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On Forms of Kac-Moody Algebras

GUY ROUSSEAU

Let K be a field of characteristic 0 and K its algebraic closure. We want
to look to Kac-Moody algebras for generalizations of the theory of semisimple
Lie algebras over X .

Here a Kac-Moody algebra g = g(4) will be the Lie algebra over K de-
fined by the generators and relations associated to a generalized Cartan matrix.
A (also called Kac-Moody matrix: KMM see §4). More precisely g is defined
as in [K] (except that C is replaced by K).

A K-form of g is a Lie algebra g, over K such that there exists an
isomorphism from g to g, ® K.

If we replace K by K in the definition of g, we obtain a K-form g,
which is called split. If K = R a “compact” form of g is also defined in
[K]. Some other forms may be found in the literature; but here we want to
make a systematic study of all these forms. Their algebraic structures have
in fact some likeness with that of the generalizations of Kac-Moody algebras
studied e.g. by Borcherds [Bo] or Slodowy [S].

1. The different kinds of forms

Let g, be a K-form of a Kac-Moody algebra g and let us fix an isomor-
phism from g to g, ® K. Then the Galois group I' = Gal(K/K) acts on g

and g, is identified with the fixed points set gr.

The K-form g, is the direct sum of some indecomposable K-forms. If
9y is indecomposable then g, ® K may not be indecomposable but the
indecomposable factors are permuted by I' and one easily sees that there
exists a finite extension K'/K and a K’'-form g'K of an indecomposable
Kac-Moody algebra g’ over K such that gx may be identified with g'K
viewed as a Lie algebra over K.
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So we suppose in the sequel that g is indecomposable and infinite dimen-
sional.

There is a root space decomposition g = h & (B, 9,) With respect to a
Cartan subalgebra (CSA) b, a basis Il of the system A = A(g, §) of roots, a
Weyl group W, aset A, = WII of real roots and standard Borel subalgebras
bi =he (®a€A:i: ga) N

Let G be the adjoint group of g (generated by subgroups U, for a € A,
acting on g as exp(adg,)). The CSAs of g are conjugated by G [PK], we
define N (resp. H) as the stabilizer (resp. fixer) of h in G. The Galois
group I' acts on G and we define G = G".

The Borel subgroup BE of G is generated by H and U, for a € Af:e.
There are two Tits systems in G: (G, B¥, N) and (G, B~, N). The corre-
sponding parabolic subgroups of G (or the associated parabolic subalgebras
of g) are called respectively positive and negative. Two proper parabolics
of different signs are not conjugated by G ; moreover for a suitable intrinsic
definition of Borel subalgebra [PK] there are exactly two conjugacy classes of
Borel subalgebras (or subgroups): those of b* (or B*) and b~ (or B7).

A (semi-)linear automorphism of g acts also on G and the image of a
conjugacy class is a conjugacy class; it is said to be of first kind if it stabilizes
each conjugacy class of Borel subgroup, otherwise it is said to be of second
kind and it exchanges the two conjugacy classes.

A K-form of g is said to be almost split if for each y in I the action
of y on g is of first kind; otherwise it is said to be almost anisotropic (or
almost compact when K =R).

In fact ([R4] using [KP2]) the K-form is almost split iff there exists a
proper parabolic subalgebra defined over K. So split or quasi split K-forms
are almost split (as usual a K-form is quasi split if a Borel subalgebra is
defined over K). If K =R the compact form is almost compact.

In [Héel] Jean-Yves Hée has constructed the quasi-split Kac-Moody groups
over K and some other groups twisted unalgebraically following R. Steinberg
and R. Ree’s method for Chevalley groups.

2. K-forms of affine algebras

Let E be a simple finite dimensional Lie algebra over K, # an automor-
phism of g of finite order p and { € K a primitive pth root of unity. For
y in T we define n(y) € Z (modulo p) such that y({) = "™ .

If ﬁ ; is the eigenspace of € in g corresponding to the eigenvalue Cj ,
J € Z, one knows that g = (@, tjﬁj) ® KD & Kc may be endowed with
a Lie algebra structure such that Kc is the center, D acts as #-9/9¢ and
[tj X, * Y] = v +k[X , Y] modulo ¢. In fact any affine Kac-Moody algebra
is built like this. . . .

Take now a K-form g, of g and consider the action of I" on g. Suppose
that
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There exists an homomorphism &: I'— {£1} such that y8y~! = 6" Wyy
€I'. Then y(ﬁj) = Ee(m and we may define an action of I" on g by
p(EX)=ty(X)  yD)=e()D  y(e) =s()e.

Then g, = gr is a K-form of g (already defined by Goodman and Wal-
lach [GW] when 6 =1d).

This K-form is almost split iff ¢(y) =1 forall y in I'.

In fact any almost split form of an affine algebra is as built here. This is
proved in [R3] when K =R and in [B,R] by Valérie Back for general K.
For almost compact real forms the same result is also true, but only if we
allow g to be semisimple (Ben Messaoud’s thesis).

In [A3] N. Andruskiewitsch constructs K-forms of g using a K-form EK

of E and a K-form of the associative algebra K[¢, t_l] .

3. Real-forms of symmetrizable algebras

A real form g, of g corresponds to a conjugate linear involution o of
g. Hence the compact form corresponds to a compact involution o' . '

If g is symmetrizable there exists an invariant nondegenerate bilinear form
B(x,y) on g. Then H(x,y)= —B(x, w'y) is hermitian and in fact posi-
tive definite on @, g, - So, after having supposed that ¢ and o' stabilize
the same CSA b, one may generalize a classical proof (see [H, III 7.1}) to
obtain that ,

By conjugating by G one may suppose that @ commutes with ¢’ [KIPZ]
or [R2]. Thus ¢ = ¢'w’ is a (linear) involution and & = (gz)” = (gg)” 1is
called a maximal compact subalgebra of gy .

If gg is almost compact then o is of first kind. And one obtains thus
[R2] a one-to-one correspondence between the conjugacy classes (under G)
of (linear) involutions of first kind of g and the conjugacy classes (under G)
of pairs of an almost compact real form g of g and a maximal compact
subalgebra of it. These compact subalgebras could perhaps be not conjugated
under Gy as the classical proof used above is now available only if ¢ and
@' stabilize the same CSA; and this is not always true even if ¢’ is a com-

pact involution as the Cartan decomposition is false: G # G” HG® . The
compact form is unique up to conjugacy, it corresponds to ¢ =1d.

The (linear) involutions of first kind are classified by Levstein [L] (see
some corrections and more precisions in [BR]).

If g is almost split then ¢ is of second kind. Hechmi Ben Messaoud
[B,R] has proved (using [KW] and §4) that one obtains thus a one-to-one
correspondence between the conjugacy classes (under G) of (linear) involu-
tions of second kind of g and the conjugacy classes (under G) of almost
split real forms of g. A classification of these forms is also given.

Definitions by generators and relations of these real forms are given by
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Berman and Pianzola [BeP] for quasi-split and almost compact forms and
by Andruskiewitsch [A1, A2} for almost compact forms which are inner (i.e.
o is an inner automorphism).

4. Almost split K-forms

A Borel-Tits theory for these forms is developed in [R4], [R5], and [B,R].
The principal tools are the buildings #* and %~ associated to the Tits
systems (G, B*, N) and (G, B~, N), they are twin buildings (a theory
developed by Ronan and Tits, see [T4]); in particular there are three Bruhat
decompositions: G = B'NB* = B"NB™ = B*NB™ . For nontwisted affine
algebras they are Bruhat-Tits buildings of simple algebraic groups over the
valuated fields K((¢)) and f((t—l)) respectively.

The principal result of [R4], [R5] is that for each ¢ = + or —, G is
transitive on pairs (t,, p;) such that t, C p; where p‘;( is a minimal
parabolic subalgebra over K of sign ¢ and t, a maximal K-split toral
subalgebra of g, (ie. ad(ty) is diagonalizable in g, and t, is maximal
for this property). Moreover the derived algebra I, of the centralizer 3, of
t, (which is the Levi subalgebra of p"K) is a finite dimensional semisimple
subalgebra called K-anisotropic kernel. There exists a CSA b of g defined
over K such that t, C h Cpy .

If P° is the parabolic subgroup of G corresponding to p} ® K, Py =
(P and N' (resp. H') is the stabilizer (resp. fixer) of t, in G, then
(G, Py, N') is a Tits system; its building is &g = (@ .

As in the classical case [T1] one may define a x-action of I" on II such
that if p is a parabolic subalgebra of type X C II then y(p) is of type
7*(X). In fact if b is a Borel subalgebra such that h C b C p’k then y(b) is
another such Borel subalgebra; so there exists w in the Weyl.group of (3, h)
such that wy(b) = b. The action y* on II is induced by wy and so is
compatible with the Dynkin diagram.

The index of g, is the data consisting of the Dynkin diagram, the *-action
of I' onitand I, = type(p;'() c I1. As in the classical case the knowledge of
the anisotropic kernel [, and of the index determine the K-form g, . This
form is quasi split iff I, = & and split iff moreover the +-action is trivial.
The problem of telling whether such a pair comes actually from a K-form
may be reduced to rank one (when IT —II; is a single orbit of the x-action)
[B,R].

The relative root system A' = A'(gy, tg) = {a' = a, #0/a €Ag, h)} is
more surprising (work of Nicole Bardy, [B,R]). It has a basis IT' = {a' #
0/a € IT} = {a;/i € J} indexed by the set J of orbits of the *-action on
-1, (for o, €I, ' =p #0 iff « and B are in the same orbit
in IT-1I1;). The problem is that, as in Borcherd’s work [Bo], an element of
the basis may be imaginary (in the sense that no reflection correspond to this
root): ai. is imaginary when [] U l""a,. is not of finite type. In our case all
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positive integer multiples of an imaginary root are still roots (see [RS] and
[B,R]).
One may define coroots (a;’)iE ; in tg: then A = = (a; ;); je; Where

a; ; = a;.(a:.‘) is a relative Kac-Moody matrix (RKMM instead of general-

ized generalized Cartan matrix) in the sense that

a; €L; a. .<2; a, . <0 fori#j; ai’j=0¢>aj,i=0.

i,]

The relative Weyl group W' = N'/H' is simply transitive on the set of
minimal parabolic subalgebras over K of sign ¢ and containing t; it is
generated by reflections r; for i € J suchthat a, ; > 0 (i.e. such that a; isa

real simple root). These reflections are defined by r,(h) = h—(2a;(h) /a;. D
this says that o] is the coroot of (2/a; ,)a;.
The relative root system is the only subset A’ of @, Za;, such that

(1) A=A UA_ where —A_ =A, =A'n (@Na;)
ieJ

(2) Ne, ﬂA; ={e;} if a =2,
/ ! .
={o;, 20;} ifa ; =1,

i,1

=Na, ifaq <0,

(3) Vo' € A, - 3ieJsuchthata —a; €A,
. ! ! ! 7 ) 1y -
4) Vie J,VYa €A \No, then A' N (e + Za,) is equal to :
the string {a’ —pa:., ...,a 4+ga}} with p,q € N such that p — ¢ =
(2/a;, ,)a'(a*) if a,
{'} if a; ;<0 and supp(a) and {a'} are not linked (with respect to 4'),

a set containing o +Na if a; ; <0 and supp(e’) and {a} are linked.

This generalizes a well-known result for Kac-Moody matrices [K, Example
3.5].

To each RKMM an abstract root system with these four properties may
be associated (N. Bardy). The classical root system BC, is associated to a
relative Cartan matrix (ie. an RKMM such that g, ; > 0 for all i and if
b, ;=(2/a; ja; ; then (b; ;) is a Cartan matrix).

The root systems built llke this have some good properties (with respect
to quotients by groups of permutations of the basis (cf. [Hée2]) or by some
subspaces or with respect to subsystems) but as shown by Moody and Pianzola
[MP] it is necessary to consider a generalization where IT is not free and
not finite.
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