KAC-MOODY LIE ALGEBRAS GRADED BY KAC-MOODY ROOT SYSTEMS

HECHMI BEN MESSAOUD AND GUY ROUSSEAU

Abstract

We look to gradations of Kac-Moody Lie algebras by Kac-Moody root systems with finite dimensional weight spaces. We extend, to general Kac-Moody Lie algebras, the notion of C-admissible pair as introduced by H. Rubenthaler and J. Nervi for semi-simple and affine Lie algebras. If \mathfrak{g} is a Kac-Moody Lie algebra (with Dynkin diagram indexed by I) and (I, J) is such a C-admissible pair, we construct a C-admissible subalgebra \mathfrak{g}^{J}, which is a Kac-Moody Lie algebra of the same type as \mathfrak{g}, and whose root system Σ grades finitely the Lie algebra \mathfrak{g}. For an admissible quotient $\rho: I \rightarrow \bar{I}$ we build also a Kac-Moody subalgebra \mathfrak{g}^{ρ} which grades finitely the Lie algebra \mathfrak{g}. If \mathfrak{g} is affine or hyperbolic, we prove that the classification of the gradations of \mathfrak{g} is equivalent to those of the C-admissible pairs and of the admissible quotients. For general Kac-Moody Lie algebras of indefinite type, the situation may be more complicated; it is (less precisely) described by the concept of generalized C-admissible pairs.

2000 Mathematics Subject Classification. 17B67.
Key words and phrases. Kac-Moody algebra, C-admissible pair, gradation.

Introduction. The notion of gradation of a Lie algebra \mathfrak{g} by a finite root system Σ was introduced by S. Berman and R. Moody [8] and further studied by G. Benkart and E. Zelmanov [5], E. Neher [15], B. Allison, G. Benkart and Y. Gao [1] and J. Nervi [16]. This notion was extended by J. Nervi [17] to the case where \mathfrak{g} is an affine Kac-Moody algebra and Σ the (infinite) root system of an affine KacMoody algebra; in her two articles she uses the notion of C-admissible subalgebra associated to a C-admissible pair for the Dynkin diagram, as introduced by H . Rubenthaler [21].

We consider here a general Kac-Moody algebra \mathfrak{g} (indecomposable and symmetrizable) and the root system Σ of a Kac-Moody algebra. We say that \mathfrak{g} is finitely Σ-graded if \mathfrak{g} contains a Kac-Moody subalgebra \mathfrak{m} (the grading subalgebra) whose root system relatively to a Cartan subalgebra \mathfrak{a} of \mathfrak{m} is Σ and moreover the action of $a d(\mathfrak{a})$ on \mathfrak{g} is diagonalizable with weights in $\Sigma \cup\{0\}$ and finite dimensional weight spaces, see Definition 1.4. The finite dimensionality of weight spaces is a new condition, it was fulfilled by the non-trivial examples of J. Nervi [17] but it excludes the gradings of infinite dimensional Kac-Moody algebras by finite root systems as in [5]. Many examples of these gradations are provided by the almost split real forms of \mathfrak{g}, cf. 1.7. We are interested in describing the possible gradations
of a given Kac-Moody algebra (as in [16], [17]), not in determining all the Lie algebras graded by a given root system Σ (as e.g. in [1] for Σ finite). We carry out completely this project when \mathfrak{g} is affine or hyperbolic.

Let I be the index set of the Dynkin diagram of \mathfrak{g}, we generalize the notion of C-admissible pair (I, J) as introduced by H. Rubenthaler [21] and J. Nervi [16], [17], cf. Definition 2.1. For each Dynkin diagram I the classification of the C-admissible pairs (I, J) is easy to deduce from the list of irreducible C-admissible pairs due to these authors. We are able then to generalize in section 2 their construction of a C-admissible subalgebra (associated to a C-admissible pair) which grades finitely \mathfrak{g} :

Theorem 1. (cf. 2.6, 2.11, 2.14) Let \mathfrak{g} be an indecomposable and symmetrizable Kac-Moody algebra, associated to a generalized Cartan matrix $A=\left(a_{i, j}\right)_{i, j \in I}$. Let $J \subset I$ be a subset of finite type such that the pair (I, J) is C-admissible. There is a generalized Cartan matrix $A^{J}=\left(a_{k, l}^{\prime}\right)_{k, l \in I^{\prime}}$ with index set $I^{\prime}=I \backslash J$ and a Kac-Moody subalgebra \mathfrak{g}^{J} of \mathfrak{g} associated to A^{J}, with root system Δ^{J}. Then \mathfrak{g} is finitely Δ^{J}-graded with grading subalgebra \mathfrak{g}^{J}.

For a general finite gradation of \mathfrak{g} with grading subalgebra \mathfrak{m}, we prove (in section 3) that \mathfrak{m} also is indecomposable, symmetrizable and the restriction to \mathfrak{m} of the invariant bilinear form of \mathfrak{g} is non-degenerate (3.11 and 3.17). The Kac-Moody algebras \mathfrak{g} and \mathfrak{m} have the same type: finite, affine or indefinite; the first two types correspond to the cases already studied e.g. by J. Nervi. Moreover if \mathfrak{g} is indefinite Lorentzian or hyperbolic, then so is \mathfrak{m} (Propositions 3.6 and 3.27). We get also the following precise structure result for this general situation :
Theorem 2. Let \mathfrak{g} be an indecomposable and symmetrizable Kac-Moody algebra, finitely graded by a root system Σ of Kac-Moody type with grading subalgebra \mathfrak{m}. 1) We may choose the Cartan subalgebras \mathfrak{a} of \mathfrak{m}, \mathfrak{h} of \mathfrak{g} such that $\mathfrak{a} \subset \mathfrak{h}$. Then there is a surjective map $\rho_{a}: \Delta \cup\{0\} \rightarrow \Sigma \cup\{0\}$ between the corresponding root systems. We may choose the bases $\Pi_{a}=\left\{\gamma_{s} \mid s \in \bar{I}\right\} \subset \Sigma$ and $\Pi=\left\{\alpha_{i} \mid i \in I\right\} \subset \Delta$ of these root systems such that $\rho_{a}\left(\Delta^{+}\right) \subset \Sigma^{+} \cup\{0\}$ and $\left\{\alpha \in \Delta \mid \rho_{a}(\alpha)=0\right\}=$ $\Delta_{J}:=\Delta \cap\left(\sum_{j \in J} \mathbb{Z} \alpha_{j}\right)$ for some subset $J \subset I$ of finite type.
2) Let $I_{r e}^{\prime}=\left\{i \in I \mid \rho_{a}\left(\alpha_{i}\right) \in \Pi_{a}\right\}$, $I_{i m}^{\prime}=\left\{i \in I \mid \rho_{a}\left(\alpha_{i}\right) \notin \Pi_{a} \cup\{0\}\right\}$. Then $J=\left\{i \in I \mid \rho_{a}\left(\alpha_{i}\right)=0\right\}$. We note $I_{r e}$ (resp. J°) the union of the connected components of $I \backslash I_{i m}^{\prime}=I_{r e}^{\prime} \cup J$ meeting $I_{r e}^{\prime}($ resp. contained in $J)$, and $J_{r e}=J \cap I_{r e}$. Then the pair $\left(I_{r e}, J_{r e}\right)$ is C-admissible (eventually decomposable).
3) There is a Kac-Moody subalgebra $\mathfrak{g}\left(I_{r e}\right)$ of \mathfrak{g}, associated to $I_{r e}$, which contains \mathfrak{m}. This Lie algebra is finitely $\Delta\left(I_{r e}\right)^{J_{r e}}-$ graded, with grading subalgebra $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$. Both algebras $\mathfrak{g}\left(I_{r e}\right)$ and $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$ are finitely Σ-graded with grading subalgebra \mathfrak{m}.

It may happen that $I_{i m}^{\prime}$ is non-empty, we then say that (I, J) is a generalized C-admissible pair and the gradation is imaginary. We give and explain precisely an example in section 5 .

When $I_{i m}^{\prime}$ is empty (i.e. when the gradation is real : 3.16), $I_{r e}=I, J_{r e}=J$, $\mathfrak{g}\left(I_{r e}\right)=\mathfrak{g},(I, J)=\left(I_{r e}, J_{r e}\right)$ is a C-admissible pair and the situation looks much like the one described by J. Nervi in the finite [16] or affine [17] cases. Actually we prove that this is always true when \mathfrak{g} is of finite type, affine or hyperbolic (Proposition 3.26). In this real case we get the gradation of \mathfrak{g} with two levels: \mathfrak{g} is finitely Δ^{J}-graded with grading subalgebra \mathfrak{g}^{J} as in Theorem 1 and \mathfrak{g}^{J} is
finitely Σ-graded with grading subalgebra \mathfrak{m}. But the gradation of \mathfrak{g}^{J} by Σ and \mathfrak{m} is such that the corresponding set " J " described as in Theorem 2 is empty; we say (following [16], [17]) that it is a maximal gradation, cf. Definition 3.16 and Proposition 3.21.

To get a complete description of the real gradations, it remains to describe the maximal gradations; this is done in section 4. We prove in Proposition 4.1 that a maximal gradation $(\mathfrak{g}, \Sigma, \mathfrak{m})$ is entirely described by a quotient map $\rho: I \rightarrow \bar{I}$ which is admissible i.e. satisfies two simple conditions (MG1) and (MG2) with respect to the generalized Cartan matrix $A=\left(a_{i, j}\right)_{i, j \in I}$. Conversely for any admissible quotient map ρ, it is possible to build a maximal gradation of \mathfrak{g} associated to this map, cf. Proposition 4.5 and Remark 4.7.

1. Preliminaries

We recall the basic results on the structure of Kac-Moody Lie algebras and we set the notations. More details can be found in the book of Kac [12]. We end by the definition of finitely graded Kac-Moody algebras.
1.1. Generalized Cartan matrices. Let I be a finite index set. A matrix $A=$ $\left(a_{i, j}\right)_{i, j \in I}$ is called a generalized Cartan matrix if it satisfies :
(1) $a_{i, i}=2 \quad(i \in I)$
(2) $a_{i, j} \in \mathbb{Z}^{-} \quad(i \neq j)$
(3) $a_{i, j}=0$ implies $a_{j, i}=0$.

The matrix A is called decomposable if for a suitable permutation of I it takes the form $\left(\begin{array}{cc}B & 0 \\ 0 & C\end{array}\right)$ where B and C are square matrices. If A is not decomposable, it is called indecomposable.
The matrix A is called symmetrizable if there exists an invertible diagonal matrix $D=\operatorname{diag}\left(d_{i}, i \in I\right)$ such that $D A$ is symmetric. The entries $d_{i}, i \in I$, can be chosen to be positive rationals and if moreover the matrix A is indecomposable, then these entries are unique up to a constant factor.
Any indecomposable generalized Cartan matrix is of one of three mutually exclusive types : finite, affine and indefinite ([12, Chap. 4]). A generalized Cartan matrix is said of finite type if each of its indecomposable factors is of finite type.
An indecomposable and symmetrizable generalized Cartan matrix A is called Lorentzian if it is non-singular and the corresponding symmetric matrix has signature $(++$ $\ldots+-)$; it is then of indefinite type.
An indecomposable generalized Cartan matrix A is called strictly hyperbolic (resp. hyperbolic) if the deletion of any one vertex, and the edges connected to it, of the corresponding Dynkin diagram yields a disjoint union of Dynkin diagrams of finite (resp. finite or affine) type.
Note that a symmetrizable hyperbolic generalized Cartan matrix is non-singular and Lorentzian (cf. [14]).
1.2. Kac-Moody algebras and groups. (See [12] and [18]).

Let $A=\left(a_{i, j}\right)_{i, j \in I}$ be a symmetrizable generalized Cartan matrix. Let $\left(\mathfrak{h}_{\mathbb{R}}, \Pi=\right.$ $\left.\left\{\alpha_{i}, i \in I\right\}, \Pi=\left\{\alpha_{i}, i \in I\right\}\right)$ be a realization of A over the real field \mathbb{R} : thus $\mathfrak{h}_{\mathbb{R}}$ is a real vector space such that $\operatorname{dim}\left(\mathfrak{h}_{\mathbb{R}}\right)=|I|+\operatorname{corank}(A), \Pi$ and Π are linearly independent in $\mathfrak{h}_{\mathbb{R}}^{*}$ and $\mathfrak{h}_{\mathbb{R}}$ respectively such that $\left\langle\alpha_{j}, \alpha_{\dot{i}}\right\rangle=a_{i, j}$. Let $\mathfrak{h}=\mathfrak{h}_{\mathbb{R}} \otimes \mathbb{C}$, then $\left(\mathfrak{h}, \Pi, \Pi^{\prime}\right)$ is a realization of A over the complex field \mathbb{C}.

It follows that, if A is non-singular, then Π^{Υ} (resp. Π) is a basis of \mathfrak{h} (resp. $\left.\mathfrak{h}^{*}\right)$; moreover $\mathfrak{h}_{\mathbb{R}}=\left\{h \in \mathfrak{h} \mid \alpha_{i}(h) \in \mathbb{R}, \forall i \in I\right\}$ is well defined by the realization $\left(\mathfrak{h}, \Pi, \Pi^{\top}\right)$.

Let $\mathfrak{g}=\mathfrak{g}(A)$ be the complex Kac-Moody Lie algebra associated to A : it is generated by $\left\{\mathfrak{h}, e_{i}, f_{i}, i \in I\right\}$ with the following relations

$$
\begin{array}{lll}
{[\mathfrak{h}, \mathfrak{h}]=0,} & {\left[e_{i}, f_{j}\right]=\delta_{i, j} \alpha_{i}} & (i, j \in I) ; \\
{\left[h, e_{i}\right]=\left\langle\alpha_{i}, h\right\rangle e_{i},} & {\left[h, f_{i}\right]=-\left\langle\alpha_{i}, h\right\rangle f_{i}} & (h \in \mathfrak{h}) ; \tag{1.1}\\
\left(\operatorname{ad} e_{i}\right)^{1-a_{i, j}}\left(e_{j}\right)=0, & \left(\operatorname{ad} f_{i}\right)^{1-a_{i, j}}\left(f_{j}\right)=0 & (i \neq j) .
\end{array}
$$

The Kac-Moody algebra $\mathfrak{g}=\mathfrak{g}(A)$ decomposes as a direct sum of factors $\mathfrak{g}\left(A_{i}\right)$, where A_{1}, \cdots, A_{r} are the indecomposable factors of A. It is said indecomposable if the corresponding generalized Cartan matrix A is indecomposable and of finite, affine or indefinite type if A is.

The derived algebra \mathfrak{g}^{\prime} of \mathfrak{g} is generated by the Chevalley generators $e_{i}, f_{i}, i \in I$, and the center \mathfrak{c} of \mathfrak{g} lies in $\mathfrak{h}^{\prime}=\mathfrak{h} \cap \mathfrak{g}^{\prime}=\sum_{i \in I} \mathbb{C} \alpha_{\dot{i}}$. If the generalized Cartan matrix A is indecomposable and non-singular, then $\mathfrak{g}=\mathfrak{g}^{\prime}$ is a (finite or infinite)dimensional simple Lie algebra, and the center \mathfrak{c} is trivial.

The subalgebra \mathfrak{h} is a maximal $\operatorname{ad}(\mathfrak{g})$-diagonalizable subalgebra of \mathfrak{g}, it is called the standard Cartan subalgebra of \mathfrak{g}. Let $\Delta=\Delta(\mathfrak{g}, \mathfrak{h})$ be the corresponding root system; then Π is a root basis of Δ and $\Delta=\Delta^{+} \cup \Delta^{-}$, where $\Delta^{ \pm}=\Delta \cap \mathbb{Z}^{ \pm} \Pi$ is the set of positive (or negative) roots relative to the basis Π. For $\alpha \in \Delta$, let \mathfrak{g}_{α} be the root space of \mathfrak{g} corresponding to the root α; then $\mathfrak{g}=\mathfrak{h} \oplus\left(\underset{\alpha \in \Delta}{\oplus} \mathfrak{g}_{\alpha}\right)$.

The Weyl group W of $(\mathfrak{g}, \mathfrak{h})$ is generated by the fundamental reflections $r_{i}(i \in I)$ such that $r_{i}(h)=h-\left\langle\alpha_{i}, h\right\rangle \alpha_{i}^{\text {f }}$ for $h \in \mathfrak{h}$, it is a Coxeter group on $\left\{r_{i}, i \in I\right\}$ with length function $w \mapsto l(w), w \in W$. The Weyl group W acts on \mathfrak{h}^{*} and Δ, we set $\Delta^{r e}=W(\Pi)$ (the real roots) and $\Delta^{i m}=\Delta \backslash \Delta^{r e}$ (the imaginary roots). If the generalized Cartan matrix A is indecomposable, then any root basis of Δ is W-conjugate to Π or $-\Pi$.

A Borel subalgebra of \mathfrak{g} is a maximal completely solvable subalgebra. A parabolic subalgebra of \mathfrak{g} is a (proper) subalgebra containing a Borel subalgebra. The standard positive (or negative) Borel subalgebra is $\mathfrak{b}^{ \pm}:=\mathfrak{h} \oplus\left(\oplus_{\alpha \in \Delta \pm} \mathfrak{g}_{\alpha}\right)$. A parabolic subalgebra \mathfrak{p}^{+}(resp. \mathfrak{p}^{-}) containing \mathfrak{b}^{+}(resp. \mathfrak{b}^{-}) is called positive (resp. negative) standard parabolic subalgebra of \mathfrak{g}; then there exists a subset J of I (called the type of $\left.\mathfrak{p}^{ \pm}\right)$such that $\mathfrak{p}^{ \pm}=\mathfrak{p}^{ \pm}(J):=\left(\underset{\alpha \in \Delta_{J}}{\oplus} \mathfrak{g}_{\alpha}\right)+\mathfrak{b}^{ \pm}$, where $\Delta_{J}=\Delta \cap\left(\oplus_{j \in J} \mathbb{Z} \alpha_{j}\right)$ (cf. [13]).

In [18], D.H. Peterson and V.G. Kac construct a group G, which is the connected and simply connected complex algebraic group associated to \mathfrak{g} when \mathfrak{g} is of finite type, depending only on the derived Lie algebra \mathfrak{g}^{\prime} and acting on \mathfrak{g} via the adjoint representation $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$. It is generated by the one-parameter subgroups $U_{\alpha}=\exp \left(\mathfrak{g}_{\alpha}\right), \alpha \in \Delta^{r e}$, and $\left.\operatorname{Ad}\left(U_{\alpha}\right)=\exp \left(\operatorname{ad} \mathfrak{g}_{\alpha}\right)\right)$. In the definitions of J. Tits [22] G is the group of complex points of \mathfrak{G}_{D} where D is the datum associated to A and the \mathbb{Z}-dual Λ of $\bigoplus_{i \in I} \mathbb{Z} \alpha_{i}^{\vee}$.

The Cartan subalgebras of \mathfrak{g} are G-conjugate. If \mathfrak{g} is indecomposable and not of finite type, there are exactly two conjugate classes (under the adjoint action of G) of Borel subalgebras : $G \cdot \mathfrak{b}^{+}$and $G \cdot \mathfrak{b}^{-}$. A Borel subalgebra \mathfrak{b} of \mathfrak{g} which is G-conjugate to \mathfrak{b}^{+}(resp. \mathfrak{b}^{-}) is called positive (resp. negative). It follows that
any parabolic subalgebra \mathfrak{p} of \mathfrak{g} is G-conjugate to a standard positive (or negative) parabolic subalgebra, in which case, we say that \mathfrak{p} is positive (or negative).
1.3. Standard Kac-Moody subalgebras and subgroups. Let J be a nonempty subset of I. Consider the generalized Cartan matrix $A_{J}=\left(a_{i, j}\right)_{i, j \in J}$.
Definition 1.1. The subset J is called of finite type if the corresponding generalized Cartan matrix A_{J} is. We say also that J is connected, if the Dynkin subdiagram, with vertices indexed by J, is connected or, equivalently, the corresponding generalized Cartan submatrix A_{J} is indecomposable.

Proposition 1.2. Let $\Pi_{J}=\left\{\alpha_{j}, j \in J\right\}$ and $\Pi_{J}^{\check{ }}=\left\{\alpha_{j}\right.$, $\left.j \in J\right\}$. Let $\mathfrak{h}_{J}^{\prime}$ be the subspace of \mathfrak{h} generated by $\Pi_{J}^{\check{ }}$, and $\mathfrak{h}^{J}=\Pi_{J}^{\perp}=\left\{h \in \mathfrak{h},\left\langle\alpha_{j}, h\right\rangle=0, \forall j \in J\right\}$. Let $\mathfrak{h}_{J}^{\prime \prime}$ be a supplementary subspace of $\mathfrak{h}_{J}^{\prime}+\mathfrak{h}^{J}$ in \mathfrak{h} and let

$$
\mathfrak{h}_{J}=\mathfrak{h}_{J}^{\prime} \oplus \mathfrak{h}_{J}^{\prime \prime},
$$

then, we have :

1) $\left(\mathfrak{h}_{J}, \Pi_{J}, \Pi_{J}^{\check{v}}\right)$ is a realization of the generalized Cartan matrix A_{J}. Hence $\mathfrak{h}_{J}^{\prime \prime}=\{0\}, \mathfrak{h}_{J}=\mathfrak{h}_{J}^{\prime}$ when A_{J} is regular (e.g. when J is of finite type).
2) The subalgebra $\mathfrak{g}(J)$ of \mathfrak{g}, generated by \mathfrak{h}_{J} and the $e_{j}, f_{j}, j \in J$, is the KacMoody Lie algebra associated to the realization $\left(\mathfrak{h}_{J}, \Pi_{J}, \Pi_{J}\right)$ of A_{J}.
3) The corresponding root system $\Delta(J)=\Delta\left(\mathfrak{g}(J), \mathfrak{h}_{J}\right)$ can be identified with $\Delta_{J}:=$ $\Delta \cap\left(\oplus_{j \in J} \mathbb{Z} \alpha_{j}\right)$.
N.B. The derived algebra $\mathfrak{g}^{\prime}(J)$ of $\mathfrak{g}(J)$ is generated by the e_{j}, f_{j} for $j \in J$; it does not depend of the choice of $\mathfrak{h}_{J}^{\prime \prime}$.

Proof. We may assume \mathfrak{g} indecomposable.

1) Note that $\operatorname{dim}\left(\mathfrak{h}_{J}^{\prime \prime}\right)=\operatorname{dim}\left(\mathfrak{h}_{J}^{\prime} \cap \mathfrak{h}^{J}\right)=\operatorname{corank}\left(A_{J}\right)$. In particular, $\operatorname{dim}\left(\mathfrak{h}_{J}\right)-|J|=$ $\operatorname{corank}\left(A_{J}\right)$. If $\alpha \in \operatorname{Vect}\left(\alpha_{j}, j \in J\right)$, then α is entirely determined by its restriction to \mathfrak{h}_{J} and hence Π_{J} defines, by restriction, a linearly independent set in \mathfrak{h}_{J}^{*}. As $\Pi_{J}^{\check{c}}$ is linearly independent, assertion 1) holds.
Assertions 2) and 3) are straightforward.
In the same way, the subgroup G_{J} of G generated by $U_{ \pm \alpha_{j}}, j \in J$, is equal to the Kac-Moody group associated to the generalized Cartan matrix A_{J} : it is clearly a quotient; the well known equality is proven explicitly in [20, 5.15.2], it may be deduced from [22, th. 1], see also [19, 8.4.2].
1.4. The invariant bilinear form. (See [12]).

We recall that the generalized Cartan matrix A is supposed symmetrizable. There exists a non-degenerate $\operatorname{ad}(\mathfrak{g})$ - invariant symmetric \mathbb{C}-bilinear form (., .) on \mathfrak{g}, which is entirely determined by its restriction to \mathfrak{h}, such that

$$
\left(\alpha_{i}, h\right)=\frac{\left(\alpha_{\check{i}}, \alpha_{i}\right)}{2}\left\langle\alpha_{i}, h\right\rangle, \quad i \in I, h \in \mathfrak{h},
$$

and we may thus assume that

$$
\begin{equation*}
\left(\alpha_{i}, \alpha_{\check{i}}\right) \text { is a positive rational for all } i . \tag{1.2}
\end{equation*}
$$

The non-degenerate invariant bilinear form (., .) induces an isomorphism $\nu: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ such that $\alpha_{i}=\frac{2 \nu\left(\alpha_{\check{i}}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ and $\alpha_{i}=\frac{2 \nu^{-1}\left(\alpha_{i}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ for all i.
There exists a totally isotropic subspace $\mathfrak{h}^{\prime \prime}$ of \mathfrak{h} (relative to the invariant bilinear
form (.,.)) which is in duality with the center \mathfrak{c} of \mathfrak{g}. In particular, $\mathfrak{h}^{\prime \prime}$ defines a supplementary subspace of \mathfrak{h}^{\prime} in \mathfrak{h}.
Note that any invariant symmetric bilinear form b on \mathfrak{g} satisfying $b\left(\alpha_{\check{i}}, \alpha_{i}\right)>0$, $\forall i \in I$, is non-degenerate and $b\left(\alpha_{i}^{\check{c}}, h\right)=\frac{b\left(\alpha_{\grave{i}}, \alpha_{\tilde{\imath}}\right)}{2}\left\langle\alpha_{i}, h\right\rangle, \forall i \in I, \forall h \in \mathfrak{h}$. It follows that, if \mathfrak{g} is indecomposable, the restriction of b to \mathfrak{g}^{\prime} is proportional to that of (., .). In particular, if moreover A is non-singular, then the invariant bilinear form $(.,$.$) satisfying the condition 1.2$ is unique up to a positive rational factor.
1.5. The Tits cone. (See [12, Chap. 3 and 5]).

Let $C:=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;\left\langle\alpha_{i}, h\right\rangle \geq 0, \forall i \in I\right\}$ be the fundamental chamber (relative to the root basis Π) and let $X:=\bigcup_{w \in W} w(C)$ be the Tits cone. We have the following description of the Tits cone:
(1) $X=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;\langle\alpha, h\rangle<0\right.$ only for a finite number of $\left.\alpha \in \Delta^{+}\right\}$.
(2) $X=\mathfrak{h}_{\mathbb{R}}$ if and only if the generalized Cartan matrix A is of finite type.
(3) If A is indecomposable of affine type, then $X=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;\langle\delta, h\rangle>0\right\} \cup \mathbb{R} \nu^{-1}(\delta)$, where δ is the lowest imaginary positive root of Δ^{+}.
(4) If A is indecomposable of indefinite type, then the closure of the Tits cone, for the metric topology on $\mathfrak{h}_{\mathbb{R}}$, is $\bar{X}=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;\langle\alpha, h\rangle \geq 0, \forall \alpha \in \Delta_{i m}^{+}\right\}$.
(5) If $h \in X$, then h lies in the interior $\stackrel{\circ}{X}$ of X if and only if the fixer W_{h} of h, in the Weyl group W, is finite. Thus $\stackrel{\circ}{X}$ is the union of finite type facets of X.
(6) If A is hyperbolic, then $\bar{X} \cup(-\bar{X})=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;(h, h) \leq 0\right\}$ and the set of imaginary roots is $\Delta^{i m}=\{\alpha \in Q \backslash\{0\} ;(\alpha, \alpha) \leq 0\}$, where $Q=\mathbb{Z} \Pi$ is the root lattice.

Remark 1.3. Combining (3) and (4) one obtains that if A is not of finite type then $\bar{X}=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;\langle\alpha, h\rangle \geq 0, \forall \alpha \in \Delta_{\text {im }}^{+}\right\}$.

1.6. Graded Kac-Moody Lie algebras.

Definition 1.4. Let Σ be a root system of Kac-Moody type. The Kac-Moody Lie algebra \mathfrak{g} is said to be finitely Σ-graded if :
(i) \mathfrak{g} contains, as a subalgebra, a Kac-Moody algebra \mathfrak{m} whose root system relative to a Cartan subalgebra \mathfrak{a} is equal to Σ.
(ii) $\mathfrak{g}=\sum_{\alpha \in \Sigma \cup\{0\}} V_{\alpha}$, with $V_{\alpha}=\{x \in \mathfrak{g} ;[a, x]=\langle\alpha, a\rangle x, \forall a \in \mathfrak{a}\}$.
(iii) V_{α} is finite dimensional for all $\alpha \in \Sigma \cup\{0\}$.

We say that \mathfrak{m} (as in (i) above) is a grading subalgebra, and ($\mathfrak{g}, \Sigma, \mathfrak{m}$) a gradation with finite multiplicities (or, to be short, a finite gradation).

Note that from (ii) the Cartan subalgebra \mathfrak{a} of \mathfrak{m} is $\operatorname{ad}(\mathfrak{g})$-diagonalizable, and we may assume that \mathfrak{a} is contained in the standard Cartan subalgebra \mathfrak{h} of \mathfrak{g}.

Lemma 1.5. Let \mathfrak{g} be a Kac-Moody algebra finitely Σ-graded, with grading subalgebra \mathfrak{m}. If \mathfrak{m} itself is finitely Σ^{\prime}-graded (for some root system Σ^{\prime} of Kac-Moody type), then \mathfrak{g} is finitely Σ^{\prime}-graded.
Proof. If \mathfrak{m}^{\prime} is the grading subalgebra of \mathfrak{m}, we may suppose the Cartan subalgebras such that $\mathfrak{a}^{\prime} \subset \mathfrak{a} \subset \mathfrak{h}$, with obvious notations. Conditions (i) and (ii) are clearly satisfied for $\mathfrak{g}, \mathfrak{m}^{\prime}$ and \mathfrak{a}^{\prime}. Condition (iii) for \mathfrak{m} and Σ^{\prime} tells that, for all $\alpha^{\prime} \in \Sigma^{\prime}$, the set $\left\{\alpha \in \Sigma \mid \alpha_{\mid \mathfrak{a}^{\prime}}=\alpha^{\prime}\right\}$ is finite. But $V_{\alpha^{\prime}}=\oplus_{\alpha_{\mid \mathfrak{a}^{\prime}}=\alpha^{\prime}} V_{\alpha}$, so each $V_{\alpha^{\prime}}$ is finite dimensional if this is true for each V_{α}.

1.7. Examples of gradations.

1) Let $\Delta=\Delta(\mathfrak{g}, \mathfrak{h})$ the root system of \mathfrak{g} relative to \mathfrak{h}, then \mathfrak{g} is finitely Δ-graded : this is the trivial gradation of \mathfrak{g} by its own root system.
2) Let $\mathfrak{g}_{\mathbb{R}}$ be an almost split real form of \mathfrak{g} (see [2]) and let $\mathfrak{t}_{\mathbb{R}}$ be a maximal split toral subalgebra of $\mathfrak{g}_{\mathbb{R}}$. Suppose that the restricted root system $\Delta^{\prime}=\Delta\left(\mathfrak{g}_{\mathbb{R}}, \mathfrak{t}_{\mathbb{R}}\right)$ is reduced of Kac-Moody type. In $[4, \S 9], \mathrm{N}$. Bardy constructed a split real KacMoody subalgebra $\mathfrak{l}_{\mathbb{R}}$ of $\mathfrak{g}_{\mathbb{R}}$ such that $\Delta^{\prime}=\Delta\left(\mathfrak{l}_{\mathbb{R}}, \mathfrak{t}_{\mathbb{R}}\right)$, then \mathfrak{g} is obviously finitely Δ^{\prime}-graded.

We get thus many examples coming from known tables for almost split real forms: see [2] in the affine case and [6] in the hyperbolic case.
3) When $\mathfrak{g}_{\mathbb{R}}$ is an almost compact real form of \mathfrak{g}, the same constructions should lead to gradations by finite root systems, as in [5] e.g.

2. Gradations associated to C-admissible pairs.

In this section, we suppose the Kac-Moody Lie algebra \mathfrak{g} indecomposable and symmetrizable, see however Remark 2.15. We shall build a finite gradation of \mathfrak{g} associated to some good subset of I.

We recall some definitions introduced by H. Rubenthaler ([21]) and J. Nervi ([16], [17]). Let J be a subset of I of finite type. For $k \in I \backslash J$, we denote by I_{k} the connected component, containing k, of the Dynkin subdiagram corresponding to $J \cup\{k\}$, and let $J_{k}:=I_{k} \backslash\{k\}$.

We are interested in the case where I_{k} is of finite type for all $k \in I \backslash J$: that is always true if \mathfrak{g} is of affine type and $|I \backslash J| \geq 2$ or if \mathfrak{g} is of hyperbolic type and $|I \backslash J| \geq 3$.
For $k \in I \backslash J$, let $\mathfrak{g}\left(I_{k}\right)$ be the simple subalgebra generated by $\mathfrak{g}_{ \pm \alpha_{i}}, i \in I_{k}$, then $\mathfrak{h}_{I_{k}}=\mathfrak{h} \cap \mathfrak{g}\left(I_{k}\right)=\sum_{i \in I_{k}} \mathbb{C} \alpha_{i}$ is a Cartan subalgebra of $\mathfrak{g}\left(I_{k}\right)$. Let H_{k} be the unique element of $\mathfrak{h}_{I_{k}}$ such that $\left\langle\alpha_{i}, H_{k}\right\rangle=2 \delta_{i, k}, \forall i \in I_{k}$.

Definition 2.1. We suppose the Dynkin diagram indexed by I connected and consider a subset J of finite type. We preserve the notations introduced above.

1) Let $k \in I \backslash J$.
(i) The pair $\left(I_{k}, J_{k}\right)$ is called admissible if I_{k} is of finite type and there exist $E_{k}, F_{k} \in \mathfrak{g}\left(I_{k}\right)$ such that $\left(E_{k}, H_{k}, F_{k}\right)$ is an $\mathfrak{s l}_{2}$-triple.
(ii) The pair $\left(I_{k}, J_{k}\right)$ is called C-admissible if it is admissible and the simple Lie algebra $\mathfrak{g}\left(I_{k}\right)$ is A_{1}-graded by the root system, of type A_{1}, associated to the $\mathfrak{s l}_{2}$-triple $\left(E_{k}, H_{k}, F_{k}\right)$.
2) The pair (I, J) is called C-admissible if the pairs $\left(I_{k}, J_{k}\right)$ are C-admissible for all $k \in I \backslash J$. It is said irreducible if, moreover, $|I \backslash J|=1$.

Schematically, any C-admissible pair (I, J) is represented by the Dynkin diagram, corresponding to A, on which the vertices indexed by J are denoted by white circles \circ and those of $I \backslash J$ are denoted by black circles \bullet.

Remark 2.2.1) The admissibility of each $\left(I_{k}, J_{k}\right)$ is essential to build (in 2.6, 2.11) the grading subalgebra \mathfrak{g}^{J} and its grading root system Δ^{J}.
2) As $\mathfrak{g}(J)$ will be in the eigenspace V_{0} of weight 0 for the grading by Δ^{J}, it is necessary to assume J of finite type to get a finite gradation.
3) I_{k} is of finite type if, and only if, $\mathfrak{g}\left(I_{k}\right)$ is finite dimensional, and this is equivalent to the alternative assumption in (ii) that the A_{1}-gradation has finite
multiplicities. It is clearly necessary to get, in Theorem 2.14, a finite gradation of \mathfrak{g} by the root system Δ^{J}. Moreover, even in a more general situation, the condition I_{k} of finite type will naturally appear (3.14).
4) Note that the definition presented here, for C-admissible pairs, is equivalent to that introduced by Rubenthaler and Nervi (see [21], [16]) in terms of prehomogeneous spaces of parabolic type : if $\left(I_{k}, J_{k}\right)$ is C-admissible, define for $p \in \mathbb{Z}$, the subspace $d_{k, p}:=\left\{X \in \mathfrak{g}\left(I_{k}\right) ;\left[H_{k}, X\right]=2 p X\right\}$; then $\left(d_{k, 0}, d_{k, 1}\right)$ is an irreducible regular and commutative prehomogeneous space of parabolic type, and $d_{k, p}=\{0\}$ for $|p| \geq 2$. Then $\left(I_{k}, J_{k}\right)$ is an irreducible C-admissible pair. According to Rubenthaler and Nervi ([21, Table 1] or [16, Table 2]) the irreducible C-admissible pair (I_{k}, J_{k}) should be among the list in Table 1 below.
5) Along our study of general finite gradations in section 3, we shall meet a situation of "generalized C-admissible pair" $(I, J)(3.16)$ where $J \subset I$ is of finite type and I_{k} (for $k \in I^{\prime}=I \backslash J$) is defined as above but perhaps not of finite type. When k is in some subset $I_{r e}^{\prime}$ of $I^{\prime},\left(I_{k}, J_{k}\right)$ is C - admissible and the $k \in I_{i m}^{\prime}=I^{\prime} \backslash I_{r e}^{\prime}$ do not contribute to the root system Σ grading \mathfrak{g}. But we do not know the good assumptions on these $\left(I_{k}, J_{k}\right)$ for $k \in I_{i m}^{\prime}$ to get, conversely, a finite gradation of \mathfrak{g} by some root system. So we give no precise definition; it is expected in the work in preparation [7].

Table 1

List of irreducible C-admissible pairs

$A_{2 n-1},{ }_{n \geq 1}$	
$B_{n},{ }_{n \geq 3}$	
$C_{n},{ }_{n \geq 2}$	${ }^{1}-\square^{2}-3^{3}-\ldots . . .-0-0<0^{n}$
$D_{n, 1},{ }_{n \geq 4}$	
$D_{2 n, 2},{ }_{n \geq 2}$	
E_{7}	

Definition 2.3. Let J be a subset of I and let $i, k \in I \backslash J$. We say that i and k are J-connected relative to A if there exist $j_{0}, j_{1}, \ldots ., j_{p+1} \in I$ such that $j_{0}=i$, $j_{p+1}=k, j_{s} \in J, \forall s=1,2, \ldots, p$, and $a_{j_{s}, j_{s+1}} \neq 0, \forall s=0,1, \ldots, p$.

Remark 2.4. Note that the relation " to be J-connected " is symmetric on i and k. As the generalized Cartan matrix A is assumed to be indecomposable, for any vertices $i, k \in I \backslash J$ there exist $i_{0}, i_{1}, \ldots, i_{p+1} \in I \backslash J$ such that $i_{0}=i, i_{p+1}=k$ and i_{s} and i_{s+1} are J-connected for all $s=0,1, \ldots, p$.

Let us assume from now on that (I, J) is a C-admissible pair and let $I^{\prime}:=$ $I \backslash J$. For $k \in I^{\prime}$, let $\left(E_{k}, H_{k}, F_{k}\right)$ be an $\mathfrak{s l}_{2}$-triple associated to the irreducible C-admissible pair $\left(I_{k}, J_{k}\right)$.

Lemma 2.5. Let $k \neq l \in I^{\prime}$, then :

1) $\left\langle\alpha_{l}, H_{k}\right\rangle \in \mathbb{Z}^{-}$.
2) the following assertions are equivalent :
i) k, l are J-connected
ii) $\left\langle\alpha_{l}, H_{k}\right\rangle$ is a negative integer
iii) $\left\langle\alpha_{k}, H_{l}\right\rangle$ is a negative integer

Proof. 1) One can write $H_{k}=\sum_{i \in I_{k}} n_{i, k} \alpha_{i}$, where $n_{i, k}$ are positive integers (see [21] or $[17,1.4 .1 .2])$. As $l \notin I_{k}$, we have that $\left\langle\alpha_{l}, H_{k}\right\rangle=\sum_{i \in I_{k}} n_{i, k}\left\langle\alpha_{l}, \alpha_{\check{i}}\right\rangle \in \mathbb{Z}^{-}$.
2) In view of Remark 2.4, it suffices to prove the equivalence between i) and ii). Since I_{k} is the connected component of $J \cup\{k\}$ containing k, the assertion i) is equivalent to say that the vertex l is connected to I_{k}, so there exists $i_{k} \in I_{k}$ such that $\left\langle\alpha_{l}, \alpha_{i_{k}}\right\rangle<0$ and hence $\left\langle\alpha_{l}, H_{k}\right\rangle<0$.
Proposition 2.6. Let $\mathfrak{h}^{J}=\Pi_{J}^{\perp}=\left\{h \in \mathfrak{h},\left\langle\alpha_{j}, h\right\rangle=0, \forall j \in J\right\}$. For $k \in I^{\prime}$, denote by $\alpha_{k}^{\prime}=\alpha_{k} / \mathfrak{h}^{J}$ the restriction of α_{k} to the subspace \mathfrak{h}^{J} of \mathfrak{h}, and $\Pi^{J}=$ $\left\{\alpha_{k}^{\prime} ; k \in I^{\prime}\right\}, \Pi^{J \vee}=\left\{H_{k} ; k \in I^{\prime}\right\}$. For $k, l \in I^{\prime}$, put $a_{k, l}^{\prime}=\left\langle\alpha_{l}, H_{k}\right\rangle$ and $A^{J}=\left(a_{k, l}^{\prime}\right)_{k, l \in I^{\prime}}$. Then A^{J} is an indecomposable and symmetrizable generalized Cartan matrix, $\left(\mathfrak{h}^{J}, \Pi^{J}, \Pi^{J \vee}\right)$ is a realization of A^{J} and $\operatorname{corank}\left(A^{J}\right)=\operatorname{corank}(A)$.
Proof. The fact that $a_{k, k}^{\prime}=2$ follows from the definition of H_{k} for $k \in I^{\prime}$. If $k \neq l \in I^{\prime}$, then by lemma $2.5, a_{k, l}^{\prime} \in \mathbb{Z}^{-}$and $a_{k, l}^{\prime} \neq 0$ if and only if $a_{l, k}^{\prime} \neq 0$. Hence A^{J} is a generalized Cartan matrix. As the matrix A is indecomposable, A_{J} is also indecomposable (see Remark 2.4). Clearly $\Pi^{J}=\left\{\alpha_{k}^{\prime} ; k \in I^{\prime}\right\}$ is a linearly independent subset of the dual space $\mathfrak{h}^{J^{*}}$ of $\mathfrak{h}^{J}, \Pi^{J V}=\left\{H_{k} ; k \in I^{\prime}\right\}$ is a linearly independent subset of \mathfrak{h}^{J} and by construction $\left\langle\alpha_{l}, H_{k}\right\rangle=a_{k, l}^{\prime}, \forall k, l \in I^{\prime}$.
We have to prove that $\operatorname{dim}\left(\mathfrak{h}^{J}\right)-\left|I^{\prime}\right|=\operatorname{corank}\left(A^{J}\right)$. As J is of finite type, the restriction of the invariant bilinear form (., .) to \mathfrak{h}_{J} is non-degenerate and \mathfrak{h}_{J} is contained in $\mathfrak{h}^{\prime}=\underset{i \in I}{\oplus} \mathbb{C} \check{\alpha_{i}}$. Therefore

$$
\mathfrak{h}=\mathfrak{h}^{J} \stackrel{\perp}{\oplus} \mathfrak{h}_{J}
$$

and

$$
\mathfrak{h}^{\prime}=\left(\mathfrak{h}^{\prime} \cap \mathfrak{h}^{J}\right) \oplus \mathfrak{h}_{J}
$$

It follows that $\operatorname{dim}\left(\mathfrak{h}^{\prime} \cap \mathfrak{h}^{J}\right)=\left|I^{\prime}\right|=\operatorname{dim}\left(\underset{k \in I^{\prime}}{\oplus} \mathbb{C} H_{k}\right)$. As the subspace $\underset{k \in I^{\prime}}{\oplus} \mathbb{C} H_{k}$ is contained in $\mathfrak{h}^{\prime} \cap \mathfrak{h}^{J}$, we deduce that $\mathfrak{h}^{\prime} \cap \mathfrak{h}^{J}=\underset{k \in I^{\prime}}{\oplus} \mathbb{C} H_{k}$. Note that any supplementary subspace $\mathfrak{h}^{J^{\prime \prime}}$ of $\mathfrak{h}^{\prime} \cap \mathfrak{h}^{J}$ in \mathfrak{h}^{J} is also a supplementary of \mathfrak{h}^{\prime} in \mathfrak{h}; hence, we have that $\operatorname{corank}(A)=\operatorname{dim}\left(\mathfrak{h}^{J^{\prime \prime}}\right)=\operatorname{dim}\left(\mathfrak{h}^{J}\right)-\left|I^{\prime}\right|$. Let $\mathfrak{c}:=\bigcap_{i \in I} \operatorname{ker}\left(\alpha_{i}\right)$ be the center of \mathfrak{g} and let $\mathfrak{c}^{J}=\cap_{k \in I^{\prime}} \operatorname{ker}\left(\alpha_{k}^{\prime}\right)$. Recall that $\operatorname{corank}(A)=\operatorname{dim}(\mathfrak{c})$ and
$\operatorname{corank}\left(A^{J}\right)=\operatorname{dim}\left(\mathfrak{c}^{J}\right)$. It's clear that $\mathfrak{c}^{J}=\mathfrak{c}$; hence $\operatorname{corank}\left(A^{J}\right)=\operatorname{dim}\left(\mathfrak{c}^{J}\right)=$ $\operatorname{corank}(A)=\operatorname{dim}\left(\mathfrak{h}^{J}\right)-\left|I^{\prime}\right|$.
It remains to prove that A^{J} is symmetrizable. For $k \in I^{\prime}$, let R_{k}^{J} be the fundamental reflection of \mathfrak{h}^{J} such that $R_{k}^{J}(h)=h-\left\langle\alpha_{k}^{\prime}, h\right\rangle H_{k}, \forall h \in \mathfrak{h}^{J}$. Let W^{J} be the Weyl group of A^{J} generated by $R_{k}^{J}, k \in I^{\prime}$. Let (., . $)^{J}$ be the restriction to \mathfrak{h}^{J} of the invariant bilinear form (., .) on \mathfrak{h}. Then (., .) ${ }^{J}$ is a non-degenerate symmetric bilinear form on \mathfrak{h}^{J} which is W^{J}-invariant (see the lemma hereafter). From the relation $\left(R_{k}^{J}\left(H_{k}\right), R_{k}^{J}\left(H_{l}\right)\right)^{J}=\left(H_{k}, H_{l}\right)^{J}$ one can deduce that :

$$
\left(H_{k}, H_{l}\right)^{J}=\frac{\left(H_{k}, H_{k}\right)^{J}}{2} a_{l, k}^{\prime}, \forall k, l \in I^{\prime}
$$

but $\left(H_{k}, H_{k}\right)^{J}>0, \forall k \in I^{\prime}$; hence ${ }^{t} A^{J}$ (and so A^{J}) is symmetrizable.
Lemma 2.7. For $k \in I^{\prime}:=I \backslash J$, let w_{k}^{J} be the longest element of the Weyl group $W\left(I_{k}\right)$ generated by the fundamental reflections $r_{i}, i \in I_{k}$. Then w_{k}^{J} stabilizes \mathfrak{h}^{J} and induces the fundamental reflection R_{k}^{J} of \mathfrak{h}^{J} associated to H_{k}.

Proof. If one looks at the list above of the irreducible C-admissible pairs, one can see that $w_{k}^{J}\left(\alpha_{k}\right)=-\alpha_{k}$ and that $-w_{k}^{J}$ permutes the $\alpha_{j}, j \in J_{k}$. Clearly $w_{k}^{J}\left(\alpha_{j}\right)=\alpha_{j}, \forall j \in J \backslash J_{k}$. Hence w_{k}^{J} stabilizes \mathfrak{h}_{J} and its orthogonal subspace $\mathfrak{h}_{J}^{\perp}=\mathfrak{h}^{J}$. Note that $-w_{k}^{J}\left(H_{k}\right) \in \mathfrak{h}_{I_{k}}$ and it satisfies the same equations defining H_{k}. Hence $-w_{k}^{J}\left(H_{k}\right)=H_{k}=-R_{k}^{J}\left(H_{k}\right)$. Recall that $\operatorname{ker}\left(\alpha_{k}^{\prime}\right)=\operatorname{ker}\left(\alpha_{k}\right) \cap\left(\cap_{j \in J}^{\cap} \operatorname{ker}\left(\alpha_{j}\right)\right)$; thus it is fixed by R_{k}^{J} and W_{k}^{J}. Since $\mathfrak{h}^{J}=\operatorname{ker}\left(\alpha_{k}^{\prime}\right) \oplus \mathbb{C} H_{k}$, the reflection R_{k}^{J} coincides with W_{k}^{J} on \mathfrak{h}^{J}.

Remark 2.8. Actually we can now rediscover the list of irreducible C-admissible pairs given in Table 1. The black vertex k should be invariant under $-w_{k}^{J}$ and the corresponding coefficient of the highest root of I_{k} should be 1 (an easy consequence of the definition 2.1 1) (ii)).
Example 2.9. Consider the hyperbolic generalized Cartan matrix A of type $H E_{8}^{(1)}=$ E_{10} indexed by $I=\{-1,0,1, \ldots, 8\}$.
The following two choices for J define C-admissible pairs :

1) $J=\{2,3,4,5\}$.

The corresponding generalized Cartan matrix A^{J} is hyperbolic of type $H F_{4}^{(1)}$:

2) $J=\{1,2,3,4,5,6\}$.

The corresponding generalized Cartan matrix A^{J} is hyperbolic of type $H G_{2}^{(1)}$:

Note that the first example corresponds to an almost split real form of the KacMoody Lie algebra $\mathfrak{g}(A)$ and A^{J} is the generalized Cartan matrix associated to the corresponding (reduced) restricted root system (see [6]) whereas the second example does not correspond to an almost split real form of $\mathfrak{g}(A)$.

Lemma 2.10. For $k \in I^{\prime}$, set $\mathfrak{s}(k)=\mathbb{C} E_{k} \oplus \mathbb{C} H_{k} \oplus \mathbb{C} F_{k}$. Then, the Kac-Moody algebra \mathfrak{g} is an integrable $\mathfrak{s}(k)$-module via the adjoint representation of $\mathfrak{s}(k)$ on \mathfrak{g}.

Proof. Note that $\mathfrak{s}(k)$ is isomorphic to $\mathfrak{s l}_{2}(\mathbb{C})$ with standard basis $\left(E_{k}, H_{k}, F_{k}\right)$. It is clear that $\operatorname{ad}\left(H_{k}\right)$ is diagonalizable on \mathfrak{g} and $E_{k}=\sum_{\alpha} e_{\alpha} \in d_{k, 1}$, where α runs over the set $\Delta_{k, 1}=\left\{\alpha \in \Delta\left(I_{k}\right) ;\left\langle\alpha, H_{k}\right\rangle=2\right\}, e_{\alpha} \in \mathfrak{g}_{\alpha}$ for $\alpha \in \Delta\left(I_{k}\right)$, and $d_{k, 1}:=\left\{X \in \mathfrak{g}\left(I_{k}\right) ;\left[H_{k}, X\right]=2 X\right\}$. Since $\Delta_{k, 1} \subset \Delta^{r e}, \operatorname{ad}\left(e_{\alpha}\right)$ is locally nilpotent for $\alpha \in \Delta_{k, 1}$. As $d_{k, 1}$ is commutative (see Remark 2.2) we deduce that ad $\left(E_{k}\right)$ is locally nilpotent on \mathfrak{g}. The same argument shows that $\operatorname{ad}\left(F_{k}\right)$ is also locally nilpotent. Hence, the Kac-Moody algebra \mathfrak{g} is an integrable $\mathfrak{s}(k)$-module.

Proposition 2.11. Let \mathfrak{g}^{J} be the subalgebra of \mathfrak{g} generated by \mathfrak{h}^{J} and $E_{k}, F_{k}, k \in I^{\prime}$. Then \mathfrak{g}^{J} is the Kac-Moody Lie algebra associated to the realization $\left(\mathfrak{h}^{J}, \Pi^{J}, \Pi^{J \vee}\right.$) of the generalized Cartan matrix A^{J}.

Proof. It is not difficult to check that the following relations hold in the Lie subalgebra \mathfrak{g}^{J} :

$$
\begin{array}{lll}
{\left[\mathfrak{h}^{J}, \mathfrak{h}^{J}\right]=0,} & {\left[E_{k}, F_{l}\right]=\delta_{k, l} H_{k}} & \left(k, l \in I^{\prime}\right) ; \\
{\left[h, E_{k}\right]=\left\langle\alpha_{k}^{\prime}, h\right\rangle E_{k},} & {\left[h, F_{k}\right]=-\left\langle\alpha_{k}^{\prime}, h\right\rangle F_{k}} & \left(h \in \mathfrak{h}^{J}, k \in I^{\prime}\right) .
\end{array}
$$

We have to prove the Serre's relations :

$$
\left(\operatorname{ad} E_{k}\right)^{1-a_{k, l}^{\prime}}\left(E_{l}\right)=0, \quad\left(\operatorname{ad} F_{k}\right)^{1-a_{k, l}^{\prime}}\left(F_{l}\right)=0 \quad\left(k \neq l \in I^{\prime}\right)
$$

For $k \in I^{\prime}$, let $\mathfrak{s}(k)=\mathbb{C} F_{k} \oplus \mathbb{C} H_{k} \oplus \mathbb{C} E_{k}$ be the Lie subalgebra of \mathfrak{g} isomorphic to $\mathfrak{s l}_{2}(\mathbb{C})$. Let $l \neq k \in I^{\prime}$; note that $\left[H_{k}, F_{l}\right]=-a_{k, l}^{\prime} F_{l}$ and $\left[E_{k}, F_{l}\right]=0$, which means that F_{l} is a primitive weight vector for $\mathfrak{s}(k)$. As \mathfrak{g} is an integrable $\mathfrak{s}(k)$-module (see Lemma 2.10) the primitive weight vector F_{l} is contained in a finite dimensional $\mathfrak{s}(k)$-submodule (see $[12,3.6])$. The relation $\left(\operatorname{ad} F_{k}\right)^{1-a_{k, l}^{\prime}}\left(F_{l}\right)=0$ follows from the representation theory of $\mathfrak{s l}_{2}(\mathbb{C})$ (see[12, 3.2]). By similar arguments we prove that $\left(\operatorname{ad} E_{k}\right)^{1-a_{k, l}^{\prime}}\left(E_{l}\right)=0$.

Now \mathfrak{g}^{J} is a quotient of the Kac-Moody algebra associated to A^{J} and $\left(\mathfrak{h}^{J}, \Pi^{J}, \Pi^{J \vee}\right)$. By $[12,1.7]$ it is equal to it.

Definition 2.12. The Kac-Moody Lie algebra \mathfrak{g}^{J} is called the C-admissible algebra associated to the C-admissible pair (I, J).
Proposition 2.13. The Kac-Moody algebra \mathfrak{g} is an integrable \mathfrak{g}^{J}-module with finite multiplicities.
Proof. The \mathfrak{g}^{J}-module \mathfrak{g} is clearly ad $\left(\mathfrak{h}^{J}\right)$-diagonalizable and $\operatorname{ad}\left(E_{k}\right), \operatorname{ad}\left(F_{k}\right)$ are locally nilpotent on \mathfrak{g} for $k \in I^{\prime}$ (see Lemma 2.10). Hence, \mathfrak{g} is an integrable \mathfrak{g}^{J}-module. For $\alpha \in \Delta$, let $\alpha^{\prime}=\alpha_{\mid \mathfrak{h}^{J}}$ be the restriction of α to \mathfrak{h}^{J}. Set $\Delta^{\prime}=$ $\left\{\alpha^{\prime} ; \alpha \in \Delta\right\} \backslash\{0\}$. Then the set of weights, for the \mathfrak{g}^{J}-module \mathfrak{g}, is exactly $\Delta^{\prime} \cup\{0\}$. Note that for $\alpha \in \Delta, \alpha^{\prime}=0$ if and only if $\alpha \in \Delta(J)$. In particular, the weight space $V_{0}=\mathfrak{h} \oplus\left(\underset{\alpha \in \Delta(J)}{\oplus} \mathfrak{g}_{\alpha}\right)$ corresponding to the null weight is finite dimensional. Let $\alpha=\sum_{i \in I} n_{i} \alpha_{i} \in \Delta$ such that $\alpha^{\prime} \neq 0$. We will see that the corresponding weight space $V_{\alpha^{\prime}}$ is finite dimensional. Note that $V_{\alpha^{\prime}}=\underset{\beta^{\prime}=\alpha^{\prime}}{\oplus} \mathfrak{g}_{\beta}$. Let $\beta=\sum_{i \in I} m_{i} \alpha_{i} \in \Delta$ such
that $\beta^{\prime}=\alpha^{\prime}=\sum_{k \in I^{\prime}} n_{k} \alpha_{k}^{\prime}$, then $m_{k}=n_{k}, \forall k \in I^{\prime}$, since $\Pi^{J}=\left\{\alpha_{k}^{\prime}, k \in I^{\prime}\right\}$ is free in $\left(\mathfrak{h}^{J}\right)^{*}$. In particular, β and α are of the same sign, and we may assume $\alpha \in \Delta^{+}$. Let $h t_{J}(\beta)=\sum_{j \in J} m_{j}$ be the height of β relative to J, and let W_{J} be the finite subgroup of W generated by $r_{j}, j \in J$. Since W_{J} fixes pointwise \mathfrak{h}^{J}, we deduce that $\gamma^{\prime}=\beta^{\prime}$, $\forall \gamma \in W_{J} \beta$, and so we may assume that $h t_{J}(\beta)$ is minimal among the roots in $W_{J} \beta$. From the inequality $h t_{J}(\beta) \leq h t_{J}\left(r_{j}(\beta)\right), \forall j \in J$, we get $\left\langle\beta, \alpha_{j}^{\check{j}}\right\rangle \leq 0, \forall j \in J$. Let ρ_{J} be the half sum of positive coroots of $\Delta(J)$. It is known that $\left\langle\alpha_{j}, \rho_{J}\right\rangle=1$, $\forall j \in J$. Note that $\left.\left\langle\beta, \rho_{J}^{\check{J}}\right\rangle=\sum_{j \in J} m_{j}+\sum_{k \in I^{\prime}} n_{k}\left\langle\alpha_{k}, \rho_{\breve{J}}\right\rangle\right\rangle=h t_{J}(\beta)+\sum_{k \in I^{\prime}} n_{k}\left\langle\alpha_{k}, \rho_{J}^{\breve{J}}\right\rangle$. Hence, the condition $\left(\left\langle\beta, \rho_{J}\right\rangle \leq 0\right)$ implies $\left(h t_{J}(\beta) \leq \sum_{k \in I^{\prime}}-n_{k}\left\langle\alpha_{k}, \rho_{j}^{\check{j}}\right\rangle\right)$. Thus there is just a finite number of possibilities for β. It follows that α^{\prime} is of finite multiplicity.

Theorem 2.14. Let Δ^{J} be the root system of the pair $\left(\mathfrak{g}^{J}, \mathfrak{h}^{J}\right)$, then the Kac-Moody Lie algebra \mathfrak{g} is finitely Δ^{J}-graded, with grading subalgebra \mathfrak{g}^{J}.

Proof. Let $\Delta^{\prime}=\left\{\alpha^{\prime}, \alpha \in \Delta\right\} \backslash\{0\}$ be the set of non-null weights of the \mathfrak{g}^{J}-module \mathfrak{g} relative to \mathfrak{h}^{J}. Let $\Delta_{+}^{\prime}=\left\{\alpha^{\prime} \in \Delta^{\prime}, \alpha \in \Delta^{+}\right\}$and Δ_{+}^{J} the set of positive roots of Δ^{J} relative to the root basis Π^{J}. We have to prove that $\Delta^{\prime}=\Delta^{J}$ or equivalently $\Delta_{+}^{\prime}=\Delta_{+}^{J}$. Let $Q^{J}=\mathbb{Z} \Pi^{J}$ be the root lattice of Δ^{J} and $Q_{+}^{J}=\mathbb{Z}^{+} \Pi^{J}$. It is known that the positive root system Δ_{+}^{J} is uniquely defined by the following properties (see [12, Ex. 5.4]) :
(i) $\Pi^{J} \subset \Delta_{+}^{J} \subset Q_{+}^{J}, 2 \alpha_{i}^{\prime} \notin \Delta_{+}^{J}, \forall i \in I^{\prime}$;
(ii) if $\alpha^{\prime} \in \Delta_{+}^{J}, \alpha^{\prime} \neq \alpha_{i}^{\prime}$, then the set $\left\{\alpha^{\prime}+k \alpha_{i}^{\prime} ; k \in \mathbb{Z}\right\} \cap \Delta_{+}^{J}$ is a string $\left\{\alpha^{\prime}-p \alpha_{i}^{\prime}, \ldots, \alpha^{\prime}+q \alpha_{i}^{\prime}\right\}$, where $p, q \in \mathbb{Z}^{+}$and $p-q=\left\langle\alpha^{\prime}, H_{i}\right\rangle$;
(iii) if $\alpha^{\prime} \in \Delta_{+}^{J}$, then $\operatorname{supp}\left(\alpha^{\prime}\right)$ is connected.

We will see that Δ_{+}^{\prime} satisfies these three properties and hence $\Delta_{+}^{\prime}=\Delta_{+}^{J}$. Clearly $\Pi^{J} \subset \Delta_{+}^{\prime} \subset Q_{+}^{J}$. For $\alpha \in \Delta$ and $k \in I^{\prime}$, the condition $\alpha^{\prime} \in \mathbb{N} \alpha_{k}$ implies $\alpha \in \Delta\left(I_{k}\right)^{+}$. As $\left(I_{k}, J_{k}\right)$ is C-admissible for $k \in I^{\prime}$, the highest root of $\Delta\left(I_{k}\right)^{+}$has coefficient 1 on the root α_{k} (cf. Remark 2.8). It follows that $2 \alpha_{k}^{\prime} \notin \Delta_{+}^{\prime}$ and (i) is satisfied. By Proposition 2.13, \mathfrak{g} is an integrable \mathfrak{g}^{J}-module with finite multiplicities. Hence, the propriety (ii) follows from $[12,3.6]$. Let $\alpha \in \Delta_{+}$, then $\operatorname{supp}(\alpha)$ is connected and $\operatorname{supp}\left(\alpha^{\prime}\right) \subset \operatorname{supp}(\alpha)$. Let $k, l \in \operatorname{supp}\left(\alpha^{\prime}\right)$; if k, l are $J-\operatorname{connected} \operatorname{in} \operatorname{supp}(\alpha)$ relative to the generalized Cartan matrix A (cf. 2.3), then by lemma 2.5, k, l are linked in I^{\prime} relative to the generalized Cartan matrix A^{J}. Hence, the connectedness of $\operatorname{supp}\left(\alpha^{\prime}\right)$, relative to A^{J}, follows from that of $\operatorname{supp}(\alpha)$ relative to A (see Remark 2.4) and (iii) is satisfied.

Remark 2.15. Note that the definition of C-admissible pair can be extended to decomposable Kac-Moody Lie algebras : thus if $I^{1}, I^{2}, \ldots ., I^{m}$ are the connected components of I and $J^{k}=J \cap I^{k}, k=1,2, \ldots, m$, then (I, J) is C-admissible if and only if $\left(I^{k}, J^{k}\right)$ is for all $k=1,2, \ldots, m$. In particular, the corresponding C-admissible algebra is $\mathfrak{g}^{J}=\underset{k=1}{\oplus} \mathfrak{g}\left(I^{k}\right)^{J^{k}}$, where $\mathfrak{g}\left(I^{k}\right)^{J^{k}}$ is the C-admissible subalgebra of $\mathfrak{g}\left(I^{k}\right)$ corresponding to the C-admissible pair $\left(I^{k}, J^{k}\right), k=1,2, \ldots, m$.

3. REAL GRADATIONS.

From now on we suppose that the Kac-Moody Lie algebra \mathfrak{g} is symmetrizable and, starting from 3.5, indecomposable.

Let \mathfrak{m} be a Kac-Moody subalgebra of \mathfrak{g} and let \mathfrak{a} be a Cartan subalgebra of \mathfrak{m}. Put $\Sigma=\Delta(\mathfrak{m}, \mathfrak{a})$ the corresponding root system. We assume that $\mathfrak{a} \subset \mathfrak{h}$ and that \mathfrak{g} is finitely Σ-graded with \mathfrak{m} as grading subalgebra. Thus $\mathfrak{g}=\sum_{\gamma \in \Sigma \cup\{0\}} V_{\gamma}$, with $V_{\gamma}=\{x \in \mathfrak{g} ; \quad[a, x]=\langle\gamma, a\rangle x, \forall a \in \mathfrak{a}\}$ is finite dimensional for all $\gamma \in \Sigma \cup\{0\}$. For $\alpha \in \Delta$, denote by $\rho_{a}(\alpha)$ the restriction of α to \mathfrak{a}. As \mathfrak{g} is Σ-graded, one has $\rho_{a}(\Delta \cup\{0\})=\Sigma \cup\{0\}$.

Lemma 3.1.

1) Let \mathfrak{c} be the center of \mathfrak{g} and denote by \mathfrak{c}_{a} the center of \mathfrak{m}. Then $\mathfrak{c}_{a}=\mathfrak{c} \cap \mathfrak{a}$. In particular, if \mathfrak{g} is perfect, then the grading subalgebra \mathfrak{m} is also perfect.
2) Suppose that $\Delta^{i m} \neq \emptyset$, then $\rho_{a}\left(\Delta^{i m}\right) \subset \Sigma^{i m}$.

Proof.

1) It is clear that $\mathfrak{c} \cap \mathfrak{a} \subset \mathfrak{c}_{a}$. Since \mathfrak{g} is Σ - graded, we deduce that \mathfrak{c}_{a} is contained in the center \mathfrak{c} of \mathfrak{g}, hence $\mathfrak{c}_{a} \subset \mathfrak{c} \cap \mathfrak{a}$. If \mathfrak{g} is perfect, then $\mathfrak{g}=\mathfrak{g}^{\prime}, \mathfrak{h}=\mathfrak{h}^{\prime}, \mathfrak{c}=\{0\}$; so $\mathfrak{c}_{a}=\{0\}, \mathfrak{a}=\mathfrak{a}^{\prime}$ and $\mathfrak{m}=\mathfrak{m}^{\prime}$.
2) If $\alpha \in \Delta^{i m}$, then $\mathbb{N} \alpha \subset \Delta$. Since V_{0} is finite dimensional, $\rho_{a}(\alpha) \neq 0$ and $\mathbb{N} \rho_{a}(\alpha) \subset \Sigma$, hence $\rho_{a}(\alpha) \in \Sigma^{i m}$.

Definition 3.2. ($[3,5.2 .6])$ Suppose that $\Delta^{i m} \neq \emptyset$. Let $\alpha, \beta \in \Delta^{i m}$.
(i) The imaginary roots α and β are said to be linked if $\mathbb{N} \alpha+\mathbb{N} \beta \subset \Delta$ or $\beta \in \mathbb{Q}^{+} \alpha$.
(ii) The imaginary roots α and β are said to be linkable if there exists a finite family of imaginary roots $\left(\beta_{i}\right)_{0 \leq i \leq n+1}$ such that $\beta_{0}=\alpha, \beta_{n+1}=\beta$ and β_{i} and β_{i+1} are linked for all $i=0,1, \ldots, n$.
Proposition 3.3. ($33,5.2 .7])$ Suppose that $\Delta^{i m} \neq \emptyset$. Let $\Delta=\bigcup_{j=1}^{m} \Delta_{j}$ be the decomposition of Δ in indecomposable root systems. Suppose that $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{r}$ $(r \leq m)$ are the indecomposable root subsystems of Δ which are not of finite type. Then to be linkable is an equivalence relation on $\Delta^{i m}$ and the equivalence classes are the $2 r$ sets $\Delta_{ \pm}^{i m} \cap \Delta_{j}, j=1,2, \ldots, r$.
Lemma 3.4. Suppose that $\Delta^{i m} \neq \emptyset$, then there exist root bases in Σ and Δ such that $\rho_{a}\left(\Delta_{+}^{i m}\right) \subset \Sigma_{+}^{i m}$.
Proof. Fix a root basis Π_{a} for the grading root system Σ. Let $\Delta=\bigcup_{j=1}^{m} \Delta_{j}$ be, as above, the decomposition of Δ in indecomposable root systems. Denote by $\Pi_{j}:=\Pi \cap \Delta_{j}$ the root basis of $\Delta_{j}, j=1,2, \ldots, m$. If α, β are two imaginary linkable roots of $\Delta_{j}^{i m}$, then $\rho_{a}(\alpha)$ and $\rho_{a}(\beta)$ are also linkable in $\Sigma^{i m}$. By Proposition 3.3, $\rho_{a}(\alpha)$ and $\rho_{a}(\beta)$ are of the same sign. Since α and β are of the same sign in $\Delta_{j}^{i m}$ relative to the root basis Π_{j}, one can, if necessary, change the sign of Π_{j} so that $\rho_{a}(\alpha)$ and $\rho_{a}(\beta)$ are positive imaginary roots of Σ^{+}relative to the fixed root basis Π_{a}. Hence we get a root basis of $\Delta=\bigcup_{j=1}^{m} \Delta_{j}$ satisfying $\rho_{a}\left(\Delta_{+}^{i m}\right) \subset \Sigma_{+}^{i m}$.

In the following, we will show that the indecomposable Kac-Moody Lie algebra \mathfrak{g} and the grading subalgebra \mathfrak{m} are of the same type.

Lemma 3.5. The Kac-Moody Lie algebra \mathfrak{g} is of indefinite type if and only if $\Delta^{i m}$ generates the dual space $(\mathfrak{h} / \mathfrak{c})^{*}$ of $\mathfrak{h} / \mathfrak{c}$.
Proof. Note that the root basis $\Pi=\left\{\alpha_{i}, i \in I\right\}$ induces a basis for the quotient vector space $(\mathfrak{h} / \mathfrak{c})^{*}$. It follows that the condition $\left(\Delta^{i m} \neq \emptyset\right)$ implies $\left(\operatorname{dim}(\mathfrak{h} / \mathfrak{c})^{*} \geq\right.$ 2). Suppose now that \mathfrak{g} is of indefinite type. Let $\alpha \in \Delta_{+}^{\text {sim }}$ be a positive strictly imaginary root satisfying $\left\langle\alpha, \alpha_{i}^{\check{i}}\right\rangle<0, \forall i \in I$; then, $r_{i}(\alpha)=\alpha-\left\langle\alpha, \alpha_{i}^{\check{r}}\right\rangle \alpha_{i} \in \Delta_{+}^{i m}$ for all $i \in I$. In particular, the vector subspace $\left\langle\Delta^{i m}\right\rangle$ spanned by $\Delta^{i m}$ contains Π and hence is equal to $(\mathfrak{h} / \mathfrak{c})^{*}$. Conversely, if $\Delta^{i m}$ generates $(\mathfrak{h} / \mathfrak{c})^{*}$, then $\Delta^{i m}$ is non-empty and contains at least two linearly independent imaginary roots; hence Δ can not be of finite or affine type.

Proposition 3.6. 1) If $\Delta^{i m}$ is not empty, then \mathfrak{m} is indecomposable.
2) The Kac-Moody Lie Algebra \mathfrak{g} and the grading subalgebra \mathfrak{m} are of the same type.
3) Suppose \mathfrak{g} Lorentzian, then \mathfrak{m} is also Lorentzian.
N.B. We will see below that \mathfrak{m} is always indecomposable (3.11) and symmetrizable (3.17).

Proof. 1) We saw in Lemma 3.4 that $\rho_{a}\left(\Delta_{+}^{i m}\right)$ is in a unique linkable equivalence class of $\Sigma_{+}^{i m}$. So, if $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ is decomposable, we may assume $\rho_{a}\left(\Delta_{+}^{i m}\right) \subset \Sigma_{1}^{i m}$. But there is $\delta \in \Delta_{+}^{i m}$ such that $\alpha+n \delta \in \Delta_{+}$for all $\alpha \in \Delta_{+}$and $n \in \mathbb{N}$ [12, 4.3, 5.6 and 6.3]. So $\rho_{a}(\alpha)+n \rho_{a}(\delta) \in \Sigma$ for $n \gg 0$ and $\rho_{a}(\alpha) \in \Sigma_{1} \cup\{0\}$. As $\rho_{a}(\Delta \cup\{0\})=\Sigma \cup\{0\}$, we have $\Sigma_{2}=\emptyset$.
2) If \mathfrak{g} is of finite type, then Δ is finite and hence $\Sigma=\rho_{a}(\Delta) \backslash\{0\}$ is finite.

If \mathfrak{g} is affine, let δ be the lowest positive imaginary root. One can choose a root basis $\Pi_{a}=\left\{\gamma_{i}, i \in \bar{I}\right\}$ of Σ so that $\bar{\delta}:=\rho_{a}(\delta)$ is a positive imaginary root. Note that $\mathfrak{a}^{\prime}:=\mathfrak{a} \cap \mathfrak{m}^{\prime} \subset \mathfrak{h}^{\prime} ;$ in particular $\bar{\delta}\left(\mathfrak{a}^{\prime}\right)=\{0\}$ and $\left\langle\bar{\delta}, \gamma_{i}^{\prime}\right\rangle=0, \forall i \in \bar{I}$. It follows that \mathfrak{m} is affine (see [12, 4.3]).
Suppose now that \mathfrak{g} is of indefinite type. Thanks to Lemma 3.5, it suffices to prove that $\Sigma^{i m}$ generates $\left(\mathfrak{a} / \mathfrak{c}_{a}\right)^{*}$, where $\mathfrak{c}_{a}=\mathfrak{c} \cap \mathfrak{a}$ is the center of \mathfrak{m}. The natural homomorphism of vector spaces $\pi: \mathfrak{a} \rightarrow \mathfrak{h} / \mathfrak{c}$ induces a monomorphism $\bar{\pi}: \mathfrak{a} / \mathfrak{c}_{a} \rightarrow \mathfrak{h} / \mathfrak{c}$. By duality, the homomorphism $\bar{\pi}^{*}:(\mathfrak{h} / \mathfrak{c})^{*} \rightarrow\left(\mathfrak{a} / \mathfrak{c}_{a}\right)^{*}$ is surjective and $\bar{\pi}^{*}\left(\Delta^{i m}\right) \subset \Sigma^{i m}$ generates $\left(\mathfrak{a} / \mathfrak{c}_{a}\right)^{*}$.
3) Suppose that \mathfrak{g} is Lorentzian (hence of indefinite type) and let (.,.) be an invariant non-degenerate bilinear form on \mathfrak{g}. Then, the restriction of $(.,$.$) to \mathfrak{h}_{\mathbb{R}}$ has signature $(++\ldots+,-)$ and any maximal totally isotropic subspace of $\mathfrak{h}_{\mathbb{R}}$ relatively to (.,.) is one dimensional. Let $\mathfrak{a}_{\mathbb{R}}:=\mathfrak{a} \cap \mathfrak{h}_{\mathbb{R}}$ and let $(., .)_{a}$ be the restriction of $(.,$.$) to \mathfrak{m}$. As \mathfrak{m} is of indefinite type, $\operatorname{dim}(\mathfrak{a}) \geq 2$ and the restriction of $(., .)_{a}$ to $\mathfrak{a}_{\mathbb{R}}$ is non-null. It follows that the orthogonal subspace \mathfrak{m}^{\perp} of \mathfrak{m} relatively to (., . $)_{a}$ is a proper ideal of \mathfrak{m}. Since \mathfrak{m} is perfect (because \mathfrak{g} is) we deduce that $\mathfrak{m}^{\perp}=\{0\}$ (cf. $[12,1.7]$) and the invariant bilinear form $(., .)_{a}$ is non-degenerate. It follows that \mathfrak{m} is symmetrizable and the bilinear form $(., .)_{a}$ when restricted to $\mathfrak{a}_{\mathbb{R}}$ is nondegenerate; since \mathfrak{m} is of indefinite type, it can not be positive definite. Hence, the bilinear form $(., .)_{a}$ has signature $(++\ldots+,-)$ on $\mathfrak{a}_{\mathbb{R}}$ and then the grading subalgebra \mathfrak{m} is Lorentzian.

Definition 3.7. Let Π_{a} be a root basis of Σ and let Σ^{+}be the corresponding set of positive roots. The root basis is said to be adapted to the root basis Π of Δ if $\rho_{a}\left(\Delta^{+}\right) \subset \Sigma^{+} \cup\{0\}$.

We will see (3.10) that adapted root bases always exist.

Lemma 3.8. Let Π_{a} be a root basis of Σ such that $\rho_{a}\left(\Delta_{+}^{i m}\right) \subset \Sigma_{+}^{i m}$ and let X_{a} be the corresponding positive Tits cone. Then we have $\bar{X}_{a} \subset \bar{X} \cap \mathfrak{a}$.
Proof. As $\Delta^{i m} \neq \emptyset$, one has $\bar{X}=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;\langle\alpha, h\rangle \geq 0, \forall \alpha \in \Delta_{+}^{i m}\right\}$ (see Remark 1.3). The lemma follows from Lemma 3.4.
Lemma 3.9. Suppose that $\Delta^{i m} \neq \emptyset$. Let $p \in \bar{X}$ such that $\langle\alpha, p\rangle \in \mathbb{Z}, \forall \alpha \in \Delta$, and $\langle\beta, p\rangle>0, \forall \beta \in \Delta_{+}^{i m}$. Then $p \in \stackrel{\circ}{X}$.

Proof. The result is clear when Δ is of affine type since $\stackrel{\circ}{X}=\stackrel{\circ}{\bar{X}}=\left\{h \in \mathfrak{h}_{\mathbb{R}} ;\langle\delta, h\rangle>0\right\}$. Suppose now that Δ is of indefinite type. If one looks to the proof of Proposition 5.8.c) in [12], one can show that an element $p \in \bar{X}$ satisfying the conditions of the lemma lies in X. As $\Delta_{+}^{i m}$ is W-invariant, we may assume that p lies in the fundamental chamber C. Hence there exists a subset J of I such that $\{\alpha \in$ $\Delta ;\langle\alpha, p\rangle=0\}=\Delta_{J}=\Delta \cap \sum_{j \in J} \mathbb{Z} \alpha_{j}$. Since $\Delta_{J} \cap \Delta^{i m}=\emptyset$, the root subsystem Δ_{J} is of finite type and p lies in the finite type facet of type J. Thus $p \in \stackrel{\circ}{X}$ (see 1.5).

Theorem 3.10. There exists a root basis Π_{a} of Σ which is adapted to the root basis Π of Δ. Moreover, there exists a finite type subset J of I such that $\Delta_{J}=\{\alpha \in$ $\left.\Delta ; \rho_{a}(\alpha)=0\right\}$.
N.B. This is part 1) of Theorem 2.

Proof. Let $\Pi_{a}=\left\{\gamma_{i}, i \in \bar{I}\right\}$ be a root basis of Σ such that $\rho_{a}\left(\Delta_{+}^{i m}\right) \subset \Sigma_{+}^{i m}$, where \bar{I} is just a set indexing the basis elements. Let $p \in \mathfrak{a}$ such that $\left\langle\gamma_{i}, p\right\rangle=1, \forall i \in \bar{I}$ and let $P=\{\alpha \in \Delta ;\langle\alpha, p\rangle \geq 0\}$. If Δ is finite, then P is clearly a parabolic subsystem of Δ and the result is trivial. Suppose now that $\Delta^{i m} \neq \emptyset$; then p satisfies the conditions of the Lemma 3.9 and we may assume that p lies in the facet of type J for some subset J of finite type in I. In which case $P=\Delta_{J} \cup \Delta^{+}$is the standard parabolic subsystem of finite type J. Note that, for $\gamma \in \Sigma^{+}$, one has $\langle\gamma, p\rangle=h t_{a}(\gamma)$ the height of γ with respect to Π_{a}. It follows that $\left\{\alpha \in \Delta ; \rho_{a}(\alpha)=0\right\}=\Delta_{J}$, in particular, $\rho_{a}\left(\Delta^{+}\right)=\rho_{a}(P) \subset \Sigma^{+} \cup\{0\}$. Hence, the root basis Π_{a} is adapted to Π.

Corollary 3.11. Σ is indecomposable.
Proof. For $\gamma_{1}, \gamma_{2} \in \Pi_{a}$, there are $\alpha_{1}, \alpha_{2} \in \Delta_{+}$such that $\gamma_{i}=\rho_{a}\left(\alpha_{i}\right)$. But γ_{i} is not a sum in Σ_{+}, so, up to Δ_{J}, α_{i} is not a sum: we may assume $\alpha_{i} \in \Pi$. As Δ is indecomposable, there is a root $\alpha \in \Delta \cap\left(\alpha_{1}+\alpha_{2}+\sum_{\alpha \in \Pi} \mathbb{Z}^{+} \alpha\right)$. Now $\rho_{a}(\alpha) \in(\Sigma \cup\{0\}) \cap\left(\gamma_{1}+\gamma_{2}+\sum_{\gamma \in \Pi_{a}} \mathbb{Z}^{+} \gamma\right) \subset \Sigma$ and γ_{1}, γ_{2} have to be in the same connected component of Π_{a}.

From now on, we fix a root basis $\Pi_{a}=\left\{\gamma_{s}, s \in \bar{I}\right\}$, for the grading root system Σ, which is adapted to the root basis $\Pi=\left\{\alpha_{i}, i \in I\right\}$ of Δ (see Theorem 3.10). As before, let $J:=\left\{j \in I ; \rho_{a}\left(\alpha_{j}\right)=0\right\}$ and $I^{\prime}:=I \backslash J$. For $k \in I^{\prime}$, we denote, as above, by I_{k} the connected component of $J \cup\{k\}$ containing k, and $J_{k}:=J \cap I_{k}$.

Proposition 3.12.

1) Let $s \in \bar{I}$, then there exists $k_{s} \in I^{\prime}$ such that $\rho_{a}\left(\alpha_{k_{s}}\right)=\gamma_{s}$ and any preimage $\alpha \in \Delta$ of γ_{s} is equal to α_{k} modulo $\sum_{j \in J_{k}} \mathbb{Z} \alpha_{j}$ for some $k \in I^{\prime}$ satisfying $\rho_{a}\left(\alpha_{k}\right)=$ γ_{s}.
2) Let $k \in I^{\prime}$ such that $\rho_{a}\left(\alpha_{k}\right)$ is a real root of Σ. Then $\rho_{a}\left(\alpha_{k}\right) \in \Pi_{a}$ is a simple root.

Proof. This result was proved by J. Nervi for affine algebras (see [17, 2.3.10] and the proof of Prop. 2.3.12). The arguments used there are available for general Kac-Moody algebras.

We introduce the following notations :

$$
\begin{gathered}
I_{r e}^{\prime}:=\left\{i \in I^{\prime} ; \rho_{a}\left(\alpha_{i}\right) \in \Pi_{a}\right\} ; I_{i m}^{\prime}:=I^{\prime} \backslash I_{r e}^{\prime}, \\
I_{r e}=\bigcup_{k \in I_{r e}^{\prime}} I_{k} ; J_{r e}=I_{r e} \cap J=\underset{k \in I_{r e}^{\prime}}{ } J_{k} ; J^{\circ}=J \backslash J_{r e} \\
\Gamma_{s}:=\left\{i \in I^{\prime} ; \rho_{a}\left(\alpha_{i}\right)=\gamma_{s}\right\}, \forall s \in \bar{I} .
\end{gathered}
$$

Note that J° is not connected to $I_{r e}$.
Remark 3.13.

1) In view of Proposition 3.12, assertion 2), one has $\rho_{a}\left(\alpha_{k}\right) \in \Sigma_{+}^{i m}, \forall k \in I_{i m}^{\prime}$.
2) $I=I_{r e} \cup I_{i m}^{\prime} \cup J^{\circ}$ is a disjoint union.
3) If $I_{i m}^{\prime}=\emptyset$, then $I=I_{r e} \cup J^{\circ}$. Since I is connected (and $I_{r e}$ is not connected to J°) we deduce that $J^{\circ}=\emptyset, I=I_{r e}$ and $I_{r e}^{\prime}=I^{\prime}=I \backslash J$.
4) If $I_{i m}^{\prime} \neq \emptyset$, then $I_{r e}$ may be non-connected (see the example in $\S 5$ below).

Proposition 3.14.

1) Let $k \in I_{r e}^{\prime}$, then I_{k} is of finite type.
2) Let $s \in \bar{I}$. If $\left|\Gamma_{s}\right| \geq 2$ and $k \neq l \in \Gamma_{s}$, then $I_{k} \cup I_{l}$ is not connected: $\mathfrak{g}\left(I_{k}\right)$ and $\mathfrak{g}\left(I_{l}\right)$ commute and are orthogonal.
3) For all $k \in I_{r e}^{\prime},\left(I_{k}, J_{k}\right)$ is an irreducible C-admissible pair.
4) The derived subalgebra \mathfrak{m}^{\prime} of the grading algebra \mathfrak{m} is contained in $\mathfrak{g}^{\prime}\left(I_{r e}\right)$ (as defined in proposition 1.2).
Proof.
5) Suppose that there exists $k \in I_{r e}^{\prime}$ such that I_{k} is not of finite type; then there exists an imaginary root β_{k} whose support is the whole I_{k}. Hence, there exists a positive integer $m_{k} \in \mathbb{N}$ such that $\rho_{a}\left(\beta_{k}\right)=m_{k} \rho\left(\alpha_{k}\right)$ is an imaginary root of Σ. It follows that $\rho_{a}\left(\alpha_{k}\right)$ is an imaginary root and this contradicts the fact that $k \in I_{r e}^{\prime}$. 2) Let $s \in \bar{I}$ such that $\left|\Gamma_{s}\right| \geq 2$ and let $k \neq l \in \Gamma_{s}$. Since $V_{n \gamma_{s}}=\{0\}$ for all integer $n \geq 2$, the same argument used in 1) shows that $I_{k} \cup I_{l}$ is not connected, and I_{k} and I_{l} are its two connected components. In particular, $\left[\mathfrak{g}\left(I_{k}\right), \mathfrak{g}\left(I_{l}\right)\right]=\{0\}$ and $\left(\mathfrak{g}\left(I_{k}\right), \mathfrak{g}\left(I_{l}\right)\right)=\{0\}$.
6) Let $k \in I_{r e}^{\prime}$ and let $s \in \bar{I}$ such that $\rho_{a}\left(\alpha_{k}\right)=\gamma_{s}$. Let ($\left.\bar{X}_{s}, \bar{H}_{s}=\gamma_{s}, \bar{Y}_{s}\right)$ be an $\mathfrak{s l}_{2}$-triple in \mathfrak{m} corresponding to the simple root γ_{s}. Let $V_{\gamma_{s}}$ be the weight space of \mathfrak{g} corresponding to γ_{s}. In view of Proposition 3.12, assertion 1), one has:

$$
\begin{equation*}
V_{\gamma_{s}}=\underset{l \in \Gamma_{s}}{\oplus} V_{\gamma_{s}} \cap \mathfrak{g}\left(I_{l}\right) . \tag{3.1}
\end{equation*}
$$

Hence, one can write :

$$
\begin{equation*}
\bar{X}_{s}=\sum_{l \in \Gamma_{s}} E_{l} ; \quad \bar{Y}_{s}=\sum_{l \in \Gamma_{s}} F_{l}, \tag{3.2}
\end{equation*}
$$

with $E_{l} \in V_{\gamma_{s}} \cap \mathfrak{g}\left(I_{l}\right)$ and $F_{l} \in V_{-\gamma_{s}} \cap \mathfrak{g}\left(I_{l}\right)$. It follows from assertion 2) that

$$
\begin{equation*}
\bar{H}_{s}=\gamma_{s}^{\check{s}}=\left[\bar{X}_{s}, \bar{Y}_{s}\right]=\sum_{l \in \Gamma_{s}}\left[E_{l}, F_{l}\right]=\sum_{l \in \Gamma_{s}} H_{l}, \tag{3.3}
\end{equation*}
$$

where $H_{l}:=\left[E_{l}, F_{l}\right] \in \mathfrak{h}_{I_{l}}, \forall l \in \Gamma_{s}$. Then one has, for $k \in \Gamma_{s}$,

$$
2=\left\langle\gamma_{s}, \gamma_{s}^{\check{s}}\right\rangle=\left\langle\alpha_{k}, \gamma_{s}^{\check{s}}\right\rangle=\sum_{l \in \Gamma_{s}}\left\langle\alpha_{k}, H_{l}\right\rangle=\left\langle\alpha_{k}, H_{k}\right\rangle,
$$

and for $j \in J_{k}$,

$$
0=\left\langle\alpha_{j}, \gamma_{s}^{\check{s}}\right\rangle=\sum_{l \in \Gamma_{s}}\left\langle\alpha_{j}, H_{l}\right\rangle=\left\langle\alpha_{j}, H_{k}\right\rangle
$$

In particular, H_{k} is the unique semi-simple element of $\mathfrak{h}_{I_{k}}$ satisfying :

$$
\begin{equation*}
\left\langle\alpha_{i}, H_{k}\right\rangle=2 \delta_{i, k}, \forall i \in I_{k} \tag{3.4}
\end{equation*}
$$

Hence, $\left(E_{k}, H_{k}, F_{k}\right)$ is an $\mathfrak{s l}_{2}$-triple in the simple Lie algebra $\mathfrak{g}\left(I_{k}\right)$ and since $V_{2 \gamma_{s}}=$ $\{0\},\left(I_{k}, J_{k}\right)$ is an irreducible C-admissible pair for all $k \in \Gamma_{s}$. The statement 4) follows from the relation (3.2).

Corollary 3.15. The pair $\left(I_{r e}, J_{r e}\right)$ is C-admissible (in the eventually decomposable sense of Remark 2.15). If $I_{i m}^{\prime}=\emptyset$, then $I_{r e}=I, J_{r e}=J$ and \mathfrak{g} is finitely Δ^{J}-graded, with grading subalgebra \mathfrak{g}^{J}.
N.B. We have got part 2) of Theorem 2.

Proof. The first assertion is a consequence of Proposition 3.14. By remark 3.13, when $I_{i m}^{\prime}=\emptyset$, we have $I=I_{r e}$; hence, by Theorem $2.14, \mathfrak{g}$ is finitely Δ^{J}-graded.

Definition 3.16. If $I_{i m}^{\prime} \neq \emptyset$, then (I, J) is called a generalized C-admissible pair and the gradation of \mathfrak{g} by Σ and \mathfrak{m} is said imaginary.
On the contrary if $I_{i m}^{\prime}=\emptyset$, the gradation is said real.
If $I_{i m}^{\prime}=J=\emptyset$, the Kac-Moody algebra \mathfrak{g} is said to be maximally finitely Σ-graded.
Corollary 3.17. The grading subalgebra \mathfrak{m} of \mathfrak{g} is symmetrizable and the restriction to \mathfrak{m} of the invariant bilinear form of \mathfrak{g} is non-degenerate.

Proof. Let $(., .)_{a}$ be the restriction to \mathfrak{m} of the invariant bilinear form (.,.) of \mathfrak{g}. Recall from the proof of Proposition 3.14 that $\gamma_{s}^{\check{s}}=\sum_{k \in \Gamma_{s}} H_{k}, \forall s \in \bar{I}$. In particular $\left(\gamma_{s}, \gamma_{s}^{\check{s}}\right)_{a}=\sum_{k \in \Gamma_{s}}\left(H_{k}, H_{k}\right)>0$. It follows that $(., .)_{a}$ is a non-degenerate invariant bilinear form on \mathfrak{m} (see §1.4) and that \mathfrak{m} is symmetrizable.

Corollary 3.18. Let \mathfrak{h}^{J} be the orthogonal of \mathfrak{h}_{J} in \mathfrak{h}. For $k \in I_{\text {im }}^{\prime}$, write

$$
\rho_{a}\left(\alpha_{k}\right)=\sum_{s \in \bar{I}} n_{s, k} \gamma_{s}
$$

For $s \in \bar{I}$, choose l_{s} a representative element of Γ_{s}. Then $\mathfrak{a} / \mathfrak{c}_{a}$ can be viewed as the subspace of $\mathfrak{h}^{J} / \mathfrak{c}$ defined by the following relations :

$$
\begin{aligned}
& \left\langle\alpha_{k}, h\right\rangle=\left\langle\alpha_{l_{s}}, h\right\rangle, \forall k \in \Gamma_{s}, \forall s \in \bar{I} \\
& \left\langle\alpha_{k}, h\right\rangle=\sum_{s \in \bar{I}} n_{s, k}\left\langle\alpha_{l_{s}}, h\right\rangle, \forall k \in I_{i m}^{\prime}
\end{aligned}
$$

Proof. The subspace of $\mathfrak{h}^{J} / \mathfrak{c}$ defined by the above relations has dimension $|\bar{I}|$ and contains $\mathfrak{a} / \mathfrak{c}_{a}$ and hence it is equal to $\mathfrak{a} / \mathfrak{c}_{a}$.

Proposition 3.19. Let $(., .)_{a}$ be the restriction to \mathfrak{m} of the invariant bilinear form $(.,$.$) of \mathfrak{g}$.

1) Let $\mathfrak{a}^{\prime}=\mathfrak{a} \cap \mathfrak{m}^{\prime}$ and let $\mathfrak{a}^{\prime \prime}$ be a supplementary subspace of \mathfrak{a}^{\prime} in \mathfrak{a} which is totally isotropic relatively to $(., .)_{a}$. Then $\mathfrak{a}^{\prime \prime} \cap \mathfrak{h}^{\prime}=\{0\}$.
2) Let $A_{I_{r e}}$ be the submatrix of A indexed by $I_{r e}$. Then there exists a subspace $\mathfrak{h}_{I_{r e}}$ of \mathfrak{h} containing \mathfrak{a} such that $\left(\mathfrak{h}_{I_{r e}}, \Pi_{I_{r e}}, \Pi_{I_{r e}}\right)$ is a realization of $A_{I_{r e}}$. In particular, the Kac-Moody subalgebra $\mathfrak{g}\left(I_{r e}\right)$ associated to this realization (in 1.2) contains the grading subalgebra \mathfrak{m}.
3) The Kac-Moody algebra $\mathfrak{g}\left(I_{r e}\right)$ is finitely $\Delta\left(I_{r e}\right)^{J_{r e}}$-graded and its grading subalgebra is the subalgebra $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$ associated to the C-admissible pair $\left(I_{r e}, J_{r e}\right)$ as in Proposition 2.11.
4) The Kac-Moody algebra $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$ contains \mathfrak{m}.

Proof.

1) Recall that the center \mathfrak{c}_{a} of \mathfrak{m} is contained in the center \mathfrak{c} of \mathfrak{g}. Since $\mathfrak{h}^{\prime}=\mathfrak{c}^{\perp}$ and \mathfrak{c}_{a} is in duality with $\mathfrak{a}^{\prime \prime}$ relatively to $(., .)_{a}$, we deduce that $\mathfrak{a}^{\prime \prime} \cap \mathfrak{h}^{\prime}=\{0\}$.
2) From the proofs of 3.17 and 3.14 we get $\gamma_{s}^{\vee}=\sum_{k \in \Gamma_{s}} H_{k} \in \sum_{k \in \Gamma_{s}} \mathfrak{h}_{I_{k}}=\mathfrak{h}_{I_{r e}}^{\prime}$. So $\mathfrak{c}_{a} \subset \mathfrak{a}^{\prime} \subset \mathfrak{h}_{I_{r e}}^{\prime} \subset \mathfrak{h}^{\prime}$. It follows that $\left(\mathfrak{h}_{I_{r e}}^{\prime}+\mathfrak{h}^{I_{r e}}\right)$ is contained in \mathfrak{c}_{a}^{\perp} the orthogonal subspace of \mathfrak{c}_{a} in \mathfrak{h}. Since $\mathfrak{a}^{\prime \prime} \cap \mathfrak{c}_{a}^{\perp}=\{0\}$, one can choose a supplementary subspace $\mathfrak{h}_{I_{r e}}^{\prime \prime}$ of $\left(\mathfrak{h}_{I_{r e}}^{\prime}+\mathfrak{h}^{I_{r e}}\right)$ containing $\mathfrak{a}^{\prime \prime}$. Let $\mathfrak{h}_{I_{r e}}=\mathfrak{h}_{I_{r e}}^{\prime} \oplus \mathfrak{h}_{I_{r e}}^{\prime \prime}$, then, by Proposition 1.2, $\left(\mathfrak{h}_{I_{r e}}, \Pi_{I_{r e}}, \Pi_{I_{r e}}\right)$ is a realization of $A_{I_{r e}}$.
3) As in Corollary 3.15, assertion 3) is a simple consequence of Theorem 2.14.
4) The algebra \mathfrak{a} is in $\mathfrak{h}_{I_{r e}} \cap \Pi \frac{\perp}{J}=\left(\mathfrak{h}_{I_{r e}}\right)^{J_{r e}}$. By the proof of Proposition 3.14, for $s \in \bar{I}, \bar{X}_{s}$ and \bar{Y}_{s} are linear combinations of the elements in $\left\{E_{k}, F_{k} \mid k \in \Gamma_{s}\right\} \subset$ $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$. Hence $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$ contains all generators of \mathfrak{m}.

Lemma 3.20. Let \mathfrak{l} be a Kac-Moody subalgebra of \mathfrak{g} containing \mathfrak{m}. Then \mathfrak{l} is finitely Σ-graded. In particular, the Kac-Moody subalgebra $\mathfrak{g}\left(I_{r e}\right)$ or $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$ is finitely Σ-graded.
N.B. Proposition 3.19 and Lemma 3.20 finish the proof of Theorem 2.

Proof. Recall that the Cartan subalgebra \mathfrak{a} of \mathfrak{m} is $\operatorname{ad}_{\mathfrak{g}}$-diagonalizable. Since \mathfrak{l} is $\operatorname{ad}(\mathfrak{a})$-invariant, one has $\mathfrak{l}=\sum_{\gamma \in \Sigma \cup\{0\}} V_{\gamma} \cap \mathfrak{l}$. By assumption $\{0\} \neq \mathfrak{m}_{\gamma} \subset V_{\gamma} \cap \mathfrak{l}$ for all $\gamma \in \Sigma$. Thus, \mathfrak{l} is finitely Σ-graded.

Proposition 3.21. If $I_{\text {im }}^{\prime}=\emptyset$, then $\mathfrak{g}\left(I_{r e}\right)=\mathfrak{g}$ and the C-admissible subalgebra \mathfrak{g}^{J} is maximally finitely Σ-graded, with grading subalgebra \mathfrak{m}.

Proof. This result is due to J. Nervi ([17, 2.5.10]) for the affine case; it follows from the facts that $V_{0} \cap \mathfrak{g}^{J}=\mathfrak{h}^{J}$ and $\mathfrak{m} \subset \mathfrak{g}^{J}$ (see Prop. 3.19).

We now want a precise description of the gradation of $\mathfrak{g}\left(I_{r e}\right)$ by Σ and \mathfrak{m}; particularly in the case (already mentioned in Remark 3.13) where $\mathfrak{g}\left(I_{r e}\right)$ (and so $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}$) is decomposable.

Let $I_{r e}^{1}, I_{r e}^{2}, \ldots, I_{r e}^{q}$ be the connected components of $I_{r e}$ and $J_{r e}^{i}:=J_{r e} \cap I_{r e}^{i}$, $i=1,2, \ldots, q$. Then $\mathfrak{g}\left(I_{r e}\right)=\underset{i=1}{\oplus} \mathfrak{g}\left(I_{r e}^{i}\right)$ and hence $\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}=\underset{i=1}{\oplus} \mathfrak{g}\left(I_{r e}^{i}\right)^{J_{r e}^{i}}$ (see Remark 2.15). Retain the notations introduced just before Proposition 3.14 and
those introduced in its proof.
For $s \in \bar{I}$ and $i=1,2, \ldots, q$, let $\Gamma_{s}^{i}:=\Gamma_{s} \cap I_{r e}^{i}$. If Γ_{s}^{i} is non-empty, put $E_{s}^{i}:=\sum_{l \in \Gamma_{s}^{i}} E_{l}$; $F_{s}^{i}:=\sum_{l \in \Gamma_{s}^{i}} F_{l}$ and $H_{s}^{i}:=\sum_{l \in \Gamma_{s}^{i}} H_{l}$. We take $E_{s}^{i}=F_{s}^{i}=H_{s}^{i}=0$ if Γ_{s}^{i} is empty. Note that $\Gamma_{s}=\bigcup_{i=1}^{q} \Gamma_{s}^{i}$ (disjoint union) and from the proof of the Proposition 3.14 we get the following relations

$$
\begin{gather*}
\bar{X}_{s}=\sum_{i=1}^{q} E_{s}^{i} ; \quad \bar{Y}_{s}=\sum_{i=1}^{q} F_{s}^{i}, \forall s \in \bar{I} \tag{3.5}\\
\bar{H}_{s}=\gamma_{s}^{\check{ }}=\left[\bar{X}_{s}, \bar{Y}_{s}\right]=\sum_{i=1}^{q}\left[E_{s}^{i}, F_{s}^{i}\right]=\sum_{i=1}^{q} H_{s}^{i}, \forall s \in \bar{I} \tag{3.6}
\end{gather*}
$$

Lemma 3.22. Let $s \in \bar{I}$ and $i \in\{1,2, \ldots, q\}$ such that $\Gamma_{s}^{i} \neq \emptyset$. Then we have

1) $\Gamma_{t}^{i} \neq \emptyset$ for all $t \in \bar{I}$ satisfying $\left\langle\gamma_{t}, \gamma_{s}^{\curlyvee}\right\rangle<0$.
2) $\Gamma_{t}^{i} \neq \emptyset, \forall t \in \bar{I}$.

Proof. To prove 1), suppose $\Gamma_{t}^{i}=\emptyset$ for any t satisfying $\left\langle\gamma_{t}, \gamma_{s}^{\sim}\right\rangle<0$. Let $k \in \Gamma_{s}^{i}$, then $\left\langle\gamma_{s}, \gamma_{t}\right\rangle=\sum_{\substack{j=1 \\ j \neq i}}^{q}\left\langle\alpha_{k}, H_{t}^{j}\right\rangle=0$, a contradiction since $\left\langle\gamma_{s}, \check{\gamma_{t}}\right\rangle$ must be negative.
Thus $\Gamma_{s}^{i} \neq \emptyset$ iff $\Gamma_{t}^{i} \neq \emptyset$. The second statement follows from the connectedness of \bar{I} : For $t \in \bar{I}$, there exists a sequence $s_{0}=s, s_{1}, \ldots, s_{n}=t$ in \bar{I} such that s_{j} is linked to s_{j+1} for all $j=0,1, \ldots, n-1$. By 1) $\Gamma_{s_{j}}^{i}$ is, as Γ_{s}^{i}, non-empty for all $j=0,1, \ldots, n$. In particular $\Gamma_{t}^{i} \neq \emptyset$.

Lemma 3.23. $\Gamma_{s}^{i} \neq \emptyset, \forall s \in \bar{I}, \forall i=1,2, \ldots, q$, and $\left(H_{s}^{i}\right)_{s \in \bar{I}}$ is free for all $i=$ $1,2, \ldots, q$.
Proof. Recall that $I_{r e}=\underset{k \in I_{r e}^{\prime}}{\cup} I_{k}$, with all the I_{k} connected. Let $i \in\{1,2, \ldots, q\}$ and let $k \in I_{r e}^{\prime}$ such that $I_{k} \subset I_{r e}^{i}$. Let $s \in \bar{I}$ such that $\rho_{a}\left(\alpha_{k}\right)=\gamma_{s}$, then $k \in \Gamma_{s}^{i}$ and $\Gamma_{s}^{i} \neq \emptyset$. By the Lemma 3.22, $\Gamma_{t}^{i} \neq \emptyset$ for all $t \in \bar{I}$. Thus $H_{s}^{i} \neq 0, \forall s \in \bar{I}$; $\forall i=1,2, \ldots, q$, and the freeness of $\left(H_{s}^{i}\right)_{s \in \bar{I}}$ follows from that of $\left(H_{k}\right)_{k \in I_{r e}^{\prime}}$.
Proposition 3.24. For $i=1,2, \ldots, q$, let p_{i} be the projection of $\mathfrak{g}\left(I_{r e}\right)$ on $\mathfrak{g}\left(I_{r e}^{i}\right)$ with kernel $\oplus_{j \neq i} \mathfrak{g}\left(I_{r e}^{j}\right)$ and let $\mathfrak{m}_{i}:=p_{i}(\mathfrak{m})$. Then we have :

1) \mathfrak{m}_{i} is a Kac-Moody subalgebra of $\mathfrak{g}\left(I_{r e}^{i}\right)^{J_{r e}^{i}}$ isomorphic to \mathfrak{m}.
2) The Kac-Moody subalgebra $\mathfrak{g}\left(I_{r e}^{i}\right)^{J_{r e}^{i}}$ is maximally finitely $\Sigma_{i}-$ graded, where Σ_{i} is the root system of \mathfrak{m}_{i} relative to the Cartan subalgebra $\mathfrak{a}_{i}:=p_{i}(\mathfrak{a})$.
N.B. Note that \mathfrak{m} is contained in $\underset{i=1}{\underset{\oplus}{\oplus}} \mathfrak{m}_{i}$. In particular, $\underset{i=1}{\underset{\oplus}{\oplus}} \mathfrak{m}_{i}$ is finitely Σ-graded.
 diagonal subalgebra $\Delta\left(\mathfrak{m}^{q}\right)$ of $\mathfrak{m}^{q}: \Delta\left(\mathfrak{m}^{q}\right):=\{(X, X, \ldots, X) ; X \in \mathfrak{m}\}$.
Proof. For $i \in\{1,2, \ldots, q\}, p_{i}$ is a morphism of Lie algebras and $\mathfrak{m}_{i}:=p_{i}(\mathfrak{m})$ is contained in $\mathfrak{g}\left(I_{r e}^{i}\right)^{J_{r e}^{i}}$. For $s \in \bar{I}$, one has $p_{i}\left(\gamma_{s}^{\check{s}}\right)=H_{s}^{i}$. Thus the restriction of p_{i} to $\mathfrak{a}^{\prime}:=[\mathfrak{a}, \mathfrak{a}]=\oplus_{s \in \bar{I}} \mathbb{C} \gamma_{s}^{\check{s}}$ is injective by Lemma 3.23. Since \mathfrak{m} is indecomposable, p_{i}
when restricted to \mathfrak{m} is still injective (see [12, 1.7]). Thus $\mathfrak{m}_{i}=p_{i}(\mathfrak{m})$ is isomorphic to \mathfrak{m} and we have the following commutative diagram :

For the second assertion, Let $\mathfrak{a}_{i}:=p_{i}(\mathfrak{a})$ and $\Sigma_{i}=\Delta\left(\mathfrak{m}_{i}, \mathfrak{a}_{i}\right)$. When restricted to \mathfrak{m} p_{i} induces an isomorphism of root systems $\psi_{i}: \Sigma_{i} \rightarrow \Sigma$ such that

$$
\langle\alpha, h\rangle=\left\langle\psi_{i}^{-1}(\alpha), p_{i}(h)\right\rangle, \quad \forall \alpha \in \Sigma, \forall h \in \mathfrak{a}
$$

Note that for $\alpha \in \Sigma$ and $X \in \mathfrak{g}\left(I_{r e}\right)$ satisfying $[h, X]=\langle\alpha, h\rangle X, \forall h \in \mathfrak{a}$, one has $\left[h^{i}, p_{i}(X)\right]=\left\langle\psi_{i}^{-1}(\alpha), h^{i}\right\rangle p_{i}(X), \forall h^{i} \in \mathfrak{a}_{i}$. Since $\mathfrak{g}\left(I_{r e}\right)\left(\right.$ resp. $\left.\mathfrak{g}\left(I_{r e}\right)^{J_{r e}}\right)$ is finitely Σ-graded and p_{i} is surjective, the Kac-Moody subalgebra $\mathfrak{g}\left(I_{r e}^{i}\right)$ (resp. $\left.\mathfrak{g}\left(I_{r e}^{i}\right)^{J_{r e}^{i}}\right)$ is finitely Σ_{i}-graded. For $k \in I_{r e}^{i}$, Let $\rho_{i}\left(\alpha_{k}\right)$ be the restriction of α_{k} to \mathfrak{a}_{i}. Then $\left(\rho_{i}\left(\alpha_{k}\right)=0\right) \Longleftrightarrow\left(\rho_{a}\left(\alpha_{k}\right)=0\right) \Longleftrightarrow\left(k \in J_{r e}^{i}\right)$. By Proposition 3.21, $\mathfrak{g}\left(I_{r e}^{i}\right) J_{r e}^{i}$ is maximally finitely Σ_{i}-graded.

Corollary 3.25. If \mathfrak{g} is Lorentzian then $I_{r e}$ is connected.
Proof. If \mathfrak{g} is Lorentzian, then By Proposition 3.6, the grading subalgebra \mathfrak{m} and hence all the $\mathfrak{m}_{i}(i=1,2, \ldots, q)$ are also Lorentzian. When restricted to $\underset{i=1}{\oplus} \mathfrak{a}_{i}$ the invariant bilinear form (.,.) is still non-degenerate and has signature $(q(r-1), q)$, where r is the common rank of the $\mathfrak{m}_{i}, i=1,2, \ldots, q$. Hence $q=1$ and $I_{r e}$ is connected.

Proposition 3.26. If \mathfrak{g} is of finite, affine or hyperbolic type, then any finite gradation is real: $I_{i m}^{\prime}=\emptyset$ and (I, J) is a C-admissible pair.
Proof. The result is trivial if \mathfrak{g} is of finite type. Suppose $I_{i m}^{\prime} \neq \emptyset$ for one of the other cases. If \mathfrak{g} is affine, then $I_{r e}$ is of finite type and by Lemma $3.19, \mathfrak{m}$ is contained in the finite dimensional semi-simple Lie algebra $\mathfrak{g}\left(I_{r e}\right)$. This contradicts the fact that \mathfrak{m} is, as \mathfrak{g}, of affine type (see Proposition 3.6). If \mathfrak{g} is hyperbolic, then it is Lorentzian and perfect (cf. section 1.1). By Lemma 3.20 and Corollary 3.25, $\mathfrak{g}\left(I_{r e}\right)$ is an indecomposable finitely Σ-graded Kac-Moody subalgebra of \mathfrak{g}. As $I_{r e}$ is assumed to be a proper connected subset of $I, \mathfrak{g}\left(I_{r e}\right)$ is of finite or affine type, a contradiction since, by Proposition 3.6, \mathfrak{m} must be Lorentzian. Hence $I_{i m}^{\prime}=\emptyset$ in the two last cases.

Proposition 3.27. If \mathfrak{g} is hyperbolic, then the grading subalgebra \mathfrak{m} is also hyperbolic.

Proof. Recall that in this case, $I_{r e}=I$ (see Proposition 3.26 and Corollary 3.15). Let \bar{I}^{1} be a proper subset of \bar{I} and suppose that \bar{I}^{1} is connected. Let $I^{1}=$ $\cup_{s \in \bar{I}^{1}}\left(\cup_{k \in \Gamma_{s}}^{\cup} I_{k}\right)$. Then, I^{1} is a proper subset of I. We may assume that the subalgebra $\mathfrak{m}\left(\bar{I}^{1}\right)$ of \mathfrak{m} is contained in $\mathfrak{g}\left(I^{1}\right)$. Let $\Sigma^{1}:=\Sigma\left(\bar{I}^{1}\right)$ be the root system
of $\mathfrak{m}\left(\bar{I}^{1}\right)$. Then, it is not difficult to check that $\mathfrak{g}\left(I^{1}\right)$ is finitely Σ^{1}-graded. The argument used in Proposition 3.24 shows that the indecomposable components of $\mathfrak{g}\left(I^{1}\right)$ (which all are of finite or affine type) are finitely Σ^{1}-graded. By Proposition 3.6, $\mathfrak{m}\left(\bar{I}^{1}\right)$ is of finite or affine type. Hence \mathfrak{m} is hyperbolic.

Corollary 3.28. The problem of classification of finite real gradations of \mathfrak{g} comes down first to classify the C-admissible pairs (I, J) of \mathfrak{g} and then the maximal finite gradations of the corresponding admissible algebra \mathfrak{g}^{J}. When \mathfrak{g} is of finite, affine or hyperbolic type, we get thus all finite gradations.

Proof. This follows from Proposition 3.26, Proposition 3.21 and Lemma 1.5.

4. Maximal gradations

We assume now moreover that \mathfrak{g} is maximally finitely Σ-graded. We keep the notations in section 3 but we have $J=I_{i m}^{\prime}=\emptyset$. So \bar{I} is a quotient of I, with quotient map ρ defined by $\rho_{a}\left(\alpha_{k}\right)=\gamma_{\rho(k)}$. For $s \in \bar{I}, \Gamma_{s}=\rho^{-1}(\{s\})$.

Proposition 4.1.

1) If $k \neq l \in I$ and $\rho(k)=\rho(l)$, then there is no link between k and l in the Dynkin diagram of $A: \alpha_{k}\left(\alpha_{l}^{\vee}\right)=\alpha_{l}\left(\alpha_{k}^{\vee}\right)=0$ and $\left(\alpha_{k}, \alpha_{l}\right)=0$.
2) $\mathfrak{a} \subset\left\{h \in \mathfrak{h} \mid \alpha_{k}(h)=\alpha_{l}(h)\right.$ whenever $\left.\rho(k)=\rho(l)\right\}$.
3) For good choices of the simple coroots and Chevalley generators $\left(\alpha_{k}^{\vee}, e_{k}, f_{k}\right)_{k \in I}$ in \mathfrak{g} and $\left(\gamma_{s}^{\vee}, \bar{X}_{s}, \bar{Y}_{s}\right)_{s \in \bar{I}}$ in \mathfrak{m}, we have $\gamma_{s}^{\vee}=\sum_{k \in \Gamma_{s}} \alpha_{k}^{\vee}$, $\bar{X}_{s}=\sum_{k \in \Gamma_{s}} e_{k}$ and $\bar{Y}_{s}=\sum_{k \in \Gamma_{s}} f_{k}$.
4) In particular, for $s, t \in \bar{I}$, we have $\gamma_{s}\left(\gamma_{t}^{\vee}\right)=\sum_{k \in \Gamma_{t}} \alpha_{i}\left(\alpha_{k}^{\vee}\right)$ for any $i \in \Gamma_{s}$.

Proof. Assertions 1) and 2) are proved in 3.14 and 3.18. For $i \in \Gamma_{s}, \gamma_{s}=\rho_{a}\left(\alpha_{i}\right)$ is the restriction of α_{i} to \mathfrak{a}; so 4) is a consequence of 3).

For 3) recall the proof of Proposition 3.14. The $\mathfrak{s l}_{2}-\operatorname{triple}\left(\bar{X}_{s}, \gamma_{s}^{\vee}, \bar{Y}_{s}\right)$ may be written $\gamma_{s}^{\vee}=\sum_{k \in \Gamma_{s}} H_{k}, \bar{X}_{s}=\sum_{k \in \Gamma_{s}} E_{k}$ and $\bar{Y}_{s}=\sum_{k \in \Gamma_{s}} F_{k}$ where $\left(E_{k}, H_{k}, F_{k}\right)$ is an $\mathfrak{s l}_{2}$-triple in $\mathfrak{g}\left(I_{k}\right)$, with $\alpha_{k}\left(H_{k}\right)=2$. But now $J=I_{i m}^{\prime}=\emptyset$, so $I_{k}=\{k\}$ and $\mathfrak{g}\left(I_{k}\right)=\mathbb{C} e_{k} \oplus \mathbb{C} \alpha_{k}^{\vee} \oplus \mathbb{C} f_{k}$, hence the result.

So the grading subalgebra \mathfrak{m} may be entirely described by the quotient map ρ.
We look now to the reciprocal construction.
So \mathfrak{g} is an indecomposable and symmetrizable Kac-Moody algebra associated to a generalized Cartan matrix $A=\left(a_{i, j}\right)_{i, j \in I}$. We consider a quotient \bar{I} of I with quotient map $\rho: I \rightarrow \bar{I}$ and fibers $\Gamma_{s}=\rho^{-1}(\{s\})$ for $s \in \bar{I}$. We suppose that ρ is an admissible quotient i.e. that it satisfies the following two conditions:
(MG1) If $k \neq l \in I$ and $\rho(k)=\rho(l)$, then $a_{k, l}=\alpha_{l}\left(\alpha_{k}^{\vee}\right)=0$.
(MG2) If $s \neq t \in \bar{I}$, then $\bar{a}_{s, t}:=\sum_{i \in \Gamma_{s}} a_{i, j}=\sum_{i \in \Gamma_{s}} \alpha_{j}\left(\alpha_{i}^{\vee}\right)$ is independent of the choice of $j \in \Gamma_{t}$.

Proposition 4.2. The matrix $\bar{A}=\left(\bar{a}_{s, t}\right)_{s, t \in \bar{I}}$ is an indecomposable generalized Cartan matrix.

Proof. Let $s \neq t \in \bar{I}$ and let $j \in \Gamma_{t}$. By (MG1) one has $\bar{a}_{t, t}=\sum_{i \in \Gamma_{t}} a_{i, j}=a_{j, j}=2$, and by (MG2) $\bar{a}_{s, t}:=\sum_{i \in \Gamma_{s}} a_{i, j} \in \mathbb{Z}^{-}\left(\forall j \in \Gamma_{t}\right)$. Moreover, $\bar{a}_{s, t}=0$ if and only
if $a_{i, j}=0\left(=a_{j, i}\right), \forall(i, j) \in \Gamma_{s} \times \Gamma_{t}$. It follows that $\bar{a}_{s, t}=0$ if and only if $\bar{a}_{t, s}=0$, and \bar{A} is a generalized Cartan matrix. Since A is indecomposable, \bar{A} is also indecomposable.

Let $\mathfrak{h}^{\Gamma}=\left\{h \in \mathfrak{h} \mid \alpha_{k}(h)=\alpha_{l}(h)\right.$ whenever $\left.\rho(k)=\rho(l)\right\}, \gamma_{s}^{\vee}=\sum_{k \in \Gamma_{s}} \alpha_{k}^{\vee}$ and $\mathfrak{a}^{\prime}=\oplus_{s \in \bar{I}} \mathbb{C} \gamma_{s}^{\vee} \subset \mathfrak{h}^{\Gamma}$. We may choose a subspace $\mathfrak{a}^{\prime \prime}$ in \mathfrak{h}^{Γ} such that $\mathfrak{a}^{\prime \prime} \cap \mathfrak{a}^{\prime}=\{0\}$, the restrictions $\bar{\alpha}_{i}=: \gamma_{\rho(i)}$ to $\mathfrak{a}=\mathfrak{a}^{\prime} \oplus \mathfrak{a}^{\prime \prime}$ of the simple roots α_{i} (corresponding to different $\rho(i) \in \bar{I}$) are linearly independent and $\mathfrak{a}^{\prime \prime}$ is minimal for these two properties.
Proposition 4.3. $\left(\mathfrak{a},\left\{\gamma_{s} \mid s \in \bar{I}\right\},\left\{\gamma_{s}^{\vee} \mid s \in \bar{I}\right\}\right)$ is a realization of \bar{A}.
Proof. Let ℓ be the rank of \bar{A}. Note that \mathfrak{a} contains $\mathfrak{a}^{\prime}=\oplus_{s \in \bar{I}} \mathbb{C} \gamma_{s}^{\vee}$; the family $\left(\gamma_{s}\right)_{s \in \bar{I}}$ is free in the dual space \mathfrak{a}^{*} of \mathfrak{a} and satisfies $\left\langle\gamma_{t}, \gamma_{s}^{\vee}\right\rangle=\bar{a}_{s, t}, \forall s, t \in \bar{I}$. It follows that $\operatorname{dim}(\mathfrak{a}) \geq 2|\bar{I}|-\ell$ (see [11, 14.1] or [12, Ex. 1.3]). As \mathfrak{a} is minimal, we have $\operatorname{dim}(\mathfrak{a})=2|\overline{\bar{I}}|-\ell$ (see $[11,14.2]$ for minimal realization). Hence $\left(\mathfrak{a},\left\{\gamma_{s} \mid\right.\right.$ $\left.s \in \bar{I}\},\left\{\gamma_{s}^{\vee} \mid s \in \bar{I}\right\}\right)$ is a (minimal) realization of \bar{A}.

We note $\Delta^{\rho}=\Sigma \subset \oplus_{s \in \bar{I}} \mathbb{Z} \gamma_{s}$ the root system associated to this realization.
We define now $\bar{X}_{s}=\sum_{k \in \Gamma_{s}} e_{k}$ and $\bar{Y}_{s}=\sum_{k \in \Gamma_{s}} f_{k}$. Let $\mathfrak{m}=\mathfrak{g}^{\rho}$ be the Lie subalgebra of \mathfrak{g} generated by \mathfrak{a} and the elements \bar{X}_{s}, \bar{Y}_{s} for $s \in \bar{I}$.
Proposition 4.4. The Lie subalgebra $\mathfrak{m}=\mathfrak{g}^{\rho}$ is the Kac-Moody algebra associated to the realization $\left(\mathfrak{a},\left\{\gamma_{s} \mid s \in \bar{I}\right\},\left\{\gamma_{s}^{\vee} \mid s \in \bar{I}\right\}\right.$) of \bar{A}. Moreover, \mathfrak{g} is an integrable \mathfrak{g}^{ρ}-module with finite multiplicities.

Proof. Clearly, the following relations hold in the Lie subalgebra \mathfrak{g}^{ρ} :

$$
\begin{array}{lll}
{[\mathfrak{a}, \mathfrak{a}]=0,} & {\left[\bar{X}_{s}, \bar{Y}_{t}\right]=\delta_{s, t} \gamma_{s}^{\vee}} & (s, t \in \bar{I}) \\
{\left[a, \bar{X}_{s}\right]=\left\langle\gamma_{s}, a\right\rangle \bar{X}_{s},} & {\left[a, \bar{Y}_{s}\right]=-\left\langle\gamma_{s}, a\right\rangle \bar{Y}_{s}} & (a \in \mathfrak{a}, s \in \bar{I}) .
\end{array}
$$

For the Serre's relations, one has :

$$
1-\bar{a}_{s, t} \geq 1-a_{i, j}, \forall(i, j) \in \Gamma_{s} \times \Gamma_{t}
$$

In particular, one can see, by induction on $\left|\Gamma_{s}\right|$, that :

$$
\left(\operatorname{ad} \bar{X}_{s}\right)^{1-\bar{a}_{s, t}}\left(e_{j}\right)=\left(\sum_{i \in \Gamma_{s}} \operatorname{ad} e_{i}\right)^{1-\bar{a}_{s, t}}\left(e_{j}\right)=0, \forall j \in \Gamma_{t} .
$$

Hence

$$
\left(\operatorname{ad} \bar{X}_{s}\right)^{1-\bar{a}_{s, t}}\left(\bar{X}_{t}\right)=0, \forall s, t \in \bar{I}
$$

and in the same way we obtain that:

$$
\left(\operatorname{ad} \bar{Y}_{s}\right)^{1-\bar{a}_{s, t}}\left(\bar{Y}_{t}\right)=0, \forall s, t \in \bar{I}
$$

It follows that \mathfrak{g}^{ρ} is a quotient of the Kac-Moody algebra $\mathfrak{g}(\bar{A})$ associated to \bar{A} and $\left(\mathfrak{a},\left\{\gamma_{s} \mid s \in \bar{I}\right\},\left\{\gamma_{s}^{\vee} \mid s \in \bar{I}\right\}\right)$ in which the Cartan subalgebra \mathfrak{a} of $\mathfrak{g}(\bar{A})$ is embedded. By $[12,1.7] \mathfrak{g}^{\rho}$ is equal to $\mathfrak{g}(\bar{A})$.
It's clear that \mathfrak{g} is an integrable \mathfrak{g}^{ρ}-module with finite dimensional weight spaces relative to the adjoint action of \mathfrak{a}, since for $\alpha=\sum_{i \in I} n_{i} \alpha_{i} \in \Delta^{+}$, its restriction $\rho_{a}(\alpha)$ to \mathfrak{a} is given by

$$
\begin{equation*}
\rho_{a}(\alpha)=\sum_{s \in \bar{I}}\left(\sum_{i \in \Gamma_{s}} n_{i}\right) \gamma_{s} \tag{4.1}
\end{equation*}
$$

Proposition 4.5. The Kac-Moody algebra \mathfrak{g} is maximally finitely Δ^{ρ}-graded with grading subalgebra \mathfrak{g}^{ρ}.

Proof. As in Theorem 2.14, we will see that $\rho_{a}\left(\Delta^{+}\right) \subset Q_{+}^{\Gamma}:=\underset{s \in \bar{I}}{\oplus} \mathbb{Z}^{+} \gamma_{s}$ satisfies, as $\Sigma^{+}=\Delta_{+}^{\rho}$, the following conditions :
(i) $\gamma_{s} \in \rho_{a}\left(\Delta^{+}\right) \subset Q_{+}^{\Gamma}, 2 \gamma_{s} \notin \rho_{a}\left(\Delta^{+}\right), \forall s \in \bar{I}$.
(ii) if $\gamma \in \rho_{a}\left(\Delta^{+}\right), \gamma \neq \gamma_{s}$, then the set $\left\{\gamma+k \gamma_{s} ; k \in \mathbb{Z}\right\} \cap \rho_{a}\left(\Delta^{+}\right)$is a string $\left\{\gamma-p \gamma_{s}, \ldots, \gamma+q \gamma_{s}\right\}$, where $p, q \in \mathbb{Z}^{+}$and $p-q=\left\langle\gamma, \gamma_{s}^{\vee}\right\rangle$;
(iii) if $\gamma \in \rho_{a}\left(\Delta^{+}\right)$, then $\operatorname{supp}(\gamma)$ is connected.

Clearly $\left\{\gamma_{s} \mid s \in \bar{I}\right\} \subset \rho_{a}\left(\Delta_{+}\right) \subset Q_{+}^{\Gamma}$. For $\alpha \in \Delta$ and $s \in \bar{I}$, the condition $\rho_{a}(\alpha) \in \mathbb{N} \gamma_{s}$ implies $\alpha \in \Delta\left(\Gamma_{s}\right)^{+}=\left\{\alpha_{i} ; i \in \Gamma_{s}\right\}$ [see (4.1)]. It follows that $2 \gamma_{s} \notin \rho_{a}\left(\Delta_{+}\right)$and (i) is satisfied. By Proposition 4.4, \mathfrak{g} is an integrable \mathfrak{g}^{ρ}-module with finite multiplicities. Hence, the propriety (ii) follows from [12, 3.6]. Let $\alpha \in \Delta_{+}$ and let $s, t \in \operatorname{supp}\left(\rho_{a}(\alpha)\right)$. By (4.1) there exists $(k, l) \in \Gamma_{s} \times \Gamma_{t}$ such that $k, l \in$ $\operatorname{supp}(\alpha)$, which is connected. Hence there exist $i_{0}=k, i_{1}, \ldots, i_{n+1}=l$ such that $\alpha_{i_{j}} \in \operatorname{supp}(\alpha), j=0,1, \ldots, n+1$, and for $j=0,1, \ldots, n, i_{j}$ and i_{j+1} are linked relative to the generalized Cartan matrix A. In particular, $\rho\left(i_{j}\right) \neq \rho\left(i_{j+1}\right) \in \operatorname{supp}\left(\rho_{a}(\alpha)\right)$ and they are linked relative to the generalized Cartan matrix $\bar{A}, j=0,1, \ldots, n$, with $\rho\left(i_{0}\right)=s$ and $\rho\left(i_{n+1}\right)=t$. Hence the connectedness of $\operatorname{supp}\left(\rho_{a}(\alpha)\right)$ relative to \bar{A}. It follows that $\rho_{a}\left(\Delta^{+}\right)=\Delta_{+}^{\rho}$ and hence $\rho_{a}(\Delta)=\Delta^{\rho}$ (see [12, Ex. 5.4]. In particular, \mathfrak{g} is finitely Δ^{ρ}-graded with $J=\emptyset=I_{i m}^{\prime}$.

Corollary 4.6. The restriction to $\mathfrak{m}=\mathfrak{g}^{\rho}$ of the invariant bilinear form (., .) of \mathfrak{g} is non-degenerate. In particular, the generalized Cartan matrix \bar{A} is symmetrizable of the same type as A.

Proof. The first part of the corollary follows from Proposition 4.5 and Corollary 3.17. The second part follows from Proposition 3.6.

Remark 4.7. The map ρ coincides with the map (also denoted ρ) defined at the beginning of this section using the maximal gradation of Proposition 4.5. Conversely Proposition 4.1 tells that, for a general maximal finite gradation, ρ is admissible and $\mathfrak{m}=\mathfrak{g}^{\rho}$ for good choices of the Chevalley generators. So we get a good correspondence between maximal gradations and admissible quotient maps.

By Corollary 3.28 the real finite gradations of a Kac-Moody algebra \mathfrak{g} are bijectively associated to pairs of a C-admissible pair (I, J) and an admissible quotient $\operatorname{map} \rho: I^{\prime}=I \backslash J \rightarrow \bar{I}^{\prime}$.

5. An example

The following example shows that imaginary gradations do exist. It shows in particular that, for a generalized C-admissible pair $(I, J), J^{\circ}$ may be non-empty and $I_{r e}$ may be non-connected. Moreover, the Kac-Moody algebra \mathfrak{g} may be not graded by the root system of $\mathfrak{g}\left(I_{\text {re }}\right)$.
The imaginary gradations will be studied in a forthcoming paper [7].

Example 5.1. Consider the Kac Moody algebra \mathfrak{g} corresponding to the indecomposable and symmetric generalized Cartan matrix A :

$$
A=\left(\begin{array}{cccccc}
2 & -3 & -1 & 0 & 0 & 0 \\
-3 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & -1 & -1 \\
0 & 0 & -1 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 & 2 & -3 \\
0 & 0 & -1 & 0 & -3 & 2
\end{array}\right)
$$

with the corresponding Dynkin diagram :

Note that $\operatorname{det}(A)=275$ and the symmetric submatrix of A indexed by $\{1,2,4,5,6\}$ has signature $(+++,--)$. Since $\operatorname{det}(A)>0$, the matrix A should have signature $(++++,--)$. Let Σ be the root system associated to the strictly hyperbolic generalized Cartan matrix $\left(\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right)$, the corresponding Dynkin diagram is the following :

$$
H_{3,3} \quad \underset{3}{1} \quad \underset{3}{2}
$$

We will see that \mathfrak{g} is finitely Σ-graded and describe the corresponding generalized C-admissible pair.

1) Let τ be the involutive diagram automorphism of \mathfrak{g} such that $\tau(1)=5$, $\tau(2)=6$ and τ fixes the other vertices. Let σ_{n}^{\prime} be the normal semi-involution of \mathfrak{g} corresponding to the split real form of \mathfrak{g}. Consider the quasi-split real form $\mathfrak{g}_{\mathbb{R}}^{1}$ associated to the semi-involution $\tau \sigma_{n}^{\prime}$ (see [2] or [6]). Then $\mathfrak{t}_{\mathbb{R}}:=\mathfrak{h}_{\mathbb{R}}^{\tau}$ is a maximal split toral subalgebra of $\mathfrak{g}_{\mathbb{R}}^{1}$. The corresponding restricted root system $\Delta^{\prime}:=\Delta\left(\mathfrak{g}_{\mathbb{R}}, \mathfrak{t}_{\mathbb{R}}\right)$ is reduced and the corresponding generalized Cartan matrix A^{\prime} is given by :

$$
A^{\prime}=\left(\begin{array}{cccc}
2 & -3 & -2 & 0 \\
-3 & 2 & -2 & 0 \\
-1 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

with the corresponding Dynkin diagram :

Following N. Bardy [4, 9], there exists a split real Kac-Moody subalgebra $\mathfrak{m}_{\mathbb{R}}^{1}$ of $\mathfrak{g}_{\mathbb{R}}^{1}$ containing $\mathfrak{t}_{\mathbb{R}}$ such that $\Delta^{\prime}=\Delta\left(\mathfrak{m}_{\mathbb{R}}^{1}, \mathfrak{t}_{\mathbb{R}}\right)$. It follows that \mathfrak{g} is finitely Δ^{\prime}-graded.
2) Let $\mathfrak{m}^{1}:=\mathfrak{m}_{\mathbb{R}}^{1} \otimes \mathbb{C}$ and $\mathfrak{t}:=\mathfrak{t}_{\mathbb{R}} \otimes \mathbb{C}$. Denote by $\alpha_{i}^{\prime}:=\alpha_{i} / \mathfrak{t}, i=1,2,3,4$. Put $\alpha_{1}^{\prime \check{1}}=\alpha_{1}+\alpha_{5}^{\check{5}}, \alpha^{\prime \check{ }}=\alpha_{2}+\alpha_{6}^{\check{6}}, \alpha^{\prime \check{ }}=\alpha_{3}^{\check{ }}$ and $\alpha^{\prime} \check{4}=\alpha_{4}$. Let $I^{1}:=\{1,2,3,4\}$, then $\left(\mathfrak{t}, \Pi^{\prime}=\left\{\alpha_{i}^{\prime}, i \in I^{1}\right\}, \Pi^{\prime \vee}=\left\{\alpha_{i}^{\prime}, i \in I^{1}\right\}\right)$ is a realization of A^{\prime} which is symmetrizable and Lorentzian.

Let \mathfrak{m} be the Kac-Moody subalgebra of \mathfrak{m}^{1} corresponding to the submatrix \bar{A} of A^{\prime} indexed by $\{1,2\}$. Thus $\bar{A}=\left(\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right)$ is strictly hyperbolic. Let $\mathfrak{a}:=$
$\mathbb{C} \alpha^{\prime} \check{1} \oplus \mathbb{C} \alpha^{\prime}{ }_{2}$ be the standard Cartan subalgebra of \mathfrak{m} and let $\Sigma=\Delta(\mathfrak{m}, \mathfrak{a})$. For
 $s=1,2$. Then $\Pi_{a}=\left\{\gamma_{1}, \gamma_{2}\right\}$ is the standard root basis of Σ. One can see easily that $\rho_{1}\left(\alpha_{4}^{\prime}\right)=0$ and $\rho_{1}\left(\alpha_{3}^{\prime}\right)=2\left(\gamma_{1}+\gamma_{2}\right)$ is a strictly positive imaginary root of Σ. Now we will show that \mathfrak{m}^{1} is finitely Σ-graded.
Let $(., .)_{1}$ be the normalized invariant bilinear form on \mathfrak{m}^{1} such that short real roots have length 1 and long real roots have square length 2 . Then there exists a positive rational q such that the restriction of $(., .)_{1}$ to \mathfrak{t} has the matrix B_{1} in the basis $\Pi^{\prime \prime}$, where:

$$
B_{1}=q\left(\begin{array}{cccc}
2 & -3 & -1 & 0 \\
-3 & 2 & -1 & 0 \\
-1 & -1 & 1 & -1 / 2 \\
0 & 0 & -1 / 2 & 1
\end{array}\right)
$$

By duality, the restriction of $(., .)_{1}$ to t induces a non-degenerate symmetric bilinear form on \mathfrak{t}^{*} (see $[12,2.1]$) such that its matrix B_{1}^{\prime} in the basis Π^{\prime}, is the following :

$$
B_{1}^{\prime}=q^{-1}\left(\begin{array}{cccc}
2 & -3 & -2 & 0 \\
-3 & 2 & -2 & 0 \\
-2 & -2 & 4 & -2 \\
0 & 0 & -2 & 4
\end{array}\right)
$$

Hence, q equals 2.
Note that for $\alpha^{\prime}=\sum_{i=1}^{4} n_{i} \alpha_{i}^{\prime} \in \Delta^{\prime+}$, we have that

$$
\begin{equation*}
\left(\alpha^{\prime}, \alpha^{\prime}\right)_{1}=n_{1}^{2}+n_{2}^{2}+2 n_{3}^{2}+2 n_{4}^{2}-3 n_{1} n_{2}-2 n_{1} n_{3}-2 n_{2} n_{3}-2 n_{3} n_{4} \tag{5.1}
\end{equation*}
$$

We will show that $\rho_{1}\left(\Delta^{\prime+}\right)=\Sigma^{+} \cup\{0\}$. Note that Σ can be identified with $\Delta^{\prime} \cap$ $\left(\mathbb{Z} \alpha_{1}^{\prime}+\mathbb{Z} \alpha_{2}^{\prime}\right)$; hence ρ_{1} is injective on Σ and $\Sigma^{+} \subset \rho_{1}\left(\Delta^{\prime+}\right)$.
Let $(., .)_{a}$ be the normalized invariant bilinear form on \mathfrak{m} such that all real roots have length 2. Then the restriction of $(., .)_{a}$ to \mathfrak{a} has the matrix B_{a} in the basis $\Pi_{a}^{\check{\sim}}=\left\{\gamma_{1}^{\check{1}}, \gamma_{2}^{\check{2}}\right\}$, where :

$$
B_{a}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 2
\end{array}\right)
$$

Since \bar{A} is symmetric, the non-degenerate symmetric bilinear form, on \mathfrak{a}^{*}, induced by the restriction of $(., .)_{a}$ to \mathfrak{a}, has the same matrix B_{a} in the basis Π_{a}. In particular, we have that:

$$
\left(\rho_{1}\left(\alpha^{\prime}\right), \rho_{1}\left(\alpha^{\prime}\right)\right)_{a}=2\left[\left(n_{1}+2 n_{3}\right)^{2}+\left(n_{2}+2 n_{3}\right)^{2}-3\left(n_{1}+2 n_{3}\right)\left(n_{2}+2 n_{3}\right)\right]
$$

since $\rho_{1}\left(\alpha^{\prime}\right)=\left(n_{1}+2 n_{3}\right) \gamma_{1}+\left(n_{1}+2 n_{3}\right) \gamma_{2}$.
Using (5.1), it is not difficult to check that

$$
\begin{equation*}
\left(\rho_{1}\left(\alpha^{\prime}\right), \rho_{1}\left(\alpha^{\prime}\right)\right)_{a}=2\left[\left(\alpha^{\prime}, \alpha^{\prime}\right)_{1}-\left(n_{3}-n_{4}\right)^{2}-5 n_{3}^{2}-n_{4}^{2}\right] \tag{5.2}
\end{equation*}
$$

Suppose $n_{3}=0$, then, since $\operatorname{supp}\left(\alpha^{\prime}\right)$ is connected, we have that $\alpha^{\prime}=n_{1} \alpha_{1}^{\prime}+n_{2} \alpha_{2}^{\prime}$
or $\alpha^{\prime}=\alpha_{4}^{\prime}$. Hence $\rho_{1}\left(\alpha^{\prime}\right)=n_{1} \gamma_{1}+n_{2} \gamma_{2} \in \Sigma$ or $\rho_{1}\left(\alpha^{\prime}\right)=0$.
Suppose $n_{3} \neq 0$, then, since $\left(\alpha^{\prime}, \alpha^{\prime}\right)_{1} \leq 2$, one can see, using (5.2), that

$$
\left(\rho_{1}\left(\alpha^{\prime}\right), \rho_{1}\left(\alpha^{\prime}\right)\right)_{a}<0
$$

As Σ is hyperbolic and $\rho_{1}\left(\alpha^{\prime}\right) \in \mathbb{N} \gamma_{1}+\mathbb{N} \gamma_{2}$, we deduce that $\rho_{1}\left(\alpha^{\prime}\right)$ is a positive imaginary root of Σ (see [12, 5.10]). It follows that $\rho_{1}\left(\Delta^{\prime+}\right)=\Sigma^{+} \cup\{0\}$.
To see that \mathfrak{m}^{1} is finitely Σ-graded, it suffices to prove that, for $\gamma=m_{1} \gamma_{1}+m_{2} \gamma_{2} \in$ $\Sigma^{+} \cup\{0\}$, the set $\left\{\alpha^{\prime} \in \Delta^{\prime+}, \rho_{1}\left(\alpha^{\prime}\right)=\gamma\right\}$ is finite. Note that if $\alpha^{\prime}=\sum_{i=1}^{4} n_{i} \alpha_{i}^{\prime} \in \Delta^{\prime+}$ satisfying $\rho_{1}\left(\alpha^{\prime}\right)=\gamma$, then $n_{i}+2 n_{3}=m_{i}, i=1,2$. In particular, there are
only finitely many possibilities for $n_{i}, i=1,2,3$. The same argument as the one used in the proof of Proposition 2.13 shows also that there are only finitely many possibilities for n_{4}.
3) Recall that $\mathfrak{m} \subset \mathfrak{m}^{1} \subset \mathfrak{g}$. The fact that \mathfrak{g} is finitely Δ^{\prime}-graded with grading subalgebra \mathfrak{m}^{1} and \mathfrak{m}^{1} is finitely Σ-graded implies that \mathfrak{g} is finitely Σ-graded (cf. lemma 1.5). Let $I=\{1,2,3,4,5,6\}$, then the root basis Π_{a} of Σ is adapted to the root basis Π of Δ and we have $I_{r e}=\{1,2,5,6\}$ (not connected), $\Gamma_{1}=\{1,5\}$, $\Gamma_{2}=\{2,6\}, J=\{4\}, J_{r e}=\emptyset, I_{i m}^{\prime}=\{3\}$ and $J^{\circ}=J=\{4\}$.
Note that, for this example, $\mathfrak{g}\left(I_{r e}\right)$, which is Σ-graded, is isomorphic to $\mathfrak{m} \times \mathfrak{m}$. This gradation corresponds to that of the pseudo-complex real form of $\mathfrak{m} \times \mathfrak{m}$ (i.e. the complex Kac-Moody algebra \mathfrak{m} viewed as real Lie algebra) by its restricted reduced root system. Since the pair $\left(I_{3}, J_{3}\right)=(\{3,4\},\{4\})$ is not admissible, it is not possible to build a Kac-Moody algebra \mathfrak{g}^{J} grading finitely \mathfrak{g} and maximally finitely Σ-graded.

Acknowledgments We thank the anonymous referee for his/her valuable comments and suggestions.

References

[1] B. Allison, G. Benkart and Y. Gao; Central extensions of Lie algebras graded by finite root systems, Math. Ann. 316 (2000), 499-527.
[2] V. Back-Valente, N. Bardy-Panse, H. Ben Messaoud and G. Rousseau; Formes presque déployées d'algèbres de Kac-Moody, Classification et racines relatives. J. of Algebra 171 (1995) 43-96.
[3] N. Bardy-Panse; Systèmes de racine infinis. Mémoire de la S.M.F 65 (1996).
[4] N. Bardy; Sous-algèbres birégulières d'une algèbre de Kac-Moody-Borcherds. Nagoya Math. J. Vol 156 (1999) 1-83.
[5] G. Benkart and E. Zelmanov; Lie algebras graded by finite root systems and intersection matrix algebras, Invent. Math. 126 (1996), 1-45.
[6] H. Ben Messaoud; Almost split real forms for hyperbolic Kac-Moody Lie algebras. J. Phys A. Math. Gen 39 (2006) 13659-13690.
[7] H. Ben Messaoud and N. Fradi; Imaginary gradations of Kac-Moody Lie algebras, In preparation.
[8] S. Berman and R. Moody; Lie algebras graded by finite root systems, Invent. Math. 108 (1992), 323-347.
[9] R. E. Borcherds; Generalized Kac-Moody algebras. J. of Algebra 115 (1988) 501-512.
[10] N. Bourbaki; Groupes et algèbres de Lie, Chap 4, 5 et 6, Paris.
[11] R. Carter; Lie algebras of finite and affine type. Cambridge University Press (2005).
[12] V.G. Kac; Infinite dimensional Lie algebras. Third edition, Cambridge University Press (1990).
[13] V.G. Kac and S.P. Wang; On automorphisms of Kac-Moody algebras and groups. Advances in Math. 92 (1992) 129-195.
[14] R.V. Moody; Root systems of hyperbolic type. Advances in Mathematics 33, 144-160 (1979).
[15] E. Neher; Lie algebras graded by J-graded root systems and Jordan pairs covered by grids, Amer. J. Math. 118 (1996), 439-491.
[16] J. Nervi; Algèbres de Lie simples graduées par un système de racines et sous-algèbres C-admissibles. J. of Algebra 223 (2000) 307-343.
[17] J. Nervi; Affine Kac-Moody algebras graded by affine root systems. J. of Algebra 253 (2002) 50-99.
[18] D.H. Peterson and V.G. Kac; Infinite flag varieties and conjugacy theorems. Proc. Natl. Acad. Sc. USA 80 (1983) 1778-1782.
[19] B. Rémy; Groupes de Kac-Moody déployés et presque déployés, Astérisque 277 (2002).
[20] G. Rousseau; Groupes de Kac-Moody déployés sur un corps local, II Masures ordonnées. ArXiv 1009.0135v2.
[21] H. Rubenthaler; Construction de certaines sous-algèbres remarquables dans les algèbres de Lie semi-simples. J. of Algebra 81 (1983) 268-278.
[22] J. Tits; Uniqueness and presentation of Kac-Moody groups over fields. J. of Algebra 105 (1987) 542-573.

Université de Monastir, Département de Mathématiques, Faculté des Sciences, 5019 Monastir. Tunisie.

Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502, Vandeuvre lès-Nancy, F-54506, France.

CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandeuvre lès-Nancy, F-54506, France.

E-mail address: hechmi.benmessaoud@fsm.rnu.tn

