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1. INTRODUCTION 

Let k be an algebraically closed field of char 0. The (unique up to 
isomorphism) three-dimensional simple Lie algebra s1(2, k) plays an impor- 
tant role in the theory of the semisimple Lie algebras over k. For example, 
Chevalley, Harish Chandra, and Serre’s construction of the semisimple Lie 
algebras g over k corresponding to a Dynkin diagram 9 can be viewed as 
“glueing together” copies of sl(2, k) in “L&fashion.” And, in turn, this was 
the inspiration for the definition of the Kac-Moody algebras. 

Now let us drop the algebraic closedness assumption on k and denote by 
R the algebraic closure of k. Then the three-dimensional simple Lie algebras 
over k (TDS, for short) are in one-to-one correspondence with the 
quaternion algebras over k. This paper is concerned with a construction by 
generators and relations of k-forms of (symmetrizable) Kac-Moody 
algebras over k. This construction is inspired by (and depends on) that of 
Chevalley, Harish Chandra, Serre, Kac, and Moody and can be roughly 
described as ‘glueing together” suitably choosen TDS over k, in 
‘%fashion.” To be more clear, we present two constructions: first, we 
‘glue” copies of the same three-dimensional simple Lie algebra (Definition 2) 
and show that one gets forms of Kac-Moody algebras (Proposition 1). 
Second, we “glue” copies of distinct TDS Lie algebras (Definition 4); but 
we can not choose the distinct TDS in an arbitrary way. We need some 
compatibility conditions between the TDS attached to neighbouring 
vertices: they are described by some scalars sij. And for simplicity, we 
restrict our attention in this definition to Dynkin diagrams without cycles. 
For both definitions, we also make the additional hypothesis that the 
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number of strokes connecting two vertices does not exceed 3 (since we have 
not developed a general formula yet). 

It turns out, however, that these constructions do not exhaust all the 
forms of Kac-Moody algebras. For example, one also needs to “glue” 
quaternion algebras over finite extensions of k: this is the case for the fixed 
point set of an antilinear finite order automorphism arising from a diagram 
automorphism. Here we shall only give some indications about this 
construction; we will postpone its discussion to a future paper. 

When k = R, a somewhat different approach is used in [BP], by means 
of antilinear involutions. Our viewpoint, however, is not only more general, 
but enables us to construct a symmetric bilinear invariant form. In the real 
case, this has some interesting consequences: if the matrix is of affine type, 
Cartan decompositions are available, using, by the way, some strong 
results of [PK]. (This was also obtained using a slightly different method 
in [R, KP3]). Let us also add that the classification of all the involutive 
automorphisms (of the first kind) of affine Kac-Moody algebras is con- 
tained in [L] (see also [B] ). On the other hand, we are concerned here 
only with “derived” Kac-Moody algebras associated to a symmetrizable 
generalized Cartan matrix (cf. [K, 0.31). In a forthcoming article, we will 
discuss the general case. 

Finally, we can also attach a “Kac-Moody” group to the forms con- 
structed here, in the same vein as in [PK]. This suggests the existence of 
some “infinite dimensional symmetric spaces.” But as there is not a unique 
way to attach a group to Kac-Moody data in the split case (see [T, GW]) 
we are not sure yet of what could be the right definition for such spaces. 

2. DEFINITIONS 

Let k be a field of characteristic 0, X, Y, 2 a basis of a 3-dimensional 
k-vector space V. For fixed a, b E k* = k - 0 we can define a Lie algebra 
structure, which we shall call sq(a, b) on V by the rule: 

[X, Y] = 22 

[Y,Z]= -2bX 

[Z, X] = - 2aY. 

Let (d, , . . . . d,) denote the quadratic space (k”, q), where q is the quadratic 
form such that q(Ci Aiei)=CidiAf. ({ej} is the canonical basis.) In 
addition let (( -a, -b)) denote the quaternion algebra having a basis 
{ 1, i, j, k} with a multiplicative table 

i2=a j2=b, ij= - ji=k. 
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Endowed with the usual norm, it is a quadratic space isomorphic to 
( 1, -a, - 6, ah), which is in turn the Plister 2-form (( -a, -h )) (hence the 
notation). Then it is well known that sq(a, h) is isomorphic to sq(c, d) if 
and only if the quadratic spaces ( --a, -b, ab) and ( -c, -d, cd) are; 
moreover sq(u, 6) is simple and every 3-dimensional simple Lie over a k 
algebra arises in this way. In fact, sq(u, 6) can be realized as the Lie algebra 
of the traceless elements of the quaternion algebra (( --a, -b)); it is the 
Lie algebra of the group SQ(u, b) of the elements of (( --a, -b)) having 
norm equal to one. s/(2, k) is isomorphic to sq( 1, - 1) and if k= R, 
sq( - 1, - 1) is $242, R). 

Now let A = (uii) E Z”“” be a generalized Cartan matrix, i.e., 

uij= 2 

UijBO i#j 

aij = 0 * uji = 0. 

As usual, we will say that A is a Cartan matrix if it corresponds to a 
finite dimensional complex Lie algebra. Let us also recall that an n x n 
matrix A is called symmetrizable if there exists a non-degenerate diagonal 
n x n matrix D such that DA is symmetric. In the rest of the paper, A will 
denote a symmetrizable generalized Cartan matrix. We will also assume, 
for convenience, that - 3 < uii and that the corresponding Dynkin diagram 
is connected. Let us recall the definition of a Kac-Moody algebra. (In this 
paper we will work with the “derived” Kac-Moody algebra; see, for 
example, [K, GK]): 

DEFINITION 1. gk(A) is the Lie algebra over k with 3n generators 
{ Ej, F,, Hi: 1 < i < H} and defining relations 

[Hi, Hi] = 0 (1) 

CEi, t;il = 6,ffj (2) 

[H,, EJ = uvEj (3) 

[Hi, Fi] = -~qFj (4) 

and for i#j 

(ad Ei)lea~ E, = 0 (5) 

(ad Fi)lpu~Fj=O. (6) 

Let us fix a, b E k*. 
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DEFINITION 2. g,(A, a, b) is the Lie algebra over k with 3n generators 
{Xi, Yi, 2;: 16 i< n} and defining relations 

and if i#j 

[Z,, Zj] = 0 

[Xi, YJ = 22, 

[Z,, X,] = - aJaY, 

[ Yj, Zi] = - aubXj 

Cxi, yjl = C yi, xjl 

[Xi, Xi] = - ab-‘[ Yi, Y,] 

f0 

(ad xi)‘-% xi= ax, 
4a(ad Xi)Xi 
lOa(ad Xi)* Xj - 9a2Xj 

0 

(ad Xi)ldav y,= 

i 

ar, 
4a(ad Xi) Yj 
lOa(ad Xi)* Y, - 9a2Yj 

1 

0 

(ad Yi)‘-“y Xi= izad y,)x- 

lOb(ad ki)‘Xj- 9b2Xj 

0 

(ad Yi)‘--ag Y,= izad y,) y, 

lOb(ad ti)‘Yj-9b2Yj 

if a,=0 

if au= -1 
if a,= -2 
if au= -3 

if a,=0 

if aq= -1 
if au= -2 
if au= -3 

if a,=0 

if au= -1 
if aq= -2 

if av= -3 

if au=0 
if av= -1 
if au= -1 
if au = - 3. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

We will drop the subscript k whenever it is clear from the context which 
field we are working in. 

PROPOSITION 1. (i) There is a natural isomorphism g,(A, a, b)@ k’ N 
gkj (A, a, b) if k’ is an extension of k. 

(ii) Let t, sE k*. Then X~H tXi, Y~H sY,, Z~H tsZi provides an 
isomorphism between g(A, at*, bs*) (with generators Xi, Yj, Zi) and 
g(A a, b). 

481/147/Z-5 
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(iii) X,* H Y,, Yj* H Xi, Z: H - Zi provides an isomorphism between 
g(A, a, b) (with generators X*, Y* Z,? I ) ) and g(A, b, a). 

(iv) Xi++ - Xi, Y, t-+ Yi, Z, t--+ - Zi provides an automorphism of 
g(A, a, b), called the Cartan involution. 

(v) Let u be an automorphism of the Dynkin diagram (in other words, 

P E S,, and au = apcj) r(j) ). Then there exists a unique automorphism of 
AA, a, b) =WIving xiw xpc,,, Yit* Yp(i)t Z~H Zp(i). 

(vi) g,(A, 1, - 1) is isomorphic to the Kac-Moody algebra over k 
associated with A, g,(A). In particular, if A is a Cartan matrix, g(A, a, b) is 
absolutely simple. 

Proof (i) to (v) are easy. (vi): The applications 

g,(A) -+g,(A, 1, - 1) 

HiHZi 

EiH gxi- Yi) 

Fjw ;(Xi+ YJ 

and 

g,(A, 1, - 1) -+g,(A) 
ZjHHi 

Xit--+Ei+Fi 

Yi- -E,+F, 

are well defined and inverse of each other. Clearly, we only need to check 
the well defined part. Let us show first that the relations (l), . . . . (6) imply 
(7), . . . . (16). (7), . . . . (12) are easy. Let us see (13) and leave to the reader 
(14), . . . . (16), since they are very similar. 

aV = 0: obvious. 
flu= - 1: 

[Xi, [Xi,Xj]]=[Ei+Fi, [Ei+Fi,Ej+Fj]] 

= CE< + Fi, CEi, E’] + [Fi, 1;;.]] 

=ad EfE,+ [E,, [F,, Fi]] 

+ [F,, [E,, Ei]] +ad FfF,= Ej+ Fj= X, 

since 

[Et, [Fi, Fj]] = [Hi, &] = -uVF~ 

CFi, [Ei, Ej]] = [-Hi, Ei] = - ayE,. 
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au= -2: 

ad X:X,=[E,+F,, ad EfEj-av(Ej+ Fi)+ad FfF,] 

=ad EfE,-a,[Ei,Ej]+[Ei, ai FfF,] 

-aii[Fi,Fj]+[Fi, ad EfE,]+ ad F:F, 

= -(2+3ag)([E;, Ej]+ [F;, Fj])=4[X,, xi] 
since 

CE;, CJ’;, CFi, Fjlll 
= [Hi, [f’i, F,]] + [Fi, [Hi, f”]] = - (2 + 2aii)[Fi, Fj] 

CFi, [Ei, CE;v Ejlll 
=[-H;, [Ei, Ej]]-[E;, [H;, E,]]= -(2+2ag)[E;,Ej]. 

aij= -3: 

adX4Xj= [Ei+Fi, ad EfE, 

-(2+ 3ag)([E;, Ej]+ [F;,F,])+ ad F:Fj] 

=ad E:Ej-(2+ 3aq)[E;+F;, [Ei,Ej]+ [F;,F,]] 

+ [E;, ad FfFj]+[Fi, ad E!E,] +ad F:F, 

= -(8+6aq)(ad Ef E,+ad Ffc+3Ej+3Fj) 

-au(8+6a,-2-3au)(Ej+Fj) 

= load X:X,-9Xj 
since 

[E;, [F;[Fi, [F;, F’]]]] = [Hi, ad FfF’] + [F;, (-2-2a,)[F;, Fj]] 

= -(6+ 3aq) ad FfFj 

[Fi, CEi CE;, CE;, Ej]]]] = [-Hi, ad Ef Ej] + [Ei, (-2 - 2ag)[E;, Ej]] 

= -(6 + 3ag) ad EfE,. 

Conversely, let us show that (7), . . . . (16) imply (l), . . . . (6). As before, 
(l), . . . . (4) are easy. Let us show (5) and leave (6) to the reader. 

ag=O: 
$[xi- Y;, xi- Y,] = i([X;, Yj] - [Xi, Y,]). 

ag= - 1: 

[E;,[E;,Ej]]=S[X;-Y;, [X;,XjI-C&, YjII 
=i(adXfXj-adX?Y,+ad Y:Xj-ad YfYj). 
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aii= -2: 

[Ei,adEfEj]=$[Xi-Yi,adXfX,-adXfY,+ad YfX,-ad YTY,] 

= $(ad Xl A’, - ad A’;’ Y,+ [A’,, ad YfX,] - [X,, ad Yf Y,] 

-ad Y3Xj+adY!Yj-[Y,,adXfXi]+[Yi,adXfYj]) 

=$(adX!Xj-adX!Yj-ad YfX,+ad Y:Y,) 

since 

[X,,ad YfX,]= -4(1 +aii)[Xi,Xj] +ad Y:Y, 

[X,,ad YfYj]= -4(1+aii)[Xi, Y,]+ad Y?X, 

[ Yi, ad XfXj] =4(1+ ag)[Xi, Y,] + ad X’ Yj 

[Y,, ad Xf Y,] =4( I+ a,)[X,, Xi] + ad Xf Xi. 

a,= -3: 

[E,,adE:E,]=i[X,-Y,,adX!Xj-adXjYj-ad Y!X,+ad Y3Yj] 

=$(adXfXj-adX4Yj+ad Y:X,-ad Y4Yj) 

+y(adX;?Y,-adX?Xj-ad YfYj+ad YfXj) 

since 

[Xl, ad YfX,] = 2[Zi, ad YfXj] + [ Yi, [Xi, ad Y’X,]] 

-4adXfYj-(8+6av)ad YfYj+ad YqY, 

[A’,, ad Y’ Yj] = 2[Zj, ad Yf Yj] + [ Yi, [Xi, ad Yj! Y,]] 

-4adXfX,-(8+6aii)ad YfX,+ad Y:X, 

[ Yi, ad X:X,] = - 2[Zi, ad XfXj] + [X,, [ Yi, ad X~X,]] 

+4ad YfYj+(8+6a,i)adX?Y,+adXj’Yj 

[ Yi, ad X: Y,] = - 2[Z,, ad XT Y,] + [Xi, [ Yi, ad Xf Y,]] 

+4ad Y~Xj+(8+6a,)adX?Xj+adX4Xj. 

We also need to use the following consequence of relations (8) to (12): 

(ad Xi)’ Xi = - 2aqXj + (ad Y,)* X, 

(ad Yi)’ Yj=2agYj+ (adXi)2 Yi. Q.E.D. 

Now let us recall from [PK]: 
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THEOREM 1. Two maximal ad-diagonalizable subalgebras of a Kac- 
Moody algebra are conjugate. 

This suggests the following definition: 

DEFINITION 3. Let G be an arbitrary Lie algebra over k, Ha subalgebra 
of G. H is a Cartan subalgebra if it is maximal in the set of abelian 
subalgebras consisting of ad-locally finite semisimple elements. 

Let h = h, be the k-span of {Zi: 16 i 6 FZ}. If Z = x9= 1 &Zi E h, then we 
define as usual aje h* by aj(Z)=Clzl 2,aV. We get from Proposition 1: 

COROLLARY 1. h, is a Cartan subalgebra of g,(A, a, b). Moreover, the 
center of g,(A, a, b) is {Zehk: a,(Z)=0 Vj}. 

Proof. The first assertion is clear; for the second, { ZE h,: Uj(Z) = 0 Vj} 
is evidently contained in the center and one gets the equality tensoring with 
k and using [K, 1.61. Q.E.D. 

Now let us assume that the Dynkin diagram of A has no cycles and fix 
a “sequential” ordering of the simple roots from left to right; for example, 
for eg’ we may choose it as follows: 

For each k: 1 <k < n, let us denote by 1; the (unique) subset of { 1, . . . . n} 
given by the vertices of the path from 1 to k; Ik = 1; - {k}; if h E Ik, then 
S,(h) E Zjj (S(h) if no confusion arises) is preceded by h. 

Now let us fix elements of k* aj (16 i< n), b, sU (for i< j such that 
a,#O). Let us set 

b, =b 

bj = a;‘biajsi (if i< j, au#O) 

sii= 1 

sji = SIT l (if i< j, aG#O) 

slj= n Sh,.S(h)* sii=s~lslj. 

h E Ii 
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Let us observe that Vii, j, Y: 

hi = bia, ‘a,si 

s,j = s,s,. 

Remark 1. One can allow cycles in the Dynkin diagram by imposing 
the following compatibility condition on the data (ai, so, b): for general i, 
j sii can be defined as above and this does not depend on the path. 

DEFINITION 4. g,(A, a,, sii, 6) is the Lie algebra over k given by 3n 
generators {XI, Yi, Zi: 1 d i ,< FZ} and relations 

Czi, z~] = O (17) 

(18) 

(19) 

(20) 

and if i# j 

[Xi, Yi] = 22; 

[Z,, X,] = - a,s,;‘a,i Yj 

[ Yj, Zi] = - b,s,ia,,Xj 

Cxi, yjl = sij C yip xj] 
[Xi, X,] = - a,b; ‘sly1 [ Yi, Yj] 

0 

(ad J’i)l-a~xj= “5 
4aj(ad Xj)Xj 
lOa,(ad Xi)* Xj- 9afXj 

i 

0 

(adjl/i)lpav yj= air, 
4ai(ad A’,) Y, 
lOa,(ad AT,)* Yj- 9af Yj 

(ad Yi)‘-Ov Xj = 

1 

0 

tL7ad y,)x- 

IOii(ad &i)‘/Xj- 9bfXj 

0 

(ad yiJ-au y,= bi?i 
4bi(ad Yi) Yj 
lOb,(ad Y,)’ Y, - 9bf Yj 

if a,=0 

if au= -1 
if aii= -2 

if au= -3 

if a,=0 
if aii= -1 
if au= -2 

if au= -3 

if ag=O 
if aij= -1 
if ati= -2 

if ali= -3 

if ag=O 
if ag= -1 
if aii= -2 
if ali = - 3. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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PROPOSITION 2. (i) There is a natural isomorphism g,(A, ai, sij, b) Qk k’ 
N g,. (A, ai, sij, b) if k’ is an extension of k. 

(ii) Let aEk* and set ai=a, sii=l (1 <i<n aq#O). Then 
g(A, ai, sii, b) is isomorphic to g(A, a, b). 

(iii) Let y, Ai, vii E k* (1 < i < n, i < j and au # 0). Then 
g(A, ain:, siivij, by2) is isomorphic to g(A, ai, sii, b). 

(iv) Let c, dEk* and let us assume that there exist Ai, y E k* 
satisfying: 

2; = ca;’ 

y’=db;? 

Then g(A, ai, sii, b) is isomorphic to g(A, c, d) (cf: Definition 2). 

(v) rf k is algebraically closed then g(A, a;, sy, b) is isomorphic to 
g(A) (cJ: Definition 1). 

(vi) Zf A is a Cartan matrix then g,(A, ai, sij, 6) is absolutely simple. 

Proox (i) and (ii) are clear. 

(iii) Let us denote 

ai = ail? (1 <i<n) b; =b,y2 

and for j>i, au#O 

vji=v,yl vlj= fl Vh,.S(h) vij= V,‘Vlj 

h E Ii 

bJ = ai ~ ‘b$jsi2 Sk = siivii. 

We have: 

bJ= y21,21;vzvfibj, 

We will show that 

XJH ;zixj 

Yp-+yA~l~jv?iY, 

z;l+ yl;‘AfvljZj 

gives an isomorphism from g(A, ain;, siivii, by’) (with generators X!, Yl., 
Z: and relations (17’), . . . . (26’)) onto g(A, a;, sii, b). 

We can reduce ourselves to show that the isomorphism is well defined, 
i.e., that the images of X,‘, Y;, Z; satisfy relations (17’) . . . . (26’). Relations 
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(17’) and (18’) are obvious. For (19’), . . . . (26’) it suffices to treat the case 
aV#O, which is a straightforward computation, using the following 
formula: 

vii = v,v, Vi, r, j. (*I 

Finally, (iv) follows from (ii), (iii) putting vii = cs,~ ’ ; (v) and (vi) are conse- 
quences of (iv) and Proposition 1. Q.E.D. 

Exactly as after Proposition 1, let us define h = h, as the k-span of (Z;: 
l<i<n}; and if Z=C;=iAjZi~h, then orjch* by u~(Z)=C~=, I,ao. 
Thus we have: 

COROLLARY 2. h, is a Cartan subalgebra of g,(A, ai, sii, b). Moreover, if 
A is affine the center is one-dimensional. 

Remark 2. Let us define gp(A, ai, sij, b) = g”” as the linear subspace of 
g,(A, ai, sij, b) spanned by {X,, Yi, Z,}; the proposition shows that it is 
3n-dimensional. 

The Lie algebra L freely generated by {Xi, Y;, Zi} has an No-graded 
structure given by deg(X,) = deg( Y;) = 1, deg(Zi) = 0. Let us consider the 
ascending filtration on L given by 

and let g, = n(L,), where rr: L + g(A, ai, sii, b) =g is the canonical 
projection. Thus (g,), E N0 is an ascending filtration of g. Moreover, 
[g,, g,] = g, +n and g, = g”‘. Now, if u E g, let us put 

v(u)=inf{m: ucg,}. 

Let us also remark, though it is obvious, that the introduced filtration is 
compatible with the isomorphisms given by Propositions 1 and 2. On the 
other hand, let us consider the principal gradation of g(A, 1, - 1) = g(A) 
(cf. [K, 1.51) denoted (gj(l)),,,. In this case we have 

gm= 0 g,(l). 
--mQ j<m 

3. EXAMPLES 

In this section, we will study some forms of Kac-Moody algebras over 
quadratic extensions of k. So let q E k* - k*2, k(h) a quadratic extension 
of k having a square root of q, q E Gal(k(&)/k) -id. We begin with a 
well-known lemma: 
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LEMMA 1. Let T be an order 2 automorphism of g,(A, aj, sij, b). Then 
there exists a unique antilinear involution J of g,(J;;,(A, ai, sU, b) such that 
x H T(x) Vx E g,(A, ai, sii, b) (with the canonical inclusion given by Prop. 1). 

Proof. J is antilinear if for I E k(h), v Eg,(AJA, ai, sii, b), 

J(k) = q(n) J(v). We define J(u + & w) = T(u) - & T(w), for all 
u, w  E g,(A, ai, sii, b). Clearly, J satisfies the required conditions. Q.E.D. 

(I) g,(A, - 1, - 1) is the compact form of g,(A) (cf. [K, 2.71). More 
generally, 

PROPOSITION 3. There exists a unique involutive antilinear automorphism 
J of g,,A)(A, 1, b) (with generators (Xi, Yi, Z;}) such that Xit-+ -Xi, 
Yi++ Yi, Ziw - Zi. Moreover g,(A, q, b) (with generators {Xi., Y:, Z:)) is 
isomorphic to the fixed point set of J. 

Proof Lemma 1 and Proposition 1 (iv) give the existence of J. Now 
x;ky/&, r; H Yi, Z: H & Zi induces a morphism from g,(A, q, 6) 
into the fixed point set of J and it is not too difficult to show that this 
is an isomorphism. (Indeed, it carries the center onto the center; use 
CK 1.71.) Q.E.D. 

(II) Let us fix h, 1 d h 6 n. There exists an involution (P,, of 
g&4 ai, sv, b) given by 

(PhWi) = xi, (PhtYi)= yi if i#h 

(P/P/J = -x/v (PJY/J= - y/l 

cph(Zi) = Zi Vi. 

From Lemma 1 follows the existence of an antilinear involution tjh of 
g,,A,(A, ai, sii, b) I,G~ which, restricted to g,(A, ai, sO, b) is (Pi. We shall 
give a presentation of g,, the k-form of $,-fixed points. 

Let US consider g,(A, ai, So, b’) (with generators Xi, Yi, Zi) where 

ai = ai (ifh) ai = qai (i=h) 

b’=b (1 +h) b’=qb (l=h) 

and consider Xi. + Xi, Y: --) Yi, (for i# h), Z: + Zi, X;, -+ &X,,, 
WJi Yh. 

This assignment gives rise to a morphism from g,(A, a;., sii, b’) into g,, 
and it is possible to see that it is an isomorphism. 

As a more concrete example, if A is the Cartan matrix of type A,, 
gR(A, ai, so, - 1) = SU(P, n -p) if 

ai= -1 (i Zph up= 1, sq= 1. 
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(III) In this example, we will assume that A has a diagram 
automorphism v of order 2. Let J,, be the unique involutive antilinear 
automorphism of g,,J;,(A, a, b) (with generators {Xi, Yi, Zi}) such that 
xi H X”(i), yi k-+ Y”(i), z, I-+ -c(r). We shall outline a presentation by 
generators and relations of the fixed point set of J,, which we shall denote 
by go. 

Let us first give some easy facts about TDS over finite extensions of k. 
Let f 3 k be a finite extension of degree m, a, b E k*. We shall regard the 
“special quaternion” algebra over f&a, 6) as a (simple, 3m-dimensional) 
Lie algebra over k which we shall denote sq/,,(a, b). Let us assume for 
simplicity that f = k( &) (q E k* - k*nt) is a cyclic extension of k having 
an m-root of q. Then sq,cd,l,(a, b) is generated by k-vector spaces 
vi: i= 0, . ..) m - 1 where V,=sq,(u, b) is a subalgebra, ‘pi: V. -+ V, 
(1 < j < m - 1) is an isomorphism of vector spaces, and the bracket is given 
by 

if j+k=ms+r, O<r<m-- 1, and U, UE Vo. Thus sq,(s,,,(a, b) has a 
natural Z,-graded structure. 

Let (I ) be the invariant bilinear form on V. = sq,(u, b) given by 

(ZlZ)= -ub 

(XlX)=u 

(Yl Y)=b. 

It can be extended to an invariant bilinear form on sq,( ~~,,Ju, b) if for 
u, v E V, one puts 

(4yl(Pk(V))=o if j+k#m 

(4oj(U) I %-j(V)) = dulu). 

Now go has a presentation by generators and relations which can be 
roughly described as attaching TDS over k to the vertices i such that 
v(i) = i or uivtij # 0 and TDS over k(h) to the v orbit of i if v(i) # i and 
a,(,) = 0. We will also have an ascending filtration as above. 

4. THE INVARIANT BILINEAR FORM 

Let us recall that D = (d,, . . . . d,) is a diagonal matrix such that DA 
is symmetric. Let us define a symmetric bilinear form ( I)o on 
gp(A, ui, sii, 6) = g“” as follows: 
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(zi)zj)o= - ~sy’aibja&’ 

(xip-j),=6,d,:‘ai 

( Yi( Y,), = 6,d,:‘b, 

(Zi 1 Xi), = (Zi 1 Y,), = (Xi 1 Y,), = 0. 

THEOREM 2. There exists a unique symmetric bilinear form (I) (( 1 )k if 
necessary) on g,(A, ai, sij, b) satisfying 

(i) (I) is invariant, i.e., ([u, u]Iw)=(u( [u, w]); 

(ii) (I)Ig~ocxg~~c=(Ih. 
Moreover we have 

(iii) v(u)<v(u)~(u~v)=O. 

ProojI First at all, let us observe that the isomorphisms given by 
Propositions 1 and 2 preserve (I )O. (For Proposition 2(iii) use (*).) 
Moreover, ( I)0 is invariant, i.e., satisfies (i) whenever U, u, w, [u, u], 
[o, w] E g’Oc. Indeed, we only need to show that 

txil Czj3 Yil)O=(CX;5 zjl I yi)O=(zjl Cyi, xil)O. 

But 

(X,1 [Z,, Yi])o = aibjsjiujid,:’ 

([Xi, Zj] 1 Yi)o = ajbisj, ’ ajidlT1 

(Z,l [Yi, Xi])O=ujbis,;‘ajid,:l. 

Now for g,(A, 1, - 1) the theorem is just [K, Th. 2.2). Thus we only 
need to prove: 

We can do this on g, by induction on m; for m = 1 it is clear and for the 
inductive step we use (i), (iii). Q.E.D. 

Remark 3. The preceding theorem should be true for the forms con- 
sidered in Example (III). On the other hand, if g is any Lie algebra, (( ) a 
symmetric bilinear invariant form on g, x ~g is locally nilpotent, and 
T=expx, then (uIu)=(T(u)l T(u)) V U, u E g. Furthermore, going back to 
the form given by the theorem, it is preserved by the isomorphisms in 
Examples (I), (II). Finally, if A is of afhne type, the radical coincides with 
the center. 
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As a first application of the existence of this bilinear form, we shall begin 
to study Cartan decompositions in real forms of Kac-Moody algebras. In 
what follows g, is a real form of a complex Kac-Moody algebra g(A) 
(constructed as in Def. 4 or Remark 3) where A has no cycles (automati- 
cally, it is symmetrizable) and ali < - 3. Moreover, k(A) denotes a compact 
form of g(A) constructed as above; we shall call compact form every image 
of k(A) by an automorphism of g(A) which preserves the bilinear form. We 
shall extend some well-known results (see [H]) to this setup. Let us 
remark once more that by definition both g, and k(A) have Cartan sub- 
algebras which coincide after complexilication. The proof is quite similar to 
the classical case but we will include it for the sake of completeness. (This 
was also done in [KP3, RI). 

THEOREM 3. Let us assume that A is of finite or affine type. Let (T and 
T denote the conjugations of g(A) with respect to g, and k(A), respectively. 
Then there exists an automorphism q of g(A) such that the compact real 
form q(k(A)) is a-invariant. 

Proof: Let w(j) (cf. also [K, 2.71) be the Hermitian form 

w(u I v) = - (u I z(u)) 

which is positive semidelinite [K, 11.73. Let 8 = az; it is an automorphism 
of g(A). We have 

(e(u) I u) = (u I e-‘(u)) 

because (thanks to Theorem 2) 

(4u) Iv) = (u I a(u)) 

(T(U) I u) = (u I I). 

Hence 

As both G, r preserve the above introduced filtration, 19 also does. Thus, 
there exists a basis B of g(A) with respect to which e2 acts “diagonally” by 
positive real numbers { Ai} iG B. Let us denote by P’ the “diagonal” linear 
transformation (in the same basis) represented by {&} (t E R). Each P’ is 
an automorphism of g(A), preserves the invariant bilinear form, and 
zP’ = P-*2. We are done by choosing cp = P114. Q.E.D. 

DEFINITION 5. A decomposition 

g,=k,@Po 
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is called a Cartan decomposition if there exists a compact real form k of 
g(A) such that 

a(k) E k 

k,=g,nk 

zh,=g,n(J-lk). 
Remark 4. It follows from Theorem 3 that if A is affine (or finite, in 

which case is well known) then g, has a Cartan decomposition. It is clear 
that k = k, + J-1 pO. Moreover 

(XIX)QO, VXE k, 

(XlJ3>0, VXEPO 

and one of the inequalities must be strict (since the centers of g, g,, and 
k are one-dimensional) (use [K, 11.71). Moreover 

so: x+ YH x- Y, VXE ko, YEP, 

is an automorphism of g, which preserves (I). And this condition will 
characterize a Cartan decomposition whenever one knows that an 
arbitrary g, with a negative semidefinite form is conjugated to k(A) 
(cf. Remark 3). 

5. KAC-MOODY GROUPS 

Let us now recall the definition of Kac-Moody groups ([PK], see also 
[G, KPl, KP2, MT]). First, a g(A)-module V is called integrable if the 
following two properties hold: 

(i) I/= Olsh. V,, where I’,= (UE V/h~o=;l(h)o Vheh}, 

(ii) Ei and Fi are locally nilpotent for all i E I. 

Remark 5. Let g be a Lie algebra, s s g a subalgebra, V a g-module. 
We will say that V is s-locally finite if every u E Y lies in a finite dimensional 
s-submodule. Clearly, V is integrable if and only if is si-locally finite Vi 
where si = kEi + kHi + kFi (cf. [K, 3.61). 

DEFINITION 6. The Kac-Moody group G(A) attached to A is G*/N* 
where G* is the free product of the additive groups g, (tl E Are) and 

N*= n Ker rc*. 
(V,rr) integrable 
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Here rc*: G* -+ GL( V) is the representation defined by 

n*(x) = exp n(x) = C l/n! n(x)” (XEg,, CtEd”). 
II 2 0 

Remark 6. There exist isomorphisms of groups between: 

(i) G(A). 
(ii) G**/N**, where G** is the free product of the additive groups 

kEi, kFi (1 <i<n), N** = n,V,,,integrab,e Ker rr**, and rc** as above. 

(iii) G***/N*** where G*** is the free product of n copies of 
X(2, k) (namely, the i-copy Sj has Lie algebra si) and 

N*** = n Ker rc***. 
( V, n) integrable 

Here x*** is defined by the representations Si + GL( V) obtained from the 
restriction 

si -+ gf( V). 

(Let us also denote by abuse of notation rr*: G*/N* --, GL( V), etc., the 
corresponding representation.) In fact, one has a canonical inclusion 
i: G** + G* such that XI** =Ic*oi. Thus iC’(N*)= N** and one has 
a monomorphism G**/N** + G*/N*, which is also an epimorphism 
by [KP2]. 

On the other hand, there exists a unique homomorphism (see [PK]) 

cpi: SL(2, k) + G**/N** 

such that 

Vi(i i) (resp., Vi(: y)) 

is the canonical kEi-+ G**/N** (resp., kFi+ G**/N**). Thus we have 
cp: G*** -+ G** I N** and n***=nn**o . and hence a morphism 
G***/N*** ~ G**/j,,W, But we also ‘have G** + G** * given by 
kE,+ (A j), kFi-+ (: y) (in the i-copy). 

Now let g = g(A, ai, sii, b) and set si = kXi + kYi + kZ,; si is isomorphic 
to sq(ai, bi). The preceding remarks motivate the following definitions: 

DEFINITION 7. A g-module (I’, z) is integrable if it is s,-locally finite Vi: 
l<i<n. 

A standard argument shows that if (V, n) is integrable, then it is a direct 
sum of simple finite dimensional s+ubmodules, Vi. 
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DEFINITION 8. G(A, ai, si/, b) is G*/N*, where G* is the free product of 
the quaternion groups SQ(a,, b,) and 

N*= (-) Ker rc*. 
( V,n) integrable 

Here n*: G* + GL( V) is defined by the representations SQ(ai, bi) -+ GL( V) 
obtained from si + gZ( V). 

APPENDIX 

By Nicolas Andruskiewitsch and Guy Rousseau 

FAMAF, Universidad National de Cbrdoba and DPpartement 
de mathematiques, Universitt! Nancy I 

Let us remark first that g,(A, ai, sii, b) = g, splits after tensoring with 
a quadratic extension. Indeed, let us assume that g, $ g,(A); then for 
some 1 we have -a/b,+ k2 (see the proof of the lemma below!); 
but -ajbj= - a,b,(u,a;‘~~)~. Let us denote by ,/T[ a fixed root 

7% a,;JW,;$el Le;:;;;Lrv;th; k’ = &/“=i6)~ v&j& = 

J-a,bi=Jqaja;lsi, Vi, j. 

LEMMA. g, 0 k’ is isomorphic to gkr(A) via 

Proof The above assignment gives rise to a morphism from the free Lie 
algebra in the variables {Ei, Fj, Hi) onto gk@ k’. It is easy to see that its 
kernel contains the ideal generated by the relations (l), . . . . (4). Now the 
other relations are also satisfied and the quotient map is an isomorphism 
as follows from Proposition 2, since after tensoring with R we know that 
a certain multiple of the left hand side of (5) (or (6)) vanishes and that the 
quotient map is an isomorphism. Q.E.D. 
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Now let h be the (n-dimensional) span of Z,, . . . . Z,,. Let ijs h* be 
defined by the rule 

Ai = ui, 

and let C~;E (h @ k’)* be given by cl; = dx ;Li. Clearly, {ai) is a set of 
simple roots of the root system A of gkS(A) with respect to the Cartan 
subalgebra h Ok’. 

On the other hand, let 8: gk,(A) + gk,(A) be the antilinear involution 
whose fixed point set is g,, via the above identification. Clearly 

O(ai) = -a,. 

Let us recall that the antilinear Cartan involution r is defined by 

E;t-+ -F,, F;H -E;, H;H -H;. 

Therefore Br is a linear involution of gkS(A) and fixes point by point the 
Cartan subalgebra h Ok’. 

Now we shall geeralize Example (II). Let us fix Jc {h: 1 <h Q n}. There 
exists an involution cpJ of g,(A, ai, sii, b) given by 

cPJtxi) = xi3 cpJ(Yi) = yi if i$J 

CPAX;) = -xi, cPJ(yi)= - yi if ie/ 

cpJ(Zi) = Zi Vi. 

From Lemma 1 follows the existence of an antilinear involution eJ of 
g,(A,(A, ai, sii, b) tiJ which, restricted to g,(A, cl;, sii, b) is ‘pJ. We shall 
give a presentation of g,, the k-form of erlixed points. 

Let us consider g,(A, a:, sii, b{) (with generators Xi, Y:, Zi) where 

uf=ui (i$J), aJ=qu, (iEJ) 

bf=b, (i$J), bf=qb, (iEJ) 

and consider 

x;. H xi Y:H Yi (i#J) 

X+&X, Y:i+& Y, (iEJ) 

ZiHZ; Vi. 

This assignment gives rise to a morphism g,(A, a;, sij, bf) into g, which, 
it is possible to see, is an isomorphism. 
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Now let us recall [KP3, Prop. 3.71: 

PROPOSITION. Let o be an antilinear involution of the second kind of 
g,(A). Then, for some v E Aut A, o can be conjugated to an antilinear involu- 
tion of the following form: 

OtEi) = Fvi, cT( FJ = & if vi # i; 

a(&) = f  Fi, a(FJ = + Ei if vi=i. 

A form of the second kind will be called inner if the corresponding 
antilinear involution is conjugate to one as in the proposition, with v = 1. 
Notice that g, is an inner form of the second kind. 

Let us also recall the following terminology (see [RI): A real form is 
called almost compact (resp., almost split) if the corresponding antilinear 
involution is of the second (resp., first) kind. 

It follows from the above that: 

THEOREM. If k = R, and g,(A, ai, sii, bi) is not isomorphic to g,(A) then 
g,(A, ai, sii, bi) is an inner almost compact form of g,(A); any inner almost 
compact form arises in this way. 
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