer is given by the Cameron-Martin theorem,
and we state it only in the particular case of the measure (6). Recall that µ is a
probability measure on X 1−d/2(Td).

Theorem (Cameron-Martin)

Given h ∈ X 1−d/2(Td), define the shifted measure µh by µh = µ(.− h). Then,
the measure µh is mutually absolutely continuous with respect to µ if and only
if h ∈ H1(Td).

We say that a measure µ is quasi-invariant under a transformation T if µ and
T#µ are mutually absolutely continuous, or equivalently that their zero
measure sets are preserved. This is a natural extension of the (rigid) concept of
invariant measure, and this notion is particularly relevant in infinite dimension.

For more analysis of Gaussian measures on Hilbert or Banach spaces, we refer
to [Janson] and [Kuo].
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Regularity results for random series in Lp spaces

We state here known convergence results on the convergence of random series
in Banach spaces (in Lp actually). The following result is a combination of
results of Hoffman-Jorgensen and Maurey-Pisier. For an introduction on this
topic, we refer to the books of Marcus-Pisier, J.-P. Kahane and to the book of
Li and Queffélec. See also Imekraz-Robert-Thomann and references therein.

Theorem
Let p ∈ [2,+∞) and (Fn)n≥0 ∈ Lp(Rd). Assume that (gn)n≥0 ∈ NC(0, 1) is
i.i.d. and that (εn)n≥0 ∈ {−1, 1} is an i.i.d. Rademacher sequence.
The following statements are equivalent :

(i) the series
∑
εnFn converges almost surely in Lp(Rd),

(ii) the series
∑

gnFn converges almost surely in Lp(Rd),

(iii) the function
∑
n≥0

|Fn|2 belongs to L
p
2 (Rd).

There are also continuity results for random series (Paley-Zygmund,
Salem-Zygmund, . . .).
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Application : We define the so-called special Hermite function by

ϕn(z) =
1√
πn!

zne−|z|
2/2, n ≥ 0,

and the Gaussian random variable

η(ω, z) =
+∞∑
n=0

gn(ω)ϕn(z) =
1√
π

( +∞∑
n=0

zngn(ω)√
n!

)
e−|z|

2/2.

Proposition

Let 2 ≤ p < +∞. Then η(ω, .) /∈ Lp(C) for almost all ω ∈ Ω.

Proof : We simply observe that
+∞∑
n=0

|ϕn(z)|2 ≡ 1 and that a random series

either converges a.s. or diverges a.s. �
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Nonlinearities

We now turn to the nonlinear Schrödinger equation on Td ,

i∂tu + (∆− 1)u = |u|p−1u, (t, x) ∈ R× Td .

The Hamiltonian of this equation is

H =

∫
Td

(|u|2 + |∇u|2) +
2

p + 1

∫
Td

|u|p+1.

We denote by µ the Gaussian measure which corresponds to the linear
problem (8). We are able to construct a Gibbs measure to this problem in the

following cases :
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• In dimension d = 1 : µ is supported in X 1/2(T). A Sobolev imbedding

argument yields
∫
T
|u|p+1 < +∞, µ – a.s. and one can define a Gibbs

measure by

dρ(u) = exp(− 2
p + 1

‖u‖p+1
Lp+1(T)

)dµ(u).

• In dimension d = 2 : µ is supported in X 0(T2). In this case∫
T2
|u|p+1 = +∞, µ – a.s. because

∫
T2
|u|2 = +∞, µ – a.s. Therefore, the

construction is more difficult and has been done for p = 3 by Bourgain
with a Wick renormalisation of the non-linearity. This can be extended to
any p ∈ 2N + 1 (see Oh-Thomann).

• In dimension d ≥ 3 : the situation is unclear to me.
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The construction of Gibbs measures of focusing equations is harder in general.
Actually, if we set dρ(u) = G(u)dµ(u) we have to check that the density is
integrable with respect to µ, i.e. G ∈ Lp(dµ). This induces some restrictions on
the degree of the non-linearity and needs renormalisation arguments. There are
also non existence results by Brydges-Slade.

For the mathematical construction of Gibbs measures or more generally Wiener
measures for dispersive PDEs, we refer to P. Zhidkov , Lebowitz-Rose-Speer, B.
Bidégaray, J. Bourgain, and more recently to N. Tzvetkov, Burq-Tzvetkov,
Thomann-Tzvetkov, Burq-Thomann-Tzvetkov, T. Oh, Tzvetkov-Visciglia,
Bourgain-Bulut and Oh-Thomann.
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