
Invariant Gibbs measures for dispersive
PDEs

Laurent THOMANN

Université de Lorraine
Institut Élie Cartan, Nancy

Maiori, September 2016

Laurent THOMANN Gibbs measures for PDEs



Introduction

Consider a dynamical system. We try to understand the long time behaviour of
a family of trajectories, rather than the behaviour of each trajectory one by
one.

An important tool is the existence of an invariant measure of probability. Here
we are concerned with the dynamical system given by the flow of a Hamiltonian
dispersive partial differential equation.

In this context, we can sometimes define a Gibbs measure. It turns out that
such a measure is very efficient to obtain qualitative information about the long
time behaviour of the solution of the PDE, and even to prove almost sure
global existence results.
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The plan of these lectures is the following :

1. In Chapter 1 we introduce the notion of invariant measure and review
some classical results of ergodic theory. We illustrate some of the issues
with examples in finite dimension.

2. In Chapter 2 we present the main ideas used in the construction of Gibbs
measures for PDEs.

3. In Chapter 3 we show how one can use Gibbs measures to construct strong
global solutions of Schrödinger equations.

4. In Chapter 4 we present some compactness methods which allow to
construct weak global solutions of Schrödinger equations at very low
regularity.
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Here are some references, from which the material of Chapter 1 has been
taken :

I For an introduction to the notion of recurrence, we refer to the article of F.
Béguin in Images des Mathématiques (science popularization, in French).

I Lectures on dynamical systems by Y. Benoist and F. Paulin (in French).
I The books of Bunimovich et al. and of Cornfeld et al..
I The book of Y. Coudène (in French).
I Lectures on invariant measures by C. Liverani.
I The book of V. V. Nemytskii and V. V. Stepanov.
I Lectures on ergodic theory on the blog of T. Tao.
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Here are some other lectures and surveys concerning the study and the use of
Gibbs measures for dispersive PDEs :

I Lectures on invariant measures and PDEs by A. Nahmod.
I Lectures on Gibbs measures and PDEs by T. Oh.
I My habilitation thesis, Chapter 1 and Chapter 2 (in French).
I Lectures on the wave equation with random data by N. Tzvetkov.
I The book of P. Zhidkov.
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Invariant Gibbs measures for dispersive PDEs

Chapter 1 : Invariant measures and ODEs
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Definition

Definition

(i) Consider a space X , a measure µ on X and a measurable map
T : X −→ X . The measure µ is called invariant with respect to T if for
any µ−measurable set A

µ
(
T−1(A)

)
= µ(A).

One also says that T preserves the measure µ.

(ii) Consider a space X and one parameter group (Φ(t, .))t∈R with
Φ(t, .) : X −→ X . A measure µ defined in the space X is called invariant
with respect to (Φ(t, .))t∈R if for any µ−measurable set A

µ
(
Φ(t,A)

)
= µ(A), t ∈ R.
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Figure: Conservation of the area for the pendulum (picture taken on the web).
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Remark

I In general, for a measurable map T : X 7−→ X , we can define the measure
T#µ := µ ◦ T−1, called the pushforward measure, and it satisfies∫

X

F (x)d(T#µ)(x) =

∫
X

F
(
T (x)

)
dµ(x),

for all measurable F : X −→ R. In general µ ◦ T is not a measure.
I One can always transform a continuous dynamical system

(
Φ(t, .)

)
t∈R into

a discrete one by setting T := Φ(τ, .) for some τ ∈ R.
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Exercise

1. For a measurable set A, define µ0 = δA and set µt = Φ(t)#µ0. Check that
µt = δΦ(t,A).

2. If µ is invariant with respect to T , check that in general µ(A) ≤ µ(T (A)).

3. Assume that X = R and T ≡ 0. Find the invariant probability measures.

4. Assume that X = R. Find some maps T which leave the Lebesgue
measure invariant.
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A first natural question is the existence of an invariant measure of probability,
in general. An answer is given by the Krylov-Bogoliuboff theorem, in the case
of a compact space X .

Theorem (Krylov and Bogoliuboff)

Let X be a compact metric space and consider T : X −→ X a continuous map
(resp. Φ(t, .) : X −→ X ). Then there exists an invariant probability measure.

Proof : Consider a discrete dynamical system T .
Consider any probability measure ν on X and define the following sequence of
measures (µn)n∈N∗ defined by

µn =
1
n

n−1∑
k=0

ν ◦ T−k =
1
n

n−1∑
k=0

T k
#ν.

We have µn(X ) = 1, therefore by the Riesz theorem the sequence (µn)n≥1

admits a subsequence which converges weakly to a probability measure µ. It is
then easy to check (exercise) that µ is invariant under the transform T . �
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The Liouville theorem

The problem with this result is the lack of information of the obtained invariant
measure. For instance, if x0 is an equilibrium point (fixed point) of the system,
the Dirac measure δx0 is invariant, and we may be interested in less trivial
examples. Moreover, this result only holds in compact spaces X .

We may also be interested in studying families of measures, for instance having
a density with respect to some reference measure, such as the Lebesgue
measure. We now present a useful result which helps us to go into this
direction in the context of ODEs : the Liouville theorem.
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Let Ω ⊂ Rd be an open set and F : Ω −→ Rd a C∞ function. Consider the
ordinary differential equation

ẋ(t) =
dx

dt
(t) = F (x(t)),

x(0) = x0.

We assume that for all x0 ∈ R the system has a unique solution Φ(t, x0), such
that Φ(0, x0) = x0 and which is defined for all t ∈ R. The family (Φ(t, .)t∈R is
a one parameter group of diffeomorphisms such that Φ(0, .) = id ,
Φ(t,Φ(s, .)) = Φ(t + s, .) for all s, t ∈ R.
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Theorem (Liouville)

Denote by dx the Lebesgue measure on Ω and let g : Ω −→ [0,+∞) a C∞
function. The flow Φ(t, .) preserves the measure gdx if and only if

d∑
k=1

∂

∂xk

(
gFk

)
= 0. (1)

Proof : Denote by C∞c (Ω,R) the set of C∞ functions with compact support
in Ω. By density of C∞c (Ω,R) in L1(Ω), it is enough to show that for all t ∈ R
and f ∈ C∞c (Ω,R) we have∫

Ω

f (x)g(x)dx =

∫
Ω

f (Φ(t, x))g(x)dx .
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Since Φ(0, x) = x , it is enough to show that

d

dt

(∫
Ω

f (Φ(t, x))g(x)dx
)

= 0.

Since Φ(t, .) is a group of diffeomorphisms, it is enough to show that

I =
d

dt

(∫
Ω

f (Φ(t, x))g(x)dx
)
t=0

= 0,

(possibly replace f (Φ(t0, .)) with f̃ ∈ C∞c (Ω,R) at t = t0 in the case t0 6= 0).

Now we compute

I =

∫
Ω

d∑
k=1

Fk(x)
∂f

∂xk
(x)g(x)dx = −

∫
Ω

( d∑
k=1

∂

∂xk
(gFk)

)
(x)f (x)dx ,

hence the result. �
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An important class of examples of such systems is given by the Hamiltonian
equations. Let Ω ⊂ R2d and H : Ω −→ R, (x , y) 7−→ H(x , y) a C∞ function,
then the equations corresponding to the Hamiltonian H are

ẋk(t) =
∂H

∂yk

(
x(t), y(t)

)
, 1 ≤ k ≤ d

ẏk(t) = − ∂H
∂xk

(
x(t), y(t)

)
, 1 ≤ k ≤ d .
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Such a system satisfies condition (1) with g ≡ 1, because

∂

∂xk

( ∂H
∂yk

(
x , y
))
− ∂

∂yk

( ∂H
∂xk

(
x , y
))

= 0.

In conclusion, the Lebesgue measure is preserved by the flow.
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Example

In the phase space R2, consider the Hamiltonian H(x , y) = (x2 + y2)/2 and
the corresponding system (harmonic oscillator)

ẋ(t) =
∂H

∂y

(
x(t), y(t)

)
= y(t),

ẏ(t) = −∂H
∂x

(
x(t), y(t)

)
= −x(t).

(2)
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Example

Then by the Liouville theorem, the Lebesgue measure dxdy is invariant by the
flow as well as f (H)dxdy for any nonnegative measurable function f . Examples
of such measures are :

I The Gaussian measure dµ =
1
2π

e−(x2+y2)/2dxdy ;

I The measure dµ = χ(x2 + y2)dxdy where χ ∈ C∞0 (R) with 0 ≤ χ ≤ 1.

Other measures are preserved, namely :
I The Dirac measure δ0, since 0 is an equilibrium.
I The uniform measure on any circle x2 + y2 = R.

Let us notice that, thanks to the ergodic decomposition measure, an invariant
measure can be decomposed into a sum of invariant ergodic measures.
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The Poincaré recurrence theorem and applications

The Poincaré theorem for a discrete dynamical system

Theorem (Poincaré)

Let (X ,B, µ) be a probability space and let T : X −→ X be a map which
preserves the probability measure µ.

(i) Let A ∈ B be such that µ(A) > 0, then there exists k ≥ 1 such that
µ(A ∩ T k(A)) > 0.

(ii) Let B ∈ B be such that µ(B) > 0, then for µ-almost all x ∈ B, the orbit(
T n(x)

)
n∈N enters infinitely many times in B.

(iii) Assume that T is invertible. Let C ∈ B be such that µ(C) > 0, then

lim sup
n→∞

µ(C ∩ T n(C)) ≥ µ(C)2.
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Proof : (i) By the invariance of µ,
∑

n∈N µ(T−n(A)) =
∑

n∈N µ(A) = +∞,
which implies that there exists m < n such that µ(T−n(A) ∩ T−m(A)) > 0.
Then,

T−n(A) ∩ T−m(A) ⊂ T−n(A) ∩ T−n(T n−m(A)) = T−n(A ∩ T n−m(A)),

and by invariance of the measure,
0 < µ

(
T−n(A) ∩ T−m(A)

)
≤ µ

(
A ∩ T n−m(A)

)
, hence the result.

(ii) If not, there exists n0 ≥ 1 such that the set

A = {x ∈ B : ∀n ≥ n0, T
n(x) /∈ B}

satisfies µ(A) > 0. Since one can replace T by T n0 , one can assume n0 = 1.
Then by (i), there exists k ≥ 1 such that µ(A ∩ T k(A)) > 0, which is a
contradiction.
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(iii) (Taken from [Tao].) Let N ≥ 1. Then∫
X

N∑
n=1

1Tn(C)dµ = Nµ(C),

and by Cauchy-Schwarz∫
X

( N∑
n=1

1Tn(C)

)2
dµ ≥ N2µ(C)2. (3)

We expand the left hand side of (3), thus∫
X

( N∑
n=1

1Tn(C)

)2
dµ =

N∑
n=1

N∑
m=1

µ
(
T n(C) ∩ Tm(C)

)
.

Since T is invertible, for m ≥ n, µ
(
T n(C) ∩ Tm(C)

)
= µ

(
C ∩ Tm−n(C)

)
,

hence for all 1 ≤ k ≤ N
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∫
X

( N∑
n=1

1Tn(C)

)2
dµ = Nµ(C) + 2

∑
1≤n<m≤N

µ
(
C ∩ Tm−n(C)

)
= Nµ(C) + 2

N−1∑
j=1

(N − j)µ
(
C ∩ T j(C)

)
≤ Nµ(C) + 2

k−1∑
j=1

(N − j)µ(C ∩ T jC) + (N − k)2 sup
n≥k

µ
(
C ∩ T n(C)

)
≤ Nµ(C) + 2N(k − 1)µ(C) + (N − k)2 sup

n≥k
µ
(
C ∩ T n(C)

)
.

Now, by the previous line and (3) and the choice N = k2,

k4µ(C)2 ≤ k2µ(C) + 2k3µ(C) + (k2 − k)2 sup
n≥k

(
C ∩ T n(C)

)
.

Finally, we divide by k4 and take the limit k −→ +∞, which concludes the
proof. �
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Exercise
Check what this means for the harmonic oscillator in R2, T = Φ(1, .) and
A,B,C = B

(
(1, 1), 1/2

)
. More generally consider the system with Hamiltonian

H(x , y) = (x2 + y2)2/2,

for which the speed of rotation of a point depends on the distance to the origin.

Laurent THOMANN Gibbs measures for PDEs



Corollary

Let X be a separable space (which means that it contains a countable, dense
subset). Let µ a probability measure, and T : X −→ X a map which
preserves µ. Then µ-almost all point of X is recurrent for T , i.e. for µ-almost
all point of X there exists a sequence (nk)k≥0 going to infinity such that

T nk (x) −→ x , when k −→ +∞.

Proof : Let C be a countable dense of open subsets of X . By the Poincaré
theorem, for all B ∈ C there exists a µ-negligible set NB such that every
x ∈ B\NB , the orbit

(
T n(x)

)
n∈N enters infinitely many times in B. The set

N =
⋃

B∈C NB is also µ-negligible and by construction every point in Nc is
recurrent. �
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Example

Consider the differential equation

ẋ(t) = F (x(t)), in Ω ⊂ Rd ,

and its flow Φ(t, .). Assume that there exists an invariant probability
measure ρ. Then for ρ-almost all x ∈ Ω there exists a sequence of times (tn)n≥0

going to infinity such that

‖Φ(tn, x)− x‖ −→ 0.
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Example

In the phase space R2, consider the Hamiltonian H(x , y) = xy and the
corresponding system

ẋ(t) =
∂H

∂y

(
x(t), y(t)

)
= x(t),

ẏ(t) = −∂H
∂x

(
x(t), y(t)

)
= −y(t).

Again, by the Liouville theorem, the Lebesgue measure dxdy is invariant by the
flow (as well as f (H)dxdy for any nonnegative measurable function f ), but
there is no absolutely continuous measure probability measure which is invariant
as well. By contradiction, assume that such a measure µ exists. Consider the
square S0 = {1 ≤ x ≤ 2, 1 ≤ y ≤ 2} and St its image by the flow. Then for
t ≥ 1, S0 ∩ St = ∅, but this is in contradiction with the Poincaré theorem.

However, there are invariant probability measures, as for example δ0.
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The Poincaré theorem for a continuous dynamical system

What can be said about a continuous dynamical system ? Before we give an
answer, we need the following definition :

Definition
Let A ⊂ B ⊂ R. We say that A is relatively dense in B if there exists a positive
number ` such that for all a ∈ B we have [a, a + `] ∩ A 6= ∅.

Then we have the following result

Theorem (Khintchine)

Let 0 < λ < 1. Consider Φ(t, .) : X −→ X which preserves a probability
measure µ. Then for a relatively dense set of t ∈ R

µ(A ∩ Φ(t,A)) ≥ λµ(A)2. (4)
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Example

Consider the harmonic oscillator (2) in R2, set µ = dx and let A ⊂ R2 a set of
positive measure (for instance A = B((1, 1), 1/2)). Denote by I ⊂ R the largest
interval containing 0 for which (4) holds true. Then, by 2π−periodicity of the
flowmap, (4) holds for J =

⋃
k∈Z

(
I + 2πk

)
which is a relatively dense set in R.

Exercise
Check that the Khintchine theorem may not hold if Φ(t, .) is replaced
with Φ(g(t), .) for some functions g .
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The Birkhoff-Khintchine theorem

Consider a measurable set E ⊂ X and denote by 1E the indicator function.
Then the set of instants of time of the interval (0,T ) for which the points

Φ(t, x) ∈ E is given by
∫ T

0
1E (Φ(t, x))dt. Then the following results implies

that the mean
1
T

∫ T

0
1E (Φ(t, x))dt

has a limit when T −→ +∞.

Theorem (Birkhoff-Khintchine)

Consider Φ(t) : X −→ X which preserves a probability measure µ. Then for
any function F in L1(X , dµ)

1
T

∫ T

0
F (Φ(t, x))dt −→ G(x), when T −→ +∞,

for µ-almost all x ∈ X and in L1(X , dµ).
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Under the assumptions of the Birkhoff-Khintchine theorem, let us prove that∫
X

F (x)dµ =

∫
X

G(x)dµ (5)

Let T > 0, then by the invariance of µ∫
X

( 1
T

∫ T

0
F (Φ(t, x))dt

)
dµ =

1
T

∫ T

0

(∫
X

F (Φ(t, x))dµ
)
dt

=
1
T

∫ T

0

(∫
X

F (x)dµ
)
dt

=

∫
X

F (x)dµ.

As a consequence, letting T −→ +∞, with the Birkhoff-Khintchine theorem
we obtain (5).
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As the next results shows, this procedure allows to construct constant of
motions.

Proposition

The function G in the Birkhoff-Khintchine theorem is defined µ-almost
everywhere and is invariant by the flow, i.e. it is constant along every trajectory
on which it is defined :

G(Φ(t, x)) = G(x).

Proof : Let t0 ∈ R and T > 0, then by the flow property

G(Φ(t0, x))−G(x) = lim
T→+∞

( 1
T

∫ T

0
F (Φ(t + t0, x))dt− 1

T

∫ T

0
F (Φ(t, x))dt

)
.
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Then by a change of variable

1
T

∫ T

0
F (Φ(t + t0, x))dt − 1

T

∫ T

0
F (Φ(t, x))dt

=
1
T

∫ T+t0

t0

F (Φ(t, x))dt − 1
T

∫ T

0
F (Φ(t, x))dt

=
T + t0

T

[
1

T + t0

∫ T+t0

0
F (Φ(t, x))dt

]
− 1

T

∫ t0

0
F (Φ(t, x))dt

− 1
T

∫ T

0
F (Φ(t, x))dt.

Finally by taking the limit T −→ +∞ we get G(Φ(t0, x))− G(x) = 0. �
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Example

Consider the harmonic oscillator{
ẋ(t) = y(t),

ẏ(t) = −x(t).

The flowmap reads

Φ
(
t, (x ; y)

)
=

(
x cos t + y sin t
−x sin t + y cos t

)
=

(
cos t sin t
− sin t cos t

)(
x
y

)
:= R(t)(x ; y).

The Gaussian probability measure on R2 given by

dµ =
1
2π

e−
1
2 (x2+y2)dxdy

is invariant by the flow.

Laurent THOMANN Gibbs measures for PDEs



Example

Let F be such that
∫
R2 |F (x ; y)|e−

1
2 (x2+y2)dxdy <∞. Then by the

Birkhoff-Khintchine theorem, there exists G such that for almost all (x , y) ∈ R2

1
T

∫ T

0
F
(
R(t)(x ; y)

)
dt −→ G(x , y), when T −→ +∞.

Actually, by writing T = 2πk + r with 0 ≤ r < 2π and using that
R(t + 2π) = R(t), we see that

G(x ; y) =
1
2π

∫ 2π

0
F
(
R(t)(x ; y)

)
dt,

and G satisfies

1
2π

∫
R2

G(x ; y)e−
1
2 (x2+y2)dxdy =

1
2π

∫
R2

F (x ; y)e−
1
2 (x2+y2)dxdy .
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Gibbs measures in finite dimension

It is now time to give the following definition

Definition
Let H : R2d −→ R by a smooth function and β > 0 such that
e−βH ∈ L1(R2d , dx). Then the probability measure on R2d

dµβ =
1
Z β

e−βHdx , Zβ =

∫
R2d

e−βH(x)dx , (6)

is called a Gibbs measure with energy H. In the context of statistical physics
this mesure is also called the Maxwell-Boltzmann, or the canonical distribution.
The coefficient Zβ is called the partition function.

Such a measure is invariant under the Hamiltonian dynamics defined by H, but
it is not the only one. However, a Gibbs measure has a particular status
compared to the other invariant measures as we will see.
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Variational characterisation of Gibbs measures

This paragraph is inspired from [Oh-Quastel]. Given a probability measure
dρ = gdx that is absolutely continuous with respect to the Lebesgue measure
on R2d , we define its entropy S(g) and average energy 〈H(g)〉 by

S(g) = −
∫
R2d

g(x) log
(
g(x)

)
dx and 〈H(g)〉 =

∫
R2d

H(x)g(x)dx ,

where H is the Hamiltonian for the underlying dynamics and we set

M(g) =

∫
R2d

g(x)dx = 1. For a given C ∈ R, we assume that there exists a

unique β > 0 such that 〈H(µβ)〉 = C where µβ is as in (6).

Now we consider the following maximisation problem

max
〈H(g)〉=C , M(g)=1

S(g). (7)
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Proposition

The Gibbs measure µβ is the unique maximizer of the problem (7).

In statistical mechanics, the equilibrium configuration of the system is dictated
by the maximization of the entropy, according to the second law of
thermodynamics.

Proof : By the Lagrange multiplier method, there exist β, δ ∈ R such that

dS(g) = βd〈H(g)〉+ δdM(g),

i.e. ∫
R2d

(
log g(x) + 1 + δ + βH(x)

)
f (x)dx = 0,

for all test functions f . Thus, g(x) = e−1−δ−βH(x). Moreover, by the mass
constraint M(g) = 1, we must have g(x) = Z−1

β e−βH(x).
Therefore, if there is any extremal point for the entropy functional, it has to be
the Gibbs measure µβ .

Also, by a direct computation, we have d2S(g)(h, h) = −
∫
R2d

h2

g
dx ≤ 0,

hence we get uniqueness of the maximizer. �
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Gibbs measures and the Langevin equation
The next paragraph is taken from the book [Pavliotis].

We consider the Langevin equation which describes the motion of a particle
that is subject to friction and stochastic forcing

q̈ = −∇V (q)− γq̇ +
√

2γβ−1Ẇ , q ∈ Rd . (8)

This is Newton’s equation of motion with two additional terms, a linear
dissipation term γq̇ and a stochastic forcing

√
2γβ−1Ẇ . The parameters of the

equation are the friction coefficient γ > 0 and the temperature β−1 = kBT ,
where kB denotes Boltzmann’s constant and T the absolute temperature.

The Langevin equation describes the dynamics of a particle that moves
according to Newton’s second law and is in contact with a thermal reservoir
that is at equilibrium at time t = 0 at temperature β−1.

Introducing the momentum p = q̇, we can write the Langevin equation (12) as
a system of first-order stochastic differential equations in phase space
(q, p) ∈ R2d : {

dq = pdt,

dp = −∇V (q)dt − γpdt +
√

2γβ−1dW .
(9)
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The position and momentum {q, p} define a Markov process with generator

L = p · ∇q −∇q · V∇p + γ(−p∇p + β−1∆p). (14)

Now consider the Hamiltonian

H(p, q) =
1
2
|p|2 + V (q). (15)

This quantity, as well as any function of it, is invariant under the deterministic
Hamiltonian dynamics. This in turns leads to many probability measures that
are invariant by the Hamiltonian flow.

However, the presence of noise and dissipation in (13) results in selecting a
unique invariant distribution :
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Theorem
Let V be a smooth confining potential. Then the Markov process with
generator (14) is ergodic. The unique invariant distribution is

dµβ =
1
Z β

e−βH(p,q)dpdq,

where H is the Hamiltonian (15), and the normalization factor Zβ is the
partition function

Zβ =

∫
R2d

e−βH(p,q)dpdq.

Observe that this measure is independent of the friction coefficient γ > 0.

We will not discuss here stochastic ODEs and PDEs, and we refer to the book
of Kuksin and Shirikyan to go into this direction.

I Common features but different philosophy.
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An example of renormalisation in the construction of a Gibbs measure

Example

Let us consider the Schrödinger equation, with periodic boundary conditions

i∂tu + (∆− 1)u = ε|u|2u, (t, x) ∈ R× T,

with T = R/(2πZ) and ε ∈ {0, 1,−1}. This equation derives from the
Hamiltonian

H(u) =

∫
T

(
|u|2 + |∇u|2 +

ε

2
|u|4
)
dx ,

and can be written 
u̇ = −i δH

δu
,

u̇ = i
δH

δu
.

Now, we consider the restriction of this Hamiltonian on the space

E = {u = c0 + c1eix , c0, c1 ∈ C}.
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Example

This induces the ODE

i∂tu + (∆− 1)u = εΠ
(
|u|2u

)
, (t, x) ∈ R× T, u ∈ E , (16)

where Π is the orthogonal projector on E . In coordinates we get

HE (u) = H(Πu) =

∫
T

(
|c0 + c1eix |2 + |ic1eix |2 +

ε

2
|c0 + c1eix |4

)
dx

= |c0|2 + 2|c1|2 +
ε

2
(|c0|4 + |c1|4 + 4|c0|2|c1|2).

The equation (16) is equivalent to the system{
i ċ0 = c0

(
1 + ε(|c0|2 + 2|c1|2)

)
,

i ċ1 = c1
(
2 + ε(2|c0|2 + |c1|2)

)
.
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Example

Observe that
M =

∫
T
|u|2dx = |c0|2 + |c1|2

is a constant of motion.
By the Liouville theorem, the Lebesgue measure dc0dc0dc1dc1 is invariant.

• Assume that ε = 0 (linear case). We can define the Gibbs measure

dµ = e−(|c0|2+2|c1|2)dc0dc0dc1dc1

which is finite and also invariant by the flow.
• Assume that ε = 1 (defocusing case). We can define the Gibbs measure

dρ = e−Hdc0dc0dc1dc1 = e−
1
2 (|c0|4+|c1|4+4|c0|2|c1|2)dµ

which is finite and also invariant by the flow. Observe that ρ� µ. This
argument can be adapted for the construction of a Gibbs measure for the
complete Schrödinger equation.
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Example

• Assume that ε = −1 (focusing case). How to define an analogous version
of ρ ? It can be given by

dρ = χ(|c0|2 + |c1|2)e−Hdc0dc0dc1dc1

= χ(|c0|2 + |c1|2)e
1
2 (|c0|4+|c1|4+4|c0|2|c1|2)dµ,

where χ ∈ C∞0 (R) with 0 ≤ χ ≤ 1. Here one uses that M is a constant of
motion to prove the invariance of ρ. Observe again that ρ� µ. By taking
χ(t) = e−tK with K > 2 the construction still works and the new measure
satisfies ρ(B) > 0 for any open set B ⊂ C2.

A generalisation of this argument has been made by Lebowitz-Rose-Speer for
the Schrödinger equation. However, in the infinite dimensional context, the
proof is harder since ‖u‖L4 can not be controlled by ‖u‖L2 . We will not give
more details here, see e.g. Lebowitz-Rose-Speer, Tzvetkov, . . . for such
constructions.
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