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Introduction

Consider a dynamical system. We try to understand the long time behaviour of a family of
trajectories, rather than the behaviour of each trajectory one by one. An important tool is the
existence of an invariant measure of probability. Here we are concerned with the dynamical
system given by the flow of a Hamiltonian dispersive partial differential equation. In this
context, we can sometimes define a Gibbs measure. It turns out that such a measure is very
efficient to obtain qualitative information about the long time behaviour of the solution of the
PDE, and even to prove almost sure global existence results.

The plan of these lectures is the following:

1. In Chapter 1 we introduce the notion of invariant measure and review some classical re-
sults of ergodic theory. We illustrate some of the issues with examples in finite dimension.

2. In Chapter 2 we present the main ideas used in the construction of Gibbs measures for
PDEs.

3. In Chapter 3 we show how one can use Gibbs measures to construct strong global solutions
of Schrödinger equations.

4. In Chapter 4 we present some compactness methods which allow to construct weak global
solutions of Schrödinger equations at very low regularity.

Here are some references, from which the material of Chapter 1 has been taken:

• For an introduction to the notion of recurrence, we refer to the article [5] of F. Béguin in
Images des Mathématiques (science popularization, in French).

• Lectures on dynamical systems by Y. Benoist and F. Paulin (in French) [8].

• The books of Bunimovich et al. [18] and of Cornfeld et al. [29].

• The book of Y. Coudène (in French) [30].

• Lectures on invariant measures by C. Liverani [53].

• The book of V. V. Nemytskii and V. V. Stepanov [61].

• Lectures on ergodic theory on the blog of T. Tao [78].
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Here are some other lectures and surveys concerning the study and the use of probabilistic
arguments and Gibbs measures for dispersive PDEs:

• Lectures on invariant measures and PDEs by A. Nahmod [59].

• Lectures on Gibbs measures and PDEs by T. Oh [63].

• My habilitation thesis, Chapter 1 and Chapter 2 (in French) [79].

• Lectures on the wave equation with random data by N. Tzvetkov [85].

• The book of P. Zhidkov [90].
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1 Invariant measures and ODEs

1.1 Definition

Definition 1.1. (i) Consider a spaceX, a measure µ onX and a measurable map T : X −→ X.
The measure µ is called invariant with respect to T if for any µ−measurable set A

µ
(
T−1(A)

)
= µ(A).

One also says that T preserves the measure µ.

(ii) Consider a space X and one parameter group (Φ(t, .))t∈R with Φ(t, .) : X −→ X. A
measure µ defined in the space X is called invariant with respect to (Φ(t, .))t∈R if for any
µ−measurable set A

µ
(
Φ(t, A)

)
= µ(A), t ∈ R.

Remark 1.2. • In general, for a measurable map T : X 7−→ X, we can define the measure
T#µ := µ ◦ T−1, called the pushforward measure, and it satisfies∫

X
F (x)d(T#µ)(x) =

∫
X
F
(
T (x)

)
dµ(x),

for all measurable F : X −→ R. In general µ ◦ T is not a measure.

• One can always transform a continuous dynamical system
(
Φ(t, .)

)
t∈R into a discrete one

by setting T := Φ(τ, .) for some τ ∈ R.

Exercise 1.3.

1. For a measurable set A, define µ0 = δA and set µt = Φ(t)#µ0. Check that µt = δΦ(t,A).

2. If µ is invariant with respect to T , check that in general µ(A) ≤ µ(T (A)).

3. Assume that X = R and T ≡ 0. Find the invariant probability measures.

4. Assume that X = R. Find some maps T which leave the Lebesgue measure invariant.

A first natural question is the existence of an invariant measure of probability, in general.
An answer is given by the Krylov-Bogoliuboff theorem, in the case of a compact space X.

Theorem 1.4 (Krylov and Bogoliuboff). Let X be a compact metric space and consider
T : X −→ X a continuous map (resp. Φ(t, .) : X −→ X). Then there exists an invariant
probability measure.
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Invariant measures and ODEs

Figure 1.1: Conservation of the area for the pendulum (picture taken on the web).

Proof. We sketch the proof in the case of a discrete dynamical system T . Consider any proba-
bility measure ν on X and define the following sequence of measures (µn)n∈N∗ defined by

µn =
1

n

n−1∑
k=0

ν ◦ T−k =
1

n

n−1∑
k=0

T k#ν.

We have µn(X) = 1, therefore by the Riesz theorem (this can also be viewed as a particular
case of the Prokhorov theorem, see Theorem 4.4) the sequence (µn)n≥1 admits a subsequence
which converges weakly to a probability measure µ. It is then easy to check (exercise) that µ
is invariant under the transform T (see [53] for more details).

The problem with this result is the lack of information of the obtained invariant measure.
For instance, if x0 is an equilibrium point (fixed point) of the system, the Dirac measure δx0 is
invariant, and we may be interested in less trivial examples. Moreover, this result only holds
in compact spaces X.

We may also be interested in studying families of measures, for instance having a density
with respect to some reference measure, such as the Lebesgue measure. In the next section we
present a useful result which helps us to go into this direction in the context of ODEs: the
Liouville theorem.

1.2 The Liouville theorem

Let Ω ⊂ Rd be an open set and F : Ω −→ Rd a C∞ function. Consider the ordinary differential
equation ẋ(t) =

dx

dt
(t) = F (x(t)),

x(0) = x0.

We assume that for all x0 ∈ R the system has a unique solution Φ(t, x0), such that Φ(0, x0) = x0

and which is defined for all t ∈ R. The family (Φ(t, .)t∈R is a one parameter group of diffeo-
morphisms such that Φ(0, .) = id, Φ(t,Φ(s, .)) = Φ(t+ s, .) for all s, t ∈ R.
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1.2 The Liouville theorem

Theorem 1.5 (Liouville). Denote by dx the Lebesgue measure on Ω and let g : Ω −→ [0,+∞)
a C∞ function. The flowmap Φ(t, .) preserves the measure gdx if and only if

d∑
k=1

∂

∂xk

(
gFk

)
= 0. (1.1)

Proof. Denote by C∞c (Ω,R) the set of C∞ functions with compact support in Ω. By density
of C∞c (Ω,R) in L1(Ω), it is enough to show that for all t ∈ R and f ∈ C∞c (Ω,R) we have∫

Ω
f(x)g(x)dx =

∫
Ω
f(Φ(t, x))g(x)dx.

Since Φ(0, x) = x, it is enough to show that

d

dt

(∫
Ω
f(Φ(t, x))g(x)dx

)
= 0.

Since Φ(t, .) is a group of diffeomorphisms, it is enough to show that

I =
d

dt

(∫
Ω
f(Φ(t, x))g(x)dx

)
t=0

= 0,

(possibly replace f(Φ(t0, .)) with f̃ ∈ C∞c (Ω,R) at t = t0 in the case t0 6= 0). Now we compute

I =

∫
Ω

d∑
k=1

Fk(x)
∂f

∂xk
(x)g(x)dx = −

∫
Ω

( d∑
k=1

∂

∂xk
(gFk)

)
(x)f(x)dx,

hence the result.

An important class of examples of such systems is given by the Hamiltonian equations. Let
Ω ⊂ R2d and H : Ω −→ R, (x, y) 7−→ H(x, y) a C∞ function, then the equations corresponding
to the Hamiltonian H are 

ẋk(t) =
∂H

∂yk

(
x(t), y(t)

)
, 1 ≤ k ≤ d

ẏk(t) = − ∂H
∂xk

(
x(t), y(t)

)
, 1 ≤ k ≤ d.

Such a system satisfies condition (1.1) with g ≡ 1, because

∂

∂xk

(∂H
∂yk

(
x, y
))
− ∂

∂yk

( ∂H
∂xk

(
x, y
))

= 0.

In conclusion, the Lebesgue measure is preserved by the flow (see the illustration in Figure 1.1).

Example 1.6. In the phase space R2, consider the Hamiltonian H(x, y) = (x2 +y2)/2 and the
corresponding system (harmonic oscillator)

ẋ(t) =
∂H

∂y

(
x(t), y(t)

)
= y(t),

ẏ(t) = −∂H
∂x

(
x(t), y(t)

)
= −x(t).

(1.2)

Then by the Liouville theorem, the Lebesgue measure dxdy is invariant by the flow as well as
f(H)dxdy for any nonnegative measurable function f . Examples of such measures are:
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Invariant measures and ODEs

• The Gaussian measure dµ =
1

2π
e−(x2+y2)/2dxdy ;

• The measure dµ = χ(x2 + y2)dxdy where χ ∈ C∞0 (R) with 0 ≤ χ ≤ 1.

Other measures are preserved, namely:

• The Dirac measure δ0, since 0 is an equilibrium.

• The uniform measure on any circle x2 + y2 = R.

Let us notice that, thanks to the ergodic decomposition measure, an invariant measure can
be decomposed into a sum of invariant ergodic measures (see [56]).

Exercise 1.7. In the phase space R2, consider an Hamiltonian of the form H(x, y) = h(x).
Which property of the Lebesgue mesure plays here a role in the invariance under the Hamilto-
nian flow?

We now consider non-autonomous systems. Let F : R×Rd −→ Rd a C∞ function. Consider
the ordinary differential equation {

ẋ(t) = F
(
t, x(t)

)
,

x(0) = x0.

We denote by Φ(t, 0, ·) the flowmap of this equation. Then

Theorem 1.8 (Transport theorem). Assume that g : R × Rd −→ R is C1. Then for all
A ⊂ Rd

d

dt

∫
Φ(t,0,A)

gdx =

∫
Φ(t,0,A)

[
∂tg +∇g · F + div(F )g

]
dx.

The proof of this result can be found in [9, Theorem 9.6, page 529].

Corollary 1.9. Assume that g : Rd −→ [0,+∞). The flowmap Φ(t, 0, ·) preserves the measure
gdx if and only if, for all t ∈ R

div(gF ) =
d∑

k=1

∂

∂xk

(
gFk

)
= 0.

1.3 The Poincaré recurrence theorem and applications

1.3.1 The Poincaré theorem for a discrete dynamical system

Theorem 1.10 (Poincaré). Let (X,B, µ) be a probability space and let T : X −→ X be a
map which preserves the probability measure µ.

(i) Let A ∈ B be such that µ(A) > 0, then there exists k ≥ 1 such that µ(A ∩ T k(A)) > 0.

(ii) Let B ∈ B be such that µ(B) > 0, then for µ-almost all x ∈ B, the orbit
(
Tn(x)

)
n∈N

enters infinitely many times in B.
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1.3 The Poincaré recurrence theorem and applications

(iii) Assume that T is invertible. Let C ∈ B be such that µ(C) > 0, then

lim sup
n→∞

µ(C ∩ Tn(C)) ≥ µ(C)2.

Proof. (i) By the invariance of µ,
∑

n∈N µ(T−n(A)) =
∑

n∈N µ(A) = +∞, which implies that
there exists m < n such that µ(T−n(A) ∩ T−m(A)) > 0. Then,

T−n(A) ∩ T−m(A) ⊂ T−n(A) ∩ T−n(Tn−m(A)) = T−n(A ∩ Tn−m(A)),

and by invariance of the measure, 0 < µ
(
T−n(A) ∩ T−m(A)

)
≤ µ

(
A ∩ Tn−m(A)

)
, hence the

result.
(ii) If not, there exists n0 ≥ 1 such that the set

A = {x ∈ B ∀n ≥ n0, T
n(x) /∈ B}

satisfies µ(A) > 0. Since one can replace T by Tn0 , one can assume n0 = 1. Then by (i), there
exists k ≥ 1 such that µ(A ∩ T k(A)) > 0, which is a contradiction.

(iii) (Taken from [78].) Let N ≥ 1. Then∫
X

N∑
n=1

1Tn(C)dµ = Nµ(C),

and by Cauchy-Schwarz ∫
X

( N∑
n=1

1Tn(C)

)2
dµ ≥ N2µ(C)2. (1.3)

We expand the left hand side of (1.3), thus∫
X

( N∑
n=1

1Tn(C)

)2
dµ =

N∑
n=1

N∑
m=1

µ
(
Tn(C) ∩ Tm(C)

)
.

Since T is invertible, for m ≥ n, µ
(
Tn(C)∩Tm(C)

)
= µ

(
C∩Tm−n(C)

)
, hence for all 1 ≤ k ≤ N∫

X

( N∑
n=1

1Tn(C)

)2
dµ = Nµ(C) + 2

∑
1≤n<m≤N

µ
(
C ∩ Tm−n(C)

)
= Nµ(C) + 2

N−1∑
j=1

(N − j)µ
(
C ∩ T j(C)

)
≤ Nµ(C) + 2

k−1∑
j=1

(N − j)µ(C ∩ T jC) + (N − k)2 sup
n≥k

µ
(
C ∩ Tn(C)

)
≤ Nµ(C) + 2N(k − 1)µ(C) + (N − k)2 sup

n≥k
µ
(
C ∩ Tn(C)

)
.

Now, by the previous line and (1.3) and the choice N = k2,

k4µ(C)2 ≤ k2µ(C) + 2k3µ(C) + (k2 − k)2 sup
n≥k

(
C ∩ Tn(C)

)
.

Finally, we divide by k4 and take the limit k −→ +∞, which concludes the proof.
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Invariant measures and ODEs

Exercise 1.11. Check what this means for the harmonic oscillator in R2, T = Φ(1, .) and
A,B,C = B

(
(1, 1), 1/2

)
. More generally consider the system with Hamiltonian

H(x, y) = (x2 + y2)2/2,

for which the speed of rotation of a point depends on the distance to the origin.

Corollary 1.12. Let X be a separable space (which means that it contains a countable, dense
subset). Let µ a probability measure, and T : X −→ X a map which preserves µ. Then µ-
almost all point of X is recurrent for T , i.e. for µ-almost all point of X there exists a sequence
(nk)k≥0 going to infinity such that

Tnk(x) −→ x, when k −→ +∞.

Proof. Let C be a countable dense of open subsets of X. By the Poincaré theorem, for all B ∈ C
there exists a µ-negligible set NB such that every x ∈ B\NB, the orbit

(
Tn(x)

)
n∈N enters

infinitely many times in B. The set N =
⋃
B∈C NB is also µ-negligible and by construction

every point in N c is recurrent.

Example 1.13. Consider the differential equation

ẋ(t) = F (x(t)), in Ω ⊂ Rd,

and its flow Φ(t, .). Assume that there exists an invariant probability measure ρ. Then for
ρ-almost all x ∈ Ω there exists a sequence of times (tn)n≥0 going to infinity such that

‖Φ(tn, x)− x‖ −→ 0.

Example 1.14. In the phase space R2, consider the Hamiltonian H(x, y) = xy and the corre-
sponding system 

ẋ(t) =
∂H

∂y

(
x(t), y(t)

)
= x(t),

ẏ(t) = −∂H
∂x

(
x(t), y(t)

)
= −y(t).

Again, by the Liouville theorem, the Lebesgue measure dxdy is invariant by the flow (as well as
f(H)dxdy for any nonnegative measurable function f), but there is no absolutely continuous
measure probability measure which is invariant as well. By contradiction, assume that such a
measure µ exists. Consider the square S0 = {1 ≤ x ≤ 2, 1 ≤ y ≤ 2} and St its image by the
flow. Then for t ≥ 1, S0 ∩ St = ∅, but this is in contradiction with the Poincaré theorem.

However, there are invariant probability measures, as for example δ0.

1.3.2 The Poincaré theorem for a continuous dynamical system

What can be said about a continuous dynamical system? Before we give an answer, we need
the following definition:

Definition 1.15. Let A ⊂ B ⊂ R. We say that A is relatively dense in B if there exists a
positive number ` such that for all a ∈ B we have [a, a+ `] ∩A 6= ∅.
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1.4 The Birkhoff-Khintchine theorem

Then we have the following result (for a proof see [61, page 453])

Theorem 1.16 (Khintchine). Let 0 < λ < 1. Consider Φ(t, .) : X −→ X which preserves a
probability measure µ. Then for a relatively dense set of t ∈ R

µ(A ∩ Φ(t, A)) ≥ λµ(A)2. (1.4)

Example 1.17. Consider the harmonic oscillator (1.2) in R2, set µ = dx and let A ⊂ R2 a
set of positive measure (for instance A = B((1, 1), 1/2)). Denote by I ⊂ R the largest interval
containing 0 for which (1.4) holds true. Then, by 2π−periodicity of the flowmap, (1.4) holds
for J =

⋃
k∈Z

(
I + 2πk

)
which is a relatively dense set in R.

Exercise 1.18. Check that the result of Theorem 1.16 may not hold if Φ(t, .) is replaced
with Φ(g(t), .) for some functions g.

1.4 The Birkhoff-Khintchine theorem

Consider a measurable set E ⊂ X and denote by 1E the indicator function. Then the set of in-

stants of time of the interval (0, T ) for which the points Φ(t, x) ∈ E is given by

∫ T

0
1E(Φ(t, x))dt.

Then the following results implies that the mean

1

T

∫ T

0
1E(Φ(t, x))dt

has a limit when T −→ +∞.

Theorem 1.19 (Birkhoff-Khintchine). Consider Φ(t) : X −→ X which preserves a proba-
bility measure µ. Then for any function F in L1(X, dµ)

1

T

∫ T

0
F (Φ(t, x))dt −→ G(x), when T −→ +∞,

for µ-almost all x ∈ X and in L1(X, dµ).

For a proof we refer to [61, page 460] or to [8, page 29] (written for a discrete dynam-
ical system). In the discrete setting, this result is a kind of law of large numbers (see [48,
Chapter 16]).

Under the assumptions of Theorem 1.19, let us prove that∫
X
F (x)dµ =

∫
X
G(x)dµ (1.5)

Let T > 0, then by the invariance of µ∫
X

( 1

T

∫ T

0
F (Φ(t, x))dt

)
dµ =

1

T

∫ T

0

(∫
X
F (Φ(t, x))dµ

)
dt

=
1

T

∫ T

0

(∫
X
F (x)dµ

)
dt

=

∫
X
F (x)dµ.

13



Invariant measures and ODEs

As a consequence, letting T −→ +∞, with Theorem 1.19 we obtain (1.5).

As the next results shows, this procedure allows to construct constant of motions (see [61,
page 469]).

Proposition 1.20. The function G in Theorem 1.19 is defined µ-almost everywhere and is
invariant by the flow, i.e. it is constant along every trajectory on which it is defined:

G(Φ(t, x)) = G(x).

Proof. Let t0 ∈ R and T > 0, then by the flow property

G(Φ(t0, x))−G(x) = lim
T→+∞

( 1

T

∫ T

0
F (Φ(t+ t0, x))dt− 1

T

∫ T

0
F (Φ(t, x))dt

)
.

Then by a change of variable

1

T

∫ T

0
F (Φ(t+ t0, x))dt− 1

T

∫ T

0
F (Φ(t, x))dt

=
1

T

∫ T+t0

t0

F (Φ(t, x))dt− 1

T

∫ T

0
F (Φ(t, x))dt

=
T + t0
T

1

T + t0

∫ T+t0

0
F (Φ(t, x))dt− 1

T

∫ t0

0
F (Φ(t, x))dt− 1

T

∫ T

0
F (Φ(t, x))dt.

Finally by taking the limit T −→ +∞ we get G(Φ(t0, x))−G(x) = 0.

Example 1.21. Consider the harmonic oscillator{
ẋ(t) = y(t),

ẏ(t) = −x(t).

The flowmap reads

Φ
(
t, (x; y)

)
=

(
x cos t+ y sin t
−x sin t+ y cos t

)
=

(
cos t sin t
− sin t cos t

)(
x
y

)
:= R(t)(x; y).

The Gaussian probability measure on R2 given by

dµ =
1

2π
e−

1
2

(x2+y2)dxdy

is invariant by the flow. Let F be such that
∫
R2 |F (x; y)|e−

1
2

(x2+y2)dxdy < ∞. Then by the
Birkhoff-Khintchine theorem, there exists G such that for almost all (x, y) ∈ R2

1

T

∫ T

0
F
(
R(t)(x; y)

)
dt −→ G(x, y), when T −→ +∞.

Actually, by writing T = 2πk+ r with 0 ≤ r < 2π and using that R(t+ 2π) = R(t), we see that

G(x; y) =
1

2π

∫ 2π

0
F
(
R(t)(x; y)

)
dt,

and G satisfies

1

2π

∫
R2

G(x; y)e−
1
2

(x2+y2)dxdy =
1

2π

∫
R2

F (x; y)e−
1
2

(x2+y2)dxdy.
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1.5 Gibbs measures in finite dimension

1.5 Gibbs measures in finite dimension

It is now time to give the following definition

Definition 1.22. LetH : R2d −→ R by a smooth function and β > 0 such that e−βH ∈ L1(R2d, dx).
Then the probability measure on R2d

dµβ =
1

Zβ
e−βHdx, Zβ =

∫
R2d

e−βH(x)dx, (1.6)

is called a Gibbs measure with energy H. In the context of statistical physics this mesure is
also called the Maxwell-Boltzmann, or the canonical distribution. The coefficient Zβ is called
the partition function.

As we have seen before, such a measure is invariant under the Hamiltonian dynamics defined
by H, but it is not the only one. However, a Gibbs measure has a particular status compared
to the other invariant measures as we will see.

1.5.1 Variational characterisation of Gibbs measures

This paragraph is inspired from [67]. Given a probability measure dρ = gdx that is absolutely
continuous with respect to the Lebesgue measure on R2d, we define its entropy S(g) and average
energy 〈H(g)〉 by

S(g) = −
∫
R2d

g(x) log
(
g(x)

)
dx and 〈H(g)〉 =

∫
R2d

H(x)g(x)dx,

where H is the Hamiltonian for the underlying dynamics and we set M(g) =

∫
R2d

g(x)dx = 1.

For a given C ∈ R, we assume that there exists a unique β > 0 such that 〈H(µβ)〉 = C where µβ
is as in (1.6). Now we consider the following maximisation problem

max
〈H(g)〉=C, M(g)=1

S(g), (1.7)

and we have the following result.

Proposition 1.23. The Gibbs measure µβ is the unique maximizer of the problem (1.7).

In statistical mechanics, the equilibrium configuration of the system is dictated by the
maximization of the entropy, according to the second law of thermodynamics.

Proof. By the Lagrange multiplier method, there exist β, δ ∈ R such that

dS(g) = βd〈H(g)〉+ δdM(g),

i.e. ∫
R2d

(
log g(x) + 1 + δ + βH(x)

)
f(x)dx = 0,

for all test functions f . Thus, we conclude that g(x) = e−1−δ−βH(x). Moreover, by the mass
constraint M(g) = 1, we must have g(x) = Z−1

β e−βH(x). Therefore, if there is any extremal
point for the entropy functional, it has to be the Gibbs measure µβ. Also, by a direct computa-

tion, we have d2S(g)(h, h) = −
∫
R2d

h2

g
dx ≤ 0, hence we get uniqueness of the maximizer.
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Invariant measures and ODEs

1.5.2 Gibbs measures and the Langevin equation

The next paragraph is taken from the book [71, Chapter 6]. For more details, we refer to it.

We consider the Langevin equation which describes the motion of a particle that is subject
to friction and stochastic forcing

q̈ = −∇V (q)− γq̇ +
√

2γβ−1Ẇ , q ∈ Rd. (1.8)

This is Newton’s equation of motion with two additional terms, a linear dissipation term γq̇ and
a stochastic forcing

√
2γβ−1Ẇ . The parameters of the equation are the friction coefficient γ > 0

and the temperature β−1 = kBT , where kB denotes Boltzmann’s constant and T the absolute
temperature. The Langevin equation describes the dynamics of a particle that moves according
to Newton’s second law and is in contact with a thermal reservoir that is at equilibrium at time
t = 0 at temperature β−1.

Introducing the momentum p = q̇, we can write the Langevin equation (1.8) as a system of
first-order stochastic differential equations in phase space (q, p) ∈ R2d:{

dq = pdt,

dp = −∇V (q)dt− γpdt+
√

2γβ−1dW.
(1.9)

The position and momentum {q, p} define a Markov process with generator

L = p · ∇q −∇q · V∇p + γ(−p∇p + β−1∆p). (1.10)

Now consider the Hamiltonian

H(p, q) =
1

2
|p|2 + V (q). (1.11)

This quantity, as well as any function of it, is invariant under the deterministic Hamiltonian
dynamics. This in turns leads to many probability measures that are invariant by the Hamilto-
nian flow. However, the presence of noise and dissipation in (1.9) results in selecting a unique
invariant distribution:

Theorem 1.24. Let V be a smooth confining potential. Then the Markov process with gen-
erator (1.10) is ergodic. The unique invariant distribution is

dµβ =
1

Zβ
e−βH(p,q)dpdq,

where H is the Hamiltonian (1.11), and the normalization factor Zβ is the partition function

Zβ =

∫
R2d

e−βH(p,q)dpdq.

Observe that this measure is independent of the friction coefficient γ > 0.

We will not discuss here stochastic ODEs and PDEs, and we refer to the book of Kuksin
and Shirikyan [49] to go into this direction. In the context of SPDEs, there is a stochastic term
in the equation, while we handle here deterministic equations with random initial conditions.
There are obviously many common features of both approaches, but the philosophy is different:
in the first case, typically randomness is a difficulty to tackle, while in the second case is a tool
to go beyond the deterministic theory.
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1.5 Gibbs measures in finite dimension

1.5.3 An example of renormalisation in the construction of a Gibbs measure

Example 1.25. Let us consider the Schrödinger equation, with periodic boundary conditions

i∂tu+ (∆− 1)u = ε|u|2u, (t, x) ∈ R× T,

with T = R/(2πZ) and ε ∈ {0, 1,−1}. This equation derives from the Hamiltonian

H(u) =

∫
T

(
|u|2 + |∇u|2 +

ε

2
|u|4
)
dx,

and can be written 
u̇ = −iδH

δu
,

u̇ = i
δH

δu
.

Now, we consider the restriction of this Hamiltonian on the space

E = {u = c0 + c1eix, c0, c1 ∈ C}.

This induces the ODE

i∂tu+ (∆− 1)u = εΠ
(
|u|2u

)
, (t, x) ∈ R× T, u ∈ E, (1.12)

where Π is the orthogonal projector on E. In coordinates we get

HE(u) = H(Πu) =

∫
T

(
|c0 + c1eix|2 + |ic1eix|2 +

ε

2
|c0 + c1eix|4

)
dx

= |c0|2 + 2|c1|2 +
ε

2
(|c0|4 + |c1|4 + 4|c0|2|c1|2).

The equation (1.12) is equivalent to the system{
iċ0 = c0

(
1 + ε(|c0|2 + 2|c1|2)

)
,

iċ1 = c1

(
2 + ε(2|c0|2 + |c1|2)

)
.

Observe that

M =

∫
T
|u|2dx = |c0|2 + |c1|2

is a constant of motion.
By the Liouville theorem, the Lebesgue measure dc0dc0dc1dc1 is invariant.

• Assume that ε = 0 (linear case). We can define the Gibbs measure

dµ = e−(|c0|2+2|c1|2)dc0dc0dc1dc1

which is finite and also invariant by the flow.
• Assume that ε = 1 (defocusing case). We can define the Gibbs measure

dρ = e−Hdc0dc0dc1dc1 = e−
1
2

(|c0|4+|c1|4+4|c0|2|c1|2)dµ

17
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which is finite and also invariant by the flow. Observe that ρ � µ. This argument can be
adapted for the construction of a Gibbs measure for the complete Schrödinger equation.

• Assume that ε = −1 (focusing case). How to define an analogous version of ρ? It can be
given by

dρ = χ(|c0|2 + |c1|2)e−Hdc0dc0dc1dc1 = χ(|c0|2 + |c1|2)e
1
2

(|c0|4+|c1|4+4|c0|2|c1|2)dµ,

where χ ∈ C∞0 (R) with 0 ≤ χ ≤ 1. Here one uses that M is a constant of motion to prove the

invariance of ρ. Observe again that ρ� µ. By taking χ(t) = e−t
K

with K > 2 the construction
still works and the new measure satisfies ρ(B) > 0 for any open set B ⊂ C2.

A generalisation of this argument has been made by Lebowitz-Rose-Speer [51] for the
Schrödinger equation. However, in the infinite dimensional context, the proof is harder since ‖u‖L4

can not be controlled by ‖u‖L2 . We will not give more details here, see e.g. [51, 83, 20] for
such constructions.
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2 Construction of Gibbs measures for
PDEs

2.1 The Khintchine inequality and the Wiener chaos

Let (Ω,F ,p) be a probability space, and consider a sequence of independent standard complex
Gaussians gn ∈ NC(0, 1) which means that gn can be written

gn(ω) =
1√
2

(
hn(ω) + i`n(ω)

)
,

where
(
hn(ω), `n(ω)

)
n≥1

are independent standard real Gaussians NR(0, 1). Then the following

result holds true (see [23, Lemma 3.1] for a proof), known as the Paley-Zygmund inequality or
Khintchine inequality

Lemma 2.1 (Khintchine). There exists a constant C > 0 such that for all p ≥ 2 and
(cn)n∈N ∈ `2(N) ∥∥ +∞∑

n=0

cngn(ω)
∥∥
Lp(Ω)

≤ C√p
( +∞∑
n=0

|cn|2
)1/2

. (2.1)

This result shows that any Lp norm can be controlled by a L2 norm, which is a genuine
smoothing effect. Let us make a parallel with harmonic analysis: in this context Sobolev
inequalities can be used, but at the price of loss of derivatives.

Actually, Lemma 2.1 holds for more general centered and localised random variables, like
centered Bernoulli r.v. For instance, take cn = 1/(n + 1) and (gn) a sequence of indepen-

dent centered Bernoulli r.v. Then the series

+∞∑
n=0

cn diverges, but according to (2.1) we have

|
+∞∑
n=0

cngn(ω)| < +∞, p – a.s., in other words, randomising the signs makes the series a.s. con-

verge.

From Lemma 2.1 we can deduce a large deviations estimate.

Corollary 2.2 (Large deviations). There exist constants c, C > 0 such that for all (cn)n∈N ∈ `2(N)
and λ > 0

p
(
ω ∈ Ω :

∣∣∣ +∞∑
n=0

cngn(ω)
∣∣∣ > λ

)
≤ Ce−cλ

2/‖c‖2
`2 . (2.2)
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Construction of Gibbs measures for PDEs

Proof. Let (cn)n∈N ∈ `2(N), then by (2.1) we get for all p ≥ 2
∥∥ +∞∑
n=0

cngn(ω)
∥∥
Lp(Ω)

≤ C√p‖c‖`2 .

Using the Markov inequality, we obtain that for all λ > 0

p
(
ω :

∣∣ +∞∑
n=0

cngn(ω)
∣∣ > λ

)
≤ (λ−1

∥∥ +∞∑
n=0

cngn(ω)
∥∥
Lp(Ω)

)p ≤ (Cλ−1√p‖c‖`2)p .

Thus by choosing p = δλ2/‖c‖2`2 , for δ small enough, we get the bound (2.2).

We sometimes need a multilinear version of (2.1). The result can be proved using hyper-
contractivity estimate of the Ornstein-Uhlenbeck semi-group and is classical in quantum field
theory (see [73, Theorem I.22]).

Proposition 2.3 (Wiener Chaos). Let c(n1, . . . , nk) ∈ C and (gn)n≥0 ∈ NC(0, 1) indepen-
dent standard Gaussians and normalised in L2. For k ≥ 1 we define

Sk(ω) =
∑
n∈Nk

c(n1, . . . , nk) gn1(ω) · · · gnk(ω).

Then for all p ≥ 2

‖Sk‖Lp(Ω) ≤ (p− 1)
k
2 ‖Sk‖L2(Ω). (2.3)

This result means that the nonlinear estimates can be reduced to the case p = 2. It is useful

to control nonlinear terms which are not perfect powers, e.g.

∫
T
u2∂x(u2): this term appears

in the study of DNLS, see [80].

The explicit bound (2.3) in k, p implies the large deviation estimate

p
(
ω ∈ Ω :

∣∣∣Sk(ω)
∣∣∣ > λ

)
≤ Ce−cλ

2/k
.

2.2 Definition of the Gaussian measure in the case of the torus

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n≥1

a sequence of independent complex nor-

malised Gaussians, gn ∈ NC(0, 1). Here we show how we can construct a Gaussian measure
on Hσ(Td).

Consider a Hilbertian basis (en)n≥1 of L2(Td) of eigenfunctions of (1−∆). Then

(1−∆)en = λ2
nen, n ≥ 1, x ∈ Td,

and one has λn ∼ cn1/d when n −→ +∞.

For N ≥ 1 we define the random variable

ω 7−→ γN (ω, .) =

N∑
n=1

gn(ω)

λn
en(.),

then we have the following result
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2.2 Definition of the Gaussian measure in the case of the torus

Proposition 2.4. Assume that σ < 1−d/2, then (γN )N≥1 is a Cauchy sequence in L2
(
Ω; Hσ(Td)

)
.

This enables us to define its limit

ω 7−→ γ(ω, .) =
∑
n≥1

gn(ω)

λn
en(.) ∈ L2

(
Ω; Hσ(Td)

)
.

Notice that the law of γ does not depend on the choice of the Hilbertian basis (en)n≥1.

Proof. We only show that γ ∈ L2
(
Ω; Hσ(Td)

)
. For σ ∈ R, we compute

‖γ(ω, .)‖2Hσ(Td) =
∑
n≥1

|gn(ω)|2

λ2−2σ
n

,

thus

‖γ‖2L2(Ω;Hσ(Td)) =
∑
n≥1

1

λ2−2σ
n

, (2.4)

and we can conclude that the series converges iff σ < 1 − d/2, using the asymptotic formula
λn ∼ cn1/d when n −→ +∞.

Exercise 2.5. Let σ ≥ 1− d/2. Show that for almost all ω ∈ Ω, ‖γ(ω, .)‖Hσ(Td) = +∞.
Hint: with an explicit computation, show that∫

Ω
e
−‖γ(ω,.)‖2

Hσ(Td)dp(ω) = 0.

This result can also be deduced from (2.4) using general convergence results on random series
in Banach spaces (see [43, Section 5]).

Denote by

Xσ(Td) =
⋂
τ<σ

Hτ (Td).

We then define the Gaussian probability measure µ on X1−d/2(Td) by

µ = p ◦ γ−1. (2.5)

In other words, µ is the image of the measure p under the map

Ω −→ X1−d/2(Td)

ω 7−→ γ(ω, ·) =
∑
n≥1

gn(ω)

λn
en,

which means that for all measurable F : Xσc(Td) −→ R∫
X1−d/2(Td)

F (u)dµ(u) =

∫
Ω
F
(
γ(ω, ·)

)
dp(ω).

Formally, one has

”dµ =
1

Z
e−H0(c)dcdc ”, H0(c) =

+∞∑
n=1

λ2
n|cn|2, (2.6)
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Construction of Gibbs measures for PDEs

in other words, µ is the Gibbs measure of the linear Schrödinger equation

i∂tu+ (∆− 1)u = 0, (t, x) ∈ R× Td. (2.7)

Then notation (2.6) can be understood thanks to the next result.

Proposition 2.6. Let D ≥ 1 and denote by (en)1≤n≤D the canonical basis of RD. Define the
measure µ = p ◦ γ−1 by

γ =
D∑
n=1

gn
λn
en.

Then µ is the Gaussian measure

dµ =
1

Z
e−H0(c)dL(c), H0(c) =

D∑
n=1

λ2
n|cn|2,

where dL is the Lebesgue measure in CD.

Proof. We compute µ(A) for a cuboid A =

D∏
n=1

[αn, βn] ⊂ CD, with αn = an + icn and βn =

bn + idn. We write gn = (hn + i`n)/
√

2 with hn, `n ∈ NR(0, 1). Then we have

µ(A) = p(γ ∈ A) = p
(
ω : γ(ω) ∈ A)

)
=

∫
Ω

1{γ(ω) ∈ A}dp(ω)

=
D∏
n=1

∫
{ gn(ω)

λn
∈[αn,βn]}

dp(ω)

=
D∏
n=1

∫
{hn(ω)√

2λn
∈[an,bn]}

dp(ω)

∫
{ `n(ω)√

2λn
∈[cn,dn]}

dp(ω)

=

D∏
n=1

(λ2
n

π

∫ bn

an

∫ dn

cn

e−λ
2
n(x2n+y2n)dxndyn

)
=

(
∏D
n=1 λn)2

πD

∫
A

e−
∑D
n=1 λ

2
n|cn|2dL(c),

which was the claim.

Let’s come back to the measure µ defined in (2.5). We summarize its main properties:

• µ(X1−d/2(Td)) = 1 (µ is a probability measure) ;

• µ(H1−d/2(Td)) = 0 (The support of µ is composed of rough functions, see Exercise 2.5.)

Actually, this shows that the function x 7−→
∑
n≥1

gn(ω)

λn
en(x) has almost surely the same

Sobolev regularity than the function x 7−→
∑
n≥1

1

λn
en(x). However there is a regularisation

at the Lp scale, as will be seen in Chapter 3 ;
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2.3 Singular measures and perturbations

• Let σ < 1− d/2. Then for any open set, B ⊂ Hσ(Td), B 6= ∅, we have µ(B) > 0 ;

• The previous construction can easily be adapted to the case of a compact manifold M,
where (en)n≥1 is a Hilbertian basis of L2(M) of eigenfunctions of the Laplacian:
(1−∆)en = λ2

nen, n ≥ 1. The asymptotic of the λn ∼ cn1/d is given by the Weyl formula.

We stress that the support of µ is rough when d ≥ 2. The regularity of the support of
a Gibbs measure is given by the linear part of the equation (even in the nonlinear case). In
general, if there is few dispersion or if the dimension increases, then the support of the measure
becomes rough.

We conclude this paragraph with an elementary result.

Proposition 2.7. The measure µ defined in (2.5) is invariant by the flow of the linear
Schrödinger equation (2.7).

Proof. Denote by Φ the flow of (2.7), then

Φ
(
t, γ(ω, x)

)
=
∑
n≥1

e−itλ
2
ngn(ω)

λn
en(x),

and we observe that this r.v. has the same law as γ because of the rotation invariance of the
complex Gaussians.

2.3 Singular measures and perturbations

Consider the family of measures

dµβ =
1

Zβ
e−βH0(c)dcdc,

with β > 0. What happens when β varies? To answer this question we will need the Kakutani
theorem (see [46]).

Theorem 2.8. Consider the infinite tensor products of probability measures on RN

µi =
⊗
n∈N

µn,i, i = 1, 2.

Then the measures µ1 and µ2 on RN endowed with its cylindrical Borel σ-algebra are absolutely
continuous with respect each other, µ1 � µ2, and µ2 � µ1, if and only if the following holds:

(i) The measures µn,1 and µn,2 are for each n absolutely continuous with respect to each
other: there exists two functions gn ∈ L1(R, dµn,2), hn ∈ L1(R, dµn,1) such that

dµn,1 = gndµn,2, dµn,2 = hndµn,1.

(ii) The functions gn are such that the infinite product∏
n∈N

∫
R
g1/2
n dµn,2

is convergent (i.e. positive).
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Construction of Gibbs measures for PDEs

Furthermore, if any of the condition above is not satisfied (i.e. if the two measures µ1 and µ2

are not absolutly continuous with respect to each other), then the two measures are mutually
singular (µ1 ⊥ µ2): there exists a set A ⊂ RN such that

µ1(A) = 1, µ2(A) = 0.

An application of the previous results yields

Corollary 2.9. Let (en)n≥1 be a Hilbertian basis of L2(Td). Then

(i) Consider αn, βn > 0 and the measures µ = p ◦ γ−1 and ν = p ◦ ψ−1 with

γ =

+∞∑
n=1

gn
αn
en, ψ =

+∞∑
n=1

gn
βn
en.

Then the mesures µ and ν are absolutely continuous with respect to each other if and
only if

+∞∑
n=1

(
αn
βn
− 1)2 < +∞.

(ii) Consider λn > 0 and the measures µβ = p ◦ γ−1
β with

γβ =
+∞∑
n=1

gn
βλn

en.

Assume that β 6= β′, then the measures µβ and µβ′ are singular.

Exercise 2.10. Let β, β′ > 0 with β 6= β′. Construct an explicit set A such that µβ(A) = 1
and µβ′(A) = 0.

An another natural question is the behaviour of µ under transformations.

In the case of translations, the answer is given by the Cameron-Martin theorem, and we
state it only in the particular case of the measure (2.5). Recall that µ is a probability measure
on X1−d/2(Td).

Theorem 2.11 (Cameron-Martin). Given h ∈ X1−d/2(Td), define the shifted measure µh

by µh = µ(.− h). Then, the measure µh is mutually absolutely continuous with respect to µ if
and only if h ∈ H1(Td).

For more details and applications, see [67].

We say that a measure µ is quasi-invariant under a transformation T if µ and T#µ are
mutually absolutely continuous, or equivalently that their zero measure sets are preserved.
This is a natural extension of the (rigid) concept of invariant measure, and this notion is
particularly relevant in infinite dimension. For quasi-invariance of Gaussian measures under
the flow of dispersive PDEs, we refer to the recent papers [84, 70].

For more analysis of Gaussian measures on Hilbert or Banach spaces, we refer to [44] and
to [50].
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2.4 Regularity results for random series in Lp spaces

2.4 Regularity results for random series in Lp spaces

We state here known convergence results on the convergence of random series in Banach spaces
(in Lp actually). The following result is a combination of results of Hoffman-Jorgensen [42]
and Maurey-Pisier [58]. For an introduction on this topic, we refer to the books of Marcus-
Pisier [57], J.-P. Kahane [45] and to the book of Li and Queffélec [52]. See also Imekraz-Robert-
Thomann [43] and references therein.

Theorem 2.12. Let p ∈ [2,+∞) and (Fn)n≥0 ∈ Lp(Rd). Assume that (gn)n≥0 ∈ NC(0, 1) is
i.i.d. and that (εn)n≥0 ∈ {−1, 1} is an i.i.d. Rademacher sequence.

The following statements are equivalent:

(i) the series
∑
εnFn converges almost surely in Lp(Rd),

(ii) the series
∑
gnFn converges almost surely in Lp(Rd),

(iii) the function
∑
n≥0

|Fn|2 belongs to L
p
2 (Rd).

There are also continuity results for random series (Paley-Zygmund, Salem-Zygmund, . . . ).
See references in [43].

Application: We define the so-called special Hermite function by

ϕn(z) =
1√
πn!

zne−|z|
2/2, n ≥ 0, (2.8)

and the Gaussian random variable

η(ω, z) =

+∞∑
n=0

gn(ω)ϕn(z) =
1√
π

( +∞∑
n=0

zngn(ω)√
n!

)
e−|z|

2/2.

Proposition 2.13. Let 2 ≤ p ≤ +∞. Then η(ω, .) /∈ Lp(C) for almost all ω ∈ Ω.

Proof. For 2 ≤ p < +∞, we simply observe that
+∞∑
n=0

|ϕn(z)|2 ≡ 1 and that a random series

either converges a.s. or diverges a.s. The case p = +∞ is much harder and has been proved by
Rafik Imekraz (personal communication).

Exercise 2.14. Let (ϕn)n≥0 be defined by (2.8) and consider the random variable

γ(ω, z) =
+∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z) =
1√
2π

( +∞∑
n=0

zngn(ω)√
(n+ 1)!

)
e−|z|

2/2.

Show that, for 2 < p ≤ +∞, γ(ω, .) ∈ Lp(C) for a.a. ω ∈ Ω, but that γ(ω, .) /∈ L2(C) for
a.a. ω ∈ Ω. (In the case 2 < p < +∞, see also Lemma 3.16 for a proof using the Khintchine
inequality (2.1), and in the case p = 2, see Exercise 2.5.)
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2.5 Nonlinearities

We now turn to the nonlinear Schrödinger equation on Td,

i∂tu+ (∆− 1)u = |u|p−1u, (t, x) ∈ R× Td.

The Hamiltonian of this equation is

H =

∫
Td

(|u|2 + |∇u|2) +
2

p+ 1

∫
Td
|u|p+1.

We denote by µ the Gaussian measure which corresponds to the linear problem (2.7). We are

able to construct a Gibbs measure to this problem in the following cases:

• In dimension d = 1: µ is supported in X1/2(T). A Sobolev imbedding argument yields∫
T
|u|p+1 < +∞, µ – a.s. and one can define a Gibbs measure by

dρ(u) = exp(− 2

p+ 1
‖u‖p+1

Lp+1(T)
)dµ(u).

• In dimension d = 2: µ is supported in X0(T2). In this case

∫
T2

|u|p+1 = +∞, µ – a.s.

because

∫
T2

|u|2 = +∞, µ – a.s. Therefore, the construction is more difficult and has been

done for p = 3 by Bourgain [12] with a Wick renormalisation of the non-linearity. This
can be extended to any p ∈ 2N + 1, see [69] and references therein.

• In dimension d ≥ 3: the situation is unclear to me.

The construction of Gibbs measures of focusing equations is harder in general. Actually, if
we set dρ(u) = G(u)dµ(u) we have to check that the density is integrable with respect to µ,
i.e. G ∈ Lp(dµ). This induces some restrictions on the degree of the non-linearity and needs
renormalisation arguments. There are also non existence results, see Brydges-Slade [17].

For the mathematical construction of Gibbs measures or more generally Wiener measures
for dispersive PDEs, we refer to P. Zhidkov [90], Lebowitz-Rose-Speer [51], B. Bidégaray [10],
J. Bourgain [11, 12], and more recently to N. Tzvetkov [81, 82, 83], Burq-Tzvetkov [22, 24],
Thomann-Tzvetkov [80], Burq-Thomann-Tzvetkov [20], T. Oh [64, 65], Tzvetkov-Visciglia [86],
Bourgain-Bulut [14] and Oh-Thomann [69]. We also mention the recent result of Sy [77] who
constructs an invariant measure for the Benjamin-Ono equation, which is supported on smooth
functions.
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3 Almost sure global wellposedness

of the LLL equation below L2(C)

In this chapter, we show how we can use a Gibbs measure to prove almost sure global exis-
tence results. We will present the method on the Landau Lowest Level (LLL) equation. The
results are taken from Germain-Hani-Thomann [37] and some analysis from Germain-Hani-
Thomann [36] and Gérard-Germain-Thomann [35].

3.1 Introduction

For 1 ≤ p ≤ +∞ we define the Bargmann-Fock spaces

F p(C) =
{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩ Lp(C) .

In the sequel we consider the Lowest Landau Level equation which reads{
i∂tu = Π(|u|2u), (t, z) ∈ R× C,
u(0, z) = u0(z),

(LLL)

where Π is the orthogonal projector on F 2(C).

This equation is used in the description of fast rotating Bose-Einstein condensates, see
e.g. [2, 3, 62], the book [1] and references therein. The equation (LLL) can be obtained as the
restriction of the continuous resonant equation (CR) which was introduced by Faou-Germain-
Hani [34] and further studied in [36, 37]. The equation (CR) (and therefore (LLL)) can be
derived from the Gross-Pitaevskii equation with partial confinement, see Hani-Thomann [40].

Let z = x+ iy. Denote by H the harmonic oscillator H = −∂2
x−∂2

y +x2 + y2. A Hilbertian
basis of normalized eigenfunctions of H for F 2(C) is given by the so-called special Hermite
functions defined for n ≥ 0 by

ϕn(z) =
1√
πn!

zne−|z|
2/2,

and which satisfy
Hϕn = 2(n+ 1)ϕn.

Therefore, every u ∈ F 2(C) can be decomposed in a series

u =
+∞∑
n=0

cnϕn. (3.1)
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Almost sure global wellposedness of the LLL equation below L2(C)

We are able to explicitly compute the kernel of Π

+∞∑
n=0

ϕn(z)ϕn(w) =
1

π

( +∞∑
n=0

1

n!
(zw)n

)
e−|z|

2/2−|w|2/2 =
1

π
ezw−|z|

2/2−|w|2/2.

As a consequence,

[Πu](z) =
1

π
e−
|z|2
2

∫
C

ezw−
|w|2
2 u(w) dL(w),

where dL stands for the Lebesgue measure on C.

We define the trilinear operator T by

T (u1, u2, u3) = Π(u1u2u3). (3.2)

The equation (LLL) is Hamiltonian: indeed, introducing the functional

E(u1, u2, u3, u4)
def
= 〈T (u1, u2, u3) , u4〉L2(C)

=

∫
C

(u1u2u3u4)(z)dL(z)

and setting

E(u) := E(u, u, u, u) =

∫
C
|u(z)|4dL(z) = ‖u‖4L4(C),

then (LLL) derives from the Hamiltonian E given the symplectic form

ω(f, g) = Im

∫
C
fg dL,

so that (LLL) is equivalent to

i∂tu =
1

2

∂E(u)

∂ū
.

The family (ϕn)n≥0 is particularly well adapted in the study of the operator T since on has
(see [36, Lemma 7.1])

T (ϕn1 , ϕn2 , ϕn3) = αn1,n2,n3,n4ϕn4 , n4 = n1 + n2 − n3, (3.3)

with

αn1,n2,n3,n4 = E(ϕn1 , ϕn2 , ϕn3 , ϕn4) =
π

2

(n1 + n2)!

2n1+n2
√
n1!n2!n3!n4!

1n1+n2=n3+n4 .

Using (3.3) we can prove that eitHT (u1, u2, u3) = T (eitHu1, e
itHu2, e

itHu3), and therefore with
the change of unknowns v = eitHu we see that (LLL) is equivalent to the equation

i∂tv +Hv = Π(|v|2v), (t, z) ∈ R× C. (3.4)
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3.2 Some deterministic results

3.2 Some deterministic results

3.2.1 Well-posedness of the LLL equation

Define the harmonic Sobolev spaces for s ∈ R, by

Hs = Hs(C) =
{
u ∈ S ′(C), Hs/2u ∈ L2(C)

}
.

This is a weighted Sobolev norm. In the Bargmann-Fock space, it simply corresponds to a
weighted L2-norm. Set 〈z〉 = (1 + |z|2)1/2, then we have (see [35] for a proof).

Lemma 3.1. Let s ∈ R. There exists C > 0 such that for all u ∈ F 2(C) ∩Hs(C)

1

C
‖〈z〉su‖L2(C) ≤ ‖u‖Hs(C) ≤ C‖〈z〉su‖L2(C).

Exercise 3.2. Prove Lemma 3.1 in the particular case where s ∈ 2N. Hint: use the decompo-
sition (3.1), and the relations zϕn =

√
n+ 1ϕn+1 and Hϕn = 2(n+ 1)ϕn.

Proposition 3.3. The following quantities are conservation laws for (LLL):

E(u) =

∫
C
|u(z)|4dL(z) (Hamiltonian)

M(u) =

∫
C
|u(z)|2dL(z) (Mass)

P (u) =

∫
C

(|z|2 − 1)|u(z)|2 dL(z) (Angular momentum)

Q(u) =

∫
C
z|u|2(z)dL(z) (Magnetic momentum).

Notice that the H1 norm is also preserved, since in coordinates we can check that∫
C
|H1/2u(z)|2dL(z) = 2

∫
C
|z|2|u(z)|2 dL(z) = 2(P (u) +M(u)).

An important tool in the study of the (LLL) equation are the hypercontractivity inequalities
of Carlen [27].

Proposition 3.4. Assume that 1 ≤ p ≤ q ≤ ∞. Then F p(C) ⊂ F q(C) and( q

2π

)1/q
‖u‖Lq(C) ≤

( p
2π

)1/p
‖u‖Lp(C), (3.5)

with optimal constants.

This result can be understood as smoothing estimate in the Lp scale. Compare with the
Khintchine Lemma 2.1.

Proof. We prove prove the result for p = 1 and q = +∞, see [91, Corollary 2.8]. Write
u(z) = f(z)e−|z|

2/2 where f is entire. By the Cauchy formula, for all r > 0,

|f(0)| ≤ 1

2π

∫ 2π

0
|f(reiθ)|dθ.
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Almost sure global wellposedness of the LLL equation below L2(C)

Thus by integration in r > 0

|f(0)|
∫ +∞

0
re−r

2/2dr ≤ 1

2π

∫ 2π

0

∫ +∞

0
|f(reiθ)|re−r2/2drdθ,

in other words

|u(0)| = |f(0)| ≤ 1

2π

∫ 2π

0

∫ +∞

0
|f(reiθ)|re−r2/2drdθ =

=
1

2π

∫
C
|f(z)|e−|z|2/2dL(z) =

1

2π
‖u‖L1(C).

More generally, for any z ∈ C and f we apply the previous inequality to the entire function

w 7−→ f(z − w)ewz−|z|
2/2,

and deduce the announced bound ‖u‖L∞(C) ≤
1

2π
‖u‖L1(C).

As a consequence, we observe that for all u ∈ F 2(C)

E(u) = ‖u‖4L4(C) ≤
1

2π
‖u‖4L2(C).

We refer to the book [91] for more analysis on Bargmann-Fock spaces.

Exercise 3.5. 1. Show that with a slight modification in the previous proof one can also
obtain the case q =∞ and any p ≥ 1.

2. Prove directly the inequality (3.5) for (q, p) = (∞, 2). Hint: use the identity∫
C

e−|w|
2+aw+cw dL(w) = πeac.

We are now able to show that (LLL) is globally well-posed in F p(C) with 2 ≤ p ≤ 4.

Proposition 3.6 (Gérard-Germain-LT [35]). Assume that 2 ≤ p ≤ 4. The equation (LLL)
is globally well-posed for data in F p(C) and such data lead to solutions in C∞

(
R, F p(C)

)
.

Moreover, there exists C = C(‖u0‖Lp(C)) > 0 such that

‖u(t)− u0‖Lp(C) ≤ C|t|4/p−1, ‖u(t)− u0‖L2(C) ≤ C|t|, ∀t ∈ R. (3.6)

Proof. First we observe that for any p ≥ 1, the projector Π has a unique bounded exten-

sion to Lp, which is given by the kernel 1
π e−

|z|2
2
− |w|

2

2
+wz. Actually, the operator with kernel

1
π e−

|z|2
2
− |w|

2

2
+wz is, by definition, bounded on L2(C). A simple computation shows that it is

also bounded on L∞(C). By interpolation, it is then bounded on Lp(C) for any p ∈ [2,∞].
Since it is self-adjoint, it is also, by duality, bounded on Lp for any p ∈ [1, 2].

Local well-posedness is obtained by a fixed point argument from the following a priori
estimate: using successively the boundedness of Π, Hölder’s inequality, and (3.5),∥∥Π(|u|2u)

∥∥
Lp
≤ C1

∥∥|u|2u∥∥
Lp

= C1‖u‖3L3p ≤ C2‖u‖2L4‖u‖Lp .
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3.2 Some deterministic results

The previous inequality shows that the lifespan of the solution only depend on the L4 norm
which is preserved, hence we get global well-posedness.

Let us now prove the bound (3.6). We write u = u0 + v, then for t ≥ 0 we have

v(t) = −i
∫ t

0
T (u0 + v)(s)ds.

We take the L2-norm and get with the help of (3.5)

‖v(t)‖L2(C) ≤ C1t‖u0 + v‖3L6(C) ≤ C2t(‖u0‖3L6(C) + ‖v‖3L6(C)) ≤ C3t(‖u0‖3Lp(C) + ‖v‖3L4(C)).

Therefore, by the conservation of the energy, we obtain ‖v(t)‖L2(C) ≤ Ct which is the second
bound. The first bound follows from interpolation with the energy.

3.2.2 KAM results for a perturbed equation

The next result can be found in [35]. In the sequel, we consider the (non-local) perturbation
of the (LLL) equation

i∂tu+ νMu = εΠ(|u|2u), (t, z) ∈ R× C, (3.7)

where ν, ε > 0 are small and where M is the (Hermite) multiplier, defined by Mϕj = ξjϕj with
−1 ≤ ξj ≤ 1.

Notice that M and H commute and that we have the following conservation laws :∫
C
|u(z)|2dL(z),

∫
C
uHu(z)dL(z), ν

∫
C
uMu(z)dL(z) + ε

∫
C
|u(z)|4dL(z),

which are the L2 and H1 norms as well the Hamiltonian (there are other conservation laws).

Using the commutation of M and H, as well as the relation

eitHT (u1, u2, u3) = T (eitHu1, e
itHu2, e

itHu3),

we see that (3.7) is equivalent to the equation (v = eitHu)

i∂tv +Hv + νMv = Π(|v|2v), (t, z) ∈ R× C. (3.8)

The abstract KAM result [39, Theorem 2.3] can directly be applied to the equation (3.8)
and hence (3.7) (see also [39, Theorem 6.6] for a similar statement for the Schrödinger equation
with harmonic potential).

Theorem 3.7. Let n ≥ 1 be an integer and set A = [−1, 1]n+1. There exist ε0 > 0, ν0 > 0,
C0 > 0 and, for each ε < ε0, a Cantor set Aε ⊂ A of asymptotic full measure when ε→ 0, such
that for each ξ ∈ Aε and for each C0ε ≤ ν < ν0, the solution of

i∂tu+ νMu = εΠ(|u|2u), (t, z) ∈ R× C, (3.9)

with initial datum

u0(z) =

n∑
j=0

I
1/2
j eiθjϕj(z), (3.10)
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Almost sure global wellposedness of the LLL equation below L2(C)

with (I0, · · · , In) ⊂ (0, 1]n+1 and θ ∈ Tn+1, is quasi periodic with a quasi period ω? close to
ω0 = (2j + 2)nj=0: |ω? − ω0| < Cν.
More precisely, when θ covers Tn, the set of solutions of (3.9) with initial datum (3.10) covers a
(n+ 1)-dimensional torus which is invariant by (3.9). Furthermore this torus is linearly stable.

Notice that one already knew that the equation (3.7) is globally well-posed for such initial
conditions.

3.2.3 Control of Sobolev norms for a perturbed equation

The next result can be found in [35]. We define the Hermite multiplier M by Mϕj = mjϕj ,
where (mj)j∈N is a bounded sequence of real numbers chosen in the following classes: for any
k ≥ 1, we define the class

Wk =
{

(mj)j∈N : mj =
m̃j

(j + 1)k
with m̃j ∈ [−1/2, 1/2]

}
which is endowed with the product Lebesgue (probability) measure. Consider the problem

i∂tu+Mu = Π(|u|2u), (t, z) ∈ R× C. (3.11)

The following almost global existence result is proved in [38, Theorem 1.1].

Theorem 3.8. Let k, r ∈ N. There exists a set Bk ⊂ Wk of measure 1 such that if (mj)j∈N ∈ Bk
there exists s0 ∈ N such that for any s ≥ s0, there are ε0 > 0, c > 0, such that for any ε ∈ (0, ε0),
for any u0 ∈ Hs(C) with

‖u0‖Hs(C) ≤ ε,

the equation (3.11) with initial datum u0 has a unique global solution u ∈ C∞
(
R,Hs(C)

)
and

it satisfies
‖u(t)‖Hs(C) ≤ 2ε, |t| ≤ cε−r.

To prove this result, we apply [38, Theorem 1.1] to the equation i∂tv+Hv+Mv = Π(|v|2v),
obtained with the change unknown v = eitHu.

By the result of Lemma 3.1, Theorem 3.8 shows that if the initial condition is strongly
localised in space, then the corresponding solution remains localised for large times.

3.3 Statement of the probabilistic results

Set
X0
hol(C) :=

(
∩σ>0 H−σ(C)

)
∩ (O(C)e−|z|

2/2).

Define γ ∈ L2(Ω;X0(C)) by

γ(ω, z) =

+∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z),

and for β > 0 we define γβ = γ/
√
β. Consider the Gaussian probability measure

µβ = (γβ)#p := p ◦ γ−1
β .
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3.3 Statement of the probabilistic results

We will check later in Lemma 3.13 that µβ is a probability measure onX0
hol(C). Let 2 < p ≤ +∞,

by Lemma 3.16 below, for almost all ω ∈ Ω,

γ(ω, .) ∈ F p(C) but γ(ω, .) /∈ F 2(C).

As a consequence µβ(L2(C)) = 0.

Notice that since (LLL) conserves the H1(C) norm, µβ is formally invariant by its flow.
More generally, we can define a family (ρβ)β>0 of probability measures on X0

hol(C) which are
formally invariant by (LLL) in the following way: define for β > 0 the measure ρβ by

dρβ(u) = Cβe−βE(u)dµβ(u), (3.12)

where Cβ > 0 is a normalising constant (in Lemma 3.16, we will show that E(u) < +∞, µβ a.s.,
which enables us to define this probability measure). By the Kakutani theorem (Theorem 2.8
and Corollary 2.9), the measures ρβ are mutually singular. Actually, the (ρβ)β>0 are the Gibbs
measures of the equation (3.4).

We are now able to state the following global existence result, which also gives some quali-
tative information on the long time dynamics.

Theorem 3.9 (Germain-Hani-LT [37]). Let β > 0. There exists a set Σ ⊂ X0
hol(C) of

full ρβ measure so that for every u0 ∈ Σ the equation (LLL) with initial condition u(0) = u0

has a unique global solution u(t) = Φ(t, u0) such that for any 0 < s < 1/2

u(t)− u0 ∈ C
(
R;Hs(C)

)
.

Moreover, for all σ > 0 and t ∈ R

‖u(t)‖L3(C) + ‖u(t)‖H−σ(C) ≤ C
(
Λ(u0, σ) + ln1/2

(
1 + |t|

))
, (3.13)

where the constant Λ(u0, σ) satisfies the bound µβ
(
u0 : Λ(u0, σ) > λ

)
≤ Ce−cλ

2
.

Furthermore, the measure ρβ is invariant by Φ: for any ρβ measurable set A ⊂ Σ and for
any t ∈ R,

ρβ(A) = ρβ(Φ(t, A)).

Finally, for all t ∈ R
‖u(t)‖L4(C) = ‖u0‖L4(C).

The same result (with the ad hoc measures µ and ρ) holds for the perturbed equations (3.8)
and (3.11).

Remark 3.10. By the Birkhoff-Khintchine Theorem 1.19 we have for all k ≥ 1

1

T

∫ T

0
‖u(t)‖kH−σ(C)dt −→ Gk(u0), when T −→ +∞, (3.14)

and the fonction Gk is a conservation law: for all t ∈ R, Gk(u(t)) = Gk(u0). Moreover∫
H−σ

Gk(u)dµ(u) =

∫
H−σ
‖u‖kH−σ(C)dµ(u).
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Almost sure global wellposedness of the LLL equation below L2(C)

One even has
1

T

∫ T

0
e

1
2
‖u(t)‖2

H−σ(C)dt −→ G∞(u0), when T −→ +∞,

By Theorem 3.9, there may be initial conditions such that ‖u(t)‖H−σ(C) may grow like ln1/2(t),
but not many since in mean it stays bounded, by (3.14). Compare with the bound (3.6).

Remark 3.11. Formally, the (LLL) equation looks like the Szegö equation introduced and
studied by Gérard and Grellier, but their properties are different. For instance, unlike (3.13)
there is no nonlinear smoothing for the Szegö equation, as was shown in [66, Proposition 1.6],
therefore it is not clear if an analogous result holds for the Szegö equation.

Remark 3.12. Let us compare the types of results given by the KAM method, the Birkhoff
normal form method and the probabilistic methods. Typically, the first two methods concern
smooth solutions, while the last yield rough solutions. Observe that a common feature on the
three methods is randomness, which appear either in the equation (through the potential) or in
the initial conditions. The resonances of the equation play a key role in the first two methods
but I do not see where they intervene in the construction of a Gibbs measure.

Let us conclude this section with a few reference concerning the use of Gibbs measure in
the construction of global strong solutions to PDEs. In a compact setting: Lebowitz-Rose-
Speer [51], Bourgain [12, 11], Zhidkov [90], Tzvetkov [82, 81], Burq-Tzvetkov [24], Oh [64, 65],
Burq-Thomann-Tzvetkov [21], Deng [32], Nahmod et al [60], Suzzoni [75], Deng-Tzvetkov-
Visciglia [87, 88, 33], Bourgain-Bulut [13, 14, 15, 16], Richards [72] and others. There are also
other types of a.s. global wellposedness results, without the use of invariant measures, mainly
for the wave equation, but we do not comment on them.

For results in non compact settings, see [6, 7, 25, 26, 54, 55, 89] and references therein.

3.4 Sketch of the proof of the global wellposedness result

In the sequel we fix β = 1 (say) and write µ = µβ, ρ = ρβ. We only prove Theorem 3.9 for
s = 0.

Lemma 3.13. The measure µ is a probability measure on X0
hol(C).

Proof. It is enough to show that γ ∈ X0
hol(C), p-a.s. First, for all σ > 0 we have

∫
Ω
‖γ‖2H−σ(C)dp(ω) =

∫
Ω

+∞∑
n=0

|gn|2(
2(n+ 1)

)σ+1dp(ω) = C

+∞∑
n=0

1

(n+ 1)σ+1 < +∞, (3.15)

therefore γ ∈
⋂
σ>0 L

2
(
Ω ; H−σ(C)

)
. Next, by [28, Lemma 3.4], for all A ≥ 1 there exists a set

ΩA ⊂ Ω such that p(Ωc
A) ≤ exp (−Aδ) and for all ω ∈ ΩA, ε > 0, n ≥ 0

|gn(ω)| ≤ CA(n+ 1)ε.

Then for ω ∈
⋃
A≥1 ΩA,

+∞∑
n=0

zngn(ω)√
(n+ 1)!

∈ O(C).
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3.4 Sketch of the proof of the global wellposedness result

We first define a smooth version of the usual spectral projector. Let χ ∈ C∞0 (−1, 1), so that
0 ≤ χ ≤ 1, with χ = 1 on [−1

2 ,
1
2 ]. We define the operators SN = χ

(
H
N+1

)
as

SN
( ∞∑
n=0

cnϕn
)

=

∞∑
n=0

χ
( n+ 1

N + 1

)
cnϕn.

Then for all 1 < p < +∞, the operator SN is bounded in Lp(C) (see [32, Proposition 2.1] for
a proof). This result does not hold true if one replaces SN with a crude frequency truncation.

3.4.1 Local existence

Recall the definition of T in (3.2). It will be useful to work with an approximation of (LLL).
We consider the dynamical system given by the Hamiltonian EN (u) := E(SNu). This system
reads {

i∂tuN = TN (uN ), (t, z) ∈ R× C,
uN (0, z) = u0(z),

(3.16)

and TN (uN ) := SNT (SNu, SNu, SNu). Denote by Ek the space on C spanned by ϕk. Observe
that (3.16) is a finite dimensional dynamical system on

⊕N
k=0Ek and that the projection

of uN (t) on its complement is constant. For N ≥ 0 we define the measures ρN by

dρN (u) = CNe−EN (u)dµ(u),

where CN > 0 is a normalising constant. We have the following result

Lemma 3.14. The system (3.16) is globally well-posed in L2(C). Moreover, the measures ρN
are invariant by its flow denoted by ΦN .

Proof. The global existence follows from the conservation of ‖uN‖L2(C). The invariance of the
measures is a consequence of the Liouville theorem and the conservation of

∑∞
k=0 λk|ck|2 by

the flow of (LLL) (see Theorem 1.8). We refer to [20, Lemma 8.1 and Proposition 8.2] for the
details.

We now state a result concerning dispersive bounds of Hermite functions

Lemma 3.15. For all 2 ≤ p ≤ +∞,

‖ϕn‖Lp(C) ≤ Cn
1
2p
− 1

4 . (3.17)

Proof. By Stirling, we easily get that ‖ϕn‖L∞(C) ≤ Cn−
1
4 , which is (3.17) for p = +∞; the

estimate for 2 ≤ p ≤ ∞ follows by interpolation.

Lemma 3.16. (i) For all 2 < p < +∞

∃C > 0,∃c > 0,∀λ ≥ 1, ∀N ≥ 1,

µ
(
u ∈ X0

hol(C) : ‖SNu‖Lp(C) > λ
)
≤ Ce−cλ2 ,

µ
(
u ∈ X0

hol(C) : ‖u‖Lp(C) > λ
)
≤ Ce−cλ2 .

(3.18)
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(ii) For all 2 < p < +∞, there exists δ > 0 such that

∃C > 0,∃ c > 0, ∀λ ≥ 1, ∀N ≥ N0 ≥ 1,

µ
(
u ∈ X0

hol(C) : ‖(SN − SN0)u‖Lp(C) > λ
)
≤ Ce−cNδ

0λ
2
. (3.19)

Proof. We have that

µ
(
u ∈ X0

hol(C) : ‖u‖Lp(C) > λ
)

= p
(∥∥∥ ∞∑

n=0

gn(ω)√
2(n+ 1)

ϕn(z)
∥∥∥
Lp(C)

> λ
)
.

Let q ≥ p ≥ 2. Recall here the Khintchine inequality: there exists C > 0 such that for all real
k ≥ 2 and (an) ∈ `2(N)

∥∥∑
n≥0

gn(ω) an
∥∥
Lkp
≤ C
√
k
(∑
n≥0

|an|2
) 1

2
, (3.20)

if the gn are iid normalized Gaussians. Applying it to (3.20) we get

‖
∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z)‖Lqω ≤ C
√
q
( ∞∑
n=0

|ϕn(z)|2

2(n+ 1)

)1/2
,

and using twice the Minkowski inequality for q ≥ p gives

‖
∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z)‖LqωLpz ≤ ‖
∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z)‖LpzLqω

≤ C
√
q
( ∞∑
n=0

‖ϕn(z)‖2Lp(C)

〈n〉

)1/2
. (3.21)

We are now ready to prove (3.18). Since by Lemma 3.15 we have ‖ϕn‖Lp(C) ≤ Cn
1
2p
− 1

4 , we
get from (3.21)

‖
∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z)‖LqωLpz ≤ C
√
q .

The Bienaymé-Tchebichev inequality gives then

p

(
‖
∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z)‖Lp(C) > λ

)
≤ (λ−1‖

∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z)‖LqωLpz )
q ≤ (Cλ−1√q)q .

Thus by choosing q = δλ2 ≥ 4, for δ small enough, we get the bound

p
(
‖
∞∑
n=0

gn(ω)√
2(n+ 1)

ϕn(z)‖Lp(C) > λ
)
≤ Ce−cλ2 ,

which is (3.18).
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3.4 Sketch of the proof of the global wellposedness result

Remark 3.17. From the previous result we deduce that on the support of µ (resp. ρ) we have
u ∈ L4(C), thus we get a global existence result. However the invariance of the measures is not
directly implied.

Lemma 3.18. Let p ∈ [1,∞[, then when N −→ +∞.

CNe−EN (u) −→ Ce−E(u) in Lp(dµ(u)).

In particular, for all measurable sets A ⊂ X0
hol(C),

ρN (A) −→ ρ(A).

Proof. Denote byGN (u) = e−EN (u) andG(u) = e−E(u). By (3.19), we deduce that EN (u) −→ E(u)
in measure, w.r.t. µ. In other words, for ε > 0 and N ≥ 1 we denote by

AN,ε =
{
u ∈ X0

hol(C) : |GN (u)−G(u)| ≤ ε},

then µ(AcN,ε) −→ 0, when N −→ +∞. Since 0 ≤ G,GN ≤ 1,

‖G−GN‖Lpµ ≤ ‖(G−GN )1AN,ε‖Lpµ + ‖(G−GN )1AcN,ε ‖Lpµ
≤ ε

(
µ(AN,ε )

)1/p
+ 2
(
µ(AcN,ε)

)1/p ≤ Cε,
for N large enough. Finally, we have when N −→ +∞

CN =
( ∫

e−EN (u)dµ(u)
)−1 −→

( ∫
e−E(u)dµ(u)

)−1
= C,

and this ends the proof.

Remark 3.19. Let us make a comment about the construction of a Gibbs measure for the
equation

i∂tu+Hu = u, (t, z) ∈ R× C. (3.22)

The right thing to do here is to rewrite the equation as i∂tu+ (H − 1)u = 0 and to define the
corresponding Gaussian measure. One could also try to construct the measure as a perturbation

of µ. A natural candidate for it is the measure dρ(u) = Ce
−‖u‖2

L2(C)dµ(u), but this does not work
since ‖u‖L2(C) = +∞, µ almost surely. The idea is to define the r.v. GN (u) = ‖uN‖2L2(C) −αN
where αN =

∑N
n=1

1
2(n+1) . One can show that (GN )N≥1 is a Cauchy sequence in L2(X0

hol(C), dµ)

which enables to define its limit G and then the measure dρ(u) = Ce−G(u)dµ(u). Namely, for
M ≥ N ≥ 1∫

X0
hol(C)

‖GM (u)−GN (u)‖2H−σ(C)dµ(u) =

∫
Ω
‖GM (γ)−GN (γ)‖2H−σ(C)dp

=

∫
Ω

M∑
m,n=N+1

(|gn|2 − 1)(|gm|2 − 1)

4(n+ 1)(m+ 1)
.
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Almost sure global wellposedness of the LLL equation below L2(C)

Now we use that

∫
Ω
|gn|2dp = 1 and

∫
Ω

(|gn|2 − 1)(|gm|2 − 1)dp = 0 for n 6= m, thus

∫
X0
hol(C)

‖GM (u)−GN (u)‖2H−σ(C)dµ(u) = C

M∑
m,n=N+1

1

(n+ 1)2
≤ CN−1,

hence the result. This renormalisation procedure can be generalised and is known as the Wick
ordering, see [69] for more details.

We look for a solution to (LLL) of the form u = u0 + v, thus v has to satisfy{
i∂tv = T (u0 + v), (t, z) ∈ R× C,
v(0, z) = 0,

(3.23)

with T (u) = T (u, u, u). Similarly, we introduce{
i∂tvN = TN (u0 + vN ), (t, z) ∈ R× C,
v(0, z) = 0.

(3.24)

Recall that equation (3.24) is globally well posed in L2(C), and its flowmap is denoted by ΦN .

Let σ > 0 and let us define

A(R) =
{
u0 ∈ X0

hol(C) : ‖u0‖H−σ(C) + ‖u0‖L6(C) ≤ R1/2
}
.

Then we have the following result

Lemma 3.20. There exist c, C > 0 so that for all N ≥ 0

ρN
(
A(R)c

)
≤ Ce−cR, ρ

(
A(R)c

)
≤ Ce−cR, µ

(
A(R)c

)
≤ Ce−cR.

Proof. Observe that we have ρN
(
A(R)c

)
, ρ
(
A(R)c

)
≤ Cµ

(
A(R)c

)
. The result is therefore given

by (3.18).

Proposition 3.21. There exists c > 0 such that, for any R > 0, c0 > 0, setting τ(R) = cR−2,
for any u0 ∈ A(R) there exists a unique solution v ∈ L∞([−τ, τ ];L2(C)) to the equation (3.23)
and a unique solution vN ∈ L∞([−τ, τ ];L2(C)) to the equation (3.24) which furthermore satisfy

‖v
∥∥
L∞([−τ,τ ];L2(C))

≤ c0R
−1/2, ‖vN

∥∥
L∞([−τ,τ ];L2(C))

≤ c0R
−1/2.

As a consequence, for all |t| ≤ cR−2, if c0 � 1

Φ(t, u0) ∈ A(R+ 1), ΦN (t, u0) ∈ A(R+ 1). (3.25)

Proof. We only consider the equation (3.23), the other case being similar by the boundedness
of SN on Lp(C). We define the space

Z(τ) =
{
v ∈ C

(
[−τ, τ ];L2(C)

)
s.t. v(0) = 0 and ‖v‖Z(τ) ≤ c0R

−1/2
}
,
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3.4 Sketch of the proof of the global wellposedness result

with ‖v‖Z(τ) = ‖v‖L∞
[−τ,τ ]L

2(C), and for u0 ∈ A(R) we define the operator

K(v) = −i
∫ t

0
T (u0 + v)ds.

We will show that K has a unique fixed point v ∈ Z(τ).

We have

‖K(v)‖Z(τ) ≤ τ
∥∥T (u0 + v)

∥∥
Z(τ)

≤ Cτ (‖T (u0, u0, u0)‖Z + ‖T (u0, u0, v)‖Z + ‖T (u0, v, v)‖Z + ‖T (v, v, v)‖Z) .

We estimate each term. The conjugation plays no role, so we forget it. We only detail the first
and the last term.
• Estimate of the trilinear term in v: by (3.5)

‖T (v, v, v)‖L2(C) ≤ C‖v‖
3
L6(C) ≤ C‖v‖

3
L2(C).

• Estimate of the constant term in v: for u0 in A(R)

‖T (u0, u0, u0)‖L2(C) ≤ C‖u0‖3L6(C) ≤ C‖u0‖3L3(C) ≤ CR
3/2,

(recall here that the bound ‖u0‖L2(C) is forbidden since ‖u0‖L2(C) = +∞ on the support of µ.)
With these estimates at hand, the result follows by the Picard fixed point theorem.

Remark 3.22. In [37] we prove a more general result for the complete (CR) equation. In this
context, the hypercontractivity estimates are replaced by Strichartz estimates.

3.4.2 Approximation and invariance of the measure

Lemma 3.23. Fix R ≥ 0. Then for all ε > 0, there exists N0 ≥ 0 such that for all u0 ∈ A(R)
and N ≥ N0 ∥∥Φ(t, u0)− ΦN (t, u0)

∥∥
L∞([−τ1,τ1];L2(C))

≤ ε,

where τ1 = cR−2 for some c > 0.

Proof. We have

v − vN = −i
∫ t

0

[
SN
(
T (u0 + v)− T (u0 + vN )

)
+ (1− SN )T (u0 + v)

]
ds.

Then we get

‖v − vN‖Z(τ) ≤ CτR2‖v − vN‖Z(τ) +

∫ τ

−τ
‖(1− SN )T (u0 + v)‖L2(C)ds,

which in turn implies when CτR2 ≤ 1/2

‖v − vN‖Z(τ) ≤ 2

∫ τ

−τ
‖(1− SN )T (u0 + v)‖L2(C)ds.

Here we need a bit a compactness to conclude. We refer to [37] for the details.
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Almost sure global wellposedness of the LLL equation below L2(C)

Let Di,j = (i+ j1/2)1/2, with i, j ∈ N and set Ti,j =
∑j

`=1 τ1(Di,`). Let

ΣN,i :=
{
u0 : ∀j ∈ N, ΦN (±Ti,j , u0) ∈ A(Di,j+1)

}
,

and
Σi := lim sup

N→+∞
ΣN,i, Σ :=

⋃
i∈N

Σi.

Proposition 3.24. The following holds true:

(i) The set Σ is of full ρ measure.

(ii) For all u0 ∈ Σ, there exists a unique global solution u = u0 + v to (LLL). This defines a
global flow Φ on Σ.

(iii) For all measurable set A ⊂ Σ, and all t ∈ R,

ρ(A) = ρ
(
Φ(t, A)

)
.

The proof of (ii) relies on the invariance of the measure ρN under the flow ΦN . A repeated
use of the approximation result of Lemma 3.23 will be crucial to prove (iii). The details of the
proof can be found in Suzzoni [76, Sections 3.3 and 4].

Let us show how one uses the Gibbs measure to define a global flow and to get the quanti-
tative bound in ln1/2(t) in Theorem 3.9.

Let c > 0 be given by Lemma 3.20. For T ≤ ecR/2 we define,

ΣR =

[T/τ ]⋂
k=−[T/τ ]

ΦN

(
− kτ,BR

)
. (3.26)

Now we crucially use the invariance of the measure and get

ρN (X0
hol(R)\ΣR) ≤ (2[T/τ ] + 1)ρN (X0(R)\BR)

≤ CR2ecR/2e−cR ≤ Ce−cR/4,

which shows that ΣR is a big subset of X0
hol(R) when R −→ +∞. Now, by the definition (3.26)

of ΣR and (3.25), we deduce that for all |t| ≤ T and u0 ∈ ΣR

‖ΦN (t, u0)‖L3(C) + ‖ΦN (t, u0)‖H−σ(C) ≤ (R+ 1)1/2.

In particular, for |t| = T ∼ ecR/2

‖ΦN (t, u0)‖L3(C) + ‖ΦN (t, u0)‖H−σ(C) ≤ C(ln |t|+ 1)1/2,

and this bound is uniform in N ≥ 1. The term ln1/2(t) is reminiscent from the large deviation
estimates involving Gaussian random variables.
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4 Global weak probabilistic solutions

of the LLL equation below H−1(C)

Up to now, we have considered strong probabilistic solutions. We show here how we can
construct global probabilistic solutions to PDEs thanks to compactness methods in the space
of measures. As an application, we will construct a global dynamics on the support of the
white noise measure of the LLL equation which lives at the very low regularity H−1(C).

4.1 White noise measure and global weak solutions for LLL

Our aim is now to construct weak solutions to the Lowest Landau Level equation{
i∂tu = Π(|u|2u), (t, z) ∈ R× C,
u(0, z) = u0(z),

(LLL)

on the support of the white noise measure.

Let us define what we mean by white noise measure in our context. Denote by (en)n≥0 a
Hilbertian basis of L2(0, 1) and consider independent standard Gaussians (gn)n≥0 on a proba-
bility space (Ω,F ,p). Then it is well-known (see e.g. [41, Chapter 2]) that the random series

Bt =
+∞∑
n=0

gn

∫ t

0
en(s)ds

converges in L2(Ω,F ,p) and defines a Brownian motion. The white noise measure is then
defined by the map

ω 7−→W (t, ω) =
dBt
dt

(ω) =
+∞∑
n=0

gn(ω)en(t). (4.1)

Now consider a Hilbert space K which is a space of functions on a manifold M and consider a
Hilbertian basis (en)n≥0 of K. We define the mean-zero Gaussian white noise (measure) on K
as µ = p ◦W−1, where

W (x, ω) =
+∞∑
n=0

gn(ω)en(x).
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Global weak probabilistic solutions of the LLL equation below H−1(C)

Notice that this measure is independent of the choice of the Hilbertian basis of K. It is clear
that for all x ∈M , Ep[W (x, ·)] = 0. Moreover, for all x, y ∈M we have

Ep[W (x, ·)W (y, ·)] =

+∞∑
n=0

en(x)en(y) = δ(x− y),

since the sum in the previous line is the kernel of the identity projector on K. For more details
on Gaussian measures on Hilbert spaces, we refer to [44].

Recall the definition of the harmonic Sobolev spaces: for s ∈ R we define

Hs = Hs(C) =
{
u ∈ S ′(C), Hs/2u ∈ L2(C)

}
,

and the norm on F 2(C) ∩Hs(C) is a weighted L2-norm by Lemma 3.1.

Consider the Gaussian random variable

η(ω, z) =

+∞∑
n=0

gn(ω)ϕn(z) =
1√
π

( +∞∑
n=0

zngn(ω)√
n!

)
e−|z|

2/2,

and the measure µ = p◦η−1. As in Lemma 3.13 we can show that the measure µ is a probability
measure on

X−1
hol(C) :=

(
∩σ>1 H−σ(C)

)
∩ (O(C)e−|z|

2/2).

In Proposition 2.13 we have seen that, for any 2 ≤ p < +∞, η(ω, .) /∈ F p(C) for a.a. ω ∈ Ω.

Since ‖u‖L2(C) is preserved by (LLL), µ is formally invariant under (LLL). We are not able
to define a flow at this level of regularity, however using compactness arguments combined with
probabilistic methods, we will construct weak solutions.

Theorem 4.1 (Germain-Hani-LT [37]). There exists a set Σ ⊂ X−1
hol(C) of full µ measure

so that for every u0 ∈ Σ the equation (LLL) with initial condition u(0) = u0 has a solution

u ∈
⋂
σ>1

C
(
R ;H−σ(C)

)
.

The distribution of the random variable u(t) is equal to µ (and thus independent of t ∈ R):

LX−1
hol

(
u(t)

)
= LX−1

hol

(
u(0)

)
= µ, ∀ t ∈ R.

The proof is based on a compactness argument in the space of measures (the Prokhorov
theorem) combined with a representation theorem of random variables (the Skorohod the-
orem). This approach has been first applied to the Navier-Stokes and Euler equations in
Albeverio-Cruzeiro [4] and Da Prato-Debussche [31] and extended to dispersive equations by
Burq-Thomann-Tzvetkov [21]. See also Germain-Hani-Thomann [37], Oh-Thomann [69] and
Oh-Richards-Thomann [68]. For results in a non compact setting, see Suzzoni [74].

Remark 4.2. For the Szegö equation, using that the H1/2(T) norm is preserved by the
flow, the method used in the proof of Theorem 4.1 allows to construct a global dynamics
in
⋂
σ>0 C

(
R ;H−σ+ (T)

)
. See [21] for details.
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4.2 The Prokhorov and Skorokhod theorems

4.2 The Prokhorov and Skorokhod theorems

We state two basic results, concerning the convergence of random variables. To begin with,
recall the following definition (see e.g. [48, page 114])

Definition 4.3. Let S be a metric space and (ρN )N≥1 a family of probability measures on the
Borel σ−algebra B(S). The family (ρN ) on (S,B(S)) is said to be tight if for any ε > 0 one
can find a compact set Kε ⊂ S such that ρN (Kε) ≥ 1− ε for all N ≥ 1.

Then, we have the following compactness criterion (see e.g. [48, page 114] or [47, page 309])

Theorem 4.4 (Prokhorov). Assume that the family (ρN )N≥1 of probability measures on the
metric space S is tight. Then it is weakly compact, i.e. there is a subsequence (Nk)k≥1 and a
limit measure ρ∞ such that for every bounded continuous function F : S → R,

lim
k→∞

∫
S
F (x)dρNk(x) =

∫
S
F (x)dρ∞(x).

In fact, the Prokhorov theorem is stronger: In the case where the space S is separable and
complete, the converse of the previous statement holds true, but we will not use this here.

Remark 4.5. Let us make a remark on the case S = Rd. The measure given by the theorem
allows mass concentration in a point and the tightness condition forbids the escape of mass to
infinity.

The Prokhorov theorem is of different nature compared to the compactness theorems giving
the deterministic weak solutions: In the latter case there can be a loss of energy. A weak limit
of L2 functions may lose some mass whereas in the Prokhorov theorem a limit measure is a
probability measure.

We now state the Skorokhod theorem

Theorem 4.6 (Skorokhod). Assume that S is a separable metric space. Let (ρN )N≥1 and ρ∞
be probability measures on S. Assume that ρN −→ ρ∞ weakly. Then there exists a probability
space on which there are S−valued random variables (YN )N≥1, Y∞ such that L(YN ) = ρN for
all N ≥ 1, L(Y∞) = ρ∞ and YN −→ Y∞ a.s.

For a proof, see e.g. [47, page 79]. We illustrate this result with two elementary but
significant examples:

• Assume that S = R. Let (YN )1≤N≤∞ be standard Gaussians, i.e. L(YN ) = L(Y∞) =
NR(0, 1). Then the convergence in law obviously holds, but in general we can not expect
the almost sure convergence of the YN to Y∞ (define for example YN = (−1)NY∞).

• Assume that S = R. Let (YN )1≤N≤∞ be random variables. For any random variable Y on
R we denote by FY (t) = P (Y ≤ t) its cumulative distribution function. Here we assume
that for all 1 ≤ N ≤ ∞, FYN is bijective and continuous, and we prove the Skorokhod
theorem in this case. Let U be a r.v. so that L(U) is the uniform distribution on [0, 1]
and define the r.v. ỸN = F−1

YN
(U). We now check that the ỸN satisfy the conclusion of

the theorem. To begin with,

F
ỸN

(t) = P (ỸN ≤ t) = P (U ≤ FYN (t)) = FYN (t),
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Global weak probabilistic solutions of the LLL equation below H−1(C)

therefore we have for 1 ≤ N ≤ ∞, L(YN ) = L(ỸN ). Now if we assume that YN −→ Y∞
in law, we have for all t ∈ R, FYN (t) −→ FY∞(t) and in particular ỸN −→ Ỹ∞ almost
surely.

4.3 General strategy of the proof

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n≥1

a sequence of independent complex nor-

malised Gaussians, gn ∈ NC(0, 1). Let M be a Riemanian compact manifold and let (en)n≥1

be an Hilbertian basis of L2(M) (with obvious changes, we can allow n ∈ Z). Consider one of
the equations mentioned in the introduction. Denote by

Xσ = Xσ(M) =
⋂
τ<σ

Hτ (M).

The general strategy for proving a global existence result is the following:

Step 1: The Gaussian measure µ: We define a measure µ on Xσ(M) which is invari-
ant by the flow of the linear part of the equation. The index σc ∈ R is determined by the
equation and the manifold M. Indeed this measure can be defined as µ = p ◦ γ−1, where
γ ∈ L2

(
Ω; Hσ(M)

)
for all σ < σc is a Gaussian random variable which takes the form

γ(ω, x) =
∑
n≥1

gn(ω)

λn
en(x).

Here the (λn) satisfy λn ∼ cnα, α > 0 and are given by the linear part and the Hamiltonian
structure of the equation. Notice in particular that for all measurable F : Xσc(M) −→ R∫

Xσc (M)
F (u)dµ(u) =

∫
Ω
F
(
γ(ω, ·)

)
dp(ω). (4.2)

Step 2: The invariant measure ρN : By working on the Hamiltonian formulation of the
equation, we introduce an approximation of the initial problem which has a global flow ΦN ,
and for which we can construct a measure ρN on Xσc(M) which has the following properties

(i) The measure ρN is a probability measure which is absolutly continuous with respect to µ

dρN (u) = ΨN (u)dµ(u).

(ii) The measure ρN is invariant by the flow ΦN by the Liouville theorem.

(iii) There exists Ψ 6≡ 0 such that for all p ≥ 1, Ψ(u) ∈ Lp(dµ) and

ΨN (u) −→ Ψ(u), in Lp(dµ).

(In particular ‖ΨN (u)‖Lpµ ≤ C uniformly in N ≥ 1.) This enables to define a probability
measure on Xσc(M) by

dρ(u) = Ψ(u)dµ(u),

which is formally invariant by the equation.
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4.3 General strategy of the proof

Step 3: The measure νN : We abuse notation and write

C
(
[−T, T ];Xσc(M)

)
=
⋂
σ<σc

C
(
[−T, T ];Hσ(M)

)
.

We denote by νN = ρN ◦ Φ−1
N the measure on C

(
[−T, T ];Xσc(M)

)
, defined as the image

measure of ρN by the map

Xσc(M) −→ C
(
[−T, T ];Xσc(M)

)
v 7−→ ΦN (t, v).

In particular, for any measurable F : C
(
[−T, T ];Xσc(M)

)
−→ R∫

C
(

[−T,T ];Xσc

) F (u)dνN (u) =

∫
Xσc

F
(
ΦN (t, v)

)
dρN (v). (4.3)

Assume that the corresponding sequence of measures (νN ) is tight in C
(
[−T, T ];Hσ(M)

)
for all σ < σc (this has to be shown for the considered equation). Therefore, for all σ < σc,
by the Prokhorov theorem, there exists a measure νσ = ν on C

(
[−T, T ];Hσ(M)

)
so that the

weak convergence holds (up to a sub-sequence): For all σ < σc and all bounded continuous
F : C

(
[−T, T ];Hσ(M)

)
−→ R

lim
N→∞

∫
C
(

[−T,T ];Hσ
) F (u)dνN (u) =

∫
C
(

[−T,T ];Hσ
) F (u)dν(u).

At this point, observe that if σ1 < σ2, then νσ1 ≡ νσ2 on C
(
[−T, T ];Hσ1(M)

)
. Moreover, by

the standard diagonal argument, we can ensure that ν is a measure on C
(
[−T, T ];Xσc(M)

)
.

Finally, with the Skorokhod theorem, we can construct a sequence of random variables
which converges to a solution of the initial problem.

We now state a result which will be useful in the sequel. Assume that ρN satisfies the
properties mentioned in Step 2.

Proposition 4.7. Let σ < σc. Let p ≥ 2 and r > p. Then for all N ≥ 1∥∥‖u‖LpTHσ
x

∥∥
LpνN
≤ CT 1/p

∥∥‖v‖Hσ
x

∥∥
Lrµ
.

Let q ≥ 1, p ≥ 2 and r > p. Then for all N ≥ 1∥∥‖u‖LpTLqx∥∥LpνN ≤ CT 1/p
∥∥‖v‖Lqx∥∥Lrµ .

In case ΨN ≤ C, one can take r = p in the previous inequalities.

Proof. We apply (4.3) with the function u 7−→ F (u) = ‖u‖p
LpTH

σ
x

. Here and after, we make the

abuse of notation ∥∥‖u‖LpTHσ
x

∥∥
LpνN

= ‖u‖LpνNLpTHσ
x
.
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Then

‖u‖p
LpνNL

p
TH

σ
x

=

∫
C
(

[−T,T ];Xσc

) ‖u‖pLpTHσ
x

dνN (u)

=

∫
Xσc

‖ΦN (t, v)‖p
LpTH

σ
x

dρN (v)

=

∫
Xσc

[ ∫ T

−T
‖ΦN (t, v)‖pHσ

x
dt
]
dρN (v)

=

∫ T

−T

[ ∫
Xσc

‖ΦN (t, v)‖pHσ
x

dρN (v)
]
dt, (4.4)

where in the last line we used Fubini. Now we use the invariance of ρN under ΦN , and we
deduce that for all t ∈ [−T, T ]∫

Xσc

‖ΦN (t, v)‖pHσ
x

dρN (v) =

∫
Xσc

‖v‖pHσ
x

dρN (v).

Therefore, from (4.4) and Hölder we obtain with 1/r1 + 1/r2 = 1

‖u‖p
LpνNL

p
TH

σ
x

= 2T

∫
Xσc

‖v‖pHσ
x

dρN (v)

= 2T

∫
Xσc

‖v‖pHσ
x

ΨN (v)dµ(v)

≤ 2T‖v‖p
L
pr1
µ Hσ

x
‖ΨN (v)‖Lr2µ .

Now, let r > p, take r1 = r/p and we can conclude since ΨN (v) ∈ Lr2(dµ).
For the proof of the second estimate, we proceed similarly. We take F (u) = ‖u‖p

LpTL
q
x

in (4.3),

and use the same arguments as previously.

4.4 The probabilistic argument of convergence

4.4.1 Definition of T (u, u, u) on the support of µ

Denote by Ek the space on C spanned by ϕk. For N ≥ 0, denote by ΠN the orthogonal
projector on the space

⊕N
k=0Ek (in this section, we do not need the smooth cut-offs SN ). In

the sequel, we denote by T (u) = T (u, u, u) and TN (u) = ΠNT (ΠNu,ΠNu,ΠNu)

Proposition 4.8. For all p ≥ 2 and σ > 1, the sequence
(
TN (u)

)
N≥1

is a Cauchy sequence

in Lp
(
X−1
hol,B, dµ;H−σ(C)

)
. Namely, for all p ≥ 2, there exist δ > 0 and C > 0 so that for all

1 ≤M < N , ∫
X−1
hol

‖TN (u)− TM (u)‖pH−σ(C)
dµ(u) ≤ CM−δ.

We denote by T (u) = T (u, u, u) the limit of this sequence and we have for all p ≥ 2

‖T (u)‖LpµH−σ(C) ≤ Cp. (4.5)

46



4.4 The probabilistic argument of convergence

Proof. By the Proposition 2.3 on the Wiener chaos, we only have to prove the statement
for p = 2.

Firstly, by definition of the measure µ∫
X−1
hol

‖TN (u)− TM (u)‖2H−σ(C)dµ(u) =

∫
Ω
‖TN

(
η(ω)

)
− TM

(
η(ω)

)
‖2H−σ(C)dp(ω).

Therefore, it is enough to prove that
(
TN (η)

)
N≥1

is a Cauchy sequence in L2
(
Ω;H−σ(C)

)
.

Let 1 ≤M < N and fix σ > 1. Then an explicit computation gives

‖TN (η)− TM (η)‖2H−σ(C) =

=
π2

64 · 2σ
N∑
p=0

1

(p+ 1)σ

∑
(n,m)∈A(p)

M,N×A
(p)
M,N

(n1 + n2)! (m1 +m2)! gn1gn2gn3gm1gm2gm3

2n1+n22m1+m2p!
√
n1!n2!n3!

√
m1!m2!m3!

where A
(p)
M,N is the set defined by

A
(p)
M,N =

{
n ∈ N3 s.t. 0 ≤ nj ≤ N, n1 + n2 − n3 = p ∈ {0, . . . , N},(

n1 > M or n2 > M or n3 > M or p > M
)}
.

Now we take the integral over Ω. Here, the key fact is to use that the (gn)n≥0 are independent
and centred Gaussians: we deduce that each term in the r.h.s. vanishes, unless

Case 1: (n1, n2, n3) = (m1,m2,m3) or (n1, n2, n3) = (m2,m1,m3)

or

Case 2: (n1, n2,m1) = (n3,m2,m3) or (n1, n2,m2) = (n3,m1,m3) or (n1, n2,m3) =
(m1, n3,m2) or (n1, n2,m3) = (m2, n3,m1).

With a careful inspection of each contribution, we are able to bound the different sums.

4.4.2 Study of the measure νN

Let N ≥ 1. We then consider the following approximation of (LLL){
i∂tu = TN (u), (t, z) ∈ R× C,
u(0, z) = u0(z) ∈ X−1

hol.
(4.6)

The equation (4.6) is an ODE in the frequencies less than N , whereas for the large frequen-
cies, the solution is constant in time: (1−ΠN )u(t) = (1−ΠN )u0 and for all t ∈ R.

The main motivation to introduce this system is the following proposition

Proposition 4.9. The equation (4.6) has a global flow ΦN . Moreover, the measure µ is
invariant under ΦN : For any Borel set A ⊂ X−1

hol and for all t ∈ R, µ
(
ΦN (t, A)

)
= µ

(
A
)
.

In particular if LX−1(v) = µ then for all t ∈ R, LX−1(ΦN (t, v)) = µ.

Proof. The proof is a direct application of the Liouville Theorem 1.8.

47



Global weak probabilistic solutions of the LLL equation below H−1(C)

We denote by νN the measure on C
(
[−T, T ];X−1

hol

)
, defined as the image measure of µ by

the map
X−1
hol −→ C

(
[−T, T ];X−1

hol

)
v 7−→ ΦN (t, v).

Lemma 4.10. Let σ > 1 and p ≥ 2. Then there exists C > 0 so that for all N ≥ 1∥∥‖u‖
W 1,p
T H

−σ
z

∥∥
LpνN
≤ C.

Proof. Firstly, we have that for σ > 1, p ≥ 2 and N ≥ 1∥∥‖u‖LpTH−σz ∥∥LpνN ≤ C.
Indeed, by the definition of νN and the invariance of µ by ΦN we have

‖u‖LpνNLpTH−σz = (2T )1/p‖v‖LpµH−σz = (2T )1/p‖η‖LppH−σz .

Then, by the Khintchine inequality (3.20) and (3.15), for all p ≥ 2

‖η‖LppH−σz ≤ C
√
p‖η‖L2

pH
−σ
z
≤ C.

Next, we show that
∥∥‖∂tu‖LpTH−σz ∥∥LpνN ≤ C. By definition of νN

‖∂tu‖pLpνNLpTH−σz
=

∫
C
(

[−T,T ];X−1
hol

) ‖∂tu‖pLpTH−σz dνN (u)

=

∫
X−1
hol

‖∂tΦN (t, v)‖p
LpTH

−σ
z

dµ(v).

Now, since ΦN (t, v) satisfies (4.6) and by the invariance of µ, we have

‖∂tu‖pLpνNLpTH−σz
=

∫
X−1
hol

‖TN (ΦN (t, v))‖p
LpTH

−σ
z

dµ(v)

= 2T

∫
X−1
hol

‖TN (v)‖pH−σz dµ(v),

and conclude with (4.5) and Proposition 4.8.

4.4.3 The convergence argument

The importance of Lemma 4.10 above comes from the fact that it allows to establish the
following tightness result for the measures νN .

Proposition 4.11. Let T > 0 and σ > 1. Then the family of measures

(νN )N≥1 with νN = LCTH−σ
(
uN (t); t ∈ [−T, T ]

)
is tight in C

(
[−T, T ];H−σ(C)

)
.
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Proof. Let σ > 1. Fix σ > s′ > s′′ > 1 and α > 0.
We define the space CαTH−s

′
= Cα

(
[−T, T ];H−s′(C)

)
by the norm

‖u‖CαTH−s′ = sup
t1,t2∈[−T,T ], t1 6=t2

‖u(t1)− u(t2)‖H−s′z

|t1 − t2|α
+ ‖u‖

L∞T H
−s′
z
,

and it is classical that the embedding CαTH−s
′ ⊂ C

(
[−T, T ];H−σ(C)

)
is compact.

We now claim that there exists 0 < α� 1 so that for all p ≥ 1 we have the bound

‖u‖LpνN CαTH−s′ ≤ C. (4.7)

With an interpolation argument we obtain that for some p� 1

‖u‖CαTH−s′ ≤ C‖u‖
1−θ
LpTH−s

′′‖u‖θW 1,p
T H−σ

≤ C‖u‖LpTH−s′′ + C‖u‖
W 1,p
T H−σ

,

for some small α > 0. By Lemma 4.10 we then deduce (4.7). Next, let δ > 0 and define the
subset of CTH−σ

Kδ =
{
u ∈ CTH−σ s.t. ‖u‖CαTH−s′ ≤ δ

−1
}
,

endowed with the natural topology of CTH−σ. Thanks to the previous considerations, the
set Kδ is compact. Finally, by Markov and (4.7) we get that

νN (Kc
δ) ≤ δ‖u‖L1

νN
CαTH−s

′ ≤ δC,

which shows the tightness of (νN ).

The result of Proposition 4.11 enables us to use the Prokhorov theorem: For each T > 0
there exists a sub-sequence νNk and a measure ν on the space C

(
[−T, T ];X−1

hol

)
so that for all

τ > 1 and all bounded continuous function F : C
(
[−T, T ];H−τ (C)

)
−→ R∫

C
(

[−T,T ];H−τ (C)
) F (u)dνNk(u) −→

∫
C
(

[−T,T ];H−τ (C)
) F (u)dν(u).

By the Skohorod theorem, there exists a probability space (Ω̃, F̃ , p̃), a sequence of random
variables (ũNk) and a random variable ũ with values in C

(
[−T, T ];X−1

hol

)
so that

L
(
ũNk ; t ∈ [−T, T ]

)
= L

(
uNk ; t ∈ [−T, T ]

)
= νNk , L

(
ũ; t ∈ [−T, T ]

)
= ν, (4.8)

and for all τ > 1
ũNk −→ ũ, p̃− a.s. in C

(
[−T, T ];H−τ (C)

)
. (4.9)

We now claim that LX−1(uNk(t)) = LX−1(ũNk(t)) = µ, for all t ∈ [−T, T ] and k ≥ 1.
Indeed, for all t ∈ [−T, T ], the evaluation map

Rt : C
(
[−T, T ];X−1

hol

)
−→ X−1

hol

u 7−→ u(t, .),

is well defined and continuous.
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Thus, for all t ∈ [−T, T ], uNk(t) and ũNk(t) have same distribution (Rt)#νNk . By Proposi-
tion 4.9, we obtain that this distribution is µ.

Thus from (4.9) we deduce that

LX−1(ũ(t)) = µ, ∀ t ∈ [−T, T ]. (4.10)

Let k ≥ 1 and t ∈ R and consider the r.v. Xk given by

Xk = uNk(t)−R0(uNk(t)) + i

∫ t

0
TNk(uNk)ds.

Define X̃k similarly to Xk with uNk replaced with ũNk . Then by (4.8),

LCTX−1(X̃Nk) = LCTX−1(XNk) = δ0.

In other words, X̃k = 0 p̃ – a.s. and ũNk satisfies the following equation p̃ – a.s.

ũNk(t) = R0(ũNk(t))− i
∫ t

0
TNk(ũNk)ds. (4.11)

We now show that we can pass to the limit k −→ +∞ in (4.11) in order to show that ũ is
p̃ – a.s. a solution to (LLL) written in integral form as:

ũ(t) = R0(ũ(t))− i
∫ t

0
T (ũ)ds. (4.12)

Firstly, from (4.9) we deduce the convergence of the linear terms in equation (4.11) to those
in (4.12). The following lemma gives the convergence of the nonlinear term.

Lemma 4.12. Up to a sub-sequence, the following convergence holds true

TNk(ũNk) −→ T (ũ), p̃− a.s. in L2
(
[−T, T ];H−σ(C)

)
.

Proof. In order to simplify the notations, in this proof we drop the tildes and write Nk = k.
Let M ≥ 1 and write

Tk(uk)−T (u) =
(
Tk(uk)−T (uk)

)
+
(
T (uk)−TM (uk)

)
+
(
TM (uk)−TM (u)

)
+
(
TM (u)−T (u)

)
.

To begin with, by continuity of the product in finite dimension, when k −→ +∞

TM (uk) −→ TM (u), p̃− a.s. in L2
(
[−T, T ];H−σ(C)

)
.

We now deal with the other terms. It is sufficient to show the convergence in the space
X := L2

(
Ω × [−T, T ];H−σ(C)

)
, since the almost sure convergence follows after exaction of a

sub-sequence.
By definition and the invariance of µ we obtain∥∥ TM (uk)− T (uk)

∥∥2

X
=

∫
C([−T,T ];X−1)

∥∥ TM (v)− T (v)
∥∥2

L2
TH
−σ
z

dνk(v)

=

∫
X−1(C)

∥∥∥ TM(Φk(t, g)
)
− T

(
Φk(t, g)

) ∥∥∥2

L2
TH
−σ
z

dµ(g)

=

∫
X−1(C)

∥∥ TM (g)− T (g)
)∥∥2

L2
TH
−σ
z

dµ(g)

= 2T

∫
X−1(C)

∥∥ TM (g)− T (g)
∥∥2

H−σz
dµ(g),
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which tends to 0 uniformly in k ≥ 1 when M −→ +∞, according to Proposition 4.8.
The term

∥∥ TM (u)−T (u)
∥∥
X

is treated similarly. Finally, with the same argument we show∥∥ Tk(uk)− T (uk)
∥∥
X
≤ C

∥∥ Tk(g)− T (g)
∥∥
L2
µH
−σ
z
,

which tends to 0 when k −→ +∞. This completes the proof.

4.4.4 Conclusion of the proof of Theorem 4.1

Define ũ0 = ũ(0) := R0(ũ). Then by (4.10), LX−1( ũ0 ) = µ and by the previous arguments,
there exists Ω̃′ ⊂ Ω̃ such that p̃(Ω̃′) = 1 and for each ω′ ∈ Ω̃′, the random variable ũ satisfies
the equation

ũ = ũ0 − i
∫ t

0
T (ũ)dt, (t, z) ∈ R× C. (4.13)

Set Σ = ũ0(Ω′), then µ(Σ) = p̃(Ω̃′) = 1. It remains to check that we can construct a
global dynamics. Take a sequence TN → +∞, and perform the previous argument for T = TN .
For all N ≥ 1, let ΣN be the corresponding set of initial conditions and set Σ = ∩N∈NΣN .
Then µ(Σ) = 1 and for all ũ0 ∈ Σ, there exists

ũ ∈ C
(
R ;X−1

hol

)
,

which solves (4.13). This completes the proof of Theorem 4.1.
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