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Abstract. We look to gradations of Kac-Moody Lie algebras by Kac-Moody
root systems with finite dimensional weight spaces. We extend, to general
Kac-Moody Lie algebras, the notion of C−admissible pair as introduced by
H. Rubenthaler and J. Nervi for semi-simple and affine Lie algebras. If g is
a Kac-Moody Lie algebra (with Dynkin diagram indexed by I) and (I, J) is
such a C−admissible pair, we construct a C−admissible subalgebra gJ , which
is a Kac-Moody Lie algebra of the same type as g, and whose root system Σ

grades finitely the Lie algebra g. For an admissible quotient ρ : I → I we build
also a Kac-Moody subalgebra gρ which grades finitely the Lie algebra g. If g
is affine or hyperbolic, we prove that the classification of the gradations of g is
equivalent to those of the C−admissible pairs and of the admissible quotients.
For general Kac-Moody Lie algebras of indefinite type, the situation may be
more complicated; it is (less precisely) described by the concept of generalized
C−admissible pairs.
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Introduction. The notion of gradation of a Lie algebra g by a finite root
system Σ was introduced by S. Berman and R. Moody [8] and further studied by
G. Benkart and E. Zelmanov [5], E. Neher [15], B. Allison, G. Benkart and Y. Gao
[1] and J. Nervi [16]. This notion was extended by J. Nervi [17] to the case where
g is an affine Kac-Moody algebra and Σ the (infinite) root system of an affine Kac-
Moody algebra; in her two articles she uses the notion of C−admissible subalgebra
associated to a C−admissible pair for the Dynkin diagram, as introduced by H.
Rubenthaler [21].

We consider here a general Kac-Moody algebra g (indecomposable and sym-
metrizable) and the root system Σ of a Kac-Moody algebra. We say that g is
finitely Σ−graded if g contains a Kac-Moody subalgebra m (the grading subalge-
bra) whose root system relatively to a Cartan subalgebra a of m is Σ and moreover
the action of ad(a) on g is diagonalizable with weights in Σ∪ {0} and finite dimen-
sional weight spaces, see Definition 1.4. The finite dimensionality of weight spaces
is a new condition, it was fulfilled by the non-trivial examples of J. Nervi [17] but
it excludes the gradings of infinite dimensional Kac-Moody algebras by finite root
systems as in [5]. Many examples of these gradations are provided by the almost
split real forms of g, cf. 1.7. We are interested in describing the possible gradations
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of a given Kac-Moody algebra (as in [16], [17]), not in determining all the Lie al-
gebras graded by a given root system Σ (as e.g. in [1] for Σ finite). We carry out
completely this project when g is affine or hyperbolic.

Let I be the index set of the Dynkin diagram of g, we generalize the notion
of C−admissible pair (I, J) as introduced by H. Rubenthaler [21] and J. Nervi
[16], [17], cf. Definition 2.1. For each Dynkin diagram I the classification of the
C−admissible pairs (I, J) is easy to deduce from the list of irreducible C−admissible
pairs due to these authors. We are able then to generalize in section 2 their con-
struction of a C−admissible subalgebra (associated to a C−admissible pair) which
grades finitely g:

Theorem 1. (cf. 2.6, 2.11, 2.14) Let g be an indecomposable and symmetrizable
Kac-Moody algebra, associated to a generalized Cartan matrix A = (ai,j)i,j∈I . Let
J ⊂ I be a subset of finite type such that the pair (I, J) is C−admissible. There
is a generalized Cartan matrix AJ = (a′k,l)k,l∈I′ with index set I ′ = I \ J and a
Kac-Moody subalgebra gJ of g associated to AJ , with root system ∆J . Then g is
finitely ∆J−graded with grading subalgebra gJ .

For a general finite gradation of g with grading subalgebra m, we prove (in section
3) that m also is indecomposable, symmetrizable and the restriction to m of the
invariant bilinear form of g is non-degenerate (3.11 and 3.17). The Kac-Moody
algebras g and m have the same type: finite, affine or indefinite; the first two types
correspond to the cases already studied e.g. by J. Nervi. Moreover if g is indefinite
Lorentzian or hyperbolic, then so is m (Propositions 3.6 and 3.27). We get also the
following precise structure result for this general situation :

Theorem 2. Let g be an indecomposable and symmetrizable Kac-Moody algebra,
finitely graded by a root system Σ of Kac-Moody type with grading subalgebra m.
1) We may choose the Cartan subalgebras a of m, h of g such that a ⊂ h. Then
there is a surjective map ρa : ∆ ∪ {0} → Σ ∪ {0} between the corresponding root
systems. We may choose the bases Πa = {γs | s ∈ I} ⊂ Σ and Π = {αi | i ∈ I} ⊂ ∆
of these root systems such that ρa(∆+) ⊂ Σ+ ∪ {0} and {α ∈ ∆ | ρa(α) = 0} =
∆J := ∆ ∩ (

∑
j∈J Zαj) for some subset J ⊂ I of finite type.

2) Let I ′re = {i ∈ I | ρa(αi) ∈ Πa}, I ′im = {i ∈ I | ρa(αi) 6∈ Πa ∪ {0}}. Then
J = {i ∈ I | ρa(αi) = 0}. We note Ire (resp. J◦) the union of the connected
components of I\I ′im = I ′re∪J meeting I ′re (resp. contained in J), and Jre = J∩Ire.
Then the pair (Ire, Jre) is C−admissible (eventually decomposable).
3) There is a Kac-Moody subalgebra g(Ire) of g, associated to Ire, which contains
m. This Lie algebra is finitely ∆(Ire)

Jre−graded, with grading subalgebra g(Ire)
Jre .

Both algebras g(Ire) and g(Ire)
Jre are finitely Σ−graded with grading subalgebra m.

It may happen that I ′im is non-empty, we then say that (I, J) is a generalized
C−admissible pair and the gradation is imaginary. We give and explain precisely
an example in section 5.

When I ′im is empty (i.e. when the gradation is real : 3.16), Ire = I, Jre = J ,
g(Ire) = g, (I, J) = (Ire, Jre) is a C−admissible pair and the situation looks much
like the one described by J. Nervi in the finite [16] or affine [17] cases. Actually
we prove that this is always true when g is of finite type, affine or hyperbolic
(Proposition 3.26). In this real case we get the gradation of g with two levels:
g is finitely ∆J−graded with grading subalgebra gJ as in Theorem 1 and gJ is
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finitely Σ−graded with grading subalgebra m. But the gradation of gJ by Σ and
m is such that the corresponding set "J" described as in Theorem 2 is empty; we
say (following [16], [17]) that it is a maximal gradation, cf. Definition 3.16 and
Proposition 3.21.

To get a complete description of the real gradations, it remains to describe the
maximal gradations; this is done in section 4. We prove in Proposition 4.1 that a
maximal gradation (g,Σ,m) is entirely described by a quotient map ρ : I → I which
is admissible i.e. satisfies two simple conditions (MG1) and (MG2) with respect
to the generalized Cartan matrix A = (ai,j)i,j∈I . Conversely for any admissible
quotient map ρ, it is possible to build a maximal gradation of g associated to this
map, cf. Proposition 4.5 and Remark 4.7.

1. Preliminaries

We recall the basic results on the structure of Kac-Moody Lie algebras and we
set the notations. More details can be found in the book of Kac [12]. We end by
the definition of finitely graded Kac-Moody algebras.

1.1. Generalized Cartan matrices. Let I be a finite index set. A matrix A =
(ai,j)i,j∈I is called a generalized Cartan matrix if it satisfies :
(1) ai,i = 2 (i ∈ I)
(2) ai,j ∈ Z− (i 6= j)
(3) ai,j = 0 implies aj,i = 0.

The matrix A is called decomposable if for a suitable permutation of I it takes

the form
(
B 0
0 C

)
where B and C are square matrices. If A is not decomposable,

it is called indecomposable.
The matrix A is called symmetrizable if there exists an invertible diagonal matrix
D = diag(di, i ∈ I) such that DA is symmetric. The entries di, i ∈ I, can be
chosen to be positive rationals and if moreover the matrix A is indecomposable,
then these entries are unique up to a constant factor.
Any indecomposable generalized Cartan matrix is of one of three mutually exclusive
types : finite, affine and indefinite ([12, Chap. 4]). A generalized Cartan matrix is
said of finite type if each of its indecomposable factors is of finite type.
An indecomposable and symmetrizable generalized Cartan matrixA is called Lorentzian
if it is non-singular and the corresponding symmetric matrix has signature (+ +
...+−); it is then of indefinite type.
An indecomposable generalized Cartan matrix A is called strictly hyperbolic (resp.
hyperbolic) if the deletion of any one vertex, and the edges connected to it, of the
corresponding Dynkin diagram yields a disjoint union of Dynkin diagrams of finite
(resp. finite or affine) type.
Note that a symmetrizable hyperbolic generalized Cartan matrix is non-singular
and Lorentzian (cf. [14]).

1.2. Kac-Moody algebras and groups. (See [12] and [18]).
Let A = (ai,j)i,j∈I be a symmetrizable generalized Cartan matrix. Let (hR, Π =
{αi, i ∈ I}, Π̌ = {αǐ, i ∈ I}) be a realization of A over the real field R: thus hR
is a real vector space such that dim(hR) = |I| + corank(A), Π and Π̌ are linearly
independent in h∗R and hR respectively such that 〈αj , αǐ〉 = ai,j . Let h = hR ⊗ C,
then (h, Π, Π̌ ) is a realization of A over the complex field C.
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It follows that, if A is non-singular, then Π̌ (resp. Π) is a basis of h (resp.
h∗); moreover hR = {h ∈ h | αi(h) ∈ R,∀i ∈ I} is well defined by the realization
(h, Π, Π̌ ).

Let g = g(A) be the complex Kac-Moody Lie algebra associated to A : it is
generated by {h, ei, fi, i ∈ I} with the following relations

(1.1)
[h, h] = 0, [ei, fj ] = δi,jαǐ (i, j ∈ I);
[h, ei] = 〈αi, h〉ei, [h, fi] = −〈αi, h〉fi (h ∈ h);
(adei)1−ai,j (ej) = 0, (adfi)1−ai,j (fj) = 0 (i 6= j).

The Kac-Moody algebra g = g(A) decomposes as a direct sum of factors g(Ai),
where A1, · · · , Ar are the indecomposable factors of A. It is said indecomposable
if the corresponding generalized Cartan matrix A is indecomposable and of finite,
affine or indefinite type if A is.

The derived algebra g′ of g is generated by the Chevalley generators ei, fi, i ∈ I,
and the center c of g lies in h′ = h ∩ g′ =

∑
i∈I Cαǐ. If the generalized Cartan

matrix A is indecomposable and non-singular, then g = g′ is a (finite or infinite)-
dimensional simple Lie algebra, and the center c is trivial.

The subalgebra h is a maximal ad(g)−diagonalizable subalgebra of g, it is called
the standard Cartan subalgebra of g. Let ∆ = ∆(g, h) be the corresponding root
system; then Π is a root basis of ∆ and ∆ = ∆+ ∪∆−, where ∆± = ∆ ∩ Z±Π is
the set of positive (or negative) roots relative to the basis Π. For α ∈ ∆, let gα be
the root space of g corresponding to the root α; then g = h⊕ ( ⊕

α∈∆
gα).

The Weyl group W of (g, h) is generated by the fundamental reflections ri (i ∈ I)
such that ri(h) = h− 〈αi, h〉αǐ for h ∈ h, it is a Coxeter group on {ri, i ∈ I} with
length function w 7→ l(w), w ∈ W . The Weyl group W acts on h∗ and ∆, we
set ∆re = W (Π) (the real roots) and ∆im = ∆ \ ∆re (the imaginary roots). If
the generalized Cartan matrix A is indecomposable, then any root basis of ∆ is
W−conjugate to Π or −Π.

A Borel subalgebra of g is a maximal completely solvable subalgebra. A parabolic
subalgebra of g is a (proper) subalgebra containing a Borel subalgebra. The stan-
dard positive (or negative) Borel subalgebra is b± := h ⊕ (⊕α∈∆±gα). A parabolic
subalgebra p+ (resp. p−) containing b+ (resp. b−) is called positive (resp. negative)
standard parabolic subalgebra of g; then there exists a subset J of I (called the type
of p±) such that p± = p±(J) := ( ⊕

α∈∆J

gα) + b±, where ∆J = ∆ ∩ (⊕j∈JZαj) (cf.

[13]).
In [18], D.H. Peterson and V.G. Kac construct a group G, which is the connected

and simply connected complex algebraic group associated to g when g is of finite
type, depending only on the derived Lie algebra g′ and acting on g via the adjoint
representation Ad : G → Aut(g). It is generated by the one-parameter subgroups
Uα = exp(gα), α ∈ ∆re, and Ad(Uα) = exp(adgα)). In the definitions of J. Tits
[22] G is the group of complex points of GD where D is the datum associated to A
and the Z−dual Λ of

⊕
i∈I Zα∨i .

The Cartan subalgebras of g are G−conjugate. If g is indecomposable and not
of finite type, there are exactly two conjugate classes (under the adjoint action of
G) of Borel subalgebras : G.b+ and G.b−. A Borel subalgebra b of g which is
G−conjugate to b+ (resp. b−) is called positive (resp. negative). It follows that
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any parabolic subalgebra p of g is G−conjugate to a standard positive (or negative)
parabolic subalgebra, in which case, we say that p is positive (or negative).

1.3. Standard Kac-Moody subalgebras and subgroups. Let J be a non-
empty subset of I. Consider the generalized Cartan matrix AJ = (ai,j)i,j∈J .

Definition 1.1. The subset J is called of finite type if the corresponding general-
ized Cartan matrix AJ is. We say also that J is connected, if the Dynkin subdia-
gram, with vertices indexed by J , is connected or, equivalently, the corresponding
generalized Cartan submatrix AJ is indecomposable.

Proposition 1.2. Let ΠJ = {αj , j ∈ J} and ΠJ̌ = {αǰ , j ∈ J}. Let h′J be the
subspace of h generated by ΠJ̌ , and hJ = Π⊥J = {h ∈ h, 〈αj , h〉 = 0, ∀j ∈ J}. Let
h′′J be a supplementary subspace of h′J + hJ in h and let

hJ = h′J ⊕ h′′J ,

then, we have :
1) (hJ , ΠJ , ΠJ̌) is a realization of the generalized Cartan matrix AJ . Hence
h′′J = {0}, hJ = h′J when AJ is regular (e.g. when J is of finite type).
2) The subalgebra g(J) of g, generated by hJ and the ej, fj, j ∈ J , is the Kac-
Moody Lie algebra associated to the realization (hJ , ΠJ , ΠJ̌) of AJ .
3) The corresponding root system ∆(J) = ∆(g(J), hJ) can be identified with ∆J :=
∆ ∩ (⊕j∈JZαj).

N.B. The derived algebra g′(J) of g(J) is generated by the ej , fj for j ∈ J ; it
does not depend of the choice of h′′J .

Proof. We may assume g indecomposable.
1) Note that dim(h′′J) = dim(h′J ∩hJ) = corank(AJ). In particular, dim(hJ)−|J | =
corank(AJ). If α ∈ V ect(αj , j ∈ J), then α is entirely determined by its restriction
to hJ and hence ΠJ defines, by restriction, a linearly independent set in h∗J . As ΠJ̌

is linearly independent, assertion 1) holds.
Assertions 2) and 3) are straightforward. �

In the same way, the subgroup GJ of G generated by U±αj
, j ∈ J , is equal to

the Kac-Moody group associated to the generalized Cartan matrix AJ : it is clearly
a quotient; the well known equality is proven explicitly in [20, 5.15.2], it may be
deduced from [22, th. 1], see also [19, 8.4.2].

1.4. The invariant bilinear form. (See [12]).
We recall that the generalized Cartan matrix A is supposed symmetrizable. There
exists a non-degenerate ad(g)− invariant symmetric C−bilinear form (. , .) on g,
which is entirely determined by its restriction to h, such that

(αǐ, h) =
(αǐ, αǐ)

2
〈αi, h〉, i ∈ I, h ∈ h,

and we may thus assume that

(1.2) (αǐ, αǐ) is a positive rational for all i.

The non-degenerate invariant bilinear form (. , .) induces an isomorphism ν : h→ h∗

such that αi =
2ν(αǐ)

(αǐ, αǐ)
and αǐ =

2ν−1(αi)

(αi, αi)
for all i.

There exists a totally isotropic subspace h′′ of h (relative to the invariant bilinear
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form (. , .)) which is in duality with the center c of g. In particular, h′′ defines a
supplementary subspace of h′ in h.
Note that any invariant symmetric bilinear form b on g satisfying b(αǐ, αǐ) > 0,
∀i ∈ I, is non-degenerate and b(αǐ, h) = b(αǐ,αǐ)

2 〈αi, h〉, ∀i ∈ I, ∀h ∈ h. It follows
that, if g is indecomposable, the restriction of b to g′ is proportional to that of
(. , .). In particular, if moreover A is non-singular, then the invariant bilinear form
(. , .) satisfying the condition 1.2 is unique up to a positive rational factor.

1.5. The Tits cone. (See [12, Chap. 3 and 5]).
Let C := {h ∈ hR; 〈αi, h〉 ≥ 0,∀i ∈ I} be the fundamental chamber (relative to
the root basis Π) and let X :=

⋃
w∈W

w(C) be the Tits cone. We have the following

description of the Tits cone:
(1) X = {h ∈ hR; 〈α, h〉 < 0 only for a finite number of α ∈ ∆+}.
(2) X = hR if and only if the generalized Cartan matrix A is of finite type.
(3) If A is indecomposable of affine type, then X = {h ∈ hR; 〈δ, h〉 > 0} ∪Rν−1(δ),
where δ is the lowest imaginary positive root of ∆+.
(4) If A is indecomposable of indefinite type, then the closure of the Tits cone, for
the metric topology on hR, is X̄ = {h ∈ hR; 〈α, h〉 ≥ 0, ∀α ∈ ∆+

im}.
(5) If h ∈ X, then h lies in the interior

◦
X of X if and only if the fixer Wh of h, in

the Weyl group W , is finite. Thus
◦
X is the union of finite type facets of X.

(6) If A is hyperbolic, then X̄ ∪ (−X̄) = {h ∈ hR; (h, h) ≤ 0} and the set of
imaginary roots is ∆im = {α ∈ Q \ {0}; (α, α) ≤ 0}, where Q = ZΠ is the root
lattice.

Remark 1.3. Combining (3) and (4) one obtains that if A is not of finite type then
X̄ = {h ∈ hR; 〈α, h〉 ≥ 0, ∀α ∈ ∆+

im}.
1.6. Graded Kac-Moody Lie algebras.

Definition 1.4. Let Σ be a root system of Kac-Moody type. The Kac-Moody Lie
algebra g is said to be finitely Σ−graded if :
(i) g contains, as a subalgebra, a Kac-Moody algebra m whose root system relative
to a Cartan subalgebra a is equal to Σ.
(ii) g =

∑
α∈Σ∪{0}

Vα, with Vα = {x ∈ g ; [a, x] = 〈α, a〉x, ∀a ∈ a}.

(iii) Vα is finite dimensional for all α ∈ Σ ∪ {0}.
We say that m (as in (i) above) is a grading subalgebra, and (g,Σ,m) a gradation

with finite multiplicities (or, to be short, a finite gradation).

Note that from (ii) the Cartan subalgebra a of m is ad(g)−diagonalizable, and
we may assume that a is contained in the standard Cartan subalgebra h of g.

Lemma 1.5. Let g be a Kac-Moody algebra finitely Σ−graded, with grading sub-
algebra m. If m itself is finitely Σ′−graded (for some root system Σ′of Kac-Moody
type), then g is finitely Σ′−graded.
Proof. If m′ is the grading subalgebra of m, we may suppose the Cartan subalgebras
such that a′ ⊂ a ⊂ h, with obvious notations. Conditions (i) and (ii) are clearly
satisfied for g, m′ and a′. Condition (iii) for m and Σ′ tells that, for all α′ ∈ Σ′,
the set {α ∈ Σ | α|a′ = α′} is finite. But Vα′ = ⊕α|a′=α′ Vα, so each Vα′ is finite
dimensional if this is true for each Vα. �



KAC-MOODY LIE ALGEBRAS GRADED BY .... 7

1.7. Examples of gradations.
1) Let ∆ = ∆(g, h) the root system of g relative to h, then g is finitely ∆−graded
: this is the trivial gradation of g by its own root system.
2) Let gR be an almost split real form of g (see [2]) and let tR be a maximal split
toral subalgebra of gR. Suppose that the restricted root system ∆′ = ∆(gR, tR)
is reduced of Kac-Moody type. In [4, §9], N. Bardy constructed a split real Kac-
Moody subalgebra lR of gR such that ∆′ = ∆(lR, tR), then g is obviously finitely
∆′−graded.

We get thus many examples coming from known tables for almost split real
forms: see [2] in the affine case and [6] in the hyperbolic case.
3) When gR is an almost compact real form of g, the same constructions should
lead to gradations by finite root systems, as in [5] e.g.

2. Gradations associated to C−admissible pairs.

In this section, we suppose the Kac-Moody Lie algebra g indecomposable and sym-
metrizable, see however Remark 2.15. We shall build a finite gradation of g associ-
ated to some good subset of I.

We recall some definitions introduced by H. Rubenthaler ([21]) and J. Nervi
([16], [17]). Let J be a subset of I of finite type. For k ∈ I \ J , we denote by Ik
the connected component, containing k, of the Dynkin subdiagram corresponding
to J ∪ {k}, and let Jk := Ik \ {k}.

We are interested in the case where Ik is of finite type for all k ∈ I \ J : that
is always true if g is of affine type and |I \ J | ≥ 2 or if g is of hyperbolic type and
|I \ J | ≥ 3.
For k ∈ I \ J , let g(Ik) be the simple subalgebra generated by g±αi , i ∈ Ik, then
hIk = h∩g(Ik) =

∑
i∈Ik Cαǐ is a Cartan subalgebra of g(Ik). Let Hk be the unique

element of hIk such that 〈αi, Hk〉 = 2δi,k, ∀i ∈ Ik.

Definition 2.1. We suppose the Dynkin diagram indexed by I connected and con-
sider a subset J of finite type. We preserve the notations introduced above.
1) Let k ∈ I \ J .
(i) The pair (Ik, Jk) is called admissible if Ik is of finite type and there exist
Ek, Fk ∈ g(Ik) such that (Ek, Hk, Fk) is an sl2−triple.
(ii) The pair (Ik, Jk) is called C−admissible if it is admissible and the simple Lie
algebra g(Ik) is A1−graded by the root system, of type A1, associated to the
sl2−triple (Ek, Hk, Fk).
2) The pair (I, J) is called C−admissible if the pairs (Ik, Jk) are C−admissible for
all k ∈ I \ J . It is said irreducible if, moreover, |I \ J | = 1.

Schematically, any C−admissible pair (I, J) is represented by the Dynkin dia-
gram, corresponding to A, on which the vertices indexed by J are denoted by white
circles ◦ and those of I \ J are denoted by black circles •.

Remark 2.2. 1) The admissibility of each (Ik, Jk) is essential to build (in 2.6, 2.11)
the grading subalgebra gJ and its grading root system ∆J .

2) As g(J) will be in the eigenspace V0 of weight 0 for the grading by ∆J , it is
necessary to assume J of finite type to get a finite gradation.

3) Ik is of finite type if, and only if, g(Ik) is finite dimensional, and this is
equivalent to the alternative assumption in (ii) that the A1−gradation has finite
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multiplicities. It is clearly necessary to get, in Theorem 2.14, a finite gradation of g
by the root system ∆J . Moreover, even in a more general situation, the condition
Ik of finite type will naturally appear (3.14).

4) Note that the definition presented here, for C−admissible pairs, is equivalent
to that introduced by Rubenthaler and Nervi (see [21], [16]) in terms of prehomo-
geneous spaces of parabolic type : if (Ik, Jk) is C−admissible, define for p ∈ Z, the
subspace dk,p := {X ∈ g(Ik) ; [Hk, X] = 2pX}; then (dk,0, dk,1) is an irreducible
regular and commutative prehomogeneous space of parabolic type, and dk,p = {0}
for |p| ≥ 2. Then (Ik, Jk) is an irreducible C−admissible pair. According to Ruben-
thaler and Nervi ([21, Table 1] or [16, Table 2]) the irreducible C−admissible pair
(Ik, Jk) should be among the list in Table 1 below.

5) Along our study of general finite gradations in section 3, we shall meet a
situation of "generalized C−admissible pair" (I, J) (3.16) where J ⊂ I is of finite
type and Ik (for k ∈ I ′ = I \ J) is defined as above but perhaps not of finite
type. When k is in some subset I ′re of I ′, (Ik, Jk) is C − admissible and the
k ∈ I ′im = I ′ \ I ′re do not contribute to the root system Σ grading g. But we do not
know the good assumptions on these (Ik, Jk) for k ∈ I ′im to get, conversely, a finite
gradation of g by some root system. So we give no precise definition; it is expected
in the work in preparation [7].

Table 1

List of irreducible C−admissible pairs

A2n−1, n≥1
1◦ 2◦ .... ◦ n• ◦ .... ◦ 2n−1◦

Bn, n≥3
1• 2◦ 3◦ ...... ◦ ◦ >

n◦

Cn, n≥2
1◦ 2◦ 3◦ ...... ◦ ◦ < n•

Dn,1, n≥4
1• 2◦ .... ◦ ◦

◦
n

n−1◦

D2n,2, n≥2
1◦ 2◦ .... ◦ ◦

•
2n

2n−1◦

E7
1◦ 3◦ 4◦

◦
2

5◦ 6◦ 7•

Definition 2.3. Let J be a subset of I and let i, k ∈ I \ J . We say that i and k
are J−connected relative to A if there exist j0, j1, ...., jp+1 ∈ I such that j0 = i,
jp+1 = k, js ∈ J , ∀s = 1, 2, ..., p, and ajs,js+1

6= 0, ∀s = 0, 1, ..., p.
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Remark 2.4. Note that the relation “ to be J−connected ” is symmetric on i and
k. As the generalized Cartan matrix A is assumed to be indecomposable, for any
vertices i, k ∈ I \ J there exist i0, i1, ...., ip+1 ∈ I \ J such that i0 = i, ip+1 = k and
is and is+1 are J−connected for all s = 0, 1, ..., p.

Let us assume from now on that (I, J) is a C−admissible pair and let I ′ :=
I \ J . For k ∈ I ′, let (Ek, Hk, Fk) be an sl2−triple associated to the irreducible
C−admissible pair (Ik, Jk).

Lemma 2.5. Let k 6= l ∈ I ′, then :
1) 〈αl, Hk〉 ∈ Z−.
2) the following assertions are equivalent :

i) k, l are J−connected
ii) 〈αl, Hk〉 is a negative integer
iii) 〈αk, Hl〉 is a negative integer

Proof. 1) One can write Hk =
∑
i∈Ik ni,kαǐ, where ni,k are positive integers (see

[21] or [17, 1.4.1.2]). As l /∈ Ik, we have that 〈αl, Hk〉 =
∑
i∈Ik ni,k〈αl, αǐ〉 ∈ Z−.

2) In view of Remark 2.4, it suffices to prove the equivalence between i) and ii).
Since Ik is the connected component of J ∪ {k} containing k, the assertion i) is
equivalent to say that the vertex l is connected to Ik, so there exists ik ∈ Ik such
that 〈αl, αǐk〉 < 0 and hence 〈αl, Hk〉 < 0. �

Proposition 2.6. Let hJ = Π⊥J = {h ∈ h, 〈αj , h〉 = 0, ∀j ∈ J}. For k ∈ I ′,
denote by α′k = αk/h

J the restriction of αk to the subspace hJ of h, and ΠJ =
{α′k; k ∈ I ′}, ΠJ∨ = {Hk; k ∈ I ′}. For k, l ∈ I ′, put a′k,l = 〈αl, Hk〉 and
AJ = (a′k,l)k,l∈I′ . Then AJ is an indecomposable and symmetrizable generalized
Cartan matrix, (hJ ,ΠJ ,ΠJ∨) is a realization of AJ and corank(AJ) = corank(A).

Proof. The fact that a′k,k = 2 follows from the definition of Hk for k ∈ I ′. If
k 6= l ∈ I ′, then by lemma 2.5, a′k,l ∈ Z− and a′k,l 6= 0 if and only if a′l,k 6= 0.
Hence AJ is a generalized Cartan matrix. As the matrix A is indecomposable, AJ
is also indecomposable (see Remark 2.4). Clearly ΠJ = {α′k; k ∈ I ′} is a linearly
independent subset of the dual space hJ

∗ of hJ , ΠJ∨ = {Hk; k ∈ I ′} is a linearly
independent subset of hJ and by construction 〈αl, Hk〉 = a′k,l, ∀k, l ∈ I ′.
We have to prove that dim(hJ) − |I ′| = corank(AJ). As J is of finite type, the
restriction of the invariant bilinear form (. , .) to hJ is non-degenerate and hJ is
contained in h′ = ⊕

i∈I
Cαǐ. Therefore

h = hJ
⊥
⊕ hJ

and
h′ = (h′ ∩ hJ)⊕ hJ .

It follows that dim(h′ ∩ hJ) = |I ′| = dim( ⊕
k∈I′

CHk). As the subspace ⊕
k∈I′

CHk is

contained in h′ ∩ hJ , we deduce that h′ ∩ hJ = ⊕
k∈I′

CHk. Note that any supple-

mentary subspace hJ
′′ of h′ ∩ hJ in hJ is also a supplementary of h′ in h; hence,

we have that corank(A) = dim(hJ
′′
) = dim(hJ) − |I ′|. Let c := ∩

i∈I
ker(αi) be

the center of g and let cJ = ∩
k∈I′

ker(α′k). Recall that corank(A) = dim(c) and
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corank(AJ) = dim(cJ). It’s clear that cJ = c; hence corank(AJ) = dim(cJ) =
corank(A) = dim(hJ)− |I ′|.
It remains to prove that AJ is symmetrizable. For k ∈ I ′, let RJk be the funda-
mental reflection of hJ such that RJk (h) = h− 〈α′k, h〉Hk, ∀h ∈ hJ . Let W J be the
Weyl group of AJ generated by RJk , k ∈ I ′. Let (. , .)J be the restriction to hJ of
the invariant bilinear form (. , .) on h. Then (. , .)J is a non-degenerate symmetric
bilinear form on hJ which is W J−invariant (see the lemma hereafter). From the
relation (RJk (Hk), RJk (Hl))

J = (Hk, Hl)
J one can deduce that :

(Hk, Hl)
J =

(Hk, Hk)J

2
a′l,k, ∀k, l ∈ I ′,

but (Hk, Hk)J > 0, ∀k ∈ I ′; hence tAJ (and so AJ) is symmetrizable. �

Lemma 2.7. For k ∈ I ′ := I \ J , let wJk be the longest element of the Weyl group
W (Ik) generated by the fundamental reflections ri, i ∈ Ik. Then wJk stabilizes hJ

and induces the fundamental reflection RJk of hJ associated to Hk.

Proof. If one looks at the list above of the irreducible C−admissible pairs, one
can see that wJk (αk) = −αk and that −wJk permutes the αj , j ∈ Jk. Clearly
wJk (αj) = αj , ∀j ∈ J \ Jk. Hence wJk stabilizes hJ and its orthogonal subspace
h⊥J = hJ . Note that −wJk (Hk) ∈ hIk and it satisfies the same equations defining Hk.
Hence −wJk (Hk) = Hk = −RJk (Hk). Recall that ker(α′k) = ker(αk) ∩ ( ∩

j∈J
ker(αj));

thus it is fixed by RJk and W J
k . Since hJ = ker(α′k) ⊕ CHk, the reflection RJk

coincides with W J
k on hJ . �

Remark 2.8. Actually we can now rediscover the list of irreducible C−admissible
pairs given in Table 1. The black vertex k should be invariant under −wJk and the
corresponding coefficient of the highest root of Ik should be 1 (an easy consequence
of the definition 2.1 1) (ii) ).

Example 2.9. Consider the hyperbolic generalized Cartan matrix A of type HE(1)
8 =

E10 indexed by I = {−1, 0, 1, ..., 8}.
The following two choices for J define C−admissible pairs :
1) J = {2, 3, 4, 5}.

1• 3◦ 4◦
◦2

5◦ 6• 7• 8• 0• •−1

The corresponding generalized Cartan matrix AJ is hyperbolic of type HF (1)
4 :

•
1

•
6
< •

7
•
8

•
0
•
−1

2) J = {1, 2, 3, 4, 5, 6}.
1◦ 3◦ 4◦

◦2
5◦ 6◦ 7• 8• 0• •−1

The corresponding generalized Cartan matrix AJ is hyperbolic of type HG(1)
2 :

•
7

< •
8

•
0

•
−1

Note that the first example corresponds to an almost split real form of the Kac-
Moody Lie algebra g(A) and AJ is the generalized Cartan matrix associated to the
corresponding (reduced) restricted root system (see [6]) whereas the second example
does not correspond to an almost split real form of g(A).
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Lemma 2.10. For k ∈ I ′, set s(k) = CEk ⊕ CHk ⊕ CFk. Then, the Kac-Moody
algebra g is an integrable s(k)−module via the adjoint representation of s(k) on g.

Proof. Note that s(k) is isomorphic to sl2(C) with standard basis (Ek, Hk, Fk).
It is clear that ad(Hk) is diagonalizable on g and Ek =

∑
α eα ∈ dk,1, where α

runs over the set ∆k,1 = {α ∈ ∆(Ik); 〈α,Hk〉 = 2}, eα ∈ gα for α ∈ ∆(Ik), and
dk,1 := {X ∈ g(Ik) ; [Hk, X] = 2X}. Since ∆k,1 ⊂ ∆re, ad(eα) is locally nilpotent
for α ∈ ∆k,1. As dk,1 is commutative (see Remark 2.2) we deduce that ad(Ek)
is locally nilpotent on g. The same argument shows that ad(Fk) is also locally
nilpotent. Hence, the Kac-Moody algebra g is an integrable s(k)−module. �

Proposition 2.11. Let gJ be the subalgebra of g generated by hJ and Ek, Fk, k ∈ I ′.
Then gJ is the Kac-Moody Lie algebra associated to the realization (hJ ,ΠJ ,ΠJ∨)
of the generalized Cartan matrix AJ .

Proof. It is not difficult to check that the following relations hold in the Lie subal-
gebra gJ :

[hJ , hJ ] = 0, [Ek, Fl] = δk,lHk (k, l ∈ I ′);
[h,Ek] = 〈α′k, h〉Ek, [h, Fk] = −〈α′k, h〉Fk (h ∈ hJ , k ∈ I ′).

We have to prove the Serre’s relations :

(adEk)1−a′k,l(El) = 0, (adFk)1−a′k,l(Fl) = 0 (k 6= l ∈ I ′).

For k ∈ I ′, let s(k) = CFk ⊕ CHk ⊕ CEk be the Lie subalgebra of g isomorphic to
sl2(C). Let l 6= k ∈ I ′; note that [Hk, Fl] = −a′k,lFl and [Ek, Fl] = 0, which means
that Fl is a primitive weight vector for s(k). As g is an integrable s(k)−module
(see Lemma 2.10) the primitive weight vector Fl is contained in a finite dimensional
s(k)−submodule (see [12, 3.6]). The relation (adFk)1−a′k,l(Fl) = 0 follows from the
representation theory of sl2(C) (see[12, 3.2]). By similar arguments we prove that
(adEk)1−a′k,l(El) = 0.

Now gJ is a quotient of the Kac-Moody algebra associated toAJ and (hJ ,ΠJ ,ΠJ∨).
By [12, 1.7] it is equal to it. �

Definition 2.12. The Kac-Moody Lie algebra gJ is called the C−admissible alge-
bra associated to the C−admissible pair (I, J).

Proposition 2.13. The Kac-Moody algebra g is an integrable gJ−module with
finite multiplicities.

Proof. The gJ−module g is clearly ad(hJ)−diagonalizable and ad(Ek), ad(Fk) are
locally nilpotent on g for k ∈ I ′ (see Lemma 2.10). Hence, g is an integrable
gJ−module. For α ∈ ∆, let α′ = α|hJ be the restriction of α to hJ . Set ∆′ =

{α′; α ∈ ∆}\{0}. Then the set of weights, for the gJ−module g, is exactly ∆′∪{0}.
Note that for α ∈ ∆, α′ = 0 if and only if α ∈ ∆(J). In particular, the weight space
V0 = h ⊕ ( ⊕

α∈∆(J)
gα) corresponding to the null weight is finite dimensional. Let

α =
∑
i∈I

niαi ∈ ∆ such that α′ 6= 0. We will see that the corresponding weight space

Vα′ is finite dimensional. Note that Vα′ = ⊕
β′=α′

gβ . Let β =
∑
i∈I

miαi ∈ ∆ such
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that β′ = α′ =
∑
k∈I′

nkα
′
k, then mk = nk, ∀k ∈ I ′, since ΠJ = {α′k, k ∈ I ′} is free in

(hJ)∗. In particular, β and α are of the same sign, and we may assume α ∈ ∆+. Let
htJ(β) =

∑
j∈J

mj be the height of β relative to J , and let WJ be the finite subgroup

of W generated by rj , j ∈ J . Since WJ fixes pointwise hJ , we deduce that γ′ = β′,
∀γ ∈WJβ, and so we may assume that htJ(β) is minimal among the roots in WJβ.
From the inequality htJ(β) ≤ htJ(rj(β)), ∀j ∈ J , we get 〈β, αǰ〉 ≤ 0, ∀j ∈ J . Let
ρJ̌ be the half sum of positive coroots of ∆(J). It is known that 〈αj , ρJ̌〉 = 1,
∀j ∈ J . Note that 〈β, ρJ̌〉 =

∑
j∈J

mj +
∑
k∈I′

nk〈αk, ρJ̌〉 = htJ(β) +
∑
k∈I′

nk〈αk, ρJ̌〉.

Hence, the condition (〈β, ρJ̌〉 ≤ 0) implies (htJ(β) ≤
∑
k∈I′
−nk〈αk, ρǰ〉). Thus there

is just a finite number of possibilities for β. It follows that α′ is of finite multiplicity.
�

Theorem 2.14. Let ∆J be the root system of the pair (gJ , hJ), then the Kac-Moody
Lie algebra g is finitely ∆J−graded, with grading subalgebra gJ .

Proof. Let ∆′ = {α′, α ∈ ∆} \ {0} be the set of non-null weights of the gJ−module
g relative to hJ . Let ∆′+ = {α′ ∈ ∆′, α ∈ ∆+} and ∆J

+ the set of positive roots of
∆J relative to the root basis ΠJ . We have to prove that ∆′ = ∆J or equivalently
∆′+ = ∆J

+. Let QJ = ZΠJ be the root lattice of ∆J and QJ+ = Z+ΠJ . It is known
that the positive root system ∆J

+ is uniquely defined by the following properties
(see [12, Ex. 5.4]) :
(i) ΠJ ⊂ ∆J

+ ⊂ QJ+, 2α′i /∈ ∆J
+, ∀i ∈ I ′;

(ii) if α′ ∈ ∆J
+, α′ 6= α′i, then the set {α′ + kα′i; k ∈ Z} ∩∆J

+ is a string
{α′ − pα′i, ...., α′ + qα′i}, where p, q ∈ Z+ and p− q = 〈α′, Hi〉;

(iii) if α′ ∈ ∆J
+, then supp(α′) is connected.

We will see that ∆′+ satisfies these three properties and hence ∆′+ = ∆J
+. Clearly

ΠJ ⊂ ∆′+ ⊂ QJ+. For α ∈ ∆ and k ∈ I ′, the condition α′ ∈ Nαk implies α ∈ ∆(Ik)+.
As (Ik, Jk) is C−admissible for k ∈ I ′, the highest root of ∆(Ik)+ has coefficient 1
on the root αk (cf. Remark 2.8). It follows that 2α′k /∈ ∆′+ and (i) is satisfied. By
Proposition 2.13, g is an integrable gJ−module with finite multiplicities. Hence,
the propriety (ii) follows from [12, 3.6]. Let α ∈ ∆+, then supp(α) is connected
and supp(α′) ⊂ supp(α). Let k, l ∈ supp(α′); if k, l are J− connected in supp(α)
relative to the generalized Cartan matrix A (cf. 2.3), then by lemma 2.5, k, l are
linked in I ′ relative to the generalized Cartan matrix AJ . Hence, the connectedness
of supp(α′), relative to AJ , follows from that of supp(α) relative to A (see Remark
2.4) and (iii) is satisfied. �

Remark 2.15. Note that the definition of C−admissible pair can be extended to
decomposable Kac-Moody Lie algebras : thus if I1, I2, ...., Im are the connected
components of I and Jk = J ∩ Ik, k = 1, 2, ....,m, then (I, J) is C−admissible
if and only if (Ik, Jk) is for all k = 1, 2, ....,m. In particular, the corresponding
C−admissible algebra is gJ =

m
⊕
k=1

g(Ik)J
k

, where g(Ik)J
k

is the C−admissible sub-

algebra of g(Ik) corresponding to the C−admissible pair (Ik, Jk), k = 1, 2, ....,m.
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3. Real gradations.

From now on we suppose that the Kac-Moody Lie algebra g is symmetrizable
and, starting from 3.5, indecomposable.

Let m be a Kac-Moody subalgebra of g and let a be a Cartan subalgebra of m.
Put Σ = ∆(m, a) the corresponding root system. We assume that a ⊂ h and that
g is finitely Σ−graded with m as grading subalgebra. Thus g =

∑
γ∈Σ∪{0}

Vγ , with

Vγ = {x ∈ g ; [a, x] = 〈γ, a〉x, ∀a ∈ a} is finite dimensional for all γ ∈ Σ ∪ {0}.
For α ∈ ∆, denote by ρa(α) the restriction of α to a. As g is Σ−graded, one has
ρa(∆ ∪ {0}) = Σ ∪ {0}.
Lemma 3.1.
1) Let c be the center of g and denote by ca the center of m. Then ca = c ∩ a. In
particular, if g is perfect, then the grading subalgebra m is also perfect.
2) Suppose that ∆im 6= ∅, then ρa(∆im) ⊂ Σim.

Proof.
1) It is clear that c ∩ a ⊂ ca. Since g is Σ− graded, we deduce that ca is contained
in the center c of g, hence ca ⊂ c ∩ a. If g is perfect, then g = g′, h = h′, c = {0};
so ca = {0}, a = a′ and m = m′.
2) If α ∈ ∆im, then Nα ⊂ ∆. Since V0 is finite dimensional, ρa(α) 6= 0 and
Nρa(α) ⊂ Σ, hence ρa(α) ∈ Σim. �

Definition 3.2. ([3, 5.2.6]) Suppose that ∆im 6= ∅. Let α, β ∈ ∆im.
(i) The imaginary roots α and β are said to be linked if Nα+Nβ ⊂ ∆ or β ∈ Q+α.
(ii) The imaginary roots α and β are said to be linkable if there exists a finite family
of imaginary roots (βi)0≤i≤n+1 such that β0 = α, βn+1 = β and βi and βi+1 are
linked for all i = 0, 1, ...., n.

Proposition 3.3. ([3, 5.2.7]) Suppose that ∆im 6= ∅. Let ∆ =
m
∪
j=1

∆j be the

decomposition of ∆ in indecomposable root systems. Suppose that ∆1, ∆2, ..., ∆r

(r ≤ m) are the indecomposable root subsystems of ∆ which are not of finite type.
Then to be linkable is an equivalence relation on ∆im and the equivalence classes
are the 2r sets ∆im

± ∩∆j, j = 1, 2, ..., r.

Lemma 3.4. Suppose that ∆im 6= ∅, then there exist root bases in Σ and ∆ such
that ρa(∆im

+ ) ⊂ Σim+ .

Proof. Fix a root basis Πa for the grading root system Σ. Let ∆ =
m
∪
j=1

∆j be,

as above, the decomposition of ∆ in indecomposable root systems. Denote by
Πj := Π∩∆j the root basis of ∆j , j = 1, 2, ...,m. If α, β are two imaginary linkable
roots of ∆im

j , then ρa(α) and ρa(β) are also linkable in Σim. By Proposition 3.3,
ρa(α) and ρa(β) are of the same sign. Since α and β are of the same sign in ∆im

j

relative to the root basis Πj , one can, if necessary, change the sign of Πj so that
ρa(α) and ρa(β) are positive imaginary roots of Σ+ relative to the fixed root basis
Πa. Hence we get a root basis of ∆ =

m
∪
j=1

∆j satisfying ρa(∆im
+ ) ⊂ Σim+ . �

In the following, we will show that the indecomposable Kac-Moody Lie algebra
g and the grading subalgebra m are of the same type.
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Lemma 3.5. The Kac-Moody Lie algebra g is of indefinite type if and only if ∆im

generates the dual space (h/c)∗ of h/c.

Proof. Note that the root basis Π = {αi, i ∈ I} induces a basis for the quotient
vector space (h/c)∗. It follows that the condition (∆im 6= ∅) implies (dim(h/c)∗ ≥
2). Suppose now that g is of indefinite type. Let α ∈ ∆sim

+ be a positive strictly
imaginary root satisfying 〈α, αǐ〉 < 0, ∀i ∈ I; then, ri(α) = α − 〈α, αǐ〉αi ∈ ∆im

+

for all i ∈ I. In particular, the vector subspace 〈∆im〉 spanned by ∆im contains
Π and hence is equal to (h/c)∗. Conversely, if ∆im generates (h/c)∗, then ∆im is
non-empty and contains at least two linearly independent imaginary roots; hence
∆ can not be of finite or affine type. �

Proposition 3.6. 1) If ∆im is not empty, then m is indecomposable.
2) The Kac-Moody Lie Algebra g and the grading subalgebra m are of the same type.
3) Suppose g Lorentzian, then m is also Lorentzian.

N.B. We will see below that m is always indecomposable (3.11) and symmetriz-
able (3.17).

Proof. 1) We saw in Lemma 3.4 that ρa(∆im
+ ) is in a unique linkable equivalence

class of Σim+ . So, if Σ = Σ1 ∪Σ2 is decomposable, we may assume ρa(∆im
+ ) ⊂ Σim1 .

But there is δ ∈ ∆im
+ such that α + nδ ∈ ∆+ for all α ∈ ∆+ and n ∈ N [12,

4.3, 5.6 and 6.3]. So ρa(α) + nρa(δ) ∈ Σ for n >> 0 and ρa(α) ∈ Σ1 ∪ {0}. As
ρa(∆ ∪ {0}) = Σ ∪ {0}, we have Σ2 = ∅.

2) If g is of finite type, then ∆ is finite and hence Σ = ρa(∆) \ {0} is finite.
If g is affine, let δ be the lowest positive imaginary root. One can choose a root
basis Πa = {γi, i ∈ Ī} of Σ so that δ̄ := ρa(δ) is a positive imaginary root. Note
that a′ := a ∩ m′ ⊂ h′; in particular δ̄(a′) = {0} and 〈δ̄, γ ǐ〉 = 0, ∀i ∈ Ī. It follows
that m is affine (see [12, 4.3]).
Suppose now that g is of indefinite type. Thanks to Lemma 3.5, it suffices to prove
that Σim generates (a/ca)∗, where ca = c∩ a is the center of m. The natural homo-
morphism of vector spaces π : a→ h/c induces a monomorphism π̄ : a/ca → h/c. By
duality, the homomorphism π̄∗ : (h/c)∗ → (a/ca)∗ is surjective and π̄∗(∆im) ⊂ Σim

generates (a/ca)∗.
3) Suppose that g is Lorentzian (hence of indefinite type) and let (. , .) be an in-
variant non-degenerate bilinear form on g. Then, the restriction of (. , .) to hR has
signature (+ + ....+,−) and any maximal totally isotropic subspace of hR relatively
to (. , .) is one dimensional. Let aR := a ∩ hR and let (. , .)a be the restriction of
(. , .) to m. As m is of indefinite type, dim (a) ≥ 2 and the restriction of (. , .)a to
aR is non-null. It follows that the orthogonal subspace m⊥ of m relatively to (. , .)a
is a proper ideal of m. Since m is perfect (because g is) we deduce that m⊥ = {0}
(cf. [12, 1.7]) and the invariant bilinear form (. , .)a is non-degenerate. It follows
that m is symmetrizable and the bilinear form (. , .)a when restricted to aR is non-
degenerate; since m is of indefinite type, it can not be positive definite. Hence,
the bilinear form (. , .)a has signature (+ + ....+,−) on aR and then the grading
subalgebra m is Lorentzian. �

Definition 3.7. Let Πa be a root basis of Σ and let Σ+ be the corresponding set
of positive roots. The root basis is said to be adapted to the root basis Π of ∆ if
ρa(∆+) ⊂ Σ+ ∪ {0}.

We will see (3.10) that adapted root bases always exist.
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Lemma 3.8. Let Πa be a root basis of Σ such that ρa(∆im
+ ) ⊂ Σim+ and let Xa be

the corresponding positive Tits cone. Then we have X̄a ⊂ X̄ ∩ a.

Proof. As ∆im 6= ∅, one has X̄ = {h ∈ hR; 〈α, h〉 ≥ 0,∀α ∈ ∆im
+ } (see Remark 1.3).

The lemma follows from Lemma 3.4. �

Lemma 3.9. Suppose that ∆im 6= ∅. Let p ∈ X̄ such that 〈α, p〉 ∈ Z, ∀α ∈ ∆, and

〈β, p〉 > 0, ∀β ∈ ∆im
+ . Then p ∈

◦
X.

Proof. The result is clear when ∆ is of affine type since
◦
X=

◦
X̄= {h ∈ hR; 〈δ, h〉 > 0}.

Suppose now that ∆ is of indefinite type. If one looks to the proof of Proposition
5.8.c) in [12], one can show that an element p ∈ X̄ satisfying the conditions of
the lemma lies in X. As ∆im

+ is W−invariant, we may assume that p lies in
the fundamental chamber C. Hence there exists a subset J of I such that {α ∈
∆; 〈α, p〉 = 0} = ∆J = ∆ ∩

∑
j∈J Zαj . Since ∆J ∩∆im = ∅, the root subsystem

∆J is of finite type and p lies in the finite type facet of type J . Thus p ∈
◦
X (see

1.5). �

Theorem 3.10. There exists a root basis Πa of Σ which is adapted to the root basis
Π of ∆. Moreover, there exists a finite type subset J of I such that ∆J = {α ∈
∆; ρa(α) = 0}.

N.B. This is part 1) of Theorem 2.

Proof. Let Πa = {γi, i ∈ Ī} be a root basis of Σ such that ρa(∆im
+ ) ⊂ Σim+ , where Ī

is just a set indexing the basis elements. Let p ∈ a such that 〈γi, p〉 = 1, ∀i ∈ Ī and
let P = {α ∈ ∆; 〈α, p〉 ≥ 0}. If ∆ is finite, then P is clearly a parabolic subsystem
of ∆ and the result is trivial. Suppose now that ∆im 6= ∅; then p satisfies the
conditions of the Lemma 3.9 and we may assume that p lies in the facet of type J
for some subset J of finite type in I. In which case P = ∆J ∪∆+ is the standard
parabolic subsystem of finite type J . Note that, for γ ∈ Σ+, one has 〈γ, p〉 = hta(γ)
the height of γ with respect to Πa. It follows that {α ∈ ∆; ρa(α) = 0} = ∆J , in
particular, ρa(∆+) = ρa(P ) ⊂ Σ+ ∪{0}. Hence, the root basis Πa is adapted to Π.

�

Corollary 3.11. Σ is indecomposable.

Proof. For γ1, γ2 ∈ Πa, there are α1, α2 ∈ ∆+ such that γi = ρa(αi). But γi
is not a sum in Σ+, so, up to ∆J , αi is not a sum: we may assume αi ∈ Π.
As ∆ is indecomposable, there is a root α ∈ ∆ ∩ (α1 + α2 +

∑
α∈Π Z+α). Now

ρa(α) ∈ (Σ ∪ {0}) ∩ (γ1 + γ2 +
∑
γ∈Πa

Z+γ) ⊂ Σ and γ1, γ2 have to be in the same
connected component of Πa. �

From now on, we fix a root basis Πa = {γs, s ∈ Ī}, for the grading root system
Σ, which is adapted to the root basis Π = {αi, i ∈ I} of ∆ (see Theorem 3.10). As
before, let J := {j ∈ I ; ρa(αj) = 0} and I ′ := I \ J . For k ∈ I ′, we denote, as
above, by Ik the connected component of J ∪ {k} containing k, and Jk := J ∩ Ik.

Proposition 3.12.
1) Let s ∈ Ī, then there exists ks ∈ I ′ such that ρa(αks) = γs and any preimage
α ∈ ∆ of γs is equal to αk modulo

∑
j∈Jk Zαj for some k ∈ I ′ satisfying ρa(αk) =

γs.
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2) Let k ∈ I ′ such that ρa(αk) is a real root of Σ. Then ρa(αk) ∈ Πa is a simple
root.

Proof. This result was proved by J. Nervi for affine algebras (see [17, 2.3.10] and
the proof of Prop. 2.3.12). The arguments used there are available for general
Kac-Moody algebras. �

We introduce the following notations :

I ′re := {i ∈ I ′ ; ρa(αi) ∈ Πa} ; I ′im := I ′ \ I ′re,
Ire = ∪

k∈I′re
Ik ; Jre = Ire ∩ J = ∪

k∈I′re
Jk ; J◦ = J \ Jre

Γs := {i ∈ I ′ ; ρa(αi) = γs} ,∀s ∈ Ī .
Note that J◦ is not connected to Ire.

Remark 3.13.
1) In view of Proposition 3.12, assertion 2), one has ρa(αk) ∈ Σim+ , ∀k ∈ I ′im.
2) I = Ire ∪ I ′im ∪ J◦ is a disjoint union.
3) If I ′im = ∅, then I = Ire ∪ J◦. Since I is connected (and Ire is not connected to
J◦) we deduce that J◦ = ∅, I = Ire and I ′re = I ′ = I \ J .
4) If I ′im 6= ∅, then Ire may be non-connected (see the example in §5 below).

Proposition 3.14.
1) Let k ∈ I ′re, then Ik is of finite type.
2) Let s ∈ Ī. If |Γs| ≥ 2 and k 6= l ∈ Γs, then Ik ∪ Il is not connected: g(Ik) and
g(Il) commute and are orthogonal.
3) For all k ∈ I ′re, (Ik, Jk) is an irreducible C−admissible pair.
4) The derived subalgebra m′ of the grading algebra m is contained in g′(Ire) (as
defined in proposition 1.2).

Proof.
1) Suppose that there exists k ∈ I ′re such that Ik is not of finite type; then there
exists an imaginary root βk whose support is the whole Ik. Hence, there exists a
positive integer mk ∈ N such that ρa(βk) = mkρ(αk) is an imaginary root of Σ. It
follows that ρa(αk) is an imaginary root and this contradicts the fact that k ∈ I ′re.
2) Let s ∈ Ī such that |Γs| ≥ 2 and let k 6= l ∈ Γs. Since Vnγs = {0} for all integer
n ≥ 2, the same argument used in 1) shows that Ik ∪ Il is not connected, and Ik
and Il are its two connected components. In particular, [g(Ik), g(Il)] = {0} and
(g(Ik), g(Il)) = {0}.
3) Let k ∈ I ′re and let s ∈ Ī such that ρa(αk) = γs. Let (X̄s, H̄s = γš, Ȳs) be an
sl2−triple in m corresponding to the simple root γs. Let Vγs be the weight space of
g corresponding to γs. In view of Proposition 3.12, assertion 1), one has :

(3.1) Vγs = ⊕
l∈Γs

Vγs ∩ g(Il).

Hence, one can write :

(3.2) X̄s =
∑
l∈Γs

El ; Ȳs =
∑
l∈Γs

Fl ,

with El ∈ Vγs ∩ g(Il) and Fl ∈ V−γs ∩ g(Il). It follows from assertion 2) that

(3.3) H̄s = γš = [X̄s, Ȳs] =
∑
l∈Γs

[El, Fl] =
∑
l∈Γs

Hl,
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where Hl := [El, Fl] ∈ hIl , ∀l ∈ Γs. Then one has, for k ∈ Γs,

2 = 〈γs, γš〉 = 〈αk, γš〉 =
∑
l∈Γs

〈αk, Hl〉 = 〈αk, Hk〉 ,

and for j ∈ Jk,
0 = 〈αj , γš〉 =

∑
l∈Γs

〈αj , Hl〉 = 〈αj , Hk〉.

In particular, Hk is the unique semi-simple element of hIk satisfying :

(3.4) 〈αi, Hk〉 = 2δi,k,∀i ∈ Ik.

Hence, (Ek, Hk, Fk) is an sl2−triple in the simple Lie algebra g(Ik) and since V2γs =
{0}, (Ik, Jk) is an irreducible C−admissible pair for all k ∈ Γs. The statement 4)
follows from the relation (3.2). �

Corollary 3.15. The pair (Ire, Jre) is C−admissible (in the eventually decompos-
able sense of Remark 2.15). If I ′im = ∅, then Ire = I, Jre = J and g is finitely
∆J−graded, with grading subalgebra gJ .

N.B. We have got part 2) of Theorem 2.

Proof. The first assertion is a consequence of Proposition 3.14. By remark 3.13,
when I ′im = ∅, we have I = Ire; hence, by Theorem 2.14, g is finitely ∆J−graded.

�

Definition 3.16. If I ′im 6= ∅, then (I, J) is called a generalized C−admissible pair
and the gradation of g by Σ and m is said imaginary.
On the contrary if I ′im = ∅, the gradation is said real.
If I ′im = J = ∅, the Kac-Moody algebra g is said to be maximally finitely Σ−graded.

Corollary 3.17. The grading subalgebra m of g is symmetrizable and the restriction
to m of the invariant bilinear form of g is non-degenerate.

Proof. Let (. , .)a be the restriction to m of the invariant bilinear form (. , .) of g.
Recall from the proof of Proposition 3.14 that γš =

∑
k∈Γs

Hk, ∀s ∈ Ī. In particular
(γš, γš)a =

∑
k∈Γs

(Hk, Hk) > 0. It follows that (. , .)a is a non-degenerate invariant
bilinear form on m (see §1.4) and that m is symmetrizable. �

Corollary 3.18. Let hJ be the orthogonal of hJ in h. For k ∈ I ′im, write

ρa(αk) =
∑
s∈Ī

ns,kγs.

For s ∈ Ī, choose ls a representative element of Γs. Then a/ca can be viewed as
the subspace of hJ/c defined by the following relations :

〈αk, h〉 = 〈αls , h〉,∀k ∈ Γs,∀s ∈ Ī

〈αk, h〉 =
∑
s∈Ī

ns,k〈αls , h〉,∀k ∈ I ′im.

Proof. The subspace of hJ/c defined by the above relations has dimension |Ī| and
contains a/ca and hence it is equal to a/ca. �
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Proposition 3.19. Let (. , .)a be the restriction to m of the invariant bilinear form
(. , .) of g.
1) Let a′ = a∩m′ and let a′′ be a supplementary subspace of a′ in a which is totally
isotropic relatively to (. , .)a. Then a′′ ∩ h′ = {0}.
2) Let AIre be the submatrix of A indexed by Ire. Then there exists a subspace hIre
of h containing a such that (hIre , ΠIre ,Π ˇIre) is a realization of AIre . In particular,
the Kac-Moody subalgebra g(Ire) associated to this realization (in 1.2) contains the
grading subalgebra m.
3) The Kac-Moody algebra g(Ire) is finitely ∆(Ire)

Jre−graded and its grading sub-
algebra is the subalgebra g(Ire)

Jre associated to the C−admissible pair (Ire, Jre) as
in Proposition 2.11.
4) The Kac-Moody algebra g(Ire)

Jre contains m.

Proof.
1) Recall that the center ca of m is contained in the center c of g. Since h′ = c⊥

and ca is in duality with a′′ relatively to (. , .)a, we deduce that a′′ ∩ h′ = {0}.
2) From the proofs of 3.17 and 3.14 we get γ∨s =

∑
k∈Γs

Hk ∈
∑
k∈Γs

hIk = h′Ire . So
ca ⊂ a′ ⊂ h′Ire ⊂ h′. It follows that (h′Ire + hIre) is contained in c⊥a the orthogonal
subspace of ca in h. Since a′′ ∩ c⊥a = {0}, one can choose a supplementary subspace
h′′Ire of (h′Ire + hIre) containing a′′. Let hIre = h′Ire ⊕ h′′Ire , then, by Proposition 1.2,
(hIre , ΠIre ,Π ˇIre) is a realization of AIre .
3) As in Corollary 3.15, assertion 3) is a simple consequence of Theorem 2.14.
4) The algebra a is in hIre ∩ Π⊥J = (hIre)Jre . By the proof of Proposition 3.14, for
s ∈ I, Xs and Y s are linear combinations of the elements in {Ek, Fk | k ∈ Γs} ⊂
g(Ire)

Jre . Hence g(Ire)
Jre contains all generators of m. �

Lemma 3.20. Let l be a Kac-Moody subalgebra of g containing m. Then l is finitely
Σ−graded. In particular, the Kac-Moody subalgebra g(Ire) or g(Ire)

Jre is finitely
Σ−graded.

N.B. Proposition 3.19 and Lemma 3.20 finish the proof of Theorem 2.

Proof. Recall that the Cartan subalgebra a of m is adg−diagonalizable. Since l is
ad(a)−invariant, one has l =

∑
γ∈Σ∪{0}

Vγ ∩ l. By assumption {0} 6= mγ ⊂ Vγ ∩ l for

all γ ∈ Σ. Thus, l is finitely Σ−graded. �

Proposition 3.21. If I ′im = ∅, then g(Ire) = g and the C−admissible subalgebra
gJ is maximally finitely Σ−graded, with grading subalgebra m.

Proof. This result is due to J. Nervi ([17, 2.5.10]) for the affine case; it follows from
the facts that V0 ∩ gJ = hJ and m ⊂ gJ (see Prop. 3.19). �

We now want a precise description of the gradation of g(Ire) by Σ and m; particu-
larly in the case (already mentioned in Remark 3.13) where g(Ire) (and so g(Ire)

Jre)
is decomposable.

Let I1
re, I2

re, ..., Iqre be the connected components of Ire and J ire := Jre ∩ Iire,
i = 1, 2, ..., q. Then g(Ire) =

q
⊕
i=1

g(Iire) and hence g(Ire)
Jre =

q
⊕
i=1

g(Iire)
Ji
re (see

Remark 2.15). Retain the notations introduced just before Proposition 3.14 and
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those introduced in its proof.
For s ∈ Ī and i = 1, 2, ..., q, let Γis := Γs∩Iire. If Γis is non-empty, put Eis :=

∑
l∈Γi

s

El;

F is :=
∑
l∈Γi

s

Fl and Hi
s :=

∑
l∈Γi

s

Hl. We take Eis = F is = Hi
s = 0 if Γis is empty. Note

that Γs =
q
∪
i=1

Γis (disjoint union) and from the proof of the Proposition 3.14 we get
the following relations

(3.5) X̄s =

q∑
i=1

Eis ; Ȳs =

q∑
i=1

F is ,∀s ∈ Ī ,

(3.6) H̄s = γš = [X̄s, Ȳs] =

q∑
i=1

[Eis, F
i
s ] =

q∑
i=1

Hi
s,∀s ∈ Ī .

Lemma 3.22. Let s ∈ Ī and i ∈ {1, 2, ..., q} such that Γis 6= ∅. Then we have
1) Γit 6= ∅ for all t ∈ Ī satisfying 〈γt, γš〉 < 0.
2) Γit 6= ∅, ∀t ∈ Ī.

Proof. To prove 1), suppose Γit = ∅ for any t satisfying 〈γt, γš〉 < 0. Let k ∈ Γis,

then 〈γs, γ ť〉 =

q∑
j=1

j 6=i

〈αk, Hj
t 〉 = 0, a contradiction since 〈γs, γ ť〉 must be negative.

Thus Γis 6= ∅ iff Γit 6= ∅. The second statement follows from the connectedness of Ī :
For t ∈ Ī, there exists a sequence s0 = s, s1, ..., sn = t in Ī such that sj is linked to
sj+1 for all j = 0, 1, ..., n− 1. By 1) Γisj is, as Γis, non-empty for all j = 0, 1, ..., n.
In particular Γit 6= ∅. �

Lemma 3.23. Γis 6= ∅, ∀s ∈ Ī, ∀i = 1, 2, ..., q, and (Hi
s)s∈Ī is free for all i =

1, 2, ..., q.

Proof. Recall that Ire = ∪
k∈I′re

Ik, with all the Ik connected. Let i ∈ {1, 2, ...., q}

and let k ∈ I ′re such that Ik ⊂ Iire. Let s ∈ Ī such that ρa(αk) = γs, then k ∈ Γis
and Γis 6= ∅. By the Lemma 3.22, Γit 6= ∅ for all t ∈ Ī. Thus Hi

s 6= 0, ∀s ∈ Ī;
∀i = 1, 2, ..., q, and the freeness of (Hi

s)s∈Ī follows from that of (Hk)k∈ I′re
. �

Proposition 3.24. For i = 1, 2, ..., q, let pi be the projection of g(Ire) on g(Iire)
with kernel ⊕j 6=i g(Ijre) and let mi := pi(m). Then we have :
1) mi is a Kac-Moody subalgebra of g(Iire)

Ji
re isomorphic to m.

2) The Kac-Moody subalgebra g(Iire)
Ji
re is maximally finitely Σi−graded, where Σi

is the root system of mi relative to the Cartan subalgebra ai := pi(a).

N.B.Note thatm is contained in
q
⊕
i=1

mi. In particular,
q
⊕
i=1

mi is finitely Σ−graded.

If we identify
q
⊕
i=1

mi with mq, then the grading subalgebra m can be viewed as the

diagonal subalgebra ∆(mq) of mq: ∆(mq) := {(X,X, ...., X) ;X ∈ m}.

Proof. For i ∈ {1, 2, ..., q}, pi is a morphism of Lie algebras and mi := pi(m) is
contained in g(Iire)

Ji
re . For s ∈ Ī, one has pi(γš) = Hi

s. Thus the restriction of pi to
a′ := [a, a] = ⊕s∈Ī Cγš is injective by Lemma 3.23. Since m is indecomposable, pi
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when restricted to m is still injective (see [12, 1.7]). Thus mi = pi(m) is isomorphic
to m and we have the following commutative diagram :

m� _

��

∼
pi

//

	

mi� _

��
g(Ire)

Jre
� _

��

pi // //

	

g(Iire)
Ji
re
� _

��
g(Ire)

pi // // g(Iire)

For the second assertion, Let ai := pi(a) and Σi = ∆(mi, ai). When restricted to m

pi induces an isomorphism of root systems ψi : Σi → Σ such that

〈α, h〉 = 〈ψ−1
i (α), pi(h)〉 , ∀α ∈ Σ ,∀h ∈ a.

Note that for α ∈ Σ and X ∈ g(Ire) satisfying [h,X] = 〈α, h〉X, ∀h ∈ a, one has
[hi, pi(X)] = 〈ψ−1

i (α), hi〉pi(X), ∀hi ∈ ai. Since g(Ire) (resp. g(Ire)
Jre) is finitely

Σ−graded and pi is surjective, the Kac-Moody subalgebra g(Iire) (resp. g(Iire)
Ji
re)

is finitely Σi−graded. For k ∈ Iire, Let ρi(αk) be the restriction of αk to ai. Then
(ρi(αk) = 0) ⇐⇒ (ρa(αk) = 0) ⇐⇒ (k ∈ J ire). By Proposition 3.21, g(Iire)

Ji
re is

maximally finitely Σi−graded. �

Corollary 3.25. If g is Lorentzian then Ire is connected.

Proof. If g is Lorentzian, then By Proposition 3.6, the grading subalgebra m and
hence all the mi (i = 1, 2, ..., q) are also Lorentzian. When restricted to

q
⊕
i=1

ai the

invariant bilinear form (. , .) is still non-degenerate and has signature (q(r − 1), q),
where r is the common rank of the mi, i = 1, 2, ..., q. Hence q = 1 and Ire is
connected. �

Proposition 3.26. If g is of finite, affine or hyperbolic type, then any finite gra-
dation is real: I ′im = ∅ and (I, J) is a C−admissible pair.

Proof. The result is trivial if g is of finite type. Suppose I ′im 6= ∅ for one of the
other cases. If g is affine, then Ire is of finite type and by Lemma 3.19 , m is
contained in the finite dimensional semi-simple Lie algebra g(Ire). This contradicts
the fact that m is, as g, of affine type (see Proposition 3.6). If g is hyperbolic, then
it is Lorentzian and perfect (cf. section 1.1). By Lemma 3.20 and Corollary 3.25,
g(Ire) is an indecomposable finitely Σ−graded Kac-Moody subalgebra of g. As Ire
is assumed to be a proper connected subset of I, g(Ire) is of finite or affine type, a
contradiction since, by Proposition 3.6, m must be Lorentzian. Hence I ′im = ∅ in
the two last cases. �

Proposition 3.27. If g is hyperbolic, then the grading subalgebra m is also hyper-
bolic.

Proof. Recall that in this case, Ire = I (see Proposition 3.26 and Corollary 3.15).
Let Ī1 be a proper subset of Ī and suppose that Ī1 is connected. Let I1 =
∪
s∈Ī1

( ∪
k∈Γs

Ik). Then, I1 is a proper subset of I. We may assume that the sub-

algebra m(Ī1) of m is contained in g(I1). Let Σ1 := Σ(Ī1) be the root system
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of m(Ī1). Then, it is not difficult to check that g(I1) is finitely Σ1−graded. The
argument used in Proposition 3.24 shows that the indecomposable components of
g(I1) (which all are of finite or affine type) are finitely Σ1−graded. By Proposition
3.6, m(Ī1) is of finite or affine type. Hence m is hyperbolic. �

Corollary 3.28. The problem of classification of finite real gradations of g comes
down first to classify the C−admissible pairs (I, J) of g and then the maximal finite
gradations of the corresponding admissible algebra gJ . When g is of finite, affine
or hyperbolic type, we get thus all finite gradations.

Proof. This follows from Proposition 3.26, Proposition 3.21 and Lemma 1.5. �

4. Maximal gradations

We assume now moreover that g is maximally finitely Σ−graded. We keep the
notations in section 3 but we have J = I ′im = ∅. So I is a quotient of I, with
quotient map ρ defined by ρa(αk) = γρ(k). For s ∈ I, Γs = ρ−1({s}).

Proposition 4.1.
1) If k 6= l ∈ I and ρ(k) = ρ(l), then there is no link between k and l in the Dynkin
diagram of A: αk(α∨l ) = αl(α

∨
k ) = 0 and (αk, αl) = 0.

2) a ⊂ {h ∈ h | αk(h) = αl(h) whenever ρ(k) = ρ(l)}.
3) For good choices of the simple coroots and Chevalley generators (α∨k , ek, fk)k∈I
in g and (γ∨s , Xs, Y s)s∈I in m, we have γ∨s =

∑
k∈Γs

α∨k , Xs =
∑
k∈Γs

ek and
Y s =

∑
k∈Γs

fk.
4) In particular, for s, t ∈ I, we have γs(γ∨t ) =

∑
k∈Γt

αi(α
∨
k ) for any i ∈ Γs.

Proof. Assertions 1) and 2) are proved in 3.14 and 3.18. For i ∈ Γs, γs = ρa(αi) is
the restriction of αi to a; so 4) is a consequence of 3).

For 3) recall the proof of Proposition 3.14. The sl2−triple (Xs, γ
∨
s , Y s) may be

written γ∨s =
∑
k∈Γs

Hk, Xs =
∑
k∈Γs

Ek and Y s =
∑
k∈Γs

Fk where (Ek, Hk, Fk)

is an sl2−triple in g(Ik), with αk(Hk) = 2. But now J = I ′im = ∅, so Ik = {k} and
g(Ik) = Cek ⊕ Cα∨k ⊕ Cfk, hence the result. �

So the grading subalgebra m may be entirely described by the quotient map ρ.
We look now to the reciprocal construction.
So g is an indecomposable and symmetrizable Kac-Moody algebra associated to

a generalized Cartan matrix A = (ai,j)i,j∈I . We consider a quotient I of I with
quotient map ρ : I → I and fibers Γs = ρ−1({s}) for s ∈ I. We suppose that ρ is
an admissible quotient i.e. that it satisfies the following two conditions:

(MG1) If k 6= l ∈ I and ρ(k) = ρ(l), then ak,l = αl(α
∨
k ) = 0.

(MG2) If s 6= t ∈ I, then as,t :=
∑
i∈Γs

ai,j =
∑
i∈Γs

αj(α
∨
i ) is independent of the

choice of j ∈ Γt.

Proposition 4.2. The matrix A = (as,t)s,t∈I is an indecomposable generalized
Cartan matrix.

Proof. Let s 6= t ∈ Ī and let j ∈ Γt. By (MG1) one has āt,t =
∑
i∈Γt

ai,j = aj,j = 2,
and by (MG2) as,t :=

∑
i∈Γs

ai,j ∈ Z− (∀j ∈ Γt). Moreover, as,t = 0 if and only
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if ai,j = 0 (= aj,i), ∀(i, j) ∈ Γs × Γt. It follows that as,t = 0 if and only if
at,s = 0, and Ā is a generalized Cartan matrix. Since A is indecomposable, Ā is
also indecomposable. �

Let hΓ = {h ∈ h | αk(h) = αl(h) whenever ρ(k) = ρ(l)}, γ∨s =
∑
k∈Γs

α∨k and
a′ = ⊕s∈I Cγ∨s ⊂ hΓ. We may choose a subspace a′′ in hΓ such that a′′ ∩ a′ = {0},
the restrictions αi =: γρ(i) to a = a′ ⊕ a′′ of the simple roots αi (corresponding
to different ρ(i) ∈ I) are linearly independent and a′′ is minimal for these two
properties.

Proposition 4.3. (a, {γs | s ∈ I}, {γ∨s | s ∈ I}) is a realization of A.

Proof. Let ` be the rank of A. Note that a contains a′ = ⊕s∈I Cγ∨s ; the family
(γs)s∈Ī is free in the dual space a∗ of a and satisfies 〈γt, γ∨s 〉 = ās,t, ∀s, t ∈ Ī. It
follows that dim(a) ≥ 2|Ī| − ` (see [11, 14.1] or [12, Ex. 1.3]). As a is minimal,
we have dim(a) = 2|Ī| − ` (see [11, 14.2] for minimal realization). Hence (a, {γs |
s ∈ I}, {γ∨s | s ∈ I}) is a (minimal) realization of A. �

We note ∆ρ = Σ ⊂ ⊕s∈I Zγs the root system associated to this realization.
We define now Xs =

∑
k∈Γs

ek and Y s =
∑
k∈Γs

fk. Let m = gρ be the Lie
subalgebra of g generated by a and the elements Xs, Y s for s ∈ I.

Proposition 4.4. The Lie subalgebra m = gρ is the Kac-Moody algebra associated
to the realization (a, {γs | s ∈ I}, {γ∨s | s ∈ I}) of A. Moreover, g is an integrable
gρ−module with finite multiplicities.

Proof. Clearly, the following relations hold in the Lie subalgebra gρ :

[a, a] = 0, [Xs, Y t] = δs,tγ
∨
s (s, t ∈ Ī);

[a,Xs] = 〈γs, a〉Xs, [a, Y s] = −〈γs, a〉Y s (a ∈ a, s ∈ Ī).

For the Serre’s relations, one has :

1− as,t ≥ 1− ai,j , ∀(i, j) ∈ Γs × Γt.

In particular, one can see, by induction on |Γs|, that :

(adXs)
1−as,t(ej) =

( ∑
i∈Γs

adei
)1−as,t

(ej) = 0, ∀j ∈ Γt.

Hence
(adXs)

1−as,t(Xt) = 0, ∀s, t ∈ I,
and in the same way we obtain that :

(adY s)1−as,t(Y t) = 0, ∀s, t ∈ I.
It follows that gρ is a quotient of the Kac-Moody algebra g(A) associated to A and
(a, {γs | s ∈ I}, {γ∨s | s ∈ I}) in which the Cartan subalgebra a of g(A) is embedded.
By [12, 1.7] gρ is equal to g(A).
It’s clear that g is an integrable gρ−module with finite dimensional weight spaces
relative to the adjoint action of a, since for α =

∑
i∈I niαi ∈ ∆+, its restriction

ρa(α) to a is given by

(4.1) ρa(α) =
∑
s∈Ī

( ∑
i∈Γs

ni
)
γs
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�

Proposition 4.5. The Kac-Moody algebra g is maximally finitely ∆ρ−graded with
grading subalgebra gρ.

Proof. As in Theorem 2.14, we will see that ρa(∆+) ⊂ QΓ
+ := ⊕

s∈Ī
Z+γs satisfies, as

Σ+ = ∆ρ
+, the following conditions :

(i) γs ∈ ρa(∆+) ⊂ QΓ
+, 2γs /∈ ρa(∆+), ∀s ∈ Ī.

(ii) if γ ∈ ρa(∆+), γ 6= γs, then the set {γ + kγs; k ∈ Z} ∩ ρa(∆+) is a string
{γ − pγs, ...., γ + qγs}, where p, q ∈ Z+ and p− q = 〈γ, γ∨s 〉;
(iii) if γ ∈ ρa(∆+), then supp(γ) is connected.
Clearly {γs | s ∈ I} ⊂ ρa(∆+) ⊂ QΓ

+. For α ∈ ∆ and s ∈ Ī, the condition
ρa(α) ∈ Nγs implies α ∈ ∆(Γs)

+ = {αi; i ∈ Γs} [see (4.1)]. It follows that
2γs /∈ ρa(∆+) and (i) is satisfied. By Proposition 4.4, g is an integrable gρ−module
with finite multiplicities. Hence, the propriety (ii) follows from [12, 3.6]. Let α ∈ ∆+

and let s, t ∈ supp(ρa(α)). By (4.1) there exists (k, l) ∈ Γs × Γt such that k, l ∈
supp(α), which is connected. Hence there exist i0 = k, i1, ...., in+1 = l such that
αij ∈ supp(α), j = 0, 1, ...., n+1, and for j = 0, 1, ..., n, ij and ij+1 are linked relative
to the generalized Cartan matrix A. In particular, ρ(ij) 6= ρ(ij+1) ∈ supp(ρa(α))

and they are linked relative to the generalized Cartan matrix A, j = 0, 1, ..., n, with
ρ(i0) = s and ρ(in+1) = t. Hence the connectedness of supp(ρa(α)) relative to A. It
follows that ρa(∆+) = ∆ρ

+ and hence ρa(∆) = ∆ρ (see [12, Ex. 5.4]. In particular,
g is finitely ∆ρ−graded with J = ∅ = I ′im.

�

Corollary 4.6. The restriction to m = gρ of the invariant bilinear form (. , .) of g
is non-degenerate. In particular, the generalized Cartan matrix A is symmetrizable
of the same type as A.

Proof. The first part of the corollary follows from Proposition 4.5 and Corollary
3.17. The second part follows from Proposition 3.6. �

Remark 4.7. The map ρ coincides with the map (also denoted ρ) defined at the be-
ginning of this section using the maximal gradation of Proposition 4.5. Conversely
Proposition 4.1 tells that, for a general maximal finite gradation, ρ is admissible
and m = gρ for good choices of the Chevalley generators. So we get a good corre-
spondence between maximal gradations and admissible quotient maps.

By Corollary 3.28 the real finite gradations of a Kac-Moody algebra g are bijec-
tively associated to pairs of a C−admissible pair (I, J) and an admissible quotient
map ρ : I ′ = I \ J → Ī ′.

5. An example

The following example shows that imaginary gradations do exist. It shows in
particular that, for a generalized C−admissible pair (I, J), J◦ may be non-empty
and Ire may be non-connected. Moreover, the Kac-Moody algebra g may be not
graded by the root system of g(Ire).
The imaginary gradations will be studied in a forthcoming paper [7].
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Example 5.1. Consider the Kac Moody algebra g corresponding to the indecom-
posable and symmetric generalized Cartan matrix A :

A =


2 −3 −1 0 0 0
−3 2 −1 0 0 0
−1 −1 2 −1 −1 −1
0 0 −1 2 0 0
0 0 −1 0 2 −3
0 0 −1 0 −3 2


with the corresponding Dynkin diagram :

3
1•

3
•
2

3

•
•
4

)( 5• 3

•
6

3

Note that det(A) = 275 and the symmetric submatrix of A indexed by {1, 2, 4, 5, 6}
has signature (+ + +,−−). Since det(A) > 0, the matrix A should have signa-
ture (+ + ++,−−). Let Σ be the root system associated to the strictly hyperbolic

generalized Cartan matrix
(

2 −3
−3 2

)
, the corresponding Dynkin diagram is the

following :
H3,3

1•
3

2•
3

We will see that g is finitely Σ−graded and describe the corresponding generalized
C−admissible pair.

1) Let τ be the involutive diagram automorphism of g such that τ(1) = 5,
τ(2) = 6 and τ fixes the other vertices. Let σ′n be the normal semi-involution of g
corresponding to the split real form of g. Consider the quasi-split real form g1

R asso-
ciated to the semi-involution τσ′n (see [2] or [6]). Then tR := hτR is a maximal split
toral subalgebra of g1

R. The corresponding restricted root system ∆′ := ∆(gR, tR)
is reduced and the corresponding generalized Cartan matrix A′ is given by :

A′ =


2 −3 −2 0
−3 2 −2 0
−1 −1 2 −1
0 0 −1 2


with the corresponding Dynkin diagram :

3
1• <

3 •2 <
3• 4•

Following N. Bardy [4, 9] , there exists a split real Kac-Moody subalgebra m1
R of

g1
R containing tR such that ∆′ = ∆(m1

R, tR). It follows that g is finitely ∆′−graded.

2) Let m1 := m1
R ⊗ C and t := tR ⊗ C. Denote by α′i := αi/t, i = 1, 2, 3, 4.

Put α′1̌ = α1̌ + α5̌, α′2̌ = α2̌ + α6̌, α′3̌ = α3̌ and α′4̌ = α4̌. Let I1 := {1, 2, 3, 4},
then (t,Π′ = {α′i, i ∈ I1},Π′∨ = {α′ ǐ, i ∈ I1}) is a realization of A′ which is
symmetrizable and Lorentzian.

Let m be the Kac-Moody subalgebra of m1 corresponding to the submatrix Ā

of A′ indexed by {1, 2}. Thus Ā =

(
2 −3
−3 2

)
is strictly hyperbolic. Let a :=
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Cα′1̌ ⊕ Cα′2̌ be the standard Cartan subalgebra of m and let Σ = ∆(m, a). For
α′ ∈ t∗, denote by ρ1(α′) the restriction of α′ to a. Put γs = ρ1(α′s), γš = α′š,
s = 1, 2. Then Πa = {γ1, γ2} is the standard root basis of Σ. One can see easily
that ρ1(α′4) = 0 and ρ1(α′3) = 2(γ1 + γ2) is a strictly positive imaginary root of Σ.
Now we will show that m1 is finitely Σ−graded.
Let (. , .)1 be the normalized invariant bilinear form on m1 such that short real roots
have length 1 and long real roots have square length 2. Then there exists a positive
rational q such that the restriction of (. , .)1 to t has the matrix B1 in the basis Π′̌ ,
where :

B1 = q


2 −3 −1 0
−3 2 −1 0
−1 −1 1 −1/2
0 0 −1/2 1


By duality, the restriction of (. , .)1 to t induces a non-degenerate symmetric bilinear
form on t∗ (see [12, 2.1]) such that its matrix B′1 in the basis Π′, is the following :

B′1 = q−1


2 −3 −2 0
−3 2 −2 0
−2 −2 4 −2
0 0 −2 4


Hence, q equals 2.
Note that for α′ =

∑4
i=1 niα

′
i ∈ ∆′+, we have that

(5.1) (α′, α′)1 = n2
1 + n2

2 + 2n2
3 + 2n2

4 − 3n1n2 − 2n1n3 − 2n2n3 − 2n3n4.

We will show that ρ1(∆′+) = Σ+ ∪ {0}. Note that Σ can be identified with ∆′ ∩
(Zα′1 + Zα′2); hence ρ1 is injective on Σ and Σ+ ⊂ ρ1(∆′+).
Let (. , .)a be the normalized invariant bilinear form on m such that all real roots
have length 2. Then the restriction of (. , .)a to a has the matrix Ba in the basis
Πǎ = {γ1̌, γ2̌}, where :

Ba =

(
2 −3
−3 2

)
Since Ā is symmetric, the non-degenerate symmetric bilinear form, on a∗, induced
by the restriction of (. , .)a to a, has the same matrix Ba in the basis Πa. In
particular, we have that :

(ρ1(α′), ρ1(α′))a = 2[(n1 + 2n3)2 + (n2 + 2n3)2 − 3(n1 + 2n3)(n2 + 2n3)],

since ρ1(α′) = (n1 + 2n3)γ1 + (n1 + 2n3)γ2.
Using (5.1), it is not difficult to check that

(5.2) (ρ1(α′), ρ1(α′))a = 2[(α′, α′)1 − (n3 − n4)2 − 5n2
3 − n2

4]

Suppose n3 = 0, then, since supp(α′) is connected, we have that α′ = n1α
′
1 + n2α

′
2

or α′ = α′4. Hence ρ1(α′) = n1γ1 + n2γ2 ∈ Σ or ρ1(α′) = 0.
Suppose n3 6= 0, then, since (α′, α′)1 ≤ 2, one can see, using (5.2), that

(ρ1(α′), ρ1(α′))a < 0.

As Σ is hyperbolic and ρ1(α′) ∈ Nγ1 + Nγ2, we deduce that ρ1(α′) is a positive
imaginary root of Σ (see [12, 5.10]). It follows that ρ1(∆′+) = Σ+ ∪ {0}.
To see that m1 is finitely Σ−graded, it suffices to prove that, for γ = m1γ1 +m2γ2 ∈
Σ+∪{0}, the set {α′ ∈ ∆′+, ρ1(α′) = γ} is finite. Note that if α′ =

∑4
i=1 niα

′
i ∈ ∆′+

satisfying ρ1(α′) = γ, then ni + 2n3 = mi, i = 1, 2. In particular, there are
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only finitely many possibilities for ni, i = 1, 2, 3. The same argument as the one
used in the proof of Proposition 2.13 shows also that there are only finitely many
possibilities for n4.

3) Recall that m ⊂ m1 ⊂ g. The fact that g is finitely ∆′−graded with grading
subalgebra m1 and m1 is finitely Σ−graded implies that g is finitely Σ−graded (cf.
lemma 1.5). Let I = {1, 2, 3, 4, 5, 6}, then the root basis Πa of Σ is adapted to
the root basis Π of ∆ and we have Ire = {1, 2, 5, 6} (not connected), Γ1 = {1, 5},
Γ2 = {2, 6}, J = {4}, Jre = ∅, I ′im = {3} and J◦ = J = {4}.
Note that, for this example, g(Ire), which is Σ−graded, is isomorphic to m × m.
This gradation corresponds to that of the pseudo-complex real form of m×m (i.e.
the complex Kac-Moody algebra m viewed as real Lie algebra) by its restricted
reduced root system. Since the pair (I3, J3) = ({3, 4}, {4}) is not admissible, it
is not possible to build a Kac-Moody algebra gJ grading finitely g and maximally
finitely Σ−graded.

Acknowledgments We thank the anonymous referee for his/her valuable com-
ments and suggestions.
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