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Abstract

We consider the Iwahori-Hecke algebra IH associated to an almost split Kac-Moody
group G (affine or not) over a nonarchimedean local field K. It has a canonical double-
coset basis (Tw)w∈W+ indexed by a sub-semigroup W+ of the affine Weyl group W .
The multiplication is given by structure constants auw,v ∈ N = Z≥0 : Tw ∗ Tv =∑

u∈Pw,v
auw,vTu. A conjecture, by Braverman, Kazhdan, Patnaik, Gaussent and the

authors, tells that auw,v is a polynomial, with coefficients in N, in the parameters qi−1, q′i−1
of G over K. We prove this conjecture when w and v are spherical or, more generally,
when they are said to be generic: this includes all cases of w,v ∈W+ if G is of affine or
strictly hyperbolic type. In the split affine case (where qi = q′i = q, ∀i) we get a universal
Iwahori-Hecke algebra with the same basis (Tw)w∈W+ over a polynomial ring Z[Q]; it
specializes to IH when one sets Q = q.

Introduction

Let G be a split, semi-simple, simply connected algebraic group over a non archimedean local
field K. So K is complete for a discrete, non trivial valuation with a finite residue field κ. We
write O ⊂ K for the ring of integers and q for the cardinality of κ. Then G is locally compact.
In this situation, Nagayoshi Iwahori and Hideya Matsumoto in [IM65], introduced an open
compact subgroup KI of G, now known as an Iwahori subgroup. If N is the normalizer of a
suitable split maximal torus T ' (K∗)n, then (KI , N) is a BN pair. The Iwahori-Hecke algebra
of G is the algebra IHR = IHR(G,KI) of locally constant, compactly supported functions on
G, with values in a ring R, that are bi-invariant by the left and right actions of KI . The
multiplication is given by the convolution product.

If H ' (O∗)n is the maximal compact subgroup of T , then H ⊂ KI and W = N/H is
the affine Weyl group. One has the Bruhat decomposition G = KI .W.KI = tw∈WKI .w.KI .
If one considers the characteristic function Tw of KI .w.KI , we get a basis of IHR: IHR =
⊕w∈WR.Tw. The convolution product is given by Tw ∗ Tv =

∑
u∈Pw,v

auw,vTu, with Pw,v a
finite subset of W . The numbers auw,v ∈ R are the structure constants of IHR. The unit is
1 = Te.

Iwahori and Matsumoto gave a precise (and now classical) definition of IHR by generators
and relations. The groupW is an infinite Coxeter group generated by {r0, . . . , rn}. Then IHR

is generated by {Tr0 , . . . , Trn} with relations T 2
ri = q.1 + (q − 1).Tri and Tri ∗ Trj ∗ Tri ∗ · · · =

Trj ∗Tri ∗Trj ∗· · · (withmi,j factors on each side) for i 6= j, ifmi,j is the finite order of rirj . For
w = ri1 . . . . .ris a reduced expression in W , one has Tw = Tri1 ∗ · · · ∗ Tris . In a Coxeter group
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one knows the rules to get (using the Coxeter relations between the ri) a reduced expression
from a non reduced expression (e.g. the product of two reduced expressions w = ri1 . . . . .ris
and v = rj1 . . . . .rjt). So one deduces easily (using the above relations between the Tri) that
each structure constant auw,v (for u,v,w ∈W ) is in Z[q]. More precisely it is a polynomial in
q − 1 with coefficients in N = Z≥0. This polynomial depends only on u,v,w and W .

So one has a universal description of IHZ as a Z[q]−algebra, depending only on W .
There are various generalizations of the above situation. First one may replace G by a

general reductive group over K, isotropic but potentially non split. Then one has to consider
the relative affine Weyl group W , which is a Coxeter group. One may still define a compact,
open Iwahori subgroup KI and there is a Bruhat decomposition G = KI .W.KI . Now the
description of IHR involves parameters qi (satisfying T 2

ri = qi.1 + (qi − 1).Tri) which are
potentially different from q. This gives the Iwahori-Hecke algebra with unequal parameters.
There is a pleasant description of IHR using the Bruhat-Tits building associated to the BN
pair (KI , N), see e.g. [P06].

For now more than twenty years, there is an increasing interest in the study of Kac-Moody
groups over local fields, see the works of Braverman, Garland, Kapranov, Kazhdan, Patnaik,
Gaussent and the authors: e.g. [Ga95], [GaG95], [Kap01], [BrK11], [BrK14], [BrGKP14],
[BrKP16], [GR14], [BaPGR16], [BaPGR19]. It has been possible to define and study for
Kac-Moody groups (supposed at first affine) the spherical Hecke algebra, the Iwahori-Hecke
algebra, the Satake isomorphism, . . . . This is also closely related to more abstract works on
Hecke algebras by Cherednik and Macdonald, e.g. [Che92], [Che95], [Ma03].

We are mainly interested in Iwahori-Hecke algebras for Kac-Moody groups over local fields.
They were introduced and described by Braverman, Kazhdan and Patnaik in the affine case
[BrKP16] and then in general by Gaussent and the authors [BaPGR16]. So let us consider a
Kac-Moody group G (affine or not) over the local field K. We suppose it split (as defined by
Tits [T87]) or more generally almost split [Re02]. Let us choose also a maximal split subtorus.
To this situation is associated an affine (relative) Weyl group W and an Iwahori subgroup KI

(defined up to conjugacy by W ), see 1.4 (5) and (7) below. This group W is not a Coxeter
group but may be described as a semi-direct product W = W v n Y , where W v is a Coxeter
group, the relative Weyl group, and Y is (essentially) the cocharacter group of the torus.

Unfortunately the Bruhat decomposition “G = KI .W.KI ” fails to be true (even in the
untwisted affine case, i.e. for loop groups). One has to consider the sub-semigroup W+ =
W vnY + (resp.,W+g = W vnY +g) ofW , where Y + (resp., Y +g) is the intersection of Y with
the Tits cone T (resp., with a cone T ◦∪V0 ⊂ T , where T ◦ is the open Tits cone) in V = Y ⊗ZR
(see 1.2, 1.5, and 1.8 below). Then G+ = KI .W

+.KI (resp., G+g = KI .W
+g.KI ⊂ G+) is

a sub-semigroup of G: the Kac-Moody-Tits semigroup (resp., the generic Kac-Moody-Tits
semigroup). We may consider the characteristic functions Tw of the double cosets KI .w.KI

and one proves in [BaPGR16] that:

The space IHR (resp., IH g
R ) of R−valued functions with finite support on KI\G+/KI

(resp., KI\G+g/KI) is naturally endowed with a structure of algebra (see 1.11). We get
thus the Iwahori-Hecke algebra IHR = ⊕w∈W+R.Tw (resp., the generic Iwahori-Hecke algebra
IH g

R = ⊕w∈W+gR.Tw). The product is given by structure constants auw,v ∈ N = Z≥0:
Tw ∗ Tv =

∑
u∈Pw,v

auw,vTu.

Conjecture 1. [BaPGR16, 2.5] Each auw,v is a polynomial, with coefficients in N = Z≥0, in
the parameters qi− 1, q′i− 1 of the situation, see 1.4.6 below. This polynomial depends only on
the affine Weyl group W acting on the apartment A and on w,v,u ∈W+.
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One may consider that this is a translation of the following question of Braverman,
Kazhdan and Patnaik :

Question. [BrKP16, end of 1.2.4] Has the algebra IHC a purely algebraic or combinatorial
description with respect to the coset basis (Tw)w∈W+ ?

But a more precise formulation of this question is as follows :

Conjecture 2. The algebra IHZ (or IH g
Z ) is the specialization of an algebra IHZ[Q] (or

IH g
Z[Q]) with the same basis (Tw)w∈W+ (or (Tw)w∈W+g) over Z[Q]. Here Q is a set of inde-

terminates Qi, Q′i (with some equalities between them, see 1.4.6 below) and the specialization
is given by Qi 7→ qi, Q

′
i 7→ q′i, ∀i ∈ I. The algebra IHZ[Q] (or IH g

Z[Q]) depends only on the
affine Weyl group W acting on the apartment A.

Let us consider the split case: G is a split Kac-Moody group, all parameters qi, q′i are
equal to q = |κ| and all indeterminates Qi, Q′i are equal to a single indeterminate Q. Then
the conjecture 1 has already been proved by Gaussent and the authors [BaPGR16, 6.7] and
independently by Muthiah [Mu18] if, moreover, G is untwisted affine. Actually the same proof
gives also conjecture 2, see 1.4.7 below.

In the general (non split) case, weakened versions were obtained in [BaPGR16]: the auw,v
are Laurent polynomials in the qi, q′i [l.c. 6.7]; they are true polynomials ifw,v ∈W vn(Y ∩T ◦)
and v is “regular” [l.c. 3.8].

In this article, we prove the conjecture 1 when w and v are in W+g (see 3.6). We remark
also that W+ = W+g in the affine case (twisted or not) or the strictly hyperbolic case, even if
G is not split. This is a first step towards the description of an abstract algebra IHZ[Q] (resp.,
IH g

Z[Q]) over Z[Q] in the affine (or strictly hyperbolic) case (resp., in the general case).
One should mention here that one may give a more precise description of the Iwahori-Hecke

algebra using a Bernstein-Lusztig presentation (see [GaG95], [BrKP16] and [BaPGR16]). But
this description is given in a new basis and the coefficients of the change of basis matrix are
Laurent polynomials in the parameters qi, q′i. So this description is not sufficient to prove the
conjecture.

Actually this article is written in a more general framework explained in Section 1: as in
[BaPGR16], we work with an abstract masure I and we take G to be a strongly transitive
group of vectorially-Weyl automorphisms of I . In Section 2 we gather the additional technical
tools (e.g. decorated Hecke paths) needed to improve the results of [BaPGR16, Section 3]. We
get our main results about auw,v in Section 3: we deal with the cases w,v spherical. In Section
4 we deal with the remaining cases where w,v are in W+g, i.e. when w,v are said generic.

1 General framework

1.1 Vectorial data

We consider a quadruple (V,W v, (αi)i∈I , (α
∨
i )i∈I) where V is a finite dimensional real vector

space,W v a subgroup of GL(V ) (the vectorial Weyl group), I a finite set, (α∨i )i∈I a free family
in V and (αi)i∈I a free family in the dual V ∗. We ask these data to satisfy the conditions of
[Ro11, 1.1]. In particular, the formula ri(v) = v − αi(v)α∨i defines a linear involution in V
which is an element in W v and (W v, {ri | i ∈ I}) is a Coxeter system.
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To be more concrete, we consider the Kac-Moody case of [l.c. ; 1.2]: the matrix M =
(αj(α

∨
i ))i,j∈I is a generalized Cartan matrix. ThenW v is the Weyl group of the corresponding

Kac-Moody Lie algebra gM and the associated real root system is

Φ = {w(αi) | w ∈W v, i ∈ I} ⊂ Q =
⊕
i∈I

Z.αi.

We set Φ± = Φ ∩ Q± where Q± = ±(
⊕

i∈I (Z≥0).αi) and Q∨ = (
⊕

i∈I Z.α∨i ), Q∨± =
±(
⊕

i∈I (Z≥0).α∨i ). We have Φ = Φ+ ∪ Φ− and, for α = w(αi) ∈ Φ, rα = w.ri.w
−1 and

rα(v) = v − α(v)α∨, where the coroot α∨ = w(α∨i ) depends only on α.
The set Φ is an (abstract, reduced) real root system in the sense of [MoP89], [MoP95]

or [Ba96]. We shall sometimes also use the set ∆ = Φ ∪ ∆+
im ∪ ∆−im of all roots (with

−∆−im = ∆+
im ⊂ Q+, W v−stable) defined in [Ka90]. It is an (abstract, reduced) root system

in the sense of [Ba96].
The fundamental positive chamber is Cvf = {v ∈ V | αi(v) > 0, ∀i ∈ I}. Its closure Cvf is the

disjoint union of the vectorial faces F v(J) = {v ∈ V | αi(v) = 0, ∀i ∈ J, αi(v) > 0,∀i ∈ I \ J}
for J ⊂ I. We set V0 = F v(I). The positive (resp. negative) vectorial faces are the sets
w.F v(J) (resp. −w.F v(J)) for w ∈ W v and J ⊂ I. The support of such a face is the vector
space it generates. The set J or the face w.F v(J) or an element of this face is called spherical
if the group W v(J) generated by {ri | i ∈ J} (which is the fixator or stabilizer in W v of
F v(J)) is finite. An element of a vectorial chamber ±w.Cvf is called regular.

The Tits cone T (resp., its interior T ◦) is the (disjoint) union of the positive (resp., and
spherical) vectorial faces. It is a W v−stable convex cone in V . One has T = T ◦ = V (resp.,
V0 ⊂ T \ T ◦) in the classical (resp., non classical) case, i.e. when W v is finite (resp., infinite).
By the above characterization of spherical faces, T ◦ is the set of x ∈ T whose fixator in W v

is finite.
We say that Av = (V,W v) is a vectorial apartment.

1.2 The model apartment

As in [Ro11, 1.4] the model apartment A is V considered as an affine space and endowed with
a familyM of walls. These walls are affine hyperplanes directed by ker(α) for α ∈ Φ. More
precisely, they may be written M(α, k) = {v ∈ V | α(v) + k = 0}, for α ∈ Φ and k ∈ R.

We ask this apartment to be semi-discrete and the origin 0 to be special. This means
that these walls are the hyperplanes M(α, k) = {v ∈ V | α(v) + k = 0} for α ∈ Φ and k ∈ Λα,
with Λα = kα.Z a non trivial discrete subgroup of R. Using [GR14, Lemma 1.3] (i.e. replacing
Φ by another system Φ1) we may (and shall) assume that Λα = Z,∀α ∈ Φ.

For α = w(αi) ∈ Φ, k ∈ Z and M = M(α, k), the reflection rα,k = rM with respect to
M is the affine involution of A with fixed points the wall M and associated linear involution
rα. The affine Weyl group W a is the group generated by the reflections rM for M ∈ M; we
assume that W a stabilizesM. We know that W a = W v nQ∨ and we write W a

R = W v n V ;
here Q∨ and V have to be understood as groups of translations.

An automorphism of A is an affine bijection ϕ : A→ A stabilizing the set of pairs (M,α∨)
of a wall M and the coroot associated with α ∈ Φ such that M = M(α, k), k ∈ Z. The group
Aut(A) of these automorphisms contains W a and normalizes it. We consider also the group
AutWR (A) = {ϕ ∈ Aut(A) | −→ϕ ∈W v} = Aut(A) ∩W a

R.
For α ∈ Φ and k ∈ R, D(α, k) = {v ∈ V | α(v) + k ≥ 0} is an half-space, it is called an

half-apartment if k ∈ Z. We write D(α,∞) = A.
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The Tits cone T and its interior T o are convex and W v−stable cones, therefore, we can
define three W v−invariant preorder relations on A:

x ≤ y ⇔ y − x ∈ T ; x
o
< y ⇔ y − x ∈ T o; x

o
≤ y ⇔ y − x ∈ T o ∪ V0.

If W v has no fixed point in V \ {0} (i.e. V0 = {0}) and no finite factor, then they are orders;
but, in general, they are not.

1.3 Faces, sectors

The faces in A are associated to the above systems of walls and half-apartments. As in [BrT72],
they are no longer subsets of A, but filters of subsets of A. For the definition of that notion
and its properties, we refer to [BrT72] or [GR08].

If F is a subset of A containing an element x in its closure, the germ of F in x is the filter
germx(F ) consisting of all subsets of A which contain intersections of F and neighbourhoods
of x. In particular, if x 6= y ∈ A, we denote the germ in x of the segment [x, y] (resp. of the
interval ]x, y]) by [x, y) (resp. ]x, y)).

For y 6= x, the segment germ [x, y) is called of sign ± if y − x ∈ ±T . The segment [x, y]
(or the segment germ [x, y) or the ray with origin x containing y) is called preordered if x ≤ y
or y ≤ x and generic if x

o
< y or y

o
< x.

Given F a filter of subsets of A, its strict enclosure clA(F ) (resp. closure F ) is the filter
made of the subsets of A containing an element of F of the shape ∩α∈∆D(α, kα), where
kα ∈ Z ∪ {∞} (resp. containing the closure S of some S ∈ F ). One considers also the
(larger) enclosure cl#A (F ) of [Ro17, 3.6.1] (introduced in [Cha10], [Cha11] and well studied in
[He20], see also [He18]). It is the filter made of the subsets of A containing an element of F
of the shape ∩α∈ΨD(α, kα), with Ψ ⊂ Φ finite and kα ∈ Z (i.e. a finite intersection of half
apartments).

A local face F in the apartment A is associated to a point x ∈ A, its vertex, and a
vectorial face F v in V , its direction. It is defined as F = germx(x + F v) and we denote it
by F = F `(x, F v). Its closure is F `(x, F v) = germx(x + F v). There is an order on the local
faces: the assertions “F is a face of F ′ ”, “F ′ covers F ” and “F ≤ F ′ ” are by definition
equivalent to F ⊂ F ′. The dimension of a local face F is the smallest dimension of an affine
space generated by some S ∈ F . The (unique) such affine space E of minimal dimension is
the support of F ; if F = F `(x, F v), supp(F ) = x + supp(F v). A local face F = F `(x, F v) is
spherical if the direction of its support meets the open Tits cone (i.e. when F v is spherical),
then its pointwise stabilizer WF in W a or W a

R is finite and fixes x.
We shall actually here speak only of local faces, and sometimes forget the word local or

write F = F (x, F v).

A local chamber is a maximal local face, i.e. a local face F `(x,±w.Cvf ) for x ∈ A and
w ∈W v. The fundamental local positive (resp., negative) chamber is C+

0 = germ0(Cvf ) (resp.,
C−0 = germ0(−Cvf )).

A (local) panel is a spherical local face maximal among local faces which are not chambers,
or, equivalently, a spherical face of dimension n− 1. Its support is an hyperplane parallel to
a wall.

A sector in A is a V−translate s = x+ Cv of a vectorial chamber Cv = ±w.Cvf , w ∈W v.
The point x is its base point and Cv its direction. Two sectors have the same direction if, and
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only if, they are conjugate by V−translation, and if, and only if, their intersection contains
another sector.

The sector-germ of a sector s = x + Cv in A is the filter S of subsets of A consisting of
the sets containing a V−translate of s, it is well determined by the direction Cv. So, the
set of translation classes of sectors in A, the set of vectorial chambers in V and the set of
sector-germs in A are in canonical bijection.

A sector-face in A is a V−translate f = x + F v of a vectorial face F v = ±w.F v(J). The
sector-face-germ of f is the filter F of subsets containing a translate f′ of f by an element of F v

(i.e. f′ ⊂ f). If F v is spherical, then f and F are also called spherical. The sign of f and F is
the sign of F v.

1.4 The Masure

In this section, we recall the definition and some properties of a masure given by Guy Rousseau
in [Ro11] and simplified by Auguste Hébert [He20].

1) An apartment of type A is a set A endowed with a set IsomW(A, A) of bijections (called
Weyl-isomorphisms) such that, if f0 ∈ IsomW(A, A), then f ∈ IsomW(A, A) if, and only if,
there exists w ∈ W a satisfying f = f0 ◦ w. An isomorphism (resp. a Weyl-isomorphism,
a vectorially-Weyl isomorphism) between two apartments ϕ : A → A′ is a bijection such
that, for any f ∈ IsomW(A, A), f ′ ∈ IsomW(A, A′), f ′−1 ◦ ϕ ◦ f ∈ Aut(A) (resp. ∈ W a,
∈ AutWR (A)); the group of these isomorphisms is written Isom(A,A′) (resp. IsomW (A,A′),
IsomW

R (A,A′)). As the filters in A defined in 1.3 above (e.g. local faces, sectors, walls,..) are
permuted by Aut(A), they are well defined in any apartment of type A and exchanged by any
isomorphism.

A masure (formerly called an ordered affine hovel) of type A is a set I endowed with a
covering A of subsets called apartments, each endowed with some structure of an apartment
of type A. We recall here the simplification and improvement of the original definition given
by Auguste Hébert in [He20]: these data have to satisfy the following two axioms :

(MA ii) If two apartments A,A′ are such that A ∩ A′ contains a generic ray, then A ∩ A′
is a finite intersection of half-apartments (i.e. A ∩A′ = cl#A (A ∩A′)) and there exists a Weyl
isomorphism ϕ : A→ A′ fixing A ∩A′.

(MA iii) If R is the germ of a splayed chimney and if F is a local face or a germ of a
chimney, then there exists an apartment containing R and F .

Actually a filter or subset in I is called a preordered (or generic) segment (or segment
germ), a local face, a spherical sector face or a spherical sector face germ if it is included in
some apartment A and is called like that in A. We do not recall here what is (a germ of) a
(splayed) chimney; it contains (the germ of) a (spherical) sector face. We shall actually use
(MA iii) uniquely through its consequence b) below.

In the affine case the hypothesis “A ∩ A′ contains a generic ray” may be omitted in (MA
ii).

We list now some of the properties of masures we shall use.
a) If F is a point, a preordered segment, a local face or a spherical sector face in an

apartment A and if A′ is another apartment containing F , then A∩A′ contains the enclosure
cl#A (F ) of F and there exists a Weyl-isomorphism from A onto A′ fixing cl#A (F ), see [He20,
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5.11] or [He18, 4.4.10]. Hence any isomorphism from A onto A′ fixing F fixes F (and even
cl#A (F ) ∩ supp(F )).

More generally the intersection of two apartments A,A′ is always closed (in A and A′),
see [He20, 3.9] or [He18, 4.2.17].

b) If F is the germ of a spherical sector face and if F is a local face or a germ of a sector
face, then there exists an apartment that contains F and F .

c) If two apartments A,A′ contain F and F as in b), then their intersection contains
cl#A (F ∪ F ) and there exists a Weyl-isomorphism from A onto A′ fixing cl#A (F ∪ F ).

d) We consider the relations ≤,
o
< and

o
≤ on I defined as follows:

x ≤ y (resp., x
o
< y, x

o
≤ y) ⇐⇒ ∃A ∈ A such that x, y ∈ A and x ≤A y (resp. x

o
<A y, x

o
≤A y)

Then ≤ (resp.,
o
<,

o
≤) is a well defined preorder relation, in particular transitive; it is called

the Tits preorder (resp., Tits open preorder, large Tits open preorder), see [He20].
e) We ask here I to be thick of finite thickness: the number of local chambers covering

a given (local) panel in a wall has to be finite ≥ 3. This number is the same for any panel F
in a given wall M [Ro11, 2.9]; we denote it by 1 + qM = 1 + qF .

f) An automorphism (resp. a Weyl-automorphism, a vectorially-Weyl automorphism) of
I is a bijection ϕ : I → I such that A ∈ A ⇐⇒ ϕ(A) ∈ A and then ϕ|A : A→ ϕ(A) is an
isomorphism (resp. a Weyl-isomorphism, a vectorially-Weyl isomorphism). We write Aut(I )
(resp. AutW (I ), AutWR (I )) the group of these automorphisms.

2) For x ∈ I , the set T +
x I (resp. T −x I ) of segment germs [x, y) for y > x (resp. y < x) may

be considered as a building, the positive (resp. negative) tangent building. The corresponding
faces are the local faces of positive (resp. negative) direction and vertex x. For such a local
face F , we write sometimes [x, y) ∈ F if ]x, y) ⊂ F . The associated Weyl group is W v. If the
W−distance (calculated in T ±x I ) of two local chambers is dW (Cx, C

′
x) = w ∈ W v, to any

reduced decomposition w = ri1 · · · rin corresponds a unique minimal gallery from Cx to C ′x of
type (i1, · · · , in).

The buildings T +
x I and T −x I are actually twinned. The codistance d∗W (Cx, C

′
x) of two

opposite sign chambers Cx and C ′x is the W−distance dW (Cx, opC
′
x), where opC ′x denotes the

opposite chamber to C ′x in an apartment containing Cx and C ′x. Similarly two segment germs
η ∈ T +

x I and ζ ∈ T −x I are said opposite if they are in a same apartment A and opposite in
this apartment (i.e. in the same line, with opposite directions).

3) Lemma. [Ro11, 2.9] Let D be an half-apartment in I and M = ∂D its wall (i.e. its
boundary). One considers a panel F in M and a local chamber C in I covering F . Then
there is an apartment containing D and C.

4) We assume that I has a strongly transitive group of automorphisms G, i.e. 1.a and 1.c
above (after replacing cl#A by clA) are satisfied by isomorphisms induced by elements of G, cf.
[Ro17, 4.10] and [CiMR20, 4.7].

We choose in I a fundamental apartment which we identify with A. As G is strongly
transitive, the apartments of I are the sets g.A for g ∈ G. The stabilizer N of A in G induces
a group W = ν(N) ⊂ Aut(A) of affine automorphisms of A which permutes the walls, local
faces, sectors, sector-faces... and contains the affine Weyl groupW a = W vnQ∨ [Ro17, 4.13.1].

We denote the stabilizer of 0 ∈ A in G by K and the pointwise stabilizer (or fixator) of
C+

0 (resp., C−0 ) by KI = K+
I (resp., K−I ). This group KI is called the Iwahori subgroup.
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5) We ask W = ν(N) to be vectorially-Weyl for its action on the vectorial faces. This
means that the associated linear map −→w of any w ∈ ν(N) is in W v. As ν(N) contains W a

and stabilizesM, we have W = ν(N) = W v nY , where W v fixes the origin 0 of A and Y is a
group of translations such that: Q∨ ⊂ Y ⊂ P∨ = {v ∈ V | α(v) ∈ Z,∀α ∈ Φ}. An element
w ∈W will often be written w = λ.w, with λ ∈ Y and w ∈W v.

We ask Y to be discrete in V . This is clearly satisfied if Φ generates V ∗ i.e. (αi)i∈I is a
basis of V ∗.

6) Note that there is only a finite number of constants qM as in the definition of thickness.
Indeed, we must have qwM = qM , ∀w ∈ ν(N) and w.M(α, k) = M(w(α), k), ∀w ∈ W v. So
now, fix i ∈ I, as αi(α∨i ) = 2 the translation by α∨i permutes the walls M = M(αi, k) (for
k ∈ Z) with two orbits. So, Q∨ ⊂ W a has at most two orbits in the set of the constants
qM(αi,k) : one containing the qi = qM(αi,0) and the other containing the q′i = qM(αi,±1). Hence,
the number of (possibly) different qM is at most 2.|I|. We denote this set of parameters by
Q = {qi, q′i | i ∈ I}.

In [BaPGR16, 1.4.5] one proves the following further equalities: qi = q′i if αi(Y ) = Z and
qi = q′i = qj = q′j if αi(α

∨
j ) = αj(α

∨
i ) = −1.

We consider also the polynomial algebra Z[Q], where Q is the set Q = {Qi, Q′i | i ∈ I} of
indeterminates, satisfying the same equalities: Qi = Q′i if αi(Y ) = Z and Qi = Q′i = Qj = Q′j
if αi(α∨j ) = αj(α

∨
i ) = −1. See [BaPGR16, 6.1] where Qi = σ2

i , Q
′
i = (σ′i)

2.

7) Examples. The main examples of all the above situation are provided by the Kac-Moody
theory, as already indicated in the introduction. More precisely let G be an almost split Kac-
Moody group over a non archimedean complete field K. We suppose moreover the valuation of
K discrete and its residue field κ perfect. Then there is a masure I on which G acts strongly
transitively by vectorially Weyl automorphisms. If K is a local field (i.e. κ is finite), then we
are in the situation described above. This is the main result of [Cha10], [Cha11] and [Ro17].

When G is actually split, this result was known previously by [GR14] and [Ro16]. And in
this case all the constants qM , qi, q′i are equal to the cardinality q of the residue field κ.

We gave in [BaPGR16, 6.7] a proof of conjecture 1 for this split case; see also [Mu18]. Ac-
tually these proofs are proofs of conjecture 2, as the polynomials auw,v are Laurent polynomials
inherited from the description of IH as a specialization of the associative Bernstein-Lusztig
algebra over Z[Q]: the algebra IHZ[Q] over Z[Q] defined by these structure constants on the
basis (Tw)w∈W+ is associative.

8) Remark. All isomorphisms in [Ro11] are Weyl-isomorphisms, and, when G is strongly
transitive, all isomorphisms constructed in l.c. are induced by an element of G.

1.5 Type 0 vertices

The elements of Y , through the identification Y = N.0 ⊂ A, are called vertices of type 0 in
A; they are special vertices. We note Y + = Y ∩ T , Y +g = Y ∩ (T ◦ ∪ V0), Y +0 = Y ∩ V0 and
Y ++ = Y ∩ Cvf . The type 0 vertices in I are the points on the orbit I0 of 0 by G. This
set I0 is often called the affine Grassmannian as it is equal to G/K, where K = StabG({0}).
But in general, G is not equal to KYK = KNK [GR08, 6.10] i.e. I0 6= K.Y .

We know that I is endowed with a G−invariant preorder ≤ which induces the known one
on A. Moreover, if x ≤ y, then x and y are in a same apartment.

We set I + = {x ∈ I | 0 ≤ x} , I +
0 = I0 ∩ I +, G+ = {g ∈ G | 0 ≤ g.0} and

G+g = {g ∈ G | 0
o
≤ g.0}; so I +

0 = G+.0 = G+/K. As ≤ (resp.,
o
≤) is a G−invariant
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preorder, G+ (resp., G+g) is a semigroup, called the Kac-Moody-Tits semigroup (resp., the
generic Kac-Moody-Tits semigroup).

One has G+ = K(N ∩ G+)K; more precisely the map Y ++ → K\G+/K is a bijection,
if we identify λ ∈ Y ++ ⊂ W v n Y = W = N/ ker ν with its class in N modulo ker ν ⊂ K.
Clearly G+g = K(Y ++ ∩ Y +g)K.

1.6 Vectorial distance

For x in the Tits cone T , we denote by x++ the unique element in Cvf conjugated by W v to
x.

Let I ×≤ I = {(x, y) ∈ I ×I | x ≤ y} be the set of increasing pairs in I . Such a pair
(x, y) is always in a same apartment g.A; so (g−1).y− (g−1).x ∈ T and we define the vectorial
distance dv(x, y) ∈ Cvf by dv(x, y) = ((g−1).y− (g−1).x)++. It does not depend on the choices
we made (by 1.8.1 below).

For (x, y) ∈ I0 ×≤ I0 = {(x, y) ∈ I0 × I0 | x ≤ y}, the vectorial distance dv(x, y)
takes values in Y ++. Actually, as I0 = G.0, K is the stabilizer of 0 and I +

0 = K.Y ++

(with uniqueness of the element in Y ++), the map dv induces a bijection between the set
(I0 ×≤ I0)/G of G−orbits in I0 ×≤ I0 and Y ++.

Further, dv gives the inverse of the map Y ++ → K\G+/K, as any g ∈ G+ is in
K.dv(0, g.0).K.

1.7 Paths and retractions

We consider piecewise linear continuous paths π : [0, 1]→ A such that each (existing) tangent
vector π′(t) belongs to an orbit W v.λ for some λ ∈ Cvf . Such a path is called a λ−path; it
is increasing with respect to the preorder relation ≤ on A. If λ ∈ Cvf ∩ (T ◦ ∪ V0), then it is

increasing for
o
≤.

For any t 6= 0 (resp. t 6= 1), we let π′−(t) (resp. π′+(t)) denote the derivative of π at t from
the left (resp. from the right). Further, we define w±(t) ∈ W v to be the smallest element in
its (W v)λ−class such that π′±(t) = w±(t).λ (where (W v)λ is the stabilizer in W v of λ).

Moreover, we denote by π−(t) = π(t) − [0, 1)π′−(t) = [π(t), π(t − ε) ) (resp., π+(t) =
π(t) + [0, 1)π′+(t) = [π(t), π(t + ε) ) (for ε > 0 small) the negative (resp., positive) segment-
germ of π at t, for 0 < t ≤ 1 (resp., 0 ≤ t < 1).

Let Cz (resp., S) be a local chamber with vertex z (resp., a sector germ) in an apartment
A of I . For all x ∈ I≥z = {y ∈ I | y ≥ z} (resp., x ∈ I ) there is an apartment A′

containing x and Cz (resp., S). And this apartment is conjugated to A by an element of
G fixing Cz (resp., S) (cf. 1.4.1.a and 1.4.4). So, by the usual arguments we can define the
retraction ρ = ρA,Cz from I≥z (resp., ρ = ρA,S from I ) onto A≥z = A∩I≥z (resp., onto the
apartment A) with center Cz (resp., S).

For any such retraction ρ, the image of any segment [x, y] with (x, y) ∈ I ×≤ I and
dv(x, y) = λ ∈ Cvf (with moreover x, y ∈ I≥z if ρ = ρA,Cz) is a λ−path [GR08, 4.4]. In
particular, ρ(x) ≤ ρ(y). By definition, if A′ is another apartment containing S (resp., Cz),
then ρ induces an isomorphism from A′ onto A. As we assume the existence of the strongly
transitive group G, this isomorphism is the restriction of an automorphism of I .
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1.8 Preordered convexity

Let C± (resp., C±0 ) be the set of all local chambers of direction ± (resp., with moreover
vertices of type 0). A positive (resp. negative) local chamber of vertex x ∈ I will often
be written Cx (resp., C−x ) and its direction Cvx=

−→
Cx (resp., C− vx =

−→
C−x ). We consider the set

C +×≤ C + = {(Cx, Cy) ∈ C +×C + | x ≤ y} (resp., C +×◦≤ C + = {(Cx, Cy) ∈ C +×C + | x
o
≤

y}). We sometimes write Cx ≤ Cy (resp., Cx
o
≤ Cy) when x ≤ y (resp., x

o
≤ y).

Proposition. Let x, y ∈ I with x ≤ y. We consider two local faces Fx, Fy with respective
vertices x, y. Then

(a) Fx and Fy are contained in a common apartment.
(b) If A,B are two apartments containing {x, y} (resp., Fx ∪ Fy), then there is a Weyl-

isomorphism from A onto B, fixing the enclosure cl#A ({x, y}) = cl#B ({x, y}) ⊃ [x, y] (resp., the
closed convex hull convA(Fx ∪ Fy) = convB(Fx ∪ Fy)).

This improvement of results in [Ro11, 5.4, 5.1] and [BaPGR16, 1.10] is proved by Auguste
Hébert: [He20, 5.17, 5.18], see also [He18, 4.4.16, 4.4.17]. In b) the case of {x, y} is proved
in [Ro11, 5.4] as, by [He20, 5.1] or [He18, 4.4.1], one may replace cl by cl#. This property is
called the preordered convexity of intersections of apartments.

Consequence. We defineW+ = W vnY + (resp.,W+g = W vnY +g) which is a subsemigroup
of W , and call it the Tits-Weyl (resp., generic Tits-Weyl) semigroup. An element w ∈ W+g

is called generic (in a large sense) and spherical if, moreover, λ ∈ T ◦ ∩ Y +.
Let ε, η ∈ {+,−}. If Cεx ∈ C ε

0 and 0 ≤ x, we know by b) above, that there is an apartment
A containing Cη0 and Cεx. But all apartments containing Cη0 are conjugated to A by Kη

I (by
1.4.1.a), so there is k ∈ Kη

I with k−1.Cεx ⊂ A. Now the vertex k−1.x ∈ I0 of k−1.Cεx satisfies
k−1.x ≥ 0, so there is w ∈W+ such that k−1.Cεx = w.Cε0 .

When g ∈ G+, g.Cε0 is in C ε
0 and there are k ∈ Kη

I , w ∈ W+ with g.Cε0 = k.w.Cε0 , i.e.
g ∈ Kη

I .W
+.Kε

I . We have proved the Bruhat decompositions G+ = K±I .W
+.K±I and the

Birkhoff decompositions G+ = K∓I .W
+.K±I . For uniqueness, see 1.10 below.

Similarly we have also G+g = K±I .W
+g.K±I and G+g = K∓I .W

+g.K±I .

Remark 1.9. If the generalized Cartan matrix M is of affine or strictly hyperbolic type (in the
sense of [Ka90, 4.3 or Ex. 4.1]), then any non spherical vectorial face is w.F v(I) = F v(I) =
V0 = {v ∈ V | αi(v) = 0, ∀i ∈ I}. So the Tits cones satisfy T = T ◦ t V0 and Y + = Y +g,
W+ = W+g .

1.10 W−distance

Let (Cx, Cy) ∈ C +
0 ×≤ C +

0 , there is an apartment A containing Cx and Cy. We identify
(A, C+

0 ) with (A,Cx) i.e. we consider the unique f ∈ IsomW
R (A, A) such that f(C+

0 ) = Cx.
Then f−1(y) ≥ 0 and there is w ∈ W+ such that f−1(Cy) = w.C+

0 . By 1.8.b, w does not
depend on the choice of A.

We define the W−distance between the two local chambers Cx and Cy to be this unique
element: dW (Cx, Cy) = w ∈ W+ = Y + oW v. If w = λ.w, with λ ∈ Y + and w ∈ W v, we
write also dW (Cx, y) = λ; it implies dv(x, y) = λ++. As ≤ is G−invariant, the W−distance
is also G−invariant. When w = w ∈W v and w = ri1 . · · · .rir is a reduced decomposition, we
have dW (Cx, Cy) = w if and only if there is a minimal gallery (of local chambers in T +

x I )
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from Cx to Cy of type (i1, . . . , ir), in particular x = y. When x = y, this definition coincides
with the one in 1.4.2.

Let us consider an apartment A and local chambers Cx, Cy, Cz ∈ C +
0 included in A. If

dW (Cx, Cy) = w, we write Cy = Cx ∗ w. Conversely, for any w ∈ W+, there is a unique
local chamber Cz = Cx ∗ w in A such that dW (Cx, Cz) = w; actually Cx ∗ w depends on
A, but not on an identification of A with A. For x ≤ y ≤ z, we have (in A) the Chasles
relation: dW (Cx, Cz) = dW (Cx, Cy).d

W (Cy, Cz); i.e. (Cx,w) 7→ Cx ∗w is a right action of the
semi-group W+. When (A,Cx) is identified with (A, C+

0 ), one has Cx ∗w = wCx.
When Cx = C+

0 and Cy = g.C+
0 (with g ∈ G+), dW (Cx, Cy) is the only w ∈ W+

such that g ∈ KI .w.KI . This is the uniqueness result in Bruhat decomposition: G+ =∐
w∈W+ KI .w.KI . Similarly we have G+g =

∐
w∈W+g KI .w.KI .

The W−distance classifies the orbits of KI on {Cy ∈ C +
0 | y ≥ 0}, hence also the orbits of

G on C +
0 ×≤ C +

0 .

1.11 Iwahori-Hecke Algebras

We consider any commutative ring with unity R. The Iwahori-Hecke algebra IHR associated
to I with coefficients in R introduced in [BaPGR16] is as follows:

To each w ∈W+, we associate a function Tw from C +
0 ×≤ C +

0 to R defined by

Tw(C,C ′) =

{
1 if dW (C,C ′) = w,
0 otherwise.

The Iwahori-Hecke algebra IHR is the free R−module

{
∑

w∈W+

awTw | aw ∈ R, aw = 0 except for a finite number of w},

endowed with the convolution product:

(ϕ ∗ ψ)(Cx, Cy) =
∑
Cz

ϕ(Cx, Cz)ψ(Cz, Cy).

where Cz ∈ C +
0 is such that x ≤ z ≤ y.

Actually, IHR can be identified with the natural convolution algebra of the functions
G+ → R, bi-invariant under KI and with finite support (in KI\G+/KI); this is the definition
given in the introduction.

More precisely IHR is the space of functions ϕ : C +
0 ×≤C +

0 → R, that are left G−invariant
and with support a finite union of orbits (see the last two lines of 1.10). To a ϕ ∈ IHR is
associated ϕG : KI\G+/KI → R such that ϕG(g) = ϕ(C+

0 , g.C
+
0 ). So, for ϕ,ψ ∈ IHR,

(ϕ ∗ ψ)G(g) = (ϕ ∗ ψ)(C+
0 , g.C

+
0 ) =

∑
Cz

ϕ(C+
0 , Cz)ψ(Cz, g.C

+
0 )

=
∑

h∈G+/KI
ϕ(C+

0 , h.C
+
0 )ψ(h.C+

0 , g.C
+
0 )

=
∑

h∈G+/KI
ϕ(C+

0 , h.C
+
0 )ψ(C+

0 , h
−1g.C+

0 ) =
∑

h∈G+/KI
ϕG(h)ψG(h−1g):

we get the convolution product (in the classical case, we take a Haar measure on G with KI

of measure 1).

One considers also the subspace IHgR =
∑

w∈W+g R.Tw. From 4.3 and Remark 3.5.2 one
sees that it is a subalgebra of IHR. We call it the generic Iwahori-Hecke algebra associated
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to I with coefficients in R. From 1.9 one has IHR = IHgR in the affine or strictly hyperbolic
cases.

We recall now some useful results of [BaPGR16] in order to introduce the structure
constants and a way to compute them.

Proposition 1.12. [BaPGR16, 2.3]
Let us fix two local chambers Cx and Cy in C +

0 with x ≤ y and dW (Cx, Cy) = u ∈W+. We
consider w and v inW+. Then the number auw,v of Cz ∈ C +

0 with x ≤ z ≤ y, dW (Cx, Cz) = w

and dW (Cz, Cy) = v is finite (i.e. in N).

Theorem 1.13. [BaPGR16, 2.4]
For any ring R, IHR is an algebra with identity element Id = T1 such that

Tw ∗ Tv =
∑

u∈Pw,v

auw,vTu

where Pw,v is a finite subset of W+, such that auw,v = 0 for u /∈ Pw,v.

2 Projections and retractions

In this section we introduce the new tools that we shall use in the next section to compute
the structure constants of the Iwahori-Hecke algebra.

2.1 Projections of chambers

1) Projection of a chamber Cy on a point x.
Let x ∈ I , Cy ∈ C + with x ≤ y, x 6= y. We consider an apartment A containing x

and Cy (by 1.8 (a) above) and write Cy = F (y, Cvy ) in A. For y′ ∈ y + Cvy sufficiently near
to y, α(y′ − x) 6= 0 for any root α and y′ − x ∈ T ◦. So ]x, y′) is in a unique positive local
chamber prx(Cy) of vertex x; this chamber satisfies [x, y) ⊂ prx(Cy) ⊂ clA({x, y′}) and does
not depend on the choice of y′. Moreover, if A′ is another apartment containing x and Cy,
we may suppose y′ ∈ A ∩ A′ and ]x, y′), clA({x, y′}), prx(Cy) are the same in A′. The local
chamber prx(Cy) is well determined by x and Cy, it is the projection of Cy in T +

x I .
The same things may be done changing + to − or ≤ to ≥. But, in the above situation,

if Cy ∈ C−, we have to assume x
o
< y to define prx(Cy) ∈ C +: otherwise ]x, y′) might be

outside x+ T .
When x = y, we write prx(Cy) = Cy.

2) Projection of a chamber Cy on a generic segment germ
Let x ∈ I , δ = [x, x′) a generic segment-germ and Cy ∈ C with x ≤ y. By 1) we

can consider prx(Cy) ∈ C + (with the hypothesis x
o
< y if Cy ∈ C−). We consider now an

apartment A containing [x, x′) and prx(Cy) (by 1.8 a) above).
We consider inside A the prism denoted by prismδ(Cy) obtained as the intersection of all

half-spaces D(α, k) (for α ∈ Φ and k ∈ R) that contain prx(Cy) and such that δ ⊂ M(α, k).
We can see that if δ = [x, x′) is regular, prismδ(Cy) = A. If the apartment A contains δ and
Cy (hence also prx(Cy)) we may replace prx(Cy) by Cy in the above definition of prismδ(Cy).

Lemma 2.2. In prismδ(Cy), there is a unique local chamber of vertex x that contains δ in
its closure. This chamber is independent of the choice of A.
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N.B. This local chamber is, by definition, the projection prδ(Cy) of the chamber Cy on the
segment-germ δ. It is the local chamber containing δ in its closure which is the nearest from
prx(Cy): either dW (prx(Cy), prδ(Cy)) is minimum or d∗W (prx(Cy), prδ(Cy)) is maximum.

The same things may be done when one supposes y ≤ x and Cy ∈ C− or y
o
< x and

Cy ∈ C +.

Proof. In the apartment A, we consider δ+ the segment-germ δ if δ is in T +
x I and opA(δ) if

δ ∈ T −x I (where opA(δ) denotes the opposite segment-germ in A). By 1.4.2, we can consider
in the building T +

x I the minimal galleries from prx(Cy) to δ+ (more exactly to a chamber
C such that δ+ ∈ C̄). The last chamber of each of these galleries is the same (as it has to be
on the same side as prx(Cy) of any hyperplane of A, containing δ+ and parallel to a wall); we
denote it C++

x . This chamber is associated to a positive system of roots Φ+ and a root basis
(α1, . . . , α`), satisfying αi(δ) = 0 ⇐⇒ i ≤ r, where 0 ≤ r < ` (we identify x and 0). Then,
we have the characterization of the prism : p ∈ prismδ(Cy) ⇐⇒ (αi(p) ≥ 0 for 1 ≤ i ≤ r).
We consider wr the element of highest length in the finite Weyl group 〈(rαi)i≤r〉.

The local chamber C++
x if δ ∈ T +

x I (resp., opA(wr(C
++
x ) if not) is the unique chamber

with vertex x of prismδ(Cy) that contains δ in its closure. Indeed, if C is such a chamber, then
if ]x, p) ⊂ C, we have αi(p) > 0 for all i ≤ r (because C ⊂ prismδ(Cy)) and αi(p) of the same
sign as αi(δ) if i > r (because δ ⊂ C̄) . So C = C++

x if δ ∈ T +
x I (resp., C = opA(wr(C

++
x ))

if δ ∈ T −x I ).
In the case δ ∈ T +

x I , the characterization of C++
x in the building T +

x I proves that it
does not depend on the choice of A.

The chamber opA(wr(C
++
x )) also only depends on δ and Cy if δ ∈ T −x I . It is sufficient to

prove that it intersects convA(δ ∪ prx(Cy)). Indeed, let us choose ξ and y such that [x, ξ) = δ
and ]x, y) ⊂ prx(Cy). We have αi(ξ) = 0 for i ≤ r, αi(ξ) < 0 for i > r and αi(y) > 0
for i ≤ r. So for t near 1 enough, αi(tξ + (1 − t)y) > 0 for i ≤ r and < 0 for i > r, so
]x, tξ + (1 − t)y) ⊂ opA(wr(C

++
x ). By Proposition 1.8, the local chamber opA(wr(C

++
x )) is

included in all apartments containing δ and prx(Cy), so is independent of the choice of A.

2.3 Centrifugally folded galleries of chambers

Let z be a point in the standard apartment A. We have twinned buildings T +
z I (resp. T −z I ).

As in 1.4.2, we consider their unrestricted structure, so the associated Weyl group is W v and
the chambers (resp. closed chambers) are the local chambers C = germz(z+Cv) (resp. local
closed chambers C = germz(z + Cv)), where Cv is a vectorial chamber, cf. [GR08, 4.5] or
[Ro11, § 5]. The distances (resp. codistances) between these chambers are written dW (resp.
d∗W ). To A is associated a twin system of apartments Az = (A−z ,A+

z ).
Let i = (i1, ..., ir) be the type of a minimal gallery. We choose in A−z a negative (local)

chamber C−z and denote by C+
z its opposite in A+

z . We consider now galleries of (local)
chambers c = (C−z , C1, ..., Cr) in the apartment A−z starting at C−z and of type i. Their set
is written Γ(C−z , i). We consider the root βj corresponding to the common limit hyperplane
Mj = M(βj ,−βj(z)) of type ij of Cj−1 and Cj satisfying moreover βj(Cj) ≥ βj(z).

We consider the system of positive roots Φ+ associated to C+
z . Actually, Φ+ = w.Φ+

f , if
Φ+
f is the system Φ+ defined in 1.1 and C+

z = germz(z + w.Cvf ). We denote by (αi)i∈I the
corresponding basis of Φ and by (ri)i∈I the corresponding generators of W v. Note that this
change of notation for Φ+ and ri is limited to subsection 2.3.
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The set Γ(C−z , i) of galleries is in bijection with the set Γ(i) = {1, ri1} × · · · × {1, rir} via
the map (c1, ..., cr) 7→ (C−z , c1C

−
z , ..., c1 · · · crC−z ). Moreover βj = −c1 · · · cj(αij ).

Definition. Let Q be a chamber in Az. A gallery c = (C−z , C1, ..., Cr) ∈ Γ(C−z , i) is said to
be centrifugally folded with respect to Q if Cj = Cj−1 implies that Mj is a wall and separates
Q from Cj = Cj−1. We denote this set of centrifugally folded galleries by Γ+

Q(C−z , i). We write
Γ+
Q(C−z , i, C) the subset of galleries in ΓQ(C−z , i) such that Cr is a given chamber C.

2.4 Liftings of galleries

Next, let ρQ : TzI → Az be the retraction centered at Q. To a gallery of chambers
c = (C−z , C1, ..., Cr) in Γ(C−z , i), one can associate the set of all galleries of type i starting
at C−z in T −z I that retract onto c, we denote this set by CQ(C−z , c). We denote the set of
galleries c′ = (C−z , C

′
1, ..., C

′
r) in CQ(C−z , c) that are minimal (i.e. satisfy C ′j−1 6= C ′j for any

j) by CmQ (C−z , c). Recall from [GR14, Proposition 4.4], that the set CmQ (C−z , c) is nonempty if,
and only if, the gallery c is centrifugally folded with respect to Q. Recall also from loc. cit.,
Corollary 4.5, that if c ∈ Γ+

Q(C−z , i), then the number of elements in CmQ (C−z , c) is:

]CmQ (C−z , c) =
∏
j∈J1

(qj − 1)×
∏
j∈J2

qj

where qj = qMj ∈ Q,

J1 = {j ∈ {1, · · · , r} | cj = 1} = {j ∈ {1, · · · , r} | Cj−1 = Cj}

and

J2 = {j ∈ {1, · · · , r} | Cj−1 6= Cj and Mj is a wall separating Q (and Cj−1) from Cj}.

One may remark that {1, · · · , r} contains the disjoint union J1 t J2, but may be different
from it. The missing j are precisely those j such that Mj is not a wall (hence qMj is not
defined) or that Q (and Cj) are separated from Cj−1 by Mj .

More generally let cm = (C−z , C
m
1 , ..., C

m
r ) be the minimal gallery in A−z of type i. We

write Cm(C−z , i) the set of all minimal galleries in I of type i starting from C−z . Its cardinality
is
∏
j∈J2 qj , where J2 is the set of 1 ≤ j ≤ r such that the hyperplane Mj separating Cmj−1

from Cmj is a wall.

N.B. The qj = qMj in the above formulas are in the set Q of parameters. More precisely, by
1.4.6, if Mj = M(βj , kj) with βj = w.αi (for some w ∈ W v, i ∈ I and kj ∈ Z), then one has
qj = qi if kj is even and qj = q′i if kj is odd.

2.5 Hecke paths

The Hecke paths we consider here are slight modifications of those used in [GR14]. They were
defined in [BaPGR16], or in [BCGR13] (for the classical case).

Let us fix a local chamber Cx ∈ C0 ∩ A.

Definition. A Hecke path of shape λ ∈ Y ++ with respect to Cx in A is a λ−path in A
that satisfies the following assumptions. For all p = π(t), we ask x

o
< p, so we can consider
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the local negative chamber C−p = prp(Cx) by 2.1.1. Then we assume moreover that for all
t ∈ [0, 1] \ {0, 1}, there exist finite sequences (ξ0 = π′−(t), ξ1, . . . , ξs = π′+(t)) of vectors in V
and (β1, . . . , βs) of real roots such that, for all j = 1, . . . , s:

(i) rβj (ξj−1) = ξj ,

(ii) βj(ξj−1) < 0,

(iii) βj(π(t)) ∈ Z, i.e. π(t) is in a wall of direction kerβj ,

(iv) βj(C−π(t)) < βj(π(t)).

One says then that these two sequences are a (W v
π(t), C

−
π(t))−chain from π′−(t) to π′+(t).

Actually W v
π(t) is the subgroup of W v generated by the rβ such that M(β,−β(π(t))) is a wall.

When t ∈]0, 1[ is such that s 6= 0, one has π′−(t) 6= π′+(t), the path is centrifugally folded
with respect to Cx at π(t).

Lemma 2.6. Let π ⊂ A be a Hecke path with respect to Cx as above. Then,
(a) For t varying in [0, 1] and p = π(t), the set of vectorial rays R+(x− π(t)) is contained

in a finite set of closures of (negative) vectorial chambers.
(b) There is only a finite number of pairs (M, t) with a wall M containing a point p = π(t)

for t > 0, such that π−(t) is not in M and x is not in the same side of M as π−(t) (but may
be x ∈M).

(c) One writes p0 = π(t0), p1 = π(t1), . . . , p`π = π(t`π) with 0 = t0 < t1 < · · · < t`π−1 <
1 = t`π the points p = π(t) satisfying to (b) above (or t = 0, t = 1). Then any point t where the
path is (centrifugally) folded with respect to Cx at π(t) appears in the set {tk | 1 ≤ k ≤ `π−1}.

Proof. a) The λ−path π is a union of line segments [p′0, p
′
1] ∪ [p′1, p

′
2] ∪ · · · ∪ [p′n−1, p

′
n]. By

hypothesis on Hecke paths, for each point p = π(t), x − p is in the open negative Tits cone
−T ◦ (in particular only in a finite number of closures of negative vectorial chambers). Let
p ∈ [p′i, p

′
i+1], then x− p = x− p′i − (p− p′i) and R+(x− p)⊂ conv(R+(x− p′i),−R+(p− p′i))

and this convex hull is independent of p and only in a finite number of closures of (negative)
vectorial chambers (as (x− p′i) ∈ −T ◦ and (p− p′i) ∈ R+(p′i+1 − p′i) ⊂ T ). So (a) is proved.

b) There is only a finite number of vectorial walls separating (strictly) a chamber in the
set of (a) above and a vector p′i − p′i+1. And, for each such vectorial wall, there is only a
finite number of walls with this direction meeting the compact set π([0, 1]). Moreover such
a wall meets a segment ]p′i, p

′
i+1] at most once or contains [p′i, p

′
i+1] (hence π−(t) ⊂ M for

π(t) ∈]p′i, p
′
i+1]).

c) The folding points are among {p1, . . . , p`π−1} by (iv) and (ii) above for j = 1.

2.7 Retractions and liftings of line segments

1) Local study.
In tangent buildings, the centrifugally folded galleries are related with retractions of

opposite segment germs, by the following lemma proved in [GR14, Lemma 4.6].
We consider a point z ∈ A and a negative local chamber C−z in A−z . Let ξ and η be two

segment germs in A+
z = A ∩ T +

z I . Let −η and −ξ opposite respectively η and ξ in A−z . Let
i be the type of a minimal gallery between C−z and C−ξ, where C−ξ is the negative (local)
chamber containing −ξ such that dW (C−z , C−ξ) is of minimal length. Let Q be a chamber of
A+
z containing η. We suppose ξ and η conjugated by W v

z .
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Lemma. The following conditions are equivalent:
(i) There exists an opposite ζ to η in T −z I such that ρAz ,C−z (ζ) = −ξ.
(ii) There exists a gallery c ∈ Γ+

Q(C−z , i) ending in −η.
(iii) There exists a (W v

z , C
−
z )−chain from ξ to η.

Moreover the possible ζ are in one-to-one correspondence with the disjoint union of the
sets CmQ (C−z , c) for c in the set Γ+

Q(C−z , i,−η) of galleries in Γ+
Q(C−z , i) ending in −η.

2) Consequence. Let Cx be a positive local chamber in A and z ∈ A a point such that
x

o
< z. We consider C−z = prz(Cx). Then one knows that the restriction of the retraction

ρ = ρA,Cx to the tangent twin building TzI is the retraction ρAz ,C−z .

We consider two points y, z0 in I such that x
o
< z0 ≤ y, with dv(z0, y) = λ ∈ Y ++. By

1.7, the image ρ([z0, y]) is a λ−path π from ρ(z0) to ρ(y). For z ∈ [z0, y[, we consider an
apartment A containing [z, y) and Cx, hence also C−z . We write p = ρ(z). The restriction ρ|A
is the restriction to A of an automorphism ϕ of I fixing Cx (and an isomorphism from A to
A); ϕ induces an isomorphism ϕ|TzI from TzI onto TzI . One has ρ|TzI = ρAp,C−p ◦ϕ|TzI =

ϕ|Az ◦ρAz ,C−z . So one may use the above Lemma, more precisely the implication (i) =⇒ (iii):
we get a (W v

p , C
−
p )−chain from π′−(t) to π′+(t) (if p = π(t)).

We have proved that π = ρ([z0, y]) is a Hecke path of shape λ with respect to Cx in A.
This result is a part of [BaPGR16, Theorem 3.4]. It is also a consequence of the proof of
[BCGR13, Th. 3.8] which deals with the classical case of buildings.

3) Liftings of Hecke paths.
One considers in A a positive local chamber Cx, a Hecke path π of shape λ ∈ Y ++ with

respect to Cx and the retraction ρ = ρA,Cx . Given a point y ∈ I with ρ(y) = π(1), we
consider the set SCx(π, y) of all segment germs [z, y] in I such that ρ([z, y]) = π. The above
Lemma (essentially (ii)) is used in [BaPGR16] to compute the cardinality of SCx(π, y).

We consider the notations of 1.7 and the numbers tk of Lemma 2.6. Then pk = π(tk),
ξk = −π−(tk), ηk = π+(tk) and ik is the type of a minimal gallery between C−pk and C−ξk , where
C−ξk is the negative (local) chamber such that −ξk ⊂ C−ξk and dW (C−pk , C−ξk) is of minimal
length. Let Qk be a fixed chamber in A+

zk
containing ηk in its closure and Γ+

Qk
(C−pk , ik,−ηk) be

the set of all the galleries (C−zk , C1, ..., Cr) of type ik in A−zk , centrifugally folded with respect
to Qk and with −ηk ∈ Cr.

The following result is Theorem 3.4 in [BaPGR16]. One uses the notations of 2.3 and 2.4.
One considers paths π more general than Hecke paths. The idea is to lift the path π step by
step starting from its end by using the above Lemma. We shall generalize it in Theorem 3.5
by lifting decorated Hecke paths (see just below).

Theorem 2.8. The set SCx(π, y) is non empty if, and only if, π is a Hecke path with respect
to Cx. Then, we have a bijection

SCx(π, y) '
( `π−1∏
k=1

∐
c∈Γ+

Qk
(C−pk ,ik,−ηk)

CmQk(C−pk ,c)
)
.Cm(C−y , i`π)

In particular, the number of elements in this set is a polynomial in the numbers q ∈ Q with
coefficients in Z depending only on A.
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2.9 Decorated segments and paths

Let us consider z0 and y in I such that z0
o
< y.

1) Definition. A decorated segment [z0, y] is the datum of a segment [z0, y] as above and,
for any z ∈ [z0, y[ (resp., z ∈]z0, y]) of a positive (resp., negative) chamber C+

z (resp., C ′′z )
with vertex z and containing the segment germ [z, y) (resp., [z, z0)) in its closure. One asks
moreover that C+

z = pr[z,y)(C) (resp., C ′′z = pr[z,z0)(C)) for any local chamber C = C+
z′ or

C = C ′′z′ as above. One may remark that, then, C+
z = prz(C) (resp., C ′′z = prz(C)) if z′ ∈ [z, y]

(resp., z′ ∈ [z0, z]).

Clearly the decorated segment [z0, y] is entirely determined by the segment [z0, y] and any
of the local chambers C+

z′ or C
′′
z′ . It is entirely contained in any apartment containing [z0, y]

and one local chamber C+
z′ or C

′′
z′ (by 2.2).

For points z′0 6= y′ in [z0, y] in the order z0, z
′
0, y
′, y (i.e. z′0

o
< y′) the datum [z′0, y

′] =

([z′0, y
′], (C+

z )z∈[z′0,y
′[, (C

′′
z )z∈]z′0,y

′]) is a decorated segment.

2) Lemma. Let [z0, y] be a segment as above, z1 ∈ [z0, y] and Cz1 a local chamber with
vertex z1 contained in a same apartment A as [z0, y]. Let us define C+

z = pr[z,y)(Cz1) and
C ′′z = pr[z,z0)(Cz1). Then [z0, y] = ([z0, y], (C+

z )z∈[z0,y[, (C
′′
z )z∈]z0,y]) is a decorated segment.

Moreover in A all chambers C+
z (resp., C ′′z ) are deduced from each-other by a translation.

N.B. If z1 is z0 or y then any local chamber Cz1 with vertex z1 is contained in a same
apartment as [z0, y].

Proof. We have to prove that C+
z = pr[z,y)(C) (resp., C ′′z = pr[z,z0)(C)) for any local chamber

C = C+
z′ or C = C ′′z′ . Let us recall that the chamber C+

z (resp., C ′′z ) is the unique chamber,
that contains δ = [z, y) (resp., δ = [z, z0)) in its closure, of the prism prismδ(Cz1) defined
in A as the intersection of all half-spaces D(α, k) (for α ∈ Φ and k ∈ R) that contain Cz1
and such that δ ⊂ M(α, k). In fact each prism considered to define all these chambers in
these definitions is the same prism prism[z0,y](Cz1), as δ ⊂ M(α, k) ⇐⇒ [z0, y] ⊂ M(α, k).
Moreover, as already partially remarked in 2.1.2, prism[z0,y](Cz1) = prism[z0,y](C) for C = C+

z′

or C = C ′′z′ . Indeed, such a C is in prism[z0,y](Cz1) and any M(α, k) containing [z0, y] cannot
cut C, so prism[z0,y](Cz1) = prism[z0,y](C).

It is now clear that C+
z = pr[z,y)(C) (resp., C ′′z = pr[z,z0)(C)) for any local chamber C = C+

z′

or C = C ′′z′ . Moreover the translations of vector in the direction of the line of A containing
δ stabilize the prism and exchange the segment germs. So the last assertion of the lemma is
clear.

3) Definitions. A decorated λ−path π is the datum of :
- a λ−path {π(t) | 0 ≤ t ≤ 1},
- a positive (resp., a negative) local chamber C+

π(t) (resp., C
′′
π(t)) of vertex π(t) for 0 ≤ t < 1

(resp., 0 < t ≤ 1).
such that there are numbers 0 = t′0 < t′1 < · · · t′r = 1 satisfying, for any 1 ≤ i ≤ r,
- {π(t) | t′i−1 ≤ t ≤ t′i} is a segment [π(t′i−1), π(t′i)],
- [π(t′i−1), π(t′i)] = ([π(t′i−1), π(t′i)], (C

+
π(t))t∈[t′i−1,t

′
i[
, (C ′′π(t))t∈]t′i−1,t

′
i]
) is a decorated segment

(in particular π(t′i−1)
o
< π(t′i)), hence λ is spherical).
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A decorated Hecke path of shape λ with respect to Cx in A is a decorated λ−path π
such that the underlying path π is a Hecke path of shape λ with respect to Cx in A. One
assumes moreover that the numbers 0 < t′1 < · · · < t′r = 1 are equal to the numbers
0 < t1 < t2 < · · · < t`π = 1 of Lemma 2.6 above.

4) Proposition. Let [z0, y] be a decorated segment (with dv(z0, y) = λ ∈ Y ++ spherical), Cx
a chamber of vertex x in A with x

o
< z0 (hence x

o
< z for any z ∈ [z0, y]) and ρ = ρA,Cx

the associated retraction. We parametrize [z0, y] by z(t) = z0 + t(y − z0) in any apartment
containing [z0, y]. Then ρ([z0, y]) = (π = ρ ◦ z, (C+

ρz(t) = ρC+
z(t))t∈[0,1[, (C

∗
ρz(t) = ρC ′′z(t))t∈]0,1])

is a decorated Hecke path of shape λ with respect to Cx in A.

N.B. Conversely a decorated Hecke path is not always the image by ρ of a decorated segment.
But the calculations of the number of such liftings (as in Theorem 2.8) is the main ingredient
of our main theorem (3.5 below) generalizing the Theorem 3.7 in [BaPGR16].

Proof. For any z ∈ [z0, y[ (resp., z ∈]z0, y]), we consider an apartment A+
z (resp., A′′z)

containing Cx and C+
z (resp., C ′′z ). Then A+

z ∪ A′′z (or A+
z0 , A

′′
y) contains a neighbourhood

of z (or z0, y) in the segment [z0, y]. By compactness of this segment we get numbers
0 = t′0 < t′1 < · · · t′r = 1 and apartments Ai such that Ai contains Cx, z([t′i−1, t

′
i]) and

either C+
z(t′i−1)

or C ′′z(t′i). By the projection properties of decorated segments, it contains all

other C+
z(t) (resp., C ′′z(t)) for t ∈ [t′i−1, t

′
i[ (resp., t ∈]t′i−1, t

′
i]). As ρ sends isomorphically Ai

onto A, we get that ρ([z0, y]) is a decorated λ−path, with underlying path a Hecke path of
shape λ with respect to Cx in A.

To get that ρ([z0, y]) is a decorated Hecke path, we have now to prove that the t′i may
be replaced by the ti associated to this Hecke path by Lemma 2.6. We may apply the
following Lemma to [π(ti−1), π(ti)]. Any apartment A containing Cx and C ′′z(ti) contains
[z(ti−1), z(ti)], hence also C ′′z(t) for ti−1 < t ≤ ti and C+

z(t) for ti−1 ≤ t < ti, by the
projection properties of decorated segments. But ρ induces an isomorphism from A onto
A. So ([π(ti−1), π(ti)], (ρC

+
z(t))ti−1≤t<ti , (ρC

′′
z(t))ti−1<t≤ti) is a decorated segment, as expected.

5) Lemma. In an apartment A of a masure I , we consider a local chamber Cx and a line
segment [p0, p1] with x

o
< p0 ≤ p1. We suppose that, for any p ∈]p0, p1[ and any wall M

containing p, then [p, p0] is in the half-apartment containing Cx delimited by M . We consider
the retraction ρ = ρA,Cx . Then,

for any segment germ [z1, z) in I such that ρ([z1, z)) = [p1, p0) (hence ρ(z1) = p1), there
is a unique line segment [z1, z0] such that [z1, z0) = [z1, z) and ρ([z1, z0]) = [p1, p0]. More
precisely any apartment A containing Cx and [z1, z) contains [z1, z0].

Proof. Let A be an apartment containing Cx and [z1, z). Up to the isomorphism ρ from A onto
A, one may suppose A = A. Then z1 = p1 and [p1, p0] satisfies [p1, p0) = [p1, z), ρ([p1, p0]) =
[p1, p0] as expected for [p1, z0]. Let us consider another solution [p1, z0], so [p1, z0) = [p1, p0)
and ρ([p1, z0]) = [p1, p0]. Let z′ be the point satisfying [p1, z

′] ⊂ [p1, p0] ∩ [p1, z0] that is the
nearest from p0. One has z′ 6= p1 and one wants to prove that z′ = p0. If z′ 6= p0, one
may consider a minimal gallery c′ in T −z′ I from C−z′ = prz′(Cx) to the segment germ [z′, z0).
Clearly c = ρ(c′) is a minimal gallery in A−z′ from C−z′ to the segment germ [z′, p0). If we write
Q = C−z′ , we have c′ ∈ CmQ (C−z′ , c), with the notations of 2.4. But by the hypotheses, no wall
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M containing z′ separates strictly Cx (i.e. C−z′ ) from [z′, p0). Hence the formula in 2.4 tells
that CmQ (C−z′ , c) is reduced to one element : we have c′ = c, [z′, z0) = [z′, p0), contrary to the
hypothesis on z′.

6) Remark. The definitions and results in 3), 4), 5) above are also true if we replace Cx by a
negative sector germ S in A and ρ by ρA,S. The corresponding results of the Lemma are more
or less implicit in [BaPGR16], see the last paragraph of proof of Lemma 2.1 or of Proposition
2.3 in l.c.

3 Structure constants in spherical cases

In this section, we compute the structure constants auw,v of the Iwahori-Hecke algebra IHI
R ,

assuming that v = µ.v and w = λ.w are spherical, i.e. µ and λ are spherical (see 1.1 for the
definitions). As in [BaPGR16], we will adapt some results obtained in the spherical case in
[GR14] to our situation.

These structure constants depend on the shape of the standard apartment A and on the
numbers qM of 1.4.6. Recall that the number of (possibly) different parameters is at most
2.|I|. We denoted by Q = {q1, · · · , ql, q′1 = ql+1, · · · , q′l = q2l} this set of parameters.

For λ ∈ Y + spherical, we denote wλ (resp., w+
λ ) the smallest (resp., longest) element

w ∈W v such that w.λ ∈ Cvf . We start by several lemmas.

Lemma 3.1. [BaPGR16, 3.6] Let Cx, Cz ∈ C +
0 with x ≤ z and λ ∈ Y + spherical, w ∈ W v.

We write C−z = prz(Cx). Then

dW (Cx, Cz) = λ.w ⇐⇒
{
dW (Cx, z) = λ
d∗W (C−z , Cz) = w+

λ w.

Lemma 3.2. Let Cz, Cy ∈ C +
0 with z

o
< y and µ ∈ Y + spherical, v ∈ W v. We write

C+
z = prz(Cy) and C ′′y = pr[y,z)(C

+
z ) = pry(C

+
z ). Then

(1) dW (Cz, Cy) = µv ⇐⇒
{
dW (Cz, C

+
z ) = v(wv−1.µ)−1

dW (C+
z , Cy) = µ++wv−1.µ.

(2) dW (C+
z , Cy) = µ++wv−1.µ ⇐⇒ dW (C+

z , y) = µ++ and d∗W (C ′′y , Cy) = w+
µ++wv−1.µ

Proof. (1) Let us fix an apartment A′ containing Cz, Cy and so C+
z and identify (A′, Cz) with

(A, C+
0 ).

Let us suppose that dW (Cz, Cy) = µv and denote C+
y := C+

z + µ. Clearly dW (Cz, Cz +

µ) = µ and, by Chasles in A′, µ.v = dW (Cz, Cy) = dW (Cz, Cz + µ)dW (Cz + µ,Cy), hence
dW (Cz +µ,Cy) = v i.e. Cy = (Cz +µ) ∗ v (cf. 1.10). By G−invariance of dW and Chasles, we
have dW (Cz, C

+
z ) = dW (Cz + µ,C+

y ) = dW (Cz + µ,Cy)d
W (Cy, C

+
y ) = vdW (Cy, C

+
y ). Among

the walls containing [z, y], no one separates C+
y from Cy, so the local chamber C+

y is the
closest chamber to Cy among those containing the segment-germ ]y, y + µ) in their closure,
i.e. C+

y = pr[y,y+µ)(Cy) and dW (Cy, C
+
y ) = w′ where w′ is the smallest w ∈ W v ⊂ W+ (for

the Bruhat order of W v) such that ]y, y+ µ) ⊂ Cy ∗ w = Cz+µ ∗ vw = Cz ∗ µvw = µvwCz, as
we identified Cz with C+

0 . As µ = y − z, we can see w′ as the smallest w ∈ W v ⊂ W+ (for
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the Bruhat order of W v) such that ]z, z + µ) ⊂ vwCz i.e. v−1µ ∈ wCvf (as we identified Cz
with C+

0 ), so w′ = (wv−1.µ)−1. Finally, we get dW (Cz, C
+
z ) = v(wv−1.µ)−1 and so

dW (C+
z , Cy) = (dW (Cz, C

+
z ))−1dW (Cz, Cy) = wv−1.µv

−1µv(wv−1.µ)−1wv−1.µ = µ++wv−1.µ.

In the same way, if we suppose that dW (Cz, C
+
z ) = v(wv−1.µ)−1 and dW (C+

z , Cy) =
µ++wv−1.µ, by Chasles we obtain dW (Cz, Cy) = µv.

(2) We consider now the opposite local chamber at y of C+
y (resp., Cy) in A′ which is

denoted by −C+
y (resp., −Cy). If dW (C+

z , Cy) = µ++wv−1.µ, we have dW (C+
z , y) = µ++ =

dW (C+
z , C

+
y ) and dW (C+

y , Cy) = wv−1.µ, so d∗W (−C+
y , Cy) = wv−1.µ. By the proof of 2.2,

we see that C ′′y and −C+
y are such that dW (−C+

y , C
′′
y ) = dW (C ′′y ,−C+

y ) = w+
µ++ (the longest

element of W v
µ++ the fixator of µ++ in W v). By Chasles in A′, we have

d∗W (C ′′y , Cy) = dW (C ′′y ,−Cy) = dW (C ′′y ,−C+
y )dW (−C+

y ,−Cy) = w+
µ++ .wv−1.µ.

The converse result is clear by Chasles.

3.3 Local study

We shall need a partial generalization of Lemma 2.7.1 dealing with decorations.
We consider a point z ∈ A, a negative local chamber C−z in A−z and the retraction

ρ = ρAz ,C−z in TzI . Let C+
z (resp., C∗z ) be a positive (resp., negative) local chamber in

Az, we also introduce the retraction ρ′ = ρAz ,C+
z
in TzI . Let ξ and η be two segment germs in

A+
z = A∩T +

z I of the same “type” (i.e. η = [z, z+w.λ), ξ = [z, z+w′.λ) for some λ ∈ Y ++ and
w,w′ ∈W v). We suppose that C+

z contains η and C∗z contains the opposite −ξ = [z, z−w′λ)
of ξ in Az. We denote −η = [z, z − w.λ) the opposite of η in Az and C̃z = pr−η(C

+
z ). Let i

be the type of a minimal gallery from C−z to C∗z .

Lemma. The following conditions are equivalent:
(i) There exists a segment germ ζ opposite η in T −z I and a negative local chamber C ′′z

containing ζ in its closure such that ρ(ζ) = −ξ, ρ(C ′′z ) = C∗z and C ′′z = prζ(C
+
z ).

(ii) There exists a gallery c ∈ Γ+

C+
z

(C−z , i) ending in the local chamber C̃z.

Moreover the possible (ζ, C ′′z ) are in one-to-one correspondence with the disjoint union of
the sets Cm

C+
z

(C−z , c) for c in the set Γ+

C+
z

(C−z , i, C̃z) .

Proof. If ζ, a segment germ opposite η in T −z I , and C ′′z , a negative local chamber containing
ζ in its closure, are such that ρ(ζ) = −ξ, ρ(C ′′z ) = C∗z and C ′′z = prζ(C

+
z ), there is a unique

minimal gallery c′ from C−z to C ′′z of type i (as ρ induces a bijection between the minimal
galleries from C−z to C ′′z and the minimal galleries from C−z to C∗z ). The gallery c = ρ′(c′) is
in Γ+

C+
z

(C−z , i, C̃z). Indeed, ζ is opposite η so ρ′(ζ) = −η, hence the image of C ′′z = prζ(C
+
z )

by ρ′ is C̃z = pr−η(C
+
z ).

Reciprocally, let c ∈ Γ+

C+
z

(C−z , i) be a gallery ending in the local chamber C̃z. We can
lift this gallery with respect to ρ′ while preserving the first chamber C−z to obtain a minimal
gallery c′ of type i. Let us call C ′′z the last chamber of the lifted gallery. The isomorphism
associated to ρ′ (see 1.7) between an apartment Az containing C+

z and C ′′z and Az enables us
to say that the lifting of −η is a segment germ ζ opposite η in Az and C ′′z = prζ(C

+
z ). As the
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gallery c is of type i, ρ sends C ′′z onto the end of the minimal gallery of same type beginning
at C−z , so ρ(C ′′z ) = C∗z . Moreover, ζ is of the same type that −η (and −ξ), so ρ(ζ) = −ξ.

From the first paragraph above, we get an injective map (ζ, C ′′z ) 7→ c′ from the set of pairs
(ζ, C ′′z ) as in (i) and the disjoint union of the sets Cm

C+
z

(C−z , c) for c in the set Γ+

C+
z

(C−z , i, C̃z):
indeed, ζ is fully determined by C ′′z (and λ). The second paragraph proves that this map is
surjective.

3.4 Opposite line segments

The following lemma will be useful in Theorem 3.5.

Lemma. Let us consider in a masure I two preordered line segments or rays δ1, δ2 in
apartments A1, A2, sharing the same origin x. One supposes the segments germs germx(δ1)
and germx(δ2) opposite (in any apartment containing them both). Then there is a line in an
apartment A of I containing δ1 and δ2. In particular, if δ1, δ2 are line segments (resp., rays),
then δ1 ∪ δ2 is also a line segment (resp., a line).

Proof. The case of line segments is Lemma 4.9 in [GR14]. The case of rays may be deduced
from the fact stated in the part 2 of the proof of [Ro11, Prop. 5.4]. As we shall not use it, we
omit the details.

3.5 The main formula

Let us fix two local chambers Cx and Cy in C +
0 with x ≤ y and dW (Cx, Cy) = u = ν.u ∈W+.

We consider w = λ.w and v = µ.v in W+. Then we know that the structure constant
auw,v is the number of Cz0 ∈ C +

0 with x ≤ z0 ≤ y, dW (Cx, Cz0) = w and dW (Cz0 , Cy) = v;
moreover this number is finite, see Proposition 1.12. In Lemmas 3.1 and 3.2 we gave conditions
equivalent to these W−distance conditions.

We choose the standard apartment A containing Cx and Cy, and we identify Cx with the
fundamental local chamber C+

0 .
The datum of z0 is equivalent to the datum of the segment [z0, y] or of the decorated

segment [z0, y] associated, as in 2.9.2, to [z0, y] and Cy. We consider then the decorated Hecke
path π image of [z0, y] by the retraction ρA,Cx .

To the Hecke path π underlying a decorated Hecke path π are associated `π ∈ N and
numbers t0 = 0 < t1 < t2 < · · · < t`π = 1 as in Lemma 2.6 and Definition 2.9.3. We write
pk = π(tk). We write C+

p (resp., C∗p instead of C ′′p ) the decorations of π at a point p of π. We
write C+

z (resp., C ′′z ) the decorations of a decorated segment at one of its points z.
We use freely the notations from 2.1, 2.3 and 2.4.

Theorem. Assume µ and λ spherical. Then the structure constant auw,v is given by:

auw,v =
∑
π

`π∏
k=0

aπ(k)

where π runs over the decorated Hecke paths in A of shape µ++ with respect to Cx from
p0 = x+ λ = λ to y = x+ ν = ν, and the integers aπ(k) are given by :
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(1) aπ(`π) =
∑

d∈Γ+
Cy

(C−y ,i`,C̃y) ]C
m
Cy

(C−y ,d), where i` is the type of a fixed minimal gallery

from C−y to C∗y and C̃y is the unique local chamber at y in A such that d∗W (C̃y, Cy) =

w+
µ++wv−1.µ .

(2) For 1 ≤ k ≤ `π − 1, aπ(k) =
∑

c∈Γ+

C+
pk

(C−pk ,ik,C̃pk ) ]C
m
C+
pk

(C−pk , c), where ik is the type of

a fixed minimal gallery from C−pk to C∗pk and C̃pk = pr−ηk(C+
pk

) with −ηk the segment germ of
origin pk in A opposite ηk = π+(tk).

(3) aπ(0) =
∑

e∈Γ+

C−p0
(C+
p0
,i,C′p0 ) ]C

m
C−p0

(C+
p0 , e), where i is the type of a fixed reduced de-

composition of wv−1.µ.v
−1 and C ′p0 is the unique local chamber at p0 = π(0) in A such that

d∗W (C−p0 , C
′
p0) = w+

λ w.

Remarks. 1) Actually
∏`π−1
k=1 aπ(k) is the number of decorated segments [z0, y] such that

ρ([z0, y]) = π and C∗y = C ′′y . It may be zero.
2) If auw,v 6= 0, then necessarily ν is spherical ( in particular u ∈W+g), as then any Hecke

path of shape µ++ is increasing for
o
< (see 1.7). The arguments of [BaPGR16] are sufficient

for this result.
3) From this theorem we deduce that auw,v 6= 0 is equivalent to the following:
- there exists a Hecke path in A of shape µ++ with respect to Cx from p0 = x+ λ = λ to

y = x+ ν = ν,
- there exists a decoration π of π (always true),
- for this decorated Hecke path each of the sets Γ+

Cy
(C−y , i`, C̃y), Γ+

C+
pk

(C−pk , ik, C̃pk) and

Γ+

C−p0
(C+

p0 , i, C
′
p0) is non empty.

4) The number of decorated Hecke paths π as above is finite: we know that the number
of paths π is finite (it is a consequence of Theorem 3.5 in [BaPGR16]) and, as µ is spherical,
the number of decorations of π is finite.

Proof. auw,v is the number of local chambers Cz0 ∈ C +
0 with x ≤ z0 ≤ y, dW (Cx, Cz0) = w

and dW (Cz0 , Cy) = v (we chose Cx, Cy in A such that dW (Cx, Cy) = u). We know that this
number is finite, see Proposition 1.12. The datum of z0 is equivalent to the datum of the
segment [z0, y] or of the decorated segment [z0, y] associated, as in 2.9.2, to [z0, y] and Cy. We
use now the retraction ρ = ρA,Cx : I≥x → A. We have y = ρ(y) = x + ν and the condition
dW (Cx, z0) = λ is equivalent to ρ(z0) = x+ λ = p0. So ρ([z0, y]) has to be a decorated Hecke
path π as asked in the theorem. And we get the formula:

auw,v =
∑
π

(
number of liftings of π

)
×

(
number of Cz0 for z0 given

)
,

It is possible to calculate like that for ρ(C+
z0) = C+

p0 is well determined by the decorated
path π. Hence (as we shall see in 2) or 3) below), the number of Cz0 only depends on π and
not on the lifting of π. In [BaPGR16, Theorem 3.7] we argued the same way, but with Hecke
paths (without decoration) so we had to suppose µ++ regular to get that ρ(C+

z0) was well
determined by the path π.

For short, we write ` = `π. We compute the number of liftings of π by looking successively
at the number of liftings of [p`−1, p`], [p`−2, p`−1], . . . , [p0, p1].
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1) The number aπ(`) of liftings of [p`−1, p` = y] is the number of liftings [z`−1, z` = y]

of [p`−1, p` = y] and C ′′y of C∗y such that [y, z`−1) ⊂ C ′′y and d∗W (C ′′y , Cy) = w+
µ++wv−1.µ

(by Lemma 3.2.2). But [y, z`−1] is determined by [y, z`−1) (cf. Lemma 2.9.5) and [y, z`−1) is
determined by C ′′y and µ++. So we just have to count the liftings C ′′y of C∗y . By the same way
as in the proof of Lemma 3.3, we are going to prove that the possible C ′′y are in one-to-one
correspondance with the disjoint union of the sets CmCy(C

−
y , c) for c in Γ+

Cy
(C−y , i`, C̃y). In this

case, the tools are ρ = ρA,Cx , that on TyI , coincides with ρ = ρA,C−y (2.7.2) and ρ
′ = ρA,Cy .

If C ′′y is given, there is a unique minimal gallery c′ from C−y to C ′′y of type i` (as ρ induces
a bijection between the minimal galleries from C−y to C ′′y = pr[y,z`−1)(Cy) and those from
C−y to C∗y = pr[y,p`−1)(Cy)). By Lemma 3.2(2) we know that d∗W (C ′′y , Cy) = w+

µ++wv−1.µ, so
ρ′(C ′′y ) = C̃y, and the gallery c = ρ′(c′) is in Γ+

Cy
(C−y , i`, C̃y), while c′ is in CmCy(C

−
y , c).

Reciprocally, if c is in the set Γ+
Cy

(C−y , i`, C̃y), let us consider C ′′y the last chamber of c′ a
lifted gallery of c with respect to ρ′. The condition on C̃y enables to say that d∗W (C ′′y , Cy) =

w+
µ++wv−1.µ and so, by Lemma 3.2 the decoration C ′′y of [z`−1, y] at y satisfies the expected

codistance condition.
2) For 1 ≤ k ≤ ` − 1, we suppose given the lifting [zk, y] of π|[tk,1]. The number

aπ(k) of suitable liftings [zk−1, zk] of [pk−1, pk] is the number of pairs ([zk−1, zk], C
′′
zk

) of
liftings [zk−1, zk] of [pk−1, pk] and C ′′zk of C∗pk such that [zk, zk−1) is opposite to [zk, zk+1)

(see Lemma 3.4), [zk, zk−1) ∈ C ′′zk and C ′′zk is the decoration of [zk, zk−1] associated to Cy.
Let us consider an apartment A containing Cx and C ′′zk+1

hence also [zk, zk+1] and C+
zk

(see Lemma 2.9.5). The restriction ρ|A is the restriction to A of an automorphism ϕ of
I fixing Cx that induces an isomorphism ϕ|TzkI from TzkI onto TpkI and sends C+

zk
⊂ A to

C+
pk

= ρ(C+
zk

). So the map ϕ induces a bijection from the set of suitable liftings ([zk−1, zk], C
′′
zk

)

of ([pk−1, pk], C
∗
zk

) onto the set of pairs ([z′k−1, pk], C
′′
pk

) such that [pk, z
′
k−1) ∈ C ′′pk is opposite

to [pk, pk+1] (= ρ([zk, zk+1]) = ϕ([zk, zk+1])), C ′′pk = pr[pk,z
′
k−1)(C

+
pk

) and ρA,C−pk
(C ′′pk) = C∗pk

(as ρA,C−pk
◦ ϕ|TzkI (C ′′zk) = ρ(C ′′zk)).

By Lemma 3.3 the possible ([pk, z
′
k−1), C ′′pk) (and so the possible ([pk, z

′
k−1], C ′′pk) by Lemma

2.9.5) are in one-to-one correspondance with the union of the sets Cm
C+
pk

(C−pk , c) for c in the set

Γ+

C+
pk

(C−pk , i`, C̃pk), with C̃pk = pr−ηk(C+
pk

).

3) For the last step of the lifting, by the same way as before, we suppose given the lifting
[z0, y] and we suppose z0 = p0. So we know that C+

p0 = C+
z0 . The Lemma 3.1 says that

d∗W (C−p0 , Cz0) = w+
λ w, and Lemma 3.2 that dW ((C+

p0 , Cz0) = wv−1µv
−1. So, as before, the

number of Cz0 is the number of elements of the different sets Cm
C−p0

(C+
p0 , e) where e is a gallery

of Γ+

C−p0
(C+

p0 , i, C
′
p0) as i is the type of a minimal gallery from C+

p0 to Cz0 that retracts by ρA,C−p0
to a gallery from C+

p0 to C ′p0 .

3.6 Consequence

The above explicit formula, together with the formula for ]CmQ (C−z , c) in 2.4, tell us that the
structure constant auw,v is a polynomial in the parameters qi − 1, q′i − 1 for qi, q′i ∈ Q with
coefficients in N = Z≥0 and that this polynomial depends only on A, W , w, v and u. So
we have proved the conjecture 1 of the introduction in this generic case: when λ and µ are
spherical.
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Note that we have not got all the structure constants auw,v for the generic Iwahori-Hecke
algebra IHgZ. The cases w ∈ W v n V0 or v ∈ W v n V0 (i.e. λ ∈ V0 or µ ∈ V0 in the above
notations) are missing. We deal with them in the following section.

4 Structure constants in remaining generic cases

4.1 The problem

Let us choose Cx, Cy ∈ C +
0 with x ≤ y and dW (Cx, Cy) = u = ν.u ∈ W+ = W v n Y +. Then

the structure constant auw,v (for w = λ.w and v = µ.v in W+) is the number of Cz0 ∈ C +
0

with x ≤ z0 ≤ y, dW (Cx, Cz0) = w and dW (Cz0 , Cy) = v, see Proposition 1.12.
In Theorem 3.5, we computed auw,v when w,v are spherical (i.e. λ, µ ∈ Y ∩ T ◦). We shall

compute it below in the remaining cases where w,v ∈ W+g = W v n (Y ∩ (T ◦ ∪ V0)). So,
in the affine or strictly hyperbolic cases, we shall get auw,v for any w,v ∈ W+. But we get,
in general, these structure constants for w,v ∈ W+g = W v n Y +g, i.e. we get the structure
constants of IHg, see 3.6 and 4.6.

We start with a lemma analogous to lemmas 3.1 and 3.2.

Lemma 4.2. Let Cx, Cz ∈ C +
0 with x ≤ z and λ ∈ Y +0 , w ∈ W v. We write C+

x = prx(Cz),
then

dW (Cx, Cz) = λ.w ⇐⇒
{
dW (Cx, z) = λ
dW (C−z , Cz) = w.

⇐⇒
{
dW (Cx, z) = λ
dW (Cx, C

+
x ) = w.

Actually dW (Cx, z) = λ ∈ V0 implies x ≤ z and z ≤ x. So C−z := prz(Cx) is well defined,
by 2.1.1, and is a positive local chamber.

Proof. By definition dW (Cx, Cz) = λ.w implies dW (Cx, z) = λ (1.10). Suppose now dW (Cx, z) =
λ. Then dv(x, z) = λ ∈ V0, so any apartment A containing x or z contains z or x and, in
A, one has z = x + λ ≤ x; this is a consequence of 1.4.1.a, as any enclosure is stable under
V0. Hence C−z = prz(Cx) ∈ A is well defined, by 2.1.1, and is a positive local chamber.
Actually C−z = Cx + λ (calculation in A). We have also C+

x = Cz − λ. It is now clear that
dW (Cx, Cz) = λ.w ⇐⇒ dW (C−z , Cz) = w ⇐⇒ dW (Cx, C

+
x ) = w.

4.3 First reduction

We consider u,v,w ∈ W+ and write u = ν.u,v = µ.v,w = λ.w with λ, µ, ν ∈ Y + and
u, v, w ∈ W v. We choose Cx, Cy ∈ C +

0 with x ≤ y and dW (Cx, Cy) = u; we may suppose
Cx, Cy ⊂ A. We choose Cz0 ∈ C +

0 with x ≤ z0 ≤ y, dW (Cx, Cz0) = w and dW (Cz0 , Cy) = v.
If λ ∈ Y +0 = Y ∩ V0, one has dW (Cx, z0) = λ (Lemma 4.2) and z0 ∈ A, more precisely

z0 = x+ λ (as we saw in the proof of Lemma 4.2).
If µ ∈ Y +0, then we get z0 ∈ A, more precisely z0 = y − µ, by Lemma 4.2 applied to

Cz0 , Cy instead of Cx, Cz.
In both cases z0 has to be a well determined point in A and ν = dv(x, y) ∈ W vλ+W vµ.

In particular, if w,v ∈W+g i.e. λ, µ ∈ Y +g, one has also ν ∈ Y +g i.e. u ∈W+g.
We want now to compute the number auw,v of Cz0 ∈ C +

0 with x ≤ z0 ≤ y, dW (Cx, Cz0) = w

and dW (Cz0 , Cy) = v. For this we separate below the cases λ ∈ Y +0 and µ ∈ Y +0.



On structure constants of Iwahori-Hecke algebras for Kac-Moody groups over local fields 25

4.4 The case µ ∈ Y +0

We suppose λ ∈ Y ∩ T ◦ (resp., λ ∈ Y +0). By Lemma 4.2 above and Lemma 3.1, we have to
find the number auw,v of Cz0 ∈ C +

0 satisfying (with C+
z0 = pr[z0,y)(Cy) = prz0(Cy)):

(a) dW (Cx, z0) = λ , (b) dW (Cz0 , y) = µ , (c) dW (Cz0 , C
+
z0) = v

and (d) d∗W (C−z0 , Cz0) = w+
λ .w (resp., and (d) dW (C−z0 , Cz0) = w).

Actually µ ∈ V0 is fixed by W v and y, Cz0 , C
+
z0 are in a same apartment (containing

Cy and Cz0), so dW (Cz0 , y) = µ ⇐⇒ dW (C+
z0 , y) = µ. Then auw,v is the number of

Cz0 ∈ C +
0 satisfying (a), (b’) dW (C+

z0 , y) = µ, (c) and (d). The first two conditions involve
only z0, Cx, Cy ∈ A.

Proposition. The number auw,v is either 0 (if the conditions (a), (b’) above are incompatible)
or ∑

e∈Γ+

C−z0
(C+
z0
,i,C′z0 ) ]C

m
C−z0

(C+
z0 , e)

where i is the type of a fixed reduced decomposition of v−1 and C ′z0 is the unique local
chamber at z0 in A such that d∗W (C−z0 , C

′
z0) = w+

λ .w (resp., dW (C−z0 , C
′
z0) = w).

Remark. The coefficient auw,v is zero when (a) and (b’) are incompatible, i.e. when ν 6= λ+µ:
if in A we identify Cx to the fundamental chamber C+

0 , (a) is equivalent to z0 = x + λ, (b’)
to y = z0 + µ and dW (Cx, Cy) = ν.u implies y = x+ ν.

But the other case where auw,v = 0 is when Γ+

C−z0
(C+

z0 , i, C
′
z0) is empty.

Proof. We have to translate the conditions (c) and (d). We consider the retraction ρ = ρA,C−z0
.

The condition (c) is equivalent to the existence of a minimal gallery c starting from C+
z0 , of

type i (i.e. c ∈ Cm(C+
z0 , i)) ending in Cz0 ; and there is a bijection between these c and the

Cz0 satisfying (c). Now the condition (d) is equivalent to ρ(Cz0) = C ′z0 (as ρ preserves the
W−distances to C−z0). Considering e = ρ(c), the proposition is now clear.

4.5 The case λ ∈ Y +0 (and µ ∈ Y ∩ T ◦)

By Lemma 4.2 above and Lemma 3.2, we have to find the number auw,v of Cz0 ∈ C +
0 satisfying:

(a) dW (Cx, z0) = λ , (b) dW (C+
z0 , y) = µ++ , (c) d∗W (C ′′y , Cy) = w+

µ++wv−1.µ

(d) dW (C−z0 , Cz0) = w and (e) dW (C+
z0 , Cz0) = wv−1µ.v

−1

But C+
z0 = prz0(Cy), C ′′y = pry(C

+
z0) and Cx, Cy, z0 = x + λ are in A. So the conditions (a),

(b), (c) involve only Cx, Cy and z0.

Proposition. The number auw,v is either 0 (if the conditions (a), (b), (c) above are incom-
patible) or ∑

e∈Γ+

C−z0
(C+
z0
,i,C′z0 ) ]C

m
C−z0

(C+
z0 , e)

where i is the type of a fixed reduced decomposition of wv−1µ.v
−1 and C ′z0 is the unique

local chamber at z0 in A such that dW (C−z0 , C
′
z0) = w.

Remark. The coefficient auw,v is zero when (a), (b) and (c) are incompatible, i.e. when z0,
determined by (b) does not satisfy (a) and (c). But it is more difficult than in 4.4 to translate
it simply. It is also zero when Γ+

C−z0
(C+

z0 , i, C
′
z0) is empty.

Proof. We have to translate conditions (d) and (e). It goes the same way as in 4.4.
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4.6 Conclusion

In all cases where λ, µ ∈ Y +g = Y ∩ (T ◦ ∪ V0), we may use the formula for CmQ (C ′z, c) in 2.4,
the Theorem 3.5 and/or the Propositions 4.4, 4.5. We get the expected result: the structure
constant auw,v is a polynomial in the parameters qi− 1, q′i− 1 for qi, q′i ∈ Q with coefficients in
N = Z≥0 and this polynomial depends only on A, W , w, v and u. We have proved Conjecture
1 in these cases, in particular in the affine or strictly hyperbolic cases.
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