
ON THE CUBIC LOWEST LANDAU LEVEL EQUATION

PATRICK GÉRARD, PIERRE GERMAIN, AND LAURENT THOMANN

Abstract. We study dynamical properties of the cubic lowest Landau level equation, which is
used in the modeling of fast rotating Bose-Einstein condensates. We obtain bounds on the decay
of general stationary solutions. We then provide a classification of stationary waves with a finite
number of zeros. Finally, we are able to establish which of these stationary waves are stable, through
a variational analysis.
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2 PATRICK GÉRARD, PIERRE GERMAIN, AND LAURENT THOMANN

7.2. Minimizers of Gµ = 8πH+ µP for M fixed 30
7.3. Minimizers of P for H and M fixed 33
7.4. Stability of stationary waves with finite mass and a finite number of zeros 38
Appendix A. Some explicit M -stationary waves 39
Appendix B. The dictionary 41
Appendix C. Sobolev spaces 42
References 43

1. Introduction

1.1. The cubic lowest Landau level equation. Consider, in dimension 2, the magnetic Schrödinger
operator corresponding to a vertical magnetic field

∆A = ∇A · ∇A, with ∇A = ∇− iA and A =

(
−y
x

)
.

From the identity

〈−∆Aψ,ψ〉L2 = 2‖ψ‖2L2 + ‖(2∂z + z)ψ‖2L2 , z = x+ iy ,

the ground state of −∆A is very degenerate: it consists of the Bargmann-Fock space

E =
{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩ L2(C),

also called lowest Landau level.
The orthogonal projection on E is given by the formula (see Paragraph 2.2 below)

[Πu](z) =
1

π
e−
|z|2
2

∫
C
ewz−

|w|2
2 u(w) dL(w), (1.1)

where L stands for Lebesgue measure on C.
The cubic lowest Landau level equation is induced by the energy

H(u) =
1

4

∫
C
|u|4 dL

given the standard symplectic form ω(u, v) = Im
∫
C uv dL on E . It reads{

i∂tu = Π(|u|2u), (t, z) ∈ R× C,
u(0, z) = u0(z).

(LLL)

1.2. Derivation of (LLL). This equation arises as a limiting problem in a number of situations.

1.2.1. Rotating Bose-Einstein condensates. Following [3, 25], consider a Bose-Einstein condensate
confined by a harmonic field, and rotating at a high velocity. In appropriate coordinates, and for
constants ε and G, its Hamiltonian reads∫

C

[
−
∣∣[∇− iA]ψ

∣∣2 + ε2|z|2|ψ|2 +G|ψ|4
]
dL(z)

For ε,G � 1, the first term is dominant, and, in order to minimize the above quantity, one can
consider that ψ ∈ E . This leaves us with the Hamiltonian∫

C

[
ε2|z|2|ψ|2 +G|ψ|4

]
dL(z).

on E . Notice that the corresponding dynamics are the same as that given by H, which is the case
ε = 0 (we will see later that the term |z|2|ψ|2 simply corresponds to rotations, and is therefore
harmless).
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It is conjectured from physical [1, 9] and numerical [2] observations that, as ε→ 0, the minimizers
(for fixed L2 norm) of the above functional have a very specific structure: within a ball, u is close
to a theta function (in particular, its zeros coincide with an Abrikosov lattice); and away from this
ball it decays fast. See [4] for a mathematical approach to this conjecture.

Of course, it is also possible to study stationary solutions for the full Hamiltonian written above:
see the recent article [14] for further references.

1.2.2. Superconductivity. A parallel derivation can be followed for a superconducting material sub-
mitted to an exterior magnetic potential: we refer to [5].

1.2.3. Resonant system for a confined nonlinear Schrödinger equation. Start this time with the
weakly nonlinear Schrödinger equation

i∂tu−Hu = ε2|u|2u with H = −∆ + |x|2.
The completely resonant system, which approximates the evolution of u as ε → 0 is given (after
time rescaling) by

i∂tu = T (u, u, u) with T (f, f, f) =

∫ 2π

0
e−isH

[
|eisHf |2eisHf

]
ds. (CR)

It is derived and studied in [20, 21]. A striking property of (CR) is that it agrees with (LLL) if its
data are chosen in the Bargmann-Fock space E .

The equation (CR) can also be derived from the nonlinear Schrödinger equation on the torus [12]
or in the presence of a magnetic potential [13].

1.3. Comparison with similar equations. The formulation (LLL) of the cubic lowest Landau
level equation is similar to the cubic Szegő equation, introduced by the first author and S. Grellier
in [17], and identified in [18] as the completely resonant system associated to the cubic half–wave
equation on the circle — see also Pocovnicu [27, 28] concerning the cubic Szegő equation on the
line. An important feature of the cubic Szegő equation is that it admits integrability properties
through a Lax pair structure satisfied by Hankel operators. Using this structure, traveling wave
solutions were classified in [17] for the circle and in [27] for the line, and growth of high Sobolev
norms was established in [28] for the line and in [19] for the circle.

Though the Lax pair structure for Hankel operators does not seem to extend to (LLL), it is
therefore natural to study similar questions for equation (LLL). A review of our results in this
direction is the purpose of the next paragraph.

Finally, let us mention that the completely resonant system associated to the conformally invari-
ant cubic wave equation on the three–dimensional sphere was recently introduced in [8].

1.4. Main results. In this paragraph, we briefly describe the main results of this paper. We recall
that

E =
{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩ L2(C).

1.4.1. The initial value problem and long time Sobolev bounds. The well-posedness of (LLL) was
studied by F. Nier [30, Proposition 3.1] (see Remark 2.1), and the following statement holds true.

Theorem 1.1. For every u0 ∈ E, there exists a unique solution u ∈ C∞(R, E) to equation (LLL),
and this solution depends smoothly on u0. Moreover, for every t ∈ R∫

C
|u(t, z)|2 dL(z) =

∫
C
|u0(z)|2 dL(z).

Furthermore, if moreover zu0 ∈ L2(C), then zu(t) ∈ L2(C) for every t ∈ R, and∫
C
|z|2|u(t, z)|2 dL(z) =

∫
C
|z|2|u0(z)|2 dL(z) ,

∫
C
z|u(t, z)|2 dL(z) =

∫
C
z|u0(z)|2 dL(z) .
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More generally, if, for some s > 0, 〈z〉su0 ∈ L2(C), then 〈z〉su(t) ∈ L2(C) for every t ∈ R.

Our next result concerns the long time bounds for Sobolev norms, which are equivalent to
weighted norms ‖〈z〉ku‖L2 — see Lemma C.1 below.

Theorem 1.2. With the notation of Theorem 1.1, assume 〈z〉ku0 ∈ L2(C) (where 〈z〉 =
√

1 + |z|2)
for some integer k ≥ 1. Then

‖〈z〉ku(t)‖L2(C) ≤ Ck(1 + |t|)
k−1
2 .

Notice that Theorem 1.2 is in strong contrast with the results of [19] for the cubic Szegő equation
on the circle, where superpolynomial growth of Sobolev norms is established to be generic in
the Baire sense. On the other hand, we mention in this paper two results improving the above
polynomial rate for a perturbation of (LLL) under generic Hermite multipliers. Theorem 4.4 is
a direct consequence of normal form theory for semilinear quantum harmonic oscillators [22] and
states that, for any exponent r and for a full measure set of Hermite multipliers of any given
algebraic decay, solutions having an initial data of order ε in a big Sobolev space conserve the same
size on a time of length ε−r. Theorem 4.3 is a direct application of KAM theory [23] to this context
and allows to find small quasiperiodic solutions — hence uniformly small in any Sobolev space —
for the perturbation of (LLL) by a subset of Hermite multipliers of asymptotically full measure.

1.4.2. Stationary waves. In view of the two dimensional invariance by phase rotations and space
rotations, it is natural to define stationary waves for equation (LLL) as solutions of the form

u(t, z) = e−iλtu0

(
e−iµtz

)
,

for some (λ, µ) ∈ R2. Equivalently, the corresponding initial condition u0, also called a stationary
wave, satisfies

λu0 + µΛu0 = Π(|u0|2u0) , Λ := z∂z − z∂z. (1.2)

We obtain several results about these special solutions. Firstly, we provide a priori bounds on the
growth at infinity of any stationary wave.

Theorem 1.3. Let u0 ∈ E be a solution of (1.2). Then, for any

η > η0 =

(
1

2
+

1

2

log 2

log 3

)−1

∼ 1.226 . . . ,

the following estimate holds,

∀z ∈ C , |u0(z)| ≤ Cηe|z|
η− 1

2
|z|2 .

As a consequence, if

N(R) = #
{
z ∈ C such that u(z) = 0 and |z| < R

}
,

then for any η > η0,
N(R)

Rη
−→ 0 as R→∞.

Secondly, we classify stationary waves with a finite number of zeros and we study their orbital
stability in E and in

L2,1
E := {u ∈ E : zu ∈ L2(C)} .

Theorem 1.4. Up to multiplicative factors, phase rotations and space rotations, the stationary
waves in E having only a finite number of zeros are

uαn(z) = (z − α)ne−
|z|2
2
− |α|

2

2
+αz, α ∈ C, n ∈ N,
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for which µ = 0, and

vb(z) =

(
z − b(2 + b2)

1 + b2

)
e
− 1

2
|z|2+ b

1+b2
z
, 0 ≤ b <∞.

Furthermore, uα0 and uα1 are orbitally stable in L2,1
E for phase rotations, vb is orbitally stable in L2,1

E
for phase and space rotations, and uαn, n ≥ 2, are not orbitally stable. Finally, the set

{eiθuα0 , θ ∈ T, α ∈ C}

is stable in E.

Our third class of results about stationary waves concern existence of stationary waves with an
infinite number of zeros. We construct these objects using three different methods. Firstly, by bi-
furcation from u0

n — see Proposition 6.3. Secondly, by a minimization argument combined with the
classification result of stationary waves having only a finite number of zeros— see Proposition 7.7.
Finally, by explicit formulae we construct stationary waves having zeros on sets γZ and γZ ∪ iπ

kγZ,

where γ 6= 0 is an arbitrary complex number, and k 6= 0 is an arbitrary integer— see Appendix A.

In the first case, the growth at infinity is at most ec|z|−|z|
2/2, while this growth is optimal in the

third case. We have not been able to find stationary waves with a faster growth at infinity.

1.4.3. Number of zeros of the minimizer. We now turn to the question of the number of zeros (in
particular, finite or not) of minimizers of a physically relevant variational problem involving the
conserved quantities of the equation. In order to describe the results obtained in this respect, we
switch to semi-classical coordinates, which are most commonly used in this context.

Let 0 < h < 1 be a small parameter and denote by

Eh =
{
v(w) = e−

|w|2
2h g(w) , g entire holomorphic

}
∩ L2(C).

Define the energy functional

EhLLL(v) =

∫
C

(
|w|2|v(w)|2 +

NaΩ2
h

2
|v(w)|4

)
dL(w), (1.3)

where N, a > 0 are parameters, and Ω2
h = 1− h2. Consider the minimizing problem

min
v∈Eh

M(v)=1

EhLLL(v), where M(v) =

∫
|v|2dL. (1.4)

In [4, Theorem 1.2], Aftalion, Blanc and Nier give conditions on 0 < h < 1 and on the Lagrange
multiplier associated to the problem (1.4) such that the global minimizer of (1.3) at fixed mass has
an infinite number of zeros. Thanks to the classification result of Theorem 1.4 combined with a
global analysis, we are able to weaken their conditions. Moreover, we prove that the Gaussian is
the unique global minimizer for an explicit range of the parameter h > 0. Our result reads

Theorem 1.5. Set κ0 = 5
32 and κ1 =

√
3− 1.

(i) Assume that

h <

√
κ0
NaΩ2

h

4π
. (1.5)

Then every local or global minimizer of (1.4) has an infinite number of zeros.
(ii) Assume that

h >

√
κ1
NaΩ2

h

4π
. (1.6)
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Then

ϕ0,h(z) =
1√
πh
e−
|z|2
2h

is the unique global minimizer of (1.4) and

EhLLL(ϕ0,h) =
NaΩ2

h

4πh
+ h.

As mentioned earlier, a question of great interest is the localization of the zeros of the minimizer
in the case (1.5). The result of Theorem 1.3 gives some information about the distribution of the
zeros, and we refer to [2] for a study of minimizing sequences whose zeros are localized on lattices.

1.5. Organization of the paper. Section 2 is devoted to general background about the equa-
tion (LLL). Local and global well-posedness results are established in Section 3. In Section 4, we
prove Theorem 1.2, and two results improving this polynomial bound for perturbations of (LLL) un-
der generic Hermite multipliers. The last three sections are devoted to stationary waves for (LLL).
In Section 5, we prove general a priori bounds on the growth of stationary waves at infinity. In
Section 6, we classify stationary waves with a finite number of zeros, and show how to construct
others by perturbation from some of them. Section 7 deals with various variational problems lead-
ing to stationary waves, with applications to stability theory of stationary with a finite number of
zeros. Finally, three appendices are devoted to some explicit stationary waves, a dictionary through
Bargmann transform, and an elementary characterization of Sobolev spaces at the lowest Landau
level.

2. Symmetries, conserved quantities and special coordinates

In this whole section, we present the structure of (LLL) while remaining at a formal level.

2.1. Hamiltonian structure. Define first the symplectic form on E :

ω(u, v) = Im

∫
C
uv dL.

Given a functional F on E , its symplectic gradient ∇ωF ∈ E is such that ω(∇ωF (u) , ϕ) = dF (u)·ϕ.
The Hamiltonian flow associated to F , denoted ϕF , is then defined for t ∈ R by

ϕF (t)u0 = u(t) where u solves

{
∂tu(t) = −∇ωF (u)

u(t = 0) = u0.

The equation (LLL) corresponds to the Hamiltonian flow for the Hamiltonian

H(u) =
1

4

∫
C
|u|4 dL on E .

In other words, the solution of (LLL) with data equal to u0 can be written u(t) = ϕH(t)u0.
Observe that the Hamiltonian H is left invariant by the following symmetries: phase rotations

Tγ : u(z) 7→ eiγu(z) for γ ∈ T,

space rotations

Lϕ : u(z) 7→ u(eiϕz) for ϕ ∈ T,

and magnetic translations

Rα : u(z) 7→ u(z + α)e
1
2

(zα−zα) for α ∈ C. (2.1)
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These symmetries are via Noether theorem related to quantities which are invariant by the flow
of (LLL): the mass M , angular momentum P , and magnetic momentum Q which are given, for
u ∈ E , by

M(u) =

∫
|u|2dL

P (u) =

∫
Λuu dL =

∫
C

(|z|2 − 1)|u(z)|2 dL(z)

Q(u) = Qx(u) + iQy(u) =

∫
C
z|u|2(z)dL(z),

where Λ is the angular momentum operator, defined by

Λ = i(y∂x − x∂y) = z∂z − z∂z,

with ∂z = 1
2(∂x − i∂y). The harmonic oscillator H is defined by

H = −4∂z∂z + |z|2.
It is clear that M , P and Q are left invariant by phase and space rotation; magnetic rotations Rα
leave M invariant but act on Q and P as follows,

Q(Rαu) = Q(u)− αM(u) ,

and
P (Rαu) = P (u)− 2Re(αQ(u)) + |α|2M(u).

The following table recapitulates for each quantity conserved by the flow of (LLL) the corre-
sponding symplectic gradient and the generated symmetry.

Conserved quantity Symplectic gradient Symmetry
Mass

M(u) =
∫
|u|2 dL 2iu(z) Tγu(z) = eiγu(z), γ ∈ R

Angular momentum
P (u) =

∫
Λuu dL 2iΛu(z) Lϕu(z) = u(eiϕz), ϕ ∈ R

Magnetic momentum

Qx(u) =
∫
x|u|2 dL 2iΠ(xu) = i

(
z + ∂z + z

2

)
u(z) Riβu = u(z + iβ)eiβx, β ∈ R

Qy(u) =
∫
y|u|2 dL 2iΠ(yu) =

(
z − ∂z − z

2

)
u(z) Rαu = u(z + α)e−iαy, α ∈ R

Notice that the phase rotation Tγ obviously commutes with all the other symmetries, but this is
not the case for Lϕ, Rα and Riβ, for γ, ϕ, α, β ∈ R.

Remark 2.1. The equation i∂tv−Λv = Π(|v|2v) which derives from the Hamiltonian H(u) + 2P (u)
was studied by Nier [30]. Since the Hamiltonian flows generated by H and P commute, it is
equivalent to (LLL).

2.2. The basis (ϕn). Denote by (ϕn)n≥0 the family of the special Hermite functions given by

ϕn(z) =
1√
πn!

zne−
|z|2
2 .

By [33, Proposition 2.1], the family (ϕn)n≥0 forms a Hilbertian basis of E , and we can check that
they are the eigenfunctions in E of H, Λ and of the Fourier transform1 F

Hϕn = 2(n+ 1)ϕn, Λϕn = nϕn, Fϕn = inϕn.

1with the normalization Ff(ξ) = 1
2π

∫
C e
−iξ·zf(z)dL(z), where ξ.z := Re(ξz).
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Observe that the Fourier transform will not play any particular role, since F = Lπ
2
. Incidentally,

this implies the invariance of the equation under F .

The kernel of the projector Π is given by

K(z, ξ) =

+∞∑
n=0

ϕn(z)ϕn(ξ) =
1

π
eξze−|ξ|

2/2e−|z|
2/2, (z, ξ) ∈ C× C,

which leads to the formula (1.1).

Decomposing u in this basis

u =

+∞∑
n=0

cnϕn,

the conserved quantities become

H(u) =
1

8π

∑
k,`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

ckc`cmcn =
1

8π

+∞∑
`=0

1

2`

∣∣∣∣∣∣
∑
n+p=`

cncp

(
(n+ p)!

n!p!

)1/2
∣∣∣∣∣∣
2

M(u) =
+∞∑
n=0

|cn|2

P (u) =

+∞∑
n=1

n|cn|2

Q(u) =

+∞∑
n=0

√
n+ 1cncn+1,

see (7.1) and [20], while (LLL) reads

i∂tck =
∑

`,m,n≥0
k+`=m+n

1

2π

(k + `)!

2k+`
√
k!`!m!n!

c`cmcn, k ≥ 0. (2.2)

2.3. Tempered distributions. Sometimes we will need to work in the following enlarged lowest
Landau level space,

Ẽ :=

{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩S ′(C) =

{
u ∈ S ′(C), ∂zu+

z

2
u = 0

}
.

One can easily establish that elements of Ẽ are series of the form

u =

+∞∑
n=0

cnϕn ,

where the sequence (cn) has at most a polynomial growth in n.

Observe that H = 2(Λ + 1) on Ẽ .
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3. Well-posedness

3.1. Local well-posedness in z coordinates. For p ∈ [1,∞], the weighted Lp space Lp,α is given
by the norm

‖f‖Lp,α = ‖〈z〉αf(z)‖Lp(C).

Define then

LpE =
{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩ Lp(C)

Lp,αE =
{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩ Lp,α(C).

These are Banach spaces when endowed with their natural norms. A classical estimate [33] gives
the embedding of LpE in LqE for p < q; the inequality with the optimal constant reads [10], for
all u ∈ E

if 1 ≤ p ≤ q ≤ ∞,
( q

2π

)1/q
‖u‖Lq(C) ≤

( p
2π

)1/p
‖u‖Lp(C). (3.1)

In order to discuss (LLL) in LpE , we need to extend Π to Lp; this is easily achieved.

Proposition 3.1. For any p ∈ [1,∞] and α ≥ 0, the projector Π has a unique bounded extension

to Lp and Lp,α, which is given by the kernel 1
πe
− |z|

2

2
− |w|

2

2
+wz.

Proof. The kernel K(z, w) = 1
πe
− |z|

2

2
− |w|

2

2
+wz enjoys Gaussian bounds: |K(z, w)| ≤ 1

π
e−
|z−w|2

2 .

Therefore, for u ∈ L2 ∩ Lp,α,

‖Πu‖Lp,α =

∥∥∥∥〈z〉α ∫
C
K(z, w)u(w) dL(w)

∥∥∥∥
Lp
.

∥∥∥∥∫
C
e−

1
2
|z−w|2[〈w〉α + 〈z − w〉α

]
u(w) dL(w)

∥∥∥∥
Lp

. ‖〈z〉αu(z)‖Lp = ‖u‖Lp,α .

Since L2 is dense (in the weak sense for p =∞) in Lp,α, we obtain a unique bounded extension of
the projection operator Π. �

With this extension of Π to Lp,α for any p, the meaning of (LLL) for u ∈ L∞([0, T ], Lp,α) is now
clear.

Proposition 3.2. (i) (Lp spaces) For any p ∈ [1,∞], the equation (LLL) is locally well-posed
in Lp: for any data u0 in LpE , there exists T > 0 and a unique solution in L∞([0, T ], LpE),
which depends smoothly on u0.

(ii) (Weighted Lp spaces) For any p ∈ [1,∞], α ≥ 0, the equation (LLL) is locally well-posed in
Lp,α: for any data u0 in Lp,αE , there exists T > 0 and a unique solution in L∞([0, T ], Lp,αE ),
which depends smoothly on u0.

Proof. Local well-posedness is obtained from the theory of ordinary differential equations, by ob-
serving that the vector field

u 7→ Π(|u|2u)

is smooth on the spaces Lp,α, 1 ≤ p ≤ ∞, α ≥ 0, with a differential bounded on bounded subsets.
This observation uses successively the boundedness of Π, and the Lp-Lq estimate (3.1),

‖〈z〉αΠ
(
abc
)
‖Lp . ‖〈z〉αabc‖Lp = ‖〈z〉αa‖Lp‖b‖L∞‖c‖L∞ . ‖〈z〉αa‖Lp‖〈z〉αb‖Lp‖〈z〉αc‖Lp .

�

Remark 3.3. The space L∞ is the endpoint space as far as local well-posedness is concerned. Smaller
data spaces, such as Lp, with p <∞, or L∞,α, with α > 0, enjoy stronger properties:

• Smoothing effect: if u0 ∈ LpE , then for any ∈ [0, T ], u(t)− u0 ∈ L
max(1, p

3
)

E ∩ L∞E .
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• Weak compactness: if (uk) is a sequence of solutions uniformly bounded in L∞([0, T ], LpE),
there exists a solution u ∈ L∞([0, T ], LpE) such that, for all t ∈ (0, T ), uk(t) converges weakly
in LpE to u(t).

The proofs are immediate and we omit them.

3.2. Local well-posedness in (ck) coordinates. Let α ≥ 0 and λ > 0. Denote `∞,α and Cλ the
Banach spaces of sequences given by the norms

‖(ck)‖`∞,α = sup
k≥0
〈k〉α|ck| and ‖(ck)‖Cλ = sup

k≥0

√
k!

λk
|ck|. (3.2)

Proposition 3.4. Using the coordinates (ck) given by u =

+∞∑
k=0

ckϕk, the equation (LLL) is locally

well posed

(i) in `∞,α for α ≥ 1
4 .

(ii) in Cλ for λ > 0.

Remark 3.5. The spaces `∞,1/4 and Cλ are of particular relevance, as will become clear in the
remainder in this article. Roughly speaking, they are, in (cn) coordinates, the largest and the
smallest space for which local well-posedness holds.

Proof. (i) Recall that the equation (LLL) written in (cn) coordinates reads

i∂tck =
1

2π

∑
`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

c`cmcn

=
1

2π

∞∑
S=k

S∑
m=0

√
S!

2Sk!(S − k)!

√
S!

2Sm!(S −m)!
cS−kcmcS−m

=: T (c, c, c).

We need some bounds on the interaction coefficients: Stirling’s formula gives the inequality√
S!

2Sk!(S − k)!
. ψ

(
k

S

)S 〈S〉1/4

〈k〉1/4〈S − k〉1/4
,

where we denote, if 0 < x < 1, ψ(x) =

√
1

2xx(1− x)1−x . One checks that ψ(x) takes values in

(0, 1), is equal to 1 only if x = 1
2 , and satisfies the bound |ψ(x)| ≤ e−C(x− 1

2
)2 .

In order to prove the proposition, it suffices to show that T maps (`∞,α)3 → `∞,α, which would
follow from the inequality

Σ(k) .
1

〈k〉α
,

where

Σ(k) =
+∞∑
S=k

S∑
m=0

ψ

(
k

S

)S
ψ
(m
S

)S 〈S〉1/2

〈k〉1/4〈S − k〉1/4〈m〉1/4〈S −m〉1/4
1

〈S − k〉α〈m〉α〈S −m〉α
.

In order to prove that this inequality holds, we first consider the sum over m:

S∑
m=0

ψ
(m
S

)S 1

〈m〉
1
4

+α〈S −m〉
1
4

+α
.

S∑
m=0

e−CS(m
S
− 1

2
)2 1

〈m〉
1
4

+α〈S −m〉
1
4

+α
.

1

〈S〉2α
.
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It remains to sum over S:

Σ(k) .
+∞∑
S=k

e−CS( k
S
− 1

2
)2 〈S〉

1
2
−2α

〈k〉1/4〈S − k〉
1
4

+α
. 〈k〉

1
2
−3α . 〈k〉−α,

where the last inequality follows from α ≥ 1
4 .

(ii) Proceeding as in the previous point, it suffices to show that

sup
k≥0

√
k!

λk

∑
`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

λm+n+`

√
`!
√
m!
√
n!

= sup
k≥0

∑
k+`=m+n

λ2`(k + `)!

2k+``!m!n!
<∞.

Setting p = k + `, this can also be written, using the binomial identity,

sup
k≥0

∑
p≥k

∑
n≤p

λ2(p−k)p!

2p(p− n)!n!(p− k)!
= sup

k≥0

∑
p≥k

λ2(p−k)

(p− k)!

∑
n≤p

p!

2p(p− n)!n!
= sup

k≥0

∑
p≥k

λ2(p−k)

(p− k)!
= eλ

2
,

hence the result. �

The following lemma shows how the critical spaces in z space (L∞) and (cn) space (`∞,1/4) are
related.

Lemma 3.6. (cn) ∈ `∞,1/4, ∥∥∥∥∥
+∞∑
n=0

cnϕn

∥∥∥∥∥
L∞(C)

. ‖(cn)‖`∞,1/4 . (3.3)

Proof. First observe that

e−
1
2
|z|2+ 1

2
z2 =

+∞∑
n=0

√
π(2n)!

2nn!
ϕ2n(z),

which implies since

√
π(2n)!

2nn! ∼ (2π)1/4

2n1/4 that

sup
z∈C

+∞∑
n=0

ϕ2n(|z|)
(n+ 1)1/4

<∞.

Using this inequality and |ϕ2n+1| ≤ |ϕ2n|+ |ϕ2(n+1)|, this gives for u =
+∞∑
n=0

cnϕn with (cn) ∈ `∞,1/4

that

sup
z∈C
|u(z)| . sup

z∈C

+∞∑
n=0

ϕn(|z|)
(n+ 1)1/4

. sup
z∈C

+∞∑
n=0

ϕ2n(|z|)
(n+ 1)1/4

+ sup
z∈C

+∞∑
n=0

ϕ2n+1(|z|)
(n+ 1)1/4

<∞.

�

Notice that the reverse inequality in (3.3) does not hold true, as can be seen by considering the

sequence un = n−1/4ϕn.
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3.3. Global well-posedness. The conservation ofM andH combined with the local well-posedness
in L2

E and L4
E easily leads to

Proposition 3.7. Assume that 2 ≤ p ≤ 4. The equation (LLL) is globally well-posed for data
in LpE and such data lead to solutions in C∞

(
R, LpE

)
, depending smoothly on the initial data.

Moreover, for u0 ∈ LpE ,

‖u(t)− u0‖Lp(C) . |t|4/p−1, ‖u(t)− u0‖L2(C) ≤ C|t|, ∀t ∈ R. (3.4)

Proof. We already know local well-posedness from Proposition 3.2. Furthermore, using successively
the boundedness of Π (Proposition 3.1), Hölder’s inequality, and (3.1),∥∥Π(|u|2u)

∥∥
Lp
≤ C1

∥∥|u|2u∥∥
Lp

= C1‖u‖3L3p ≤ C2‖u‖2L4‖u‖Lp .

The previous inequality shows that the lifespan of the solution only depends on the L4 norm which
is preserved, hence we get global well-posedness.

Let us now prove the bound (3.4). We write u = u0 + v, then for t ≥ 0 we have

v(t) = −i
∫ t

0
Π
[
|u0 + v|2(u0 + v)

]
(s)ds.

We take the L2-norm and get with the help of (3.1)

‖v(t)‖L2(C) ≤ C1t‖u0 + v‖3L6(C) ≤ C2t(‖u0‖3L6(C) + ‖v‖3L6(C)) ≤ C3t(‖u0‖3Lp(C) + ‖v‖3L4(C)).

Therefore, by the conservation of the energy, we obtain ‖v(t)‖L2(C) ≤ Ct which is the second bound.
The first bound follows from interpolation with the energy. �

4. Long time results for the LLL equation

4.1. Bounds of Sobolev norms. Recall that the L2,k
E -norm is equivalent to the Sobolev Hk(C)-

norm (see Lemma C.1). Then we have the following bounds on the growth of such norms.

Theorem 4.1. Let k ≥ 1 be an integer and u0 ∈ L2,k
E . The equation (LLL) is globally well-posed

in L2,k
E and for any t,

‖u(t)‖L2,k(C) . (1 + |t|)
k−1
2 . (4.1)

Proof. The global wellposedness in L2,k
E easily follows from the global wellposedness in L2

E . To get
the bound, we compute

d

dt

∫
C
|z|2k|u(t, z)|2dL(z) = 2Re

∫
C
|z|2ku∂tudL(z)

= 2Im

∫
C
|z|2kuΠ(|u|2u)dL(z)

= 2Im

∫
C
z|z|2(k−1)zuΠ(|u|2u)dL(z)

.
∥∥zu∥∥

L2(C)

∥∥|z|2k−1Π(|u|2u)
∥∥
L2(C)

.

Next, by Proposition 3.1∥∥|z|2k−1Π(|u|2u)
∥∥
L2(C)

.
∥∥〈z〉2k−1|u|2u

∥∥
L2(C)

.
∥∥|z|2k−1|u|2u

∥∥
L2(C)

+ C
∥∥|u|2u∥∥

L2(C)

.
∥∥zu∥∥

L2(C)

∥∥zk−1u
∥∥2

L∞(C)
+ C

∥∥u∥∥3

L6(C)

.
∥∥zu∥∥

L2(C)

∥∥zk−1u
∥∥2

L2(C)
+ C

∥∥u∥∥3

L2(C)
,
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where the last line was obtained by the Carlen inequality (3.1) (using crucially that u ∈ Ẽ implies

zju ∈ Ẽ). Therefore, since
∥∥〈z〉u∥∥

L2(C)
is uniformly bounded by conservation of M and P , we get

by interpolating that
d

dt

∥∥〈z〉ku∥∥2

L2(C)
≤ C

∥∥〈z〉ku∥∥2− 2
k−1

L2(C)
. (4.2)

Then by a classical argument, (4.2) implies ‖〈z〉ku(t)‖L2(C) ≤ C(1 + |t|)
k−1
2 , which in turn im-

plies (4.1) by Lemma C.1. �

Remark 4.2. It is interesting to compare this result to the bounds for the 2D cubic Schrödinger
equation

i∂tu+ ∆R2u− (x2
1 + x2

2)u = |u|2u, (t, x1, x2) ∈ R3.

It is likely that with the method developed in [29] one gets a bound . (1 + |t|)k−1.

4.2. Long time results for linear perturbations of the LLL equation. Here we state some
results concerning linear perturbations of the LLL equation which show, under generic assumptions,
close-to-linear dynamics. In this setting, the resonant structure of LLL is destroyed.

4.2.1. KAM results for a perturbed equation. In the sequel, we consider the (non-local) perturbation
of the (LLL) equation

i∂tu+ νMu = εΠ(|u|2u), (t, z) ∈ R× C, (4.3)

where ν, ε > 0 are small and where M is the (Hermite) multiplier, defined by Mϕj = ξjϕj with
−1 ≤ ξj ≤ 1.

Notice that M and H commute and that we have the following conservation laws :∫
C
|u(z)|2dL(z),

∫
C
uHu(z)dL(z), ν

∫
C
uMu(z)dL(z) + ε

∫
C
|u(z)|4dL(z),

which are the L2 and L2,1 norms as well the Hamiltonian (there are other conservation laws).

Using the commutation of M and H, as well as the relation

eitHΠ
(
u1u2u3

)
= Π

(
eitHu1 eitHu2 e

itHu3

)
,

which can be obtained by testing on uj = ϕj , we see that (4.3) is equivalent to the equation
(setting v = eitHu)

i∂tv +Hv + νMv = Π(|v|2v), (t, z) ∈ R× C. (4.4)

The abstract KAM result [23, Theorem 2.3] can directly be applied to the equation (4.4) and
hence (4.3).

Theorem 4.3. Let n ≥ 1 be an integer and set A = [−1, 1]n+1. There exist ε0 > 0, ν0 > 0, C0 > 0
and, for each ε < ε0, a Cantor set Aε ⊂ A of asymptotic full measure when ε → 0, such that for
each ξ ∈ Aε and for each C0ε ≤ ν < ν0, the solution of

i∂tu+ νMu = εΠ(|u|2u), (t, z) ∈ R× C, (4.5)

with initial datum

u0(z) =

n∑
j=0

I
1/2
j eiθjϕj(z), (4.6)

with (I0, · · · , In) ⊂ (0, 1]n+1 and θ ∈ Tn+1, is quasi periodic with a quasi period ω? close to
ω0 = (2j + 2)nj=0: |ω? − ω0| < Cν.

More precisely, when θ covers Tn, the set of solutions of (4.5) with initial datum (4.6) covers a
(n+ 1)-dimensional torus which is invariant by (4.5). Furthermore this torus is linearly stable.
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In order to apply [23, Theorem 2.3], one has to check two spectral assumptions ([23, Assump-
tions 1 and 2]), which hold true for a suitable choice of M, and two assumptions concerning the
regularity and the decay of the nonlinear term

∫
C |u|

4dL ([23, Assumptions 3 and 4]). We refer to
[23, Section 6.3] where the corresponding Assumptions 3 and 4 are checked for the one-dimensional
nonlinear Schrödinger equation with harmonic potential. The argument follows exactly the same
lines, since one can also use the bound ‖ϕj‖L∞ ≤ Cj−1/4.

Notice that one already knew that the equation (4.3) is globally well-posed for initial conditions
of the form (4.6).

4.2.2. Control of Sobolev norms for a perturbed equation. We define the Hermite multiplier M by
Mϕj = mjϕj , where (mj)j∈N is a bounded sequence of real numbers chosen in the following classes:
for any k ≥ 1, we define the class

Wk =
{

(mj)j∈N : mj =
m̃j

(j + 1)k
with m̃j ∈ [−1/2, 1/2]

}
which is endowed with the product Lebesgue (probability) measure. Consider the problem

i∂tu+Mu = Π(|u|2u), (t, z) ∈ R× C. (4.7)

The following almost global existence result is proved in [22, Theorem 1.1].

Theorem 4.4. Let k, r ∈ N. There exists a set Bk ⊂ Wk of measure 1 such that if (mj)j∈N ∈ Bk
there exists s0 ∈ N such that for any s ≥ s0, there are ε0 > 0, c > 0, such that for any ε ∈ (0, ε0),

for any u0 ∈ L2,s
E with

‖u0‖L2,s(C) ≤ ε,

the equation (4.7) with initial datum u0 has a unique global solution u ∈ C∞
(
R, L2,s

E
)

and it satisfies

‖u(t)‖L2,s(C) ≤ 2ε, |t| ≤ cε−r.

To prove this result, we apply [22, Theorem 1.1] to the equation i∂tv + Hv +Mv = Π(|v|2v),
obtained with the change of unknown v = eitHu.

By the result of Lemma C.1, Theorem 4.4 shows that if the initial condition is strongly localised
in space, then the corresponding solution also remains localised for large times.

5. Stationary waves and their decay: general results

5.1. Definition and decay result. Stationary waves are naturally associated to the symmetries
of the equation.

Definition 5.1. An M -stationary wave is a solution of (LLL) of the form

u(t) = e−iλtu0, where λ ∈ R, u0 ∈ Ẽ .

An MP -stationary wave is a solution of (LLL) of the form

u(t) = e−iλtu0(e−iµt·), where λ, µ ∈ R, u0 ∈ Ẽ .

The concept of M and MP -stationary waves can immediately be extended to the space Ẽ . Note
that M and MP -stationary waves are given, respectively, by the solutions of

λu = Π
(
|u|2u

)
, λu+ µΛu = Π

(
|u|2u

)
.

Lemma 5.2. Assume that u ∈ L2,1/2 is a MP -stationary wave with µ 6= 0, then Q(u) = 0.



ON THE CUBIC LOWEST LANDAU LEVEL EQUATION 15

Proof. There exists ψ ∈ L2,1/2 such that u(t, z) = e−iλtψ(e−iµtz), with µ 6= 0, and

Q(u)(t) =

∫
C
z|u(t, z)|2dL(z) =

∫
C
z|ψ(e−iµtz)|2dL(z) = eiµt

∫
C
z|ψ(z)|2dL(z) = eiµtQ(u)(0).

By conservation of Q(u), this implies that Q(u) = 0. �

Theorem 5.3. (i) Assume that u =
∑+∞

n=0 cnϕn ∈ Ẽ is an MP -stationary wave such that
|cn| . rn for some r < 1. Then, for any

γ < γ0 =
1

2

log 2

log 3
∼ 0.315 . . . ,

there holds |cn| . n−γn.

(ii) Assume that u(z) ∈ Ẽ is an MP -stationary wave such that |u(z)| ∈ L∞ and u(z) → 0 as
|z| → ∞. Then for any

η > η0 =

(
1

2
+

1

2

log 2

log 3

)−1

∼ 1.226 . . . ,

there holds |u(z)| . e|z|η−
1
2
|z|2.

Remark 5.4. The stationary waves exhibited in Theorem 6.1, see also Appendix A, give examples
of:

• Finite energy stationary waves such that cn ∼ rn√
n!

for any r > 0 and sup|z|=ρ |u(z)| .

e−
ρ2

2
+rρ;

• Infinite energy stationary waves u ∈ L∞ \ ∪α>0L
∞,α such that cn ∼

{
0 if n odd

1
n1/4 if n even

.

These examples show that some of the conditions of the theorem are optimal; but they also suggest

that stationary waves of finite energy might in general enjoy the bound sup|z|=ρ |u(z)| . e−
ρ2

2
+rρ

for some r.

Corollary 5.5. Let u be an MP -stationary wave in L∞ such that u(z)→ 0 as |z| → ∞, and let

N(R) = #
{
z ∈ C such that u(z) = 0 and |z| < R

}
.

Then for any η > η0,

N(R)

Rη
−→ 0 as R→∞.

Remark 5.6. Let v ∈ E , then with the same proof one obtains N(R) . R2. This bound is sharp as
shown by the two following examples :

• Let 0 < δ < 1
2 and set v(z) =

sin(δz2)

δz2
e−|z|

2/2. Then v ∈ E and N(R) ∼ cR2. The zeros are

located on the real and imaginary axes.
• Let 0 < α < 1. The Weierstrass σα-function associated to the lattice

Λα =
{√π

α
(m+ in), m, n ∈ Z

}
,

satisfies z 7→ σα(z)e−|z|
2/2 ∈ E and vanishes exactly on Λα, so that N(R) ∼ cR2. See [33,

Lemma 5.6, page 201] for more details.
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Proof of Corollary 5.5. Write u(z) = e−
1
2
|z|2f(z), where f(z) is an entire function. Denote {ak}

the zeros of f . Assuming for simplicity that f(0) 6= 0, and provided that f does not vanish on
∂B(0, R), Jensen’s formula gives

log |f(0)| =
∑
|ak|<R

log
|ak|
R

+
1

2π

∫ 2π

0
log |f(Reiθ)| dθ.

Denoting N ′(R) = #{z ∈ C such that u(z) = 0 and 0 < |z| < R
2 }, the above clearly implies that

(log 2)N ′(R) ≤ − log |f(0)|+ 1

2π

∫ 2π

0
log |f(Reiθ)| dθ.

By Theorem 5.3, for any η > η0, |f(z)| .η e|z|
η
. Combining this with the above inequality gives

N ′(R) .η 1 +Rη,

which leads to the desired result. �

5.2. Proof of (i) in Theorem 5.3. Step 1: a closer look at the (cn) equation. The equation sat-

isfied by MP - becomes, in (cn) coordinates

(λ+ µk)ck =
1

2π

∑
`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

c`cmcn, k ≥ 0.

For simplicity, and since this does not affect estimates, we shall take µ = 0 in the following. The
above can also be written

λck =
1

2π

+∞∑
S=k

S∑
m=0

√
S!

2Sk!(S − k)!

√
S!

2Sm!(S −m)!
cS−kcmcS−m.

By Stirling’s formula, we can bound√
S!

2Sk!(S − k)!
. ψ

(
k

S

)S
,

where we denote, if 0 < x < 1, ψ(x) =

√
1

2xx(1− x)1−x . It will be important that ψ(x) takes

values in (2−1/2, 1], and is equal to 1 only if x = 1
2 .

Assuming that |cn| . rn for some r < 1, the above immediately implies that

|ck| .
+∞∑
S=k

S∑
m=0

ψ

(
k

S

)S
ψ
(m
S

)S
r2S−k.

Step 2: the bootstrap argument. Here we assume first that |ck| ≤ Crr
k, for some r < 1 to be

determined and aim at obtaining a bound of the type |ck| ≤ Cρρ
k, where ρ depends on r and Cρ

on Cr.

We fix κ ∈
(

1√
2
, 1
)

and let ε ∈
(
0, 1

2

)
be such that ψ(ε) = κ. Observe that

ψ(x) ≤ κ if
∣∣x− 1

2

∣∣ ≥ 1
2 − ε .
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Splitting the sum above estimating |ck|, we get

|ck| . C3
r


∑

|2k−S|<2( 1
2
−ε)S

|2m−S|<2( 1
2
−ε)S

r2S−k +

+∞∑
S=k

S∑
m=0

ψ(ε)Sr2S−k


. C3

rk
[
r

1+ε
1−εk + (κr)k

]
.

We now assume that r is such that the second term in the above right-hand side dominates the
first one, which corresponds to

r ≤ κ
1−ε
2ε . (5.1)

Notice that, given r < 1, (5.1) is satisfied if κ < 1 is close enough to 1. Choosing furthermore any
κ′ ∈ (κ, 1), this gives

|ck| . (κ′r)k.

Thus we found that, for r < 1 satisfying (5.1), κ′ ∈ (κ, 1), and for a constant A > 0,

|ck| ≤ Crrk =⇒ |ck| ≤ A(Cr)
3(κ′r)k.

Iterating this implication gives that

|ck| ≤ Bn(δn)k where

{
δn+1 = κ′δn
Bn+1 = AB3

n
and

{
δ0 = r
B0 = Cr.

This implies in particular that, for any n, k,

|ck| . (κ′)nkeC3n .

Choosing n =
[

log k
log 3

]
+ 1, this gives the bound

|ck| . k−γk

for any γ < − log κ′

log 3 . In particular, this implies

|ck| . rk

for any r ∈ (0, 1). This means that (5.1) is satisfied for every κ ∈ (2−1/2, 1). Applying again the
same bootstrap argument, we obtain

|ck| . k−γk

for any γ < γ0 = log 2
2 log 3 .

5.3. Proof of (ii) in Theorem 5.3.

Step 1: establishing Gaussian decay for M -stationary waves in z coordinates. Without loss of gen-
erality, start with u, a function in L∞ going to zero at infinity, solving

u = Π
(
|u|2u

)
.

Using first the Gaussian bound on the kernel of Π, and then elementary estimates, we get for
κ ∈ (0, 1)

|u(z)| .
∫
e−

1
2
|w−z|2 |u(w)|3 dL(w)

≤
∫
|w|<κ|z|

e−
1
2
|w−z|2 |u(w)|3 dL(w) +

∫
|w|>κ|z|

e−
1
2
|w−z|2 |u(w)|3 dL(w)

. e−
(1−κ)2

3
|z|2 + sup

|w|>κ|z|
|u(w)|3.
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Setting Mn = sup|w|>κ−n |u(w)|, this translates into

Mn ≤ C0e
− (1−κ)2

3
κ−2n

+ C0M
3
n−1,

for a constant C0.
We now claim that Mn < Ae−εκ

−2n
for n > n0, where n0, A and ε are positive constants to be

determined. This will follow by induction if we can make sure that{
Mn0 < Ae−εκ

−2n0

C0e
− (1−κ)2

3
κ−2n

+ C0A
3e−3κ2εκ−2n

< Ae−εκ
−2n

for n > n0,

which would follow from 
Mn0 < Ae−εκ

−2n0

C0e
− (1−κ)2

3
κ−2n

< 1
2Ae

−εκ−2n
for n > n0

C0A
3e−3κ2εκ−2n

< 1
2Ae

−εκ−2n
for n > n0,

(5.2)

In order to make sure that these inequalities are satisfied, we choose κ, n0, A and ε as follows.

• First choose κ = 1√
3

and A < 1√
2C0

. This ensures that the third inequality in (5.2) holds.

• Next, pick n0 so big that C0e
− (1−κ)2

6
κ−2n0 < A

2 and Mn0 <
A
2 (using that Mn → 0 as n→∞

by hypothesis). This ensures that the second inequality in (5.2) holds, provided ε < (1−κ)2

6 .

• Finally, choose ε ∈
(

0, (1−κ)2

6

)
so small that 1

2 < e−εκ
−2n0 . Combined with Mn0 <

A
2 , this

ensures that the first inequality in (5.2) holds.

Thus the claim holds, and we get that |u(z)| . e−σ|z|2 for some σ > 0.

Step 1 bis: establishing Gaussian decay for MP -stationary waves in z coordinates.

Now we consider the equation λu+ µΛu = Π(|u|2u) with µ 6= 0. Set α = λ/µ.

• Case −α /∈ N. In this case, the equation is equivalent to

u =
1

µ
(Λ + α)−1

[
Π(|u|2u)

]
.

Let us compute the kernel of (Λ + α)−1. For all n ∈ N, (Λ + α)−1ϕn = (n + α)−1ϕn, then for
u ∈ F 2,

(Λ + α)−1u(z) =

+∞∑
n=0

1

n+ α

( ∫
C
u(w)ϕn(w)dL(w)

)
ϕn(z)

=

∫
C
u(w)Kα(z, w)dL(w)

with

Kα(z, w) =
+∞∑
n=0

1

n+ α
ϕn(z)ϕn(w) =

1

π
e−
|z|2
2
− |w|

2

2

+∞∑
n=0

(zw)n

(n+ α)n!
. (5.3)

We claim that there exists A ≥ 0 such that

|Kα(z, w)| ≤ C(1 + |zw|A)(eRe(zw) + 1)e−
|z|2
2
− |w|

2

2 . (5.4)
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Let n0 be the smallest integer such that n0 + α > 0. Then

Kα(z, w) =
1

π
e−
|z|2
2
− |w|

2

2

n0−1∑
n=0

(zw)n

(n+ α)n!
+

1

π
e−
|z|2
2
− |w|

2

2

∫ 1

0
tα−1

( +∞∑
n=n0

(tzw)n

n!

)
dt

=
1

π
e−
|z|2
2
− |w|

2

2

n0−1∑
n=0

(zw)n

(n+ α)n!
+

1

π
e−
|z|2
2
− |w|

2

2

∫ 1

0
tα−1

(
etzw −

n0−1∑
n=0

(tzw)n

n!

)
dt. (5.5)

If |wz| ≤ 1, then from (5.3) we get |Kα(z, w)| ≤ Ce−
|z|2
2
− |w|

2

2 . In the sequel we assume |wz| ≥ 1.
Then∫ 1

0
tα−1

∣∣etzw − n0−1∑
n=0

(tzw)n

n!

∣∣dt =

=

∫ 1
|wz|

0
tα−1

∣∣etzw − n0−1∑
n=0

(tzw)n

n!

∣∣dt+

∫ 1

1
|wz|

tα−1
∣∣etzw − n0−1∑

n=0

(tzw)n

n!

∣∣dt
= I1 + I2.

In the first integral, we make the change of variables s = t|wz| and get I1 ≤ C. For the second, we
get

I2 ≤ C(1 + |zw|1−α)(eRe(zw) + |zw|n0−1 + 1).

We also have the bound ∣∣ n0−1∑
n=0

(zw)n

(n+ α)n!

∣∣ ≤ C(|zw|n0−1 + 1).

As a conclusion, from (5.5) and the previous estimates we get (5.4).

• Case −α = n0 ∈ N.

K−n0(z, w) =
∑
n 6=n0

1

n− n0
ϕn(z)ϕn(w) =

1

π
e−
|z|2
2
− |w|

2

2

∑
n6=n0

(zw)n

(n− n0)n!
.

For n ≥ n0 + 1 we write (n− n0)−1 =

∫ 1

0
tn−n0−1dt, and as previously we get

K−n0(z, w) =
1

π
e−
|z|2
2
− |w|

2

2

( n0−1∑
n=0

(zw)n

(n− n0)n!
+

∫ 1

0
t−n0−1

(
etzw −

n0∑
n=0

(tzw)n

n!

)
dt
)
.

Similarly, there exists A > 0 such that

|K−n0(z, w)| ≤ C(1 + |zw|A)(eRe(zw) + 1)e−
|z|2
2
− |w|

2

2 . (5.6)

In the sequel, we assume that |z| ≥ 1. We set v = Π(|u|2u). Then, by Step 1,

|z|3A|v(z)| ≤ C0e
− (1−κ)2

3
|z|2 + C0 sup

|w|>κ|z|

(
|w|A|u(w)|

)3
. (5.7)
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Then thanks to (5.3) and (5.6)

|z|A|u(z)| ≤ C|z|A
∫
C

(1 + |wz|A)e−
|z|2
2
− |w|

2

2 |v(w)|dL(w)+

+ C|z|A
∫
C

(1 + |wz|A)e−
|z−w|2

2 |v(w)|dL(w) + C|z|n0+Ae−
|z|2
2

= J1 + J2 + J3.

The term J3 is the contribution of the mode n0 in the case α = −n0, and we have J3 ≤ Ce−
|z|2
3 .

Then we clearly have J1 ≤ Ce−
|z|2
3 . We write

J2 = C|z|A
∫
|w|<κ|z|

(1 + |wz|A)e−
|z−w|2

2 |v(w)|dL(w) + C|z|A
∫
|w|>κ|z|

(1 + |wz|A)e−
|z−w|2

2 |v(w)|dL(w)

≤ Ce−
(1−κ)2

3
|z|2 + C sup

|w|>κ|z|

(
|w|3A|v(w)|

)
.

This implies that

|z|A|u(z)| ≤ Ce−
(1−κ)2

3
|z|2 + C sup

|w|>κ|z|

(
|w|3A|v(w)|

)
. (5.8)

We set Mn = sup
|w|>κ−n

|w|A|u(w)| and Nn = sup
|w|>κ−n

|w|3A|v(w)|, therefore

Nn ≤ C0e
− (1−κ)2

3
κ−2n

+ C0M
3
n−1,

Mn ≤ C0e
− (1−κ)2

3
κ−2n

+ C0Nn−1.

We are now able to conclude as in Step 1 by induction (here we need to initialize Mn0 and Mn0+1).

Step 2: bootstrapping in (cn) coordinates. Since |u(z)| . e−σ|z|2 for some σ > 0, we can bound the

coordinates (cn) of u by

|cn| =
∣∣∣∣∫

C
u(z)ϕn(z) dL(z)

∣∣∣∣ . 1√
n!

∫
C
e−( 1

2
+σ)|z|2 |z|n dL(z)

.
Γ
(
n
2 + 1

)
√
n!
(

1
2 + σ

)n
2

+1
,

where Γ is Euler’s Gamma function. By Stirling’s formula,

|cn| .
n1/4

(1 + 2σ)n/2
.

This means that |cn| . rn for some r ∈ (0, 1). By (i) in Theorem 5.3, we obtain that, for any
γ < γ0, |cn| . n−γn.

Step 3: back to z coordinates. Using that |cn| . n−γn, for γ < γ0, we get by Stirling’s formula that

|u(z)| =

∣∣∣∣∣
+∞∑
n=0

cn
zn√
πn!

e−
1
2
|z|2
∣∣∣∣∣ .

+∞∑
n=0

n−γn
|z|n√
n!
e−

1
2
|z|2 .

+∞∑
n=0

n−(γ+ 1
2

)n(e
1
2 |z|)ne−

1
2
|z|2 .
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By Young’s inequality,

|u(z)| .

[
+∞∑
k=0

k−k(2e
1
2 |z|)

k
1
2+γ

] 1
2

+γ

e−
1
2
|z|2 . eC|z|

1
1
2+γ − 1

2
|z|2 ,

which is the desired result.

6. Stationary waves with a finite number of zeros

6.1. The classification result.

Theorem 6.1. (i) M -stationary waves in E with a finite number of zeros and unit mass are
given, modulo space and phase rotation, by ϕαn(z)e−iλt where

ϕαn(z) = R−α(ϕn)(z) =
1√
πn!

(z − α)ne−
|z|2
2
− |α|

2

2
+αz and

{
n ∈ N, α ∈ C
λ = (2n)!

π(n!)222n+1

.

They satisfy

H(ϕαn) =
1

8π

(2n)!

22n(n!)2
, M(ϕαn) = 1, P (ϕαn) = n+ |α|2, Q(ϕαn) = α.

(ii) Besides the ϕαn, MP -stationary waves in E with a finite number of zeros and unit mass are
given, modulo space and phase rotation, by ψb(e

−iµtz)e−iλt, where

ψb(z) =
e
− 1

2

(
b

1+b2

)2√
π(1 + b2)

(
z − b(2 + b2)

1 + b2

)
e
− 1

2
|z|2+ b

1+b2
z

and


b ∈ [0,∞)

λ = 1
8π(1+b2)

(
2b2 + 1 + b2

1+b2

)
µ = − 1

8π

.

They satisfy

H(ψb) =
1

8π

(
1− 1

2(1 + b2)2

)
, M(ψb) = 1, P (ψb) =

1

(1 + b2)2
, Q(ψb) = 0.

(iii) M -stationary waves in Ẽ \E with a finite number of zeros are given, modulo space and phase
rotation, by

u(t) = Ae−
1
2
|z|2+ 1

2
z2+isze−iλt, where A, s ∈ R, and λ = A2

√
2
.

(iv) Besides the previous example, MP -stationary waves in Ẽ \ E with a finite number of zeros
are given, modulo space and phase rotation, by

u(t) = A(e−iµtz + ir)e−
1
2
|z|2+ 1

2
e−2iµtz2e−iλt, where


A ∈ R,
λ = 1√

2

(
3
2 + r2

)
A2.

µ = A2
√

2

We postpone the proof of Theorem 6.1 to Paragraph 6.3, and refer to Section B for the expression
of these stationary waves in different coordinates.

6.2. An invariant three–dimensional submanifold. As a consequence of identifying ψb in
Theorem 6.1 as a stationary wave, we prove that the three–dimensional manifold

u(z) = (λz + µ) eαz−
|z|2
2 , λ ∈ C∗ , µ ∈ C , α ∈ C , (6.1)

is invariant by the flow of (LLL). This allows to recover results of [7] which were obtained by a
direct calculation.
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Proposition 6.2. For all (λ, µ, α) ∈ C∗×C×C, there exists (c, ϕ, a, b) ∈ C∗×T×C×R such that

(λz + µ)eαz−
1
2
|z|2 = cLϕRa

[(
z − b(2 + b2)

1 + b2

)
e
− 1

2
|z|2+ b

b2+1
z
]
.

Thus, up to the symmetries of the equation, every solution to (LLL) corresponding to an initial
condition of the form (6.1), is a stationary wave.

Proof. It is clear that multiplication by c ∈ C∗, action of Lϕ and of Ra act on the manifold defined
by (6.1). With an operator Ra we can reduce to the case when

∫
C z|u(z)|2 dL(z) = 0. Then the

transform Lϕ allows to reduce to the case α ∈ R, and by multiplication by c we can assume that
λ = 1. Hence, we are reduced to

0 =

∫
C
z|u(z)|2 dL(z) = π

(
µα2 + µα2 + α|µ|2 + α3 + 2α+ µ

)
eα

2
, (6.2)

with α ∈ R — the calculation can be easily made using identity (6.4) below. We now claim

that (6.2) is satisfied if and only if there exists b ∈ R such that α = b
b2+1

and µ = − b(2+b2)
1+b2

, and
this will complete the proof.

Firstly, if (6.2) holds true, necessarily µ ∈ R, and we are led to study the zeros of the second
order polynomial F (µ) = αµ2 + (2α2 + 1)µ+α(2 +α2). The critical value of F is 1

α(α− 1
2)(α+ 1

2),

thus F admits a zero if and only if −1
2 ≤ α ≤ 1

2 . In this case, there exists b ∈ R such that

α = α(b) = b
b2+1

, and we obtain that the zeros are µ1(b) = − b(2+b2)
1+b2

or µ2(b) = − (2b2+1)
b(1+b2)

. This

yields the claim, since α(b) = α(1/b) and µ2(b) = µ1(1/b). �

6.3. Proof of the classification result. We will simply solve the equations

λu = Π
(
|u|2u

)
and λu+ µΛu = Π

(
|u|2u

)
,

over λ, µ ∈ R, and u ∈ Ẽ . First we need a result describing functions in Ẽ with a finite number of
zeros.

Step 1: functions u ∈ Ẽ with a finite number of zeros. Write u(z) = e−
1
2
|z|2f(z), let z1 . . . zk be the

zeros of f and define P (z) =
∏k
j=1(z − zj). Then f(z)

P (z) is an entire function which does not vanish,

thus it can be written f(z)
P (z) = eQ(z), where Q is an entire function. By the bounds on u, Q is such

that ReQ(z) . 〈z〉2. The Borel-Caratheodory lemma implies that |Q(z)| enjoys the same bounds,
namely |Q(z)| . 〈z〉2, which means, by the Liouville theorem, that Q is a polynomial of degree at
most 2. As a conclusion, any function satisfying the hypotheses of the proposition is of the type

u(z) = P (z)eQ(z)− 1
2
|z|2 , where P and Q are polynomials, and the degree of Q is at most 2.

Step 2: Q of degree 1, µ = 0. We look for u of the form P (z)eαz−
1
2
|z|2 , with α ∈ C, and P a poly-

nomial, solving λu = Π|u|2u. Recall the Gaussian integral identity

1

π

∫
C
e−2|w|2+aw+bwdL(w) =

1

2
e
ab
2 if a, b ∈ C. (6.3)

For any polynomial P in w,w, this implies

1

π

∫
C
P (w,w)e−2|w|2+aw+bwdL(w) = P (∂a, ∂b)

1

2
e
ab
2 . (6.4)
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Therefore

Π(|u|2u)(z) =
e−
|z|2
2

π

∫
e−2|w|2+zw+2αw+αwP (w)2P (w) dL(w)

=
e−
|z|2
2

2
P (∂a)

2P (∂b)e
ab
2

∣∣∣∣∣∣ a=2α
b=α+z

=
e−
|z|2
2

2
P (∂b)P

(
b

2

)2

e
ab
2

∣∣∣∣∣∣ a=2α
b=α+z

. (6.5)

Let n ≥ 0 be the degree of P ; the Taylor expansion of the polynomial P at point a/2 gives

P (∂b) = P
(a

2

)
+ P

′
(a

2

)(
∂b −

a

2

)
+ · · ·+ 1

n!
P

(n)
(a

2

)(
∂b −

a

2

)n
.

Observe that (∂b − a
2 )e

ab
2 = 0, then by (6.5) we get

Π(|u|2u)(z) =
1

2
e−
|z|2
2

+ab
2

n∑
k=0

1

k!
P

(k)
(a

2

)
∂kb

(
P

(
b

2

)2 )∣∣∣∣∣
a=2α
b=α+z

=
1

2
e−
|z|2
2

+αz+|α|2
n∑
k=0

1

k!
P

(k)
(α)∂kb

(
P

(
b

2

)2 )∣∣∣∣∣
b=α+z

. (6.6)

If u solves λu = Π(|u|2u), then the polynomial in z appearing in the r.h.s. must have degree n. This

is the case if and only if P
(k)

(α) = 0 for all 0 ≤ k ≤ n−1, hence P takes the form P (z) = A(z−α)n,

with A ∈ C. Conversely, with (6.6) we check that u(z) = A(z − α)neαz−
1
2
|z|2 is a stationary wave.

There remains to normalize it to have mass one, giving ϕαn.

Step 3: Q of degree 1, µ 6= 0. Proceeding as in the previous step, for u of the form P (z)eαz−
1
2
|z|2 ,

the equation λu+ µΛu = Π|u|2u is equivalent to the equality between polynomials

λP + µzP ′ + αµzP =
1

2
e|α|

2
n∑
k=0

1

k!
P

(k)
(α)∂kb

(
P

(
b

2

)2 )∣∣∣∣∣
b=α+z

. (6.7)

If P has degree n, the polynomial on the l.h.s. has degree n+ 1, so this must be the degree of the
polynomial on the r.h.s. This is only possible if P (k)(α) = 0 for 0 ≤ k ≤ n − 2, in other words,
P (z) = (z−α)n +β(z−α)n−1 - taking without loss of generality the coefficient of (z−α)n to be 1.

With this form for P , we now expand the two sides of the above equation:

LHS (6.7) =
[
(z − α)n+1µα+ (z − α)n(µn+ µ|α|2 + βµα+ λ)

+ (z − α)n−1(λβ + αµn+ µβ(n− 1) + µβ|α|2) + (z − α)n−2αµβ(n− 1)
]

RHS (6.7) =
1

2
e|α|

2

[
(z − α)n+1 β(2n)!

22n(n+ 1)!
+ (z − α)n

(
|β|2(2n− 1)!

22n−2n!
+

(2n)!

22nn!

)
+(z − α)n−1

(
β(2n− 1)!

22n−2(n− 1)!
+
|β|2β(2n− 2)!

22n−2(n− 1)!

)
+ (z − α)n−2 β2(2n− 2)!

22n−2(n− 2)!

]
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(where the last terms in the above expressions should be canceled if n = 1). Identifying the

coefficients and setting (µ′, λ′) = 22n+1(µ, λ)e−|α|
2

gives the system

µ′α =
β(2n)!

(n+ 1)!
(6.8a)

µ′n+ µ′|α|2 + βµ′α+ λ′ =
4|β|2(2n− 1)!

n!
+

(2n)!

n!
(6.8b)

λ′β + αµ′n+ µ′β(n− 1) + µ′β|α|2 =
4β(2n− 1)!

(n− 1)!
+

4|β|2β(2n− 2)!

(n− 1)!
(6.8c)

µ′αβ(n− 1) =
4β2(2n− 2)!

(n− 2)!
(6.8d)

(where the last line should be canceled if n = 1). We now need to distinguish between the cases
n = 1 and n > 1.

If n = 1, (6.8a) gives µ′ = β
α (unless α = 0, but then β = 0 and we are back to step 2).

Plugging this value of µ′ in (6.8b) leads to λ′ = 3|β|2 + 2 − β
α − αβ, and using this value of λ′

in (6.8c) gives the equation |β|2β + 2β + |β|2
α −

αβ
α = 0. If β = 0 we get the M−stationary wave

u(z) = A(z − α)eαz−
1
2
|z|2 . Thus we can assume β 6= 0 and set α = aeiϕ and β = beiψ with a, b > 0.

We then observe that X = e−i(ϕ+ψ) satisfies X2 − b
aX − (b2 + 2) = 0. If X 6= 1,−1 this yields a

contradiction because then 1 = |X|2 = −(b2 + 2). Finally we obtain β = −be−iϕ with a = b
b2+1

.

If n ≥ 2, and β 6= 0, (6.8d) gives that µ′ = 4β(2n−2)!
α(n−1)! , which implies first that α = aeiϕ and

β = be−iϕ for some a, b, ϕ ∈ R. Second, inserting this value of µ′ in (6.8a) leads to 4 (2n−2)!
(n−1)! = (2n)!

(n+1)!

which is impossible.

This leaves us with the stationary wave ub(z) =
(
z − b(2+b2)

1+b2

)
e
− 1

2
|z|2+ b

1+b2
z
, which we need to

normalize to have mass one. Using the identity∫
e−|w|

2+aw+cw dL(w) = πeac,

we obtain (noticing after the first equality that −|z|2 + 2Re
(

b
1+b2

z
)

= −
∣∣∣z − b

1+b2

∣∣∣2 +
(

b
1+b2

)2
)

‖ub‖2L2 =

∫ ∣∣∣∣z − b(2 + b2)

1 + b2

∣∣∣∣2 e−|z|2+2Re
(

b
1+b2

z
)
dL(z)

= e

(
b

1+b2

)2 ∫
|z − b|2e−|z|2 dL(z)

= e

(
b

1+b2

)2

(∂a − b)(∂c − b)πeac|a=c=0

= π(1 + b2)e

(
b

1+b2

)2

.

This leads to the formula for ψb = ub
‖ub‖L2

; proceeding similarly, one computes H(ψb) and P (ψb).

By Lemma 5.2, Q(ψb) = 0.

Step 4: Q of degree 2, µ = 0. In other words, we now look for solutions of λu = Π(|u|2u) of the type

P (z)eAz
2+Bz− 1

2
|z|2 , where A,B ∈ C and P is a polynomial. We start from the following Gaussian
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integral. For any complex numbers a, b, c, d such that the integral converges absolutely,

1

π

∫
e−2|w|2+aw+bw+cw2+dw2

dL(w) =
1

2
√

1− cd
e

(1−cd)(a+b)2−(bc−ad+a−b)2
4(1−cd)(2−c−d)

=
1

2
√

1− cd
e
da2+cb2+2ab

4(1−cd) .

Notice that the convergence of the integral implies Re(1− cd) > 0, so that the square root of 1− cd
is defined classically. This identity implies, for a polynomial P of w and w

1

π

∫
e−2|w|2+aw+bw+cw2+dw2

P (w,w) dL(w) = P (∂a, ∂b)
1

2
√

1− cd
e
da2+cb2+2ab

4(1−cd) . (6.9)

Therefore,

Π(|u|2u)(z) =
e−
|z|2
2

π

∫
e−2|w|2+zw+2Aw2+Aw2+2Bw+BwP (w)2P (w) dL(w)

= e−
|z|2
2 P (∂a)

2P (∂b)
1

2
√

1− cd
e
da2+cb2+2ab

4(1−cd)

∣∣∣∣ a=2B
b=z+B
c=2A
d=A

.

For u to be a stationary wave, the coefficients of z2 and z in da2+cb2+2ab
4(1−cd) , with a = 2B, b = z +B,

c = 2A, d = A, must be A and B respectively. A small computation shows that the coefficients
of z2 agree if A = A

2(1−2|A|2)
, which gives A = 0 (in which case we are back to step 2), or |A| = 1

2 .

By rotation invariance, we can assume A = 1
2 ; but then the coefficients of z agree if B = is, with s

real.
Finally, observe that, if the degree of P is n, the degree of the polynomial Q such that Π|u|2u =

Q(z)e−
1
2
|z|2+ 1

2
z2+isz, as determined by the formula above, is 3n. Therefore, n = 0.

Step 5: Q of degree 2, µ 6= 0. Proceeding as in the previous step, any solution of λu+µΛu = Π|u|2u
of the type P (z)eAz

2+Bz− 1
2
|z|2 is such that A = 0, a case which we already examined, or |A| = 1

2
and B = is, to which we now turn. Moreover, one realizes quickly that either n = 0 (but this
case has already been considered) or n = 1, which we now examine. Therefore, write u(z) =

(z + γ)e−
1
2
|z|2+ 1

2
z2+isz; computing using the above formula leads to

(λ+ µΛ)u(z) =
[
µz3 + (µis+ µγ)z2 + (λ+ µ+ µγis)z + λγ

]
e−

1
2
|z|2+ 1

2
z2+isz

Π(|u|2u)(z) =
1√
2

[
z3 + (is+ γ + 2γ) z2 +

(
5

2
+ γ2 + 2isγ + 2|γ|2

)
z

+

(
2γ +

1

2
is+

1

2
γ + isγ2 + |γ|2γ

)]
e−

1
2
|z|2+ 1

2
z2+isz.

Identifying the coefficients of the powers of z, we find that s = 0, γ is pure imaginary: γ = ir,
with r real, µ = 1/

√
2 and λ = (3

2 + r2)/
√

2.

6.4. Construction of stationary waves by bifurcation from ϕ0. While we only treat the case
of ϕ0, identical arguments give bifurcation from the ϕn, with n ≥ 1. Recall the definition of the
spaces Cε given in (3.2).

Proposition 6.3. For k0 ≥ 2 an integer, there exists, for s ∈ R sufficiently small, MP -stationary
waves

u = uk0,s =

+∞∑
`=0

q`(s)ϕ`k0 = ϕ0 + sϕk0 +O(s2)
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(where O(s2) is understood for the topology of Cε), which solve

au+ bΛu = 8πΠ(|u|2u),

with a = 4 and
∣∣∣b− 1

k0

(
4− 8

2k0

)∣∣∣ . s.
Moreover, for all ε > 0, there exist Kε > 0 and sε > 0 such that

|u(z)| ≤ Kεe
ε|z|− 1

2
|z|2 (6.10)

for all 0 ≤ s ≤ sε.

Remark 6.4. By Theorem 6.1, for all 0 < s ≤ sε, such a function has an infinite number of zeros.
Indeed, none of the stationary waves listed in Theorem 6.1 has the property

u =

+∞∑
`=0

q`ϕ`k0

for some k0 ≥ 2.

Proof. Let ε > 0. Recall that Cε is given by the norm supk≥0

√
k!
εk
|ck|; abusing notations, we will

identify the sequence (cn) and the corresponding function
∑

n cnϕn, so that Cε becomes a space of
functions. We saw in Proposition 3.4 that (f, g, h) 7→ Π(fgh) is bounded from C3

ε to Cε.
Restricting Cε to indices which are multiples of k0 gives

Ck0,ε = {(ck) ∈ Cε such that ck = 0 if k is not a multiple of k0}.
We will apply the framework in Crandall-Rabinowitz [11, Theorem 1.7]. Namely, let

F (t, u) = 8πΠ
[
|ϕ0 + u|2(ϕ0 + u)

]
+ tΛ(ϕ0 + u)− 4(ϕ0 + u).

Observe that F is a smooth function from R× Ck0,ε to (1 + Λ)Ck0,ε, such that

• F (t, 0) = 0 for all t,
• ∂tF (t, u) = Λ(ϕ0 + u),
• ∂uF (t, 0)(δu) = 8πΠ(2|ϕ0|2δu+ ϕ2

0δu) + tΛδu− 4δu ; equivalently, in the (ck) coordinates:

[∂uF (t, 0)(δu)]k =
(
tk − 4 + 8

2k

)
δck + 4δk,0δck,

• and finally ∂t∂uF (t, u)(δu) = Λδu.

Given k0 ≥ 2, we choose t = t(k0) = 1
k0

(
4− 8

2k0

)
such that tk0 − 4 + 8

2k0
= 0 (notice that this

determines k0 uniquely if k0 ≥ 4, but that the same t corresponds to k0 = 2 and k0 = 3).
Since

• Ker ∂uF (t(k0), 0) = Spanϕk0
• (Λ + 1)Ck0,ε/Ran ∂uF (t(k0), 0) one-dimensional
• ∂t∂uF (t, u)(ϕk0) = Λϕk0 = k0ϕk0 /∈ Ran ∂uF (t(k0), 0),

then [11, Theorem 1.7] applies, giving the existence result.

The estimate (6.10) directly follows from the estimate |ck| ≤ Kε
εk√
k!

. �

7. Variational questions and stability properties

7.1. Maximizers of H for M fixed. The following proposition identifies the maximizers of the
Hamiltonian for fixed mass. This result was already proved in [10, Theorem 2] via logarithmic
Sobolev identities, and it can be deduced from [12, Theorem 8.2], in the special case of the
Bargmann–Fock space E . We propose here a new, very elementary proof.

Proposition 7.1. If u ∈ E, namely u ∈ L2(C) and u e|z|
2/2 is entire, then u ∈ L4(C), with the

estimate

‖u‖4L4(C) ≤
1

2π
‖u‖4L2(C) .
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Moreover, the above estimate is an equality if and only if

u(z) = λeαz−
|z|2
2 ,

for some λ, α ∈ C.

Proof. The proof is inspired from the one of Lemma 1 of [16]. Recall that

u =

+∞∑
n=0

cnϕn, with ϕn(z) =
1√
πn!

zn e−
|z|2
2 ,

so that

‖u‖2L2(C) =

+∞∑
n=0

|cn|2 .

We then classically write

‖u‖4L4(C) = ‖u2‖2L2(C) ,

and observe that

u2 =
∑
n,p≥0

cncpϕnϕp =
∑
n,p≥0

cncp

(
(n+ p)!

n!p!

)1/2

ϕn+pϕ0

=
+∞∑
`=0

 ∑
n+p=`

cncp

(
(n+ p)!

n!p!

)1/2
ϕ`ϕ0 .

We notice that the functions ϕ`ϕ0 are orthogonal in L2(C) and that

‖ϕ`ϕ0‖2L2(C) =
1

`!π2

∫
C
|z|2` e−2|z|2 dL(z) =

1

π2`+1
.

Consequently,

‖u‖4L4(C) =
1

2π

+∞∑
`=0

1

2`

∣∣∣∣∣∣
∑
n+p=`

cncp

(
(n+ p)!

n!p!

)1/2
∣∣∣∣∣∣
2

(7.1)

≤ 1

2π

+∞∑
`=0

1

2`

 ∑
n+p=`

(n+ p)!

n!p!

 ∑
n+p=`

|cncp|2
 =

1

2π
‖u‖4L2(C) ,

where we used the Cauchy–Schwarz inequality. Furthermore, equality holds if and only if, for every
` ≥ 0, there exists γ` such that

∀n = 0, 1, . . . , `, cnc`−n = γ`

(
1

n!(`− n)!

)1/2

,

which is equivalent to
√
n!cn

√
(`− n)!c`−n = c0

√
`!c` , n = 0, 1, . . . , `,

or √
n!cn = λαn

for some α, λ ∈ C. Plugging this information into the formula, we get exactly

u(z) =
λ√
π
eαz−

|z|2
2 .

The proof is complete. �
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Next, we aim at classifying maximizing sequences of H at M fixed. This will be achieved through
the following profile decomposition lemma, in the spirit of [32], [15], [6], [26], [31].

Lemma 7.2. Consider a sequence (un) ∈ E with ‖un‖L2(C) = 1. Then there exist (vj) ∈ E, a

sequence (αjn) ∈ C with

|αjn − αkn| −→ +∞, n −→ +∞, j 6= k,

and (wJn) ∈ E with

lim sup
n−→+∞

‖wJn‖L∞(C) −→ 0, J −→ +∞,

and such that we have, up to a subsequence, the decomposition

un =

J∑
j=1

R
αjn
vj + wJn ,

and for all J
J∑
j=1

‖vj‖2L2(C) + lim sup
n−→+∞

‖wJn‖2L2(C) = 1.

Proof. If ‖un‖L∞(C) −→ 0, we can take J = 0 and wn = un. If not, then there exists ε1 > 0 such

that, up to a subsequence, and for n large enough ε1 ≤ ‖un‖L∞(C) ≤ 2ε1 and there exists α1
n ∈ C

such that |un(α1
n)| ≥ ε1. We define v1

n = R−α1
n
un ∈ E which satisfies

|v1
n(0)| ≥ ε1. (7.2)

Next we write v1
n(z) = f1

n(z)e−|z|
2/2, where f1

n is entire. By the Carlen inequality, for all z ∈ C,

|f1
n(z)e−|z|

2/2| ≤ ‖v1
n‖L∞(C) = ‖un‖L∞(C) ≤

1√
π
‖un‖L2(C) ≤

1√
π
.

Therefore, for all K > 0 and n ≥ 1, we get

|f1
n(z)| ≤ CK , |z| ≤ K.

By the Montel theorem, there exists an entire function f such that, up to a subsequence f1
n −→ f1,

uniformly on any compact of C, and we can set v1(z) = f1(z)e−|z|
2/2 ∈ E . Moreover (7.2) implies

‖v1‖L∞(C) ≥ ε1. Next, up to a subsequence v1
n ⇀ v1 in L2(C). We define w1

n = Rα1
n
(v1
n − v1), thus

un = Rα1
n
v1 + w1

n, and

‖un‖2L2(C) = ‖Rα1
n
v1‖2L2(C) + ‖w1

n‖2L2(C) + 2Re〈Rα1
n
v1, w1

n〉L2(C)×L2(C)

= ‖v1‖2L2(C) + ‖w1
n‖2L2(C) + 2Re〈v1, v1

n − v1〉L2(C)×L2(C)

= ‖v1‖2L2(C) + ‖w1
n‖2L2(C) + κ1

n,

with κ1
n → 0 since v1

n ⇀ v1 in L2(C).
Now we repeat the procedure for the sequence (w1

n). Either ‖w1
n‖L∞(C) −→ 0 or there exists

ε2 > 0 such that ε2 ≤ ‖w1
n‖L∞(C) ≤ 2ε2. Then similarly,

un = Rα1
n
v1 +Rα2

n
v2 + w2

n,

for some v2 ∈ E such that ‖v2‖L∞ ≥ ε2, α2
n ∈ C and w2

n ∈ E . Similarly we check the almost
orthogonality condition

‖un‖2L2(C) = ‖v1‖2L2(C) + ‖v2‖2L2(C) + ‖w2
n‖2L2(C) + κ2

n, κ2
n −→ 0.

Let us prove that |α1
n − α2

n| −→ +∞. From the relation w1
n = Rα2

n
v2 + w2

n we deduce that

R−α1
n
w1
n = Rα2

n−α1
n
v2 +R−α1

n
w2
n.
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If we had that, for a subsequence α1
n − α2

n −→ ` ∈ C, this would be in contradiction with the fact
that R−α1

n
w1
n, R−α2

n
w2
n ⇀ 0 in L2(C) and v2 6= 0.

As long as the remainder term does not converge to 0 in L∞, we construct a sequence (vj) ∈ E
such that

un =

J∑
j=1

R
αjn
vj + wJn ,

with ‖vj‖L∞ ≥ εj and

‖un‖2L2(C) =
J∑
j=1

‖vj‖2L2(C) + κJn,

with κJn −→ 0 when n −→ +∞. Then from Carlen and the previous line

‖un‖2L2(C) ≥ π
J∑
j=1

‖vj‖2L∞(C) + κJn

≥ π

J∑
j=1

ε2j + κJn,

which implies that εJ −→ 0 and therefore ‖wJn‖L∞(C) −→ 0. �

Here is a classical consequence of this profile decomposition.

Corollary 7.3. Let (un) be sequence in L2
E such that

‖un‖2L2(C) → π =

∥∥∥∥e−
|z|2
2

∥∥∥∥2

L2(C)

, ‖un‖4L4(C) →
π

2
=

∥∥∥∥e−
|z|2
2

∥∥∥∥4

L4(C)

.

Then, up to extracting a subsequence, there exists βn ∈ C and θ ∈ T such that∥∥∥∥Rβnun − eiθe−
|z|2
2

∥∥∥∥
L2(C)

→ 0 .

Proof. Up to extracting a subsequence, we apply the profile decomposition

un =

J∑
j=1

R
αjn
vj + wJn ,

with
lim sup
n−→+∞

‖wJn‖L∞(C) −→ 0, J −→ +∞,

and
J∑
j=1

‖vj‖2L2 + lim sup
n−→+∞

‖wJn‖2L2 = π .

From Hölder’s inequality, we infer

lim sup
n−→+∞

‖wJn‖L4(C) −→ 0, J −→ +∞,

and, using

|αjn − αkn| −→ +∞, n −→ +∞, j 6= k,

we have

π

2
= lim

n→∞
‖un‖4L4 =

+∞∑
j=1

‖vj‖4L4 .
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Now apply the Carlen inequality to each profile

‖vj‖4L4 ≤
1

2π
‖vj‖4L2 .

We obtain

π

2
=

+∞∑
j=1

‖vj‖4L4 ≤
1

2π

+∞∑
j=1

‖vj‖4L2

≤ 1

2π

+∞∑
j=1

‖vj‖2L2

2

≤ π

2
.

This implies that all the inequalities above are equalities, in particular there is only one j — say
j = 1— such that vj 6= 0, and wJn = wn → 0 in L2. In particular, v1 is a minimizer of the L4 − L2

Carlen inequality with mass π, so there exists α ∈ C and θ̃ ∈ R such that

v1 = eiθ̃Rα

(
e−
|z|2
2

)
,

thus setting βn = −α1
n − α we get

Rβnun = eiθ̃RβnRα1
n
Rα

(
e−
|z|2
2

)
+ w̃n = eiθ̃e

1
2
i(α1

nα−α1
nα)
(

e−
|z|2
2

)
+ w̃n ,

where w̃n = Rβnwn → 0 in L2. Finally, there exists θ ∈ R such that, up to a subsequence

eiθ := eiθ̃ lim
n→+∞

ei(α
1
nα−α1

nα),

hence the result. �

7.2. Minimizers of Gµ = 8πH+ µP for M fixed.

Proposition 7.4 (Local minimizers). Consider for µ > 0 the minimization problem

min
u∈E

M(u)=1

Gµ(u) with Gµ = 8πH+ µP.

(i) The function ϕ0 is a strict local minimizer (modulo the rotation of phase symmetry) if and
only if µ > 1

2 .
(ii) The function ϕ1 is a strict local minimizer (modulo the rotation of phase symmetry) if and

only if 5
32 < µ < 1

2 .

(iii) If 0 < µ < 5
32 , then any local minimizer has an infinite number of zeros.

(iv) The function ϕk, with k ≥ 2 is not a local minimizer for any value of µ > 0.
(v) The function ψb, with b > 0 is not a local minimizer for any value of µ 6= 1/2.

Proof. (i) Consider a deformation of ϕ0 at constant mass M = 1 in (ck) coordinates: it is a
function s 7→ (ck(s)) such that ck(0) = δk,0 and

∑∞
k=0 |ck(s)|2 = 1. Denoting with ˙ differentiation

with respect to s, this last condition implies in particular that

Reċ0(0) = 0 and Rec̈0(0) = −
+∞∑
k=0

|ċk(0)|2. (7.3)

By using the phase rotation we can assume that Imċ0(0) = 0, which gives ċ0(0) = 0. An immediate
computation shows that (everything being evaluated at s = 0)(

d

ds

)2

Gµ = 8|ċ0|2 + 4Reċ0
2 + 4Rec̈0 +

∑
n≥1

[
8

2n
+ 2µn

]
|ċn|2.



ON THE CUBIC LOWEST LANDAU LEVEL EQUATION 31

Making use of (7.3), this reduces to(
d

ds

)2

Gµ =
∑
n≥1

[
8

2n
+ 2µn− 4

]
|ċn|2.

Therefore ϕ0 is a strict local minimizer iff 8
2n + 2µn − 4 > 0 for any n ∈ N; but this is equivalent

to µ > 1
2 .

(ii) Consider now a deformation of ϕ1 at constant mass M = 1 in (ck) coordinates: s 7→ (ck(s))
such that ck(0) = δk,1 and

∑∞
k=0 |ck(s)|2 = 1. This implies in particular that

Reċ1(0) = 0 and Rec̈1(0) = −
+∞∑
k=0

|ċk(0)|2. (7.4)

By using the phase rotation we can assume that Imċ1(0) = 0, which gives ċ1(0) = 0. To simplify
computations, introduce the following notation

8πH =

∞∑
`=0

1

2`
|S`|2, with S` =

∑
p+q=`

√
(p+ q)!

p!q!
cpcq.

Notice that, evaluated at s = 0,

S` = 0 and Ṡ` = 2
√
`ċ`−1 for ` 6= 2

S2 =
√

2, Ṡ2 = 2
√

2ċ1, and S̈2 = 2
√

2ċ2
1 + 2

√
2c̈1 + 4ċ0ċ2.

Therefore,(
d

ds

)2

Gµ =
∑
n6=2

2

2n
|Ṡn|2 +

1

4

[
2|Ṡ2|2 + 2ReS2S̈2

]
+ 2µ

∑
n≥1

n|ċn|2 + 2µRec̈1

=
∑
n6=2

n

2n−3
|ċn−1|2 +

1

4

[
2|2
√

2ċ1|2 + 2
√

2Re(2
√

2ċ1
2 + 2

√
2c̈1 + 4ċ0ċ2)

]
+ 2µ

∑
n≥1

n|ċn|2 + 2µRec̈1.

Making use of (7.4), this reduces to

· · · = (2− 2µ)|ċ0|2 + (1 + 2µ)|ċ2|2 + 2
√

2Re(ċ0ċ2) +
∑
n≥3

|ċn|2
(
n+ 1

2n−2
− 2 + 2µ(n− 1)

)
.

This (infinite dimensional) quadratic form in the (ċk) is positive if and only if

• The quadratic form (x, y) 7→ (2 − 2µ)|x|2 + (1 + 2µ)|y|2 + 2
√

2Re(xy) is positive. This is
the case if 0 < µ < 1

2 .

• For any n ≥ 3, n+1
2n−2 − 2 + 2µ(n− 1) > 0. This is the case for µ > 5

32 .

This gives the desired result.

(iii) This will be a direct implication of (iv) and (v), combined with Theorem 6.1.

(iv) We first show that ϕ2 cannot be a local minimizer. For c0, c2, c4 ∈ C we compute

Gµ(c0ϕ0 + c2ϕ2 + c4ϕ4) =µ(2|c2|2 + 4|c4|2) + |c0|4 + |c0|2|c2|2 +
3

8
|c2|4 +

1

4
|c0|2|c4|2

+

√
6

4
Re(c2

2c0c4) +
15

16
|c2|2|c4|2 +

35

128
|c4|4.

Now, let 0 < ε < 1/2 and set c0 = ε, c4 = −ε and c2 =
√

1− 2ε2, then

Gµ(εϕ0 +
√

1− 2ε2ϕ2 − εϕ4) =
3

8
+ 2µ− 4

√
6− 7

16
ε2 +O(ε4) < Gµ(ϕ2),
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for ε > 0 small enough, which proves the result.
To show that ϕn cannot be a local minimizer for n ≥ 3, observe that, if 0 < ε < 1,

Gµ(
√

1− ε2ϕn + εϕ0) =
(2n)!

22n(n!)2
+ µn+ ε2

[
1

2n−2
− (2n)!

22n−1(n!)2
− µn

]
.

Since 1
2n−2 − (2n)!

22n−1(n!)2
< 0 for n ≥ 3, ϕn cannot be a local minimizer.

(v) A direct computation shows that

Gµ(ψb) = 1 +

(
µ− 1

2

)
1

(1 + b2)2
.

Then for µ 6= 1/2, a variation of b may decrease this quantity, excepted in the case b = 0, but then
ψ0 = ϕ1 which is treated in point (ii). �

Turning to the global minimization problem, observe that

Gµ(ϕ0) = 1

Gµ(ϕ1) =
1

2
+ µ

Gµ(ψb) = 1 +

(
µ− 1

2

)
1

(1 + b2)2
.

This implies in particular that Gµ(ϕ0) = Gµ(ϕ1) = Gµ(ψb) = 1 if µ = 1
2 .

Proposition 7.5 (Global minimizers). (i) For any µ > 0, there exists a global minimizer of
Gµ over {u ∈ E ,M(u) = 1}.

(ii) For µ ≥
√

3− 1, ϕ0 is the unique global minimizer of Gµ over {u ∈ E ,M(u) = 1}.
(iii) For µ ∈ (0, 5

32), the global minimizer of Gµ has an infinity of zeros.

Proof. (i) Consider a minimizing sequence (un) in {u ∈ E ,M(u) = 1} of Gµ. Then P (un) and
M(un) are uniformly bounded. On the one hand, by (3.1), un is uniformly bounded in B(0, R) for
any R, and, by Cauchy’s integral formula, so are all its derivatives; on the other hand, the L2 mass

of un on B(0, R){ is . 1
R2 . Therefore, (un) is precompact in L2, and a subsequence converges to

u ∈ E such that M(u) = 1. By lower semi-continuity of Gµ, we obtain that u is a minimizer.

(ii) By an homogeneity argument, the estimate Gµ ≥ Gµ(ϕ0) = 1 for M(u) = 1 is equivalent to
the following estimate for every u,

Fµ(u) ≥ 0 , Fµ(u) := 8πH(u) +M(u)(µP (u)−M(u)) .

The expression of Fµ(u) in variables ck reads

Fµ =
+∞∑
`=0

1

2`

∣∣∣∣∣∣
∑
p+q=`

√
(p+ q)!

p!q!
cpcq

∣∣∣∣∣∣
2

+

(
+∞∑
k=0

|ck|2
)+∞∑

j=0

(µj − 1)|cj |2
 .

Discarding the terms ` ≥ 3 in the first sum, and developing the others, we have

Fµ ≥ µ|c0|2|c1|2 +(2µ−1)|c0|2|c2|2 +

(
µ− 1

2

)
|c1|4 +(3µ−2)|c1|2|c2|2 +

√
2Re(c0c

2
1c2)+Rµ , (7.5)

where

Rµ := (2µ−1)|c2|4+
+∞∑
k=3

(µk−1)|ck|4+
+∞∑
k=3

|ck|2((µk−2)|c0|2+(µ(k+1)−2)|c1|2+(µ(k+2)−2)|c2|2) .

(7.6)
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Notice that Rµ ≥ 0 if µ ≥ 2
3 . Coming back to (7.5), we therefore observe that, for µ ≥ 2

3 ,

Fµ ≥
(
µ− 1

2

)
|c2

1 +
√

2c0c2|2 + µ|c0|2|c1|2 + (3µ− 2)|c1|2|c2|2 + 2
√

2 (1− µ)Re(c0c
2
1c2)

≥ 0,

if the remaining real quadratic form in c0c1, c1c2 is positive, which holds as soon as

4µ(3µ− 2) ≥ 8(1− µ)2 ,

namely µ2 +2µ−2 ≥ 0, or µ ≥
√

3−1. Since
√

3−1 ≥ 2
3 , this completes the proof of the inequality.

If the equality holds for such µ, then Rµ = 0, which means ck = 0 for k ≥ 2, and c2
1 +
√

2c0c2 = 0,
so c1 = 0. Hence u must be proportional to ϕ0.

(iii) is an immediate consequence of Proposition 7.4. �

Remark 7.6. If one is interested about minimizing Gµ among even functions in E , the situation is
simpler:

• If µ > 1
2 , ϕ0 is the unique global minimizer.

• If µ < 1
2 , the global minimizer has an infinity of zeros.

The first claim follows from (7.5) and (7.6) by setting c2n+1 = 0 for all n ≥ 0. We turn to the
second claim. Let µ < 1/2, then by Theorem 6.1, the only possible minimizers with a finite number
of zeros are the ϕ2n, with n ≥ 1. But the proof of Proposition 7.4 (iv) shows that none of them is
a local minimizer, among even functions.

Proof of Theorem 1.5. The result follows from Proposition (7.5) and a simple rescaling argument,

setting u(z) =
√
hv(
√
hz).

As in [4], denote by λ a Lagrange multiplier associated to the problem (1.3) and denote by ehLLL
the global minimum of EhLLL. Then by [4, Estimate (1.10)],

2Ωh

3

√
2Na

π
< ehLLL ≤ λ.

Therefore the condition in [4, Theorem 1.2] is stronger than the condition (1.5). �

7.3. Minimizers of P for H and M fixed. Recall that for u ∈ E

P (u) =

∫
C

Λu(z)u(z) dL(z) =

∫
C

(|z|2 − 1)|u(z)|2 dL(z).

Given M0, H0 > 0, we study

min
H(u)=H0

M(u)=M0

P (u). (7.7)

Recall that, by Proposition 7.1, for all u ∈ E , u 6= 0, one has 8π H(u)
M(u)2

≤ 1.

Proposition 7.7. Fix M0, H0 > 0 such that 8π H0

M2
0

= γ, where γ ∈ (0, 1/2) is such that γ 6= (2n)!
22n(n!)2

for all n ≥ 1. Then there exists u ∈ E which realises (7.7). Moreover

(i) The function u is an MP -stationary wave.
(ii) The function u statisfies

∫
C z|u(z)|2dL(z) = 0.

(iii) The function u has an infinite number of zeros in C.
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Proof. (i) The Euler-Lagrange equation corresponding to the problem (7.7) reads

Λu = λu+ µΠ(|u|2u).

In order to get a MP -stationary wave, we have to check that µ 6= 0. If µ = 0, then u is an

eigenfunction of Λ in E , thus u(z) = zn√
πn!
e−

1
2
|z|2 up to a constant factor. For such a u we have

M(u) = 1, H(u) =
1

8π

(2n)!

22n(n!)2
and 8π

H(u)

M2(u)
=

(2n)!

22n(n!)2
,

which is excluded by assumption (by the way we check that the sequence (2n)!/((n!)222n) is de-
creasing and equals 1/2 when n = 1).

(ii) Let α ∈ R and recall the definition (2.1) of Rα. Then H(Rαu) = H(u) and M(Rαu) = M(u),
and we can check that

P (Rαu) = P (u)− α
∫
C

(z + z)|u(z)|2dL(z) + α2

∫
C
|u(z)|2dL(z).

Thus, if u realises the minimum in (7.7), we get
∫
C(z+ z)|u(z)|2dL(z) = 0, and the same argument

with Riα then implies
∫
C z|u(z)|2dL(z) = 0 — see also Lemma 5.2.

(iii) For this part, we rely on the classification in Theorem 6.1 of the MP -stationary waves which
have a finite number of zeros. By the symmetries of the problem, we can assume that A = 1 and
ϕ = 0.

• If u(z) = (z − α)neαz−
1
2
|z|2 , then the condition

∫
C z|u(z)|2dL(z) = 0 implies α = 0. Thus we

are reduced to the case u(z) = Azne−
1
2
|z|2 which is excluded, as we already observed.

• Assume that u(z) =
(
z − b(2+b2)

1+b2

)
eaz−

1
2
|z|2 with a = b

1+b2
, b ∈ R. Then thanks to (6.4) we

obtain for v(z) = (z + β)eαz−
1
2
|z|2 with α, β ∈ R

1

π

∫
C
z|v(z)|2dL(w) = (2α+ β + αβ2 + 2α2β + α3)eβ

2
.

Therefore, by (6.2), for all b ∈ R∫
C
z|u(z)|2dL(w) = 0, when α =

b

1 + b2
, β = −b(2 + b2)

1 + b2
.

With this choice R−βu(z) = cbze
−bz− 1

2
|z|2 with cb = e

− b
4(2+b2)

2(1+b2)2 , and thus

M(u) = πcb(1 + b2)eb
2
, H(u) =

π

4
c2
b(1 + 4b2 + 2b4)e2b2 ,

which implies

8π
H(u)

M2(u)
=

1 + 4b2 + 2b4

2(1 + b2)2
∈ [

1

2
, 1). (7.8)

Hence if we choose M0, H0 as in the proposition, the stationary solution we find has an infinite
number of zeros, by Theorem 6.1. �

Now we consider the minimizing problem (7.7), when 8π H0

M2
0

= γ ∈ [1/2, 1). In this case, by (7.8),

there exists a unique b ≥ 0 such that 8π H(ψb)
M(ψb)2

= γ, and we have

Proposition 7.8 (Local minimizers). Let b ≥ 0 and consider the minimization problem

min
H(u)=H0

M(u)=1

P (u),
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with H0 = H(ψb) = 1
8π

(
1− 1

2(1+b2)2

)
. Then the function ψb is a strict local minimizer (modulo the

rotation of phase and the rotation of space symmetries).

Proof. Let b ≥ 0 and recall that ψb(z) = e
− 1

2

(
b

1+b2

)2

√
π(1+b2)

(
z − b(2+b2)

1+b2

)
e
− 1

2
|z|2+ b

1+b2
z
. We set α = b

1+b2
.

Consider a deformation of ψb at constant mass M = 1 and constant Hamiltonian H = H(ψb) in
coordinates given by the (ϕαn)n≥0. We have

v(s, z) =

+∞∑
n=0

cn(s)ϕαn(z), α =
b

1 + b2
,

with

c0(0) = − b√
1 + b2

, c1(0) =
1√

1 + b2
, cn(0) = 0 for n ≥ 2. (7.9)

The condition
∑+∞

n=0 |cn(s)|2 = 1 gives after differentiation

− bRe(ċ0(0)) + Re(ċ1(0)) = 0, (7.10)

and differentiating a second time

− b√
1 + b2

Re(c̈0(0)) +
1√

1 + b2
Re(c̈1(0)) +

+∞∑
n=0

|ċn(0)|2 = 0. (7.11)

Next

d

ds
H(u) = 0 = Re

∑
k,`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

ckc`ċmcn

= (c3
0 + c0c

2
1)Reċ0 + (c2

0c1 +
1

2
c3

1)Reċ1 +

√
2

4
c0c

2
1Reċ2,

hence

− b(1 + b2)Reċ0 + (b2 +
1

2
)Reċ1 −

√
2

4
bReċ2 = 0. (7.12)

Define

u(s, z) = Rαv(s, z) =
+∞∑
n=0

cn(s)ϕn(z),

P (v) = P (R−αu) = P (u) + 2αRe(Q(u)) + α2

=
+∞∑
n=0

n|cn|2 +
2b

1 + b2
Re
( +∞∑
n=0

√
n+ 1cncn+1

)
+
( b

1 + b2

)2
.

Firstly, one checks that d
dsP (v) = 0 at s = 0, thanks to (7.10) and (7.12).
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An immediate computation shows that (everything being evaluated at s = 0)(
d

ds

)2

P (v) =

= 2

+∞∑
n=0

n|ċn|2 + 2c1Rec̈1 +
2b

1 + b2

(
c1Rec̈0 + 2Re

( +∞∑
n=0

√
n+ 1ċnċn+1

)
+ c0Rec̈1 +

√
2c1Rec̈2

)
= 2

+∞∑
n=0

n|ċn|2 +
4b

1 + b2
Re
( +∞∑
n=0

√
n+ 1ċnċn+1

)
+

2

(1 + b2)
3
2

(
bRec̈0 + Rec̈1 +

√
2bRec̈2

)
.

(7.13)

The condition
(
d
ds

)2
H = 0 at s = 0 gives

Re
∑

k,`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

ckc`ċmċn + Re
∑

k,`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

ckc`c̈mcn

+ 2Re
∑

k,`,m,n≥0
k+`=m+n

(k + `)!

2k+`
√
k!`!m!n!

ck ċ`ċmcn =

= c2
0Re(ċ2

0) + 2c0c1Re(ċ0ċ1) +
1

2
c2

1Re(ċ2
1) +

√
2

2
c2

1Re(ċ0ċ2)

+ (c3
0 + c0c

2
1)Rec̈0 + (c2

0c1 +
1

2
c3

1)Rec̈1 +

√
2

4
c0c

2
1Rec̈2

+ 2c2
0

+∞∑
m=0

1

2m
|ċm|2 + c2

1

+∞∑
m=0

(m+ 1)

2m
|ċm|2 + 2c0c1Re

+∞∑
m=0

√
m+ 1

2m
ċmċm+1 = 0.

Then by (7.9), the previous line reads

1

(1 + b2)
1
2

(
− b(1 + b2)Rec̈0 + (b2 +

1

2
)Rec̈1 −

√
2

4
bRec̈2

)
+ Σ = 0, (7.14)

with

Σ = b2Re(ċ2
0)− 2bRe(ċ0ċ1) +

1

2
Re(ċ2

1) +

√
2

2
Re(ċ0ċ2)

+

+∞∑
m=0

(2b2 +m+ 1)

2m
|ċm|2 − 2bRe

+∞∑
m=0

√
m+ 1

2m
ċmċm+1.

We simplify the last term in (7.13). Thanks to (7.11) and (7.14) we obtain

1

(1 + b2)
1
2

(
bRec̈0 + Rec̈1 +

√
2bRec̈2

)
= −(4b2 + 3)

+∞∑
n=0

|ċn|2 + 4Σ =

= −(4b2 + 3)
+∞∑
n=0

|ċn|2 + 4
[
b2Re(ċ2

0)− 2bRe(ċ0ċ1) +
1

2
Re(ċ2

1) +

√
2

2
Re(ċ0ċ2)

]
+ 4
[ +∞∑
m=0

(2b2 +m+ 1)

2m
|ċm|2 − 2bRe

+∞∑
m=0

√
m+ 1

2m
ċmċm+1

]
.
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As a consequence, from (7.13) we get(
d

ds

)2

P (v) = 2
+∞∑
n=0

n|ċn|2 +
4b

1 + b2
Re
( +∞∑
n=0

√
n+ 1ċnċn+1

)
+

2

(1 + b2)

[
− (4b2 + 3)

+∞∑
n=0

|ċn|2 + 4
(
b2Re(ċ2

0)− 2bRe(ċ0ċ1) +
1

2
Re(ċ2

1) +

√
2

2
Re(ċ0ċ2)

)]
+

8

(1 + b2)

[ +∞∑
m=0

(2b2 +m+ 1)

2m
|ċm|2 − 2bRe

+∞∑
m=0

√
m+ 1

2m
ċmċm+1

]
:=

2

1 + b2
(
Q1 +Q2 +Q3

)
, (7.15)

where

Q1 = (4b2 + 1)|ċ0|2 + (b2 + 2)|ċ1|2 + 2|ċ2|2 + 4b2Re(ċ2
0) + 2Re(ċ2

1)

− 6bRe(ċ0ċ1)− 8bRe(ċ0ċ1) + 2
√

2Re(ċ0ċ2)− 2
√

2bRe(ċ1ċ2),

Q2 =
4∑

n=3

[
(n− 4 +

8

2n
)b2 + n− 3 +

4(n+ 1)

2n
]
|ċn|2 + 2bRe

4∑
n=3

(1− 4

2n
)
√
n+ 1ċnċn+1

=
4∑

n=3

[
n− 3 +

4(n+ 1)

2n
]
|ċn|2 + b2

4∑
n=3

[
n− 3 +

4

2n
]
|ċn+1|2 + 2bRe

4∑
n=3

(1− 4

2n
)
√
n+ 1ċnċn+1

and

Q3 =
+∞∑
n=5

[
n− 3 +

4(n+ 1)

2n
]
|ċn|2 + b2

+∞∑
n=5

[
n− 3 +

4

2n
]
|ċn+1|2 + 2bRe

+∞∑
n=5

(1− 4

2n
)
√
n+ 1ċnċn+1

(one can notice that the interaction Re(ċ2ċ3) vanishes in (7.15)).

Let us now study the sign of (7.15).

The quadratic form Q3 is positive definite : For n ≥ 5 one has the equality

(1− 4

2n
)2(n+ 1) <

(
n− 3 +

4(n+ 1)

2n
)(
n− 3 +

4

2n
)
,

then one get Q3 > 0.

The quadratic form Q2 +Q3 is positive definite : Set cj = xj + iyj , then

Q2 = 2(x3 +
b

2
x4)2 + 2(y3 +

b

2
y4)2 + (

3

2
x4 +

√
5b

2
x5)2 + (

3

2
y4 +

√
5b

2
y5)2,

and the claim follows.

Under the constraints (7.10) and (7.12), the quadratic form Q1 is non-negative : Set cj = xj + iyj .

Then (7.10) and (7.12) imply that x1 = bx0 and x2 = −
√

2x0. Therefore

Q1 = (b2 + 1)2x2
0 + y2

0 + b2y2
1 + 2y2

2 + 2by0y1 − 2
√

2y0y2 − 2
√

2by1y2

= (b2 + 1)2x2
0 + (y0 + by1 −

√
2y2)2.

The matrix of this quadratic form has two positive eigenvalues
(
(b2 + 1)2 and (b2 + 3)

)
, and the

eigenvalue 0 has multiplicity 2, which corresponds to the symmetries Tγ and Lϕ. �
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7.4. Stability of stationary waves with finite mass and a finite number of zeros.

Theorem 7.9. (i) The stationary wave ϕα0 , for α ∈ C, is orbitally stable in L2 for the
symmetries of the equation. More precisely, there exists C > 0, δ0 > 0 such that, if
‖u0 − ϕα0 ‖L2(C) = δ ≤ δ0, then the associated solution u of (LLL) satisfies

sup
t∈R

inf
θ∈T, β∈C

∥∥∥u(t)− eiθϕβ0
∥∥∥
L2(C)

≤ C
√
δ.

(ii) The stationary waves ϕα0 and ϕα1 are orbitally stable in L2,1 for the phase rotation symmetry.
More precisely, there exists C > 0, δ0 > 0 such that, if j = 0 or 1, ‖u0−ϕj‖L2,1(C) = δ ≤ δ0,
then the associated solution u of (LLL) satisfies

sup
t∈R

inf
θ∈T
‖u(t)− eiθϕj‖L2,1(C) ≤ C

√
δ .

(iii) For all b ≥ 0, the stationary waves ψb are orbitally stable in L2,1 for the phase rotation and
the space rotation. More precisely, there exists C > 0, δ0 > 0 such that ‖u0 − ψb‖L2,1(C) =
δ ≤ δ0, then the associated solution u of (LLL) satisfies

sup
t∈R

inf
θ∈T,s∈R

‖u(t)− eiθLsψb‖L2,1(C) ≤ C
√
δ .

(iv) More generally, consider v0(z) = (λ0z+µ0)eα0z− 1
2
|z|2. Then there exists C > 0, δ0 > 0 such

that ‖u0 − v0‖L2,1(C) = δ ≤ δ0, then the associated solution u of (LLL) satisfies

sup
t∈R

inf
θ∈T,s∈R,α∈C

‖u(t)− eiθLsRαψb‖L2,1(C) ≤ C
√
δ .

(v) The stationary waves ϕαn, n ≥ 2, are not orbitally stable.

Numerical evidence for the above stability results can be found in [7].

Proof. The proofs of (i), (ii), (iii), and (iv) are variational. Indeed, assertion (ii) follows from
Proposition 7.4, assertion (iii) from Proposition 7.8, and assertion (iv) from Proposition 6.2. As
for property (i), it is a consequence of the following observation : the Hessian L of 1

2M − 2πH has
a kernel spanned by iϕ0, ϕ1, iϕ1, and it satisfies

L(ϕ0) = −2ϕ0 , L(ϕn) = (1− 21−n)ϕn , L(iϕn) = (1− 21−n)iϕn, n ≥ 2 .

This implies the following bound, from which (i) follows easily.

Lemma 7.10. If δ0 > 0 is small enough and

δ(u) := |M(u)−M(ϕ0)|+ |H(u)−H(ϕ0)| ≤ δ0 ,

then

inf
(θ,β)∈T×C

‖u− eiθRβϕ0‖2L2 ≤ δ(u) .

Proof. By contradiction, combining Corollary 7.3, modulation by the group T×C, and the following
coercivity estimate,

∀h ∈ E , C−1‖h‖2L2 ≤ (Lh, h) + C(h, ϕ0)2 + (h, iϕ0)2 + (h, ϕ1)2 + (h, iϕ1)2 ,

where (f, g) denotes the real part of the inner product of f, g ∈ L2. Details are left to the reader. �

Finally, the proof of (v) is mostly contained in [20, Section 8.2], but we include it here for the
sake of completeness. Up to the symmetries of the equation, it suffices to consider the stationary
wave

ϕne
−iωnt, with ωn =

(2n)!

π(n!)222n+1
.
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Switching to the variable, dk = eiωntck, the linearized equation reads i∂tdn = ωndn + ωndn
i∂tdk = (αn,k − ωn)dk + βn,kd2n−k if k ≤ 2n
i∂tdk = (αn,k − ωn)dk if k ≥ 2n+ 1,

where αn,k = (n+k)!
πn!k!2n+k+1 and βn,k = (2n)!

πn!
√
k!(2n−k)!22n+1

. The equation for dn gives linear growth

at most (corresponding to the phase invariance), while the equation for dk, with k ≥ 2n + 1 is
obviously stable. Turning to the modes ≤ 2n, k and 2n− k are coupled. Setting dk = x, it satisfies
the equation

ẍ+ i
(
αn,k − αn,2n−k

)
ẋ−

(
β2
n,k − (αn,k − ωn)(αn,2n−k − ωn)

)
x = 0.

This equation has unstable (exponentially growing) modes if and only if the discriminant

∆n,k = 4β2
n,k − (αn,k + αn,2n−k − 2ωn)2 > 0.

A computation shows that ∆n,n−2 > 0, giving the desired (linear) instability. The next step is
classical: linear instability implies nonlinear instability. A proof of this can be found e.g. in [24,
Section 6]. �

Appendix A. Some explicit M-stationary waves

We start with stationary waves having simple zeros at γZ for some complex number γ 6= 0.

Proposition A.1. For α ∈ C, α 6= 0 the function

χα(z) =
eαz − e−αz√

2π(e|α|2 − e−|α|2)
e−
|z|2
2 =

sinh(αz)√
π sinh(|α|2)

e−
|z|2
2 ,

is an M -stationary wave in E which has an infinite number of zeros. It satisfies

H(χα) =
1

16π
, M(χα) = 1, P (χα) = |α|2 e

|α|2 + e−|α|
2

e|α|2 − e−|α|2
, Q(χα) = 0.

The corresponding solution to (LLL) is χαe
−iλt with λ = 1

4π .

Proof. Set

χα(z) = A(eαz − e−αz)e−
|z|2
2 =

√
πe
|α|2
2 A(ϕα0 − ϕ−α0 )(z),

where A > 0 is such that M(χα) = 1. Then, by (1.1) and (6.3),

Π
[
|χα|2χα

]
(z)

= A3Π
[
e−

3|z|2
2 (e2αz+αz − e2αz−αz + e−2αz+αz − e−2αz−αz − 2eαz + 2e−αz)

]
=
A3

π
e−
|z|2
2

∫
C

[
e−2|w|2+wz(e2αw+αw − e2αw−αw + e−2αw+αw − e−2αw−αw − 2eαw + 2e−αw)

]
dL(w)

=
A3

2
(eαz+|α|

2 − eαz−|α|2 + e−αz−|α|
2 − e−αz+|α|2)e−

|z|2
2

=
A3

2
(e|α|

2 − e−|α|2)(eαz − e−αz)e−
|z|2
2 ,

which shows that χα is a M -stationary wave with λ = 1
2A

2(e|α|
2 − e−|α|2) and from the previous

lines we have H(χα) = 1
4λ. Set

vα = ϕα0 − ϕ−α0 .
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By (6.3) we have

M(vα) =

∫
|ϕα0 |2 +

∫
|ϕ−α0 |

2 − 2Re

∫
ϕα0ϕ

−α
0

= 2− 2

π
Re

∫
e−|z|

2+αz−αz−|α|2 = 2(1− e−2|α|2),

which gives the values A =
[
2π(e|α|

2 − e−|α|2)
]−1/2

, λ = 1/(4π) and H(χα) = 1/(16π). Next,∫
|z|2|vα|2 =

∫
|z|2|ϕα0 |2 +

∫
|z|2|ϕ−α0 |

2 − 2Re

∫
|z|2ϕα0ϕ−α0

= 2|α|2 + 2− 2

π
Re

∫
|z|2e−|z|2+αz−αz−|α|2

= 2|α|2 + 2− 2e−|α|
2
∂A∂Be

AB
∣∣∣ A=α
B=−α

= 2|α|2 + 2− 2(1− |α|2)e−2|α|2 ,

thus P (vα) = 2|α|2(1 + e−2|α|2).
Finally, Q(χα) = 0 follows from |χα(−z)| = |χα(z)|. �

Our second example provides stationary waves having zeros located on γZ∪ iπ
kγZ for some γ 6= 0

and for some integer k 6= 0.

Proposition A.2. For k ∈ Z and α ∈ C with k, α 6= 0, the function

vk(z) =
sinh(αz) sin

(
kπz
α

)√
π sinh(|α|2) sinh

(
k2π2

|α|2

) e− |z|22 ,

is an M -stationary wave in E which has an infinite number of zeros. It satisfies

H(vk) =
1

32π
, M(vk) = 1, Q(vk) = 0.

P (vk) =
(|α|2 + π2k2

|α|2 )(e
|α|2+π2k2

|α|2 − e−|α|
2−π

2k2

|α|2 ) + (|α|2 − π2k2

|α|2 )(e
−|α|2+π2k2

|α|2 − e|α|
2−π

2k2

|α|2 )

(e|α|2 − e−|α|2)(e
π2k2

|α|2 − e−
π2k2

|α|2 )

.

The corresponding solution to (LLL) is vke
−iλt with λ = 1

8π .

Proof. Set θk(z) := (eαz − e−αz)e
iπk
α
ze−

|z|2
2 . First of all we show, using (1.1) and (6.3), that, for all

k1, k2, k3 ∈ Z such that k1, k2 have the same parity,

Π
[
θk1θk2θk3

]
=

1

2
(e|α|

2 − e−|α|2)(−1)k3+
k1+k2

2 e
π2(k1+k2)k3

2|α|2 θ 1
2

(k1+k2).

Then write

vk = −iA(eαz − e−αz)(e
iπk
α
z − e−

iπk
α
z)e−

|z|2
2 = −iA(θk − θ−k) ,

with A > 0 such that M(vk) = 1. We obtain, from the above identity,

Π
[
|vk|2vk

]
= −iA3Π

[
θ2
kθk − θ2

kθ−k + θ2
−kθk − θ2

−kθ−k − 2θkθ−kθk + 2θ−kθkθ−k
]

=
A2

2
(e|α|

2 − e−|α|2)(e
π2k2

|α|2 − e−
π2k2

|α|2 )vk.
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Therefore λ = A2

2 (e|α|
2 − e−|α|2)(e

π2k2

|α|2 − e−
π2k2

|α|2 ) and H(vk) = λ
4 . Then we compute

M(vk) = 4πA2(e|α|
2 − e−|α|2)(e

π2k2

|α|2 − e−
π2k2

|α|2 ) = 1,

which provides the value of A. Finally, with a repeated use of the formula

1

π

∫
C

(|w|2 − 1)e−|w|
2+Aw+BwdL(w) = ABeAB

we get

P (vk) =

= 4πA2

[(
|α|2 +

π2k2

|α|2

)(
e
|α|2+π2k2

|α|2 − e−|α|
2−π

2k2

|α|2

)
+

(
|α|2 − π2k2

|α|2

)(
e
−|α|2+π2k2

|α|2 − e|α|
2−π

2k2

|α|2

)]
.

�

Appendix B. The dictionary

For f ∈ S ′(R), we define the Bargmann transform B by

(Bf)(z) =
1

π3/4
e
z2

2

∫
R
e−

(
√
2z−y)2
2 f(y)dy, z ∈ C.

Then

(B?u)(y) =
1

π3/4

∫
C
e
w2

2 e−
(
√
2w−y)2

2 e−
|w|2
2 u(w)dL(w), y ∈ R,

and a direct computation gives BB? = e|z|
2/2Π (see [4] for more details on the Bargmann transform.)

In the following tabular, for each stationary wave u, we list the corresponding coordinates (ck)
such that u =

∑
k≥0 ckϕk, and f = B?u.

u ck f

ϕ0(z) =
1√
π
e−
|z|2
2 δ0,k

1

π1/4
e−

y2

2

ϕα0 (z) =
1√
π
e−
|z|2
2
− |α|

2

2
+αz αk√

k!
e−
|α|2
2

1

π1/4
e
iαI(
√

2y−αR)−( y√
2
−αR)2

ϕn(z) =
1√
πn!

zne−
|z|2
2 δn,k

1

π1/42n/2
√
n!
Hn(y)

e−
|z|2
2

+ z2

2

√
πk!

2k/2(k/2)!
1k even

π1/4

√
2

ze−
|z|2
2

+ z2

2

√
πk!

2(k−1)/2((k − 1)/2)!
1k odd

π1/4y

2
√

2

where

α = αR + iαI and Hn(y) := (−1)ne
y2

2 (∂y)
ne−y

2
.
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Appendix C. Sobolev spaces

Define the harmonic Sobolev spaces for s ∈ R, by

Hs(C) =
{
u ∈ S ′(C), Hs/2u ∈ L2(C)

}
.

This is a weighted Sobolev norm. In the Bargmann-Fock space, this norm simply corresponds
to the weighted L2,s-norm. In other words, regularity exactly corresponds to decay in the space
variable.

Precisely, setting 〈z〉 = (1 + |z|2)1/2, we have the following result.

Lemma C.1. Let s ∈ R. There exists C > 0 such that for all u ∈ Ẽ ∩Hs(C)

1

C
‖〈z〉su‖L2(C) ≤ ‖u‖Hs(C) ≤ C‖〈z〉su‖L2(C).

Proof. Write u =
∑

n≥0 cnϕn. On the one hand, we have Hsu =
∑

n≥0 2s(n+ 1)scnϕn, therefore

‖u‖2Hs(C) =

∫
C
uHsu dL(z) =

∑
n≥0

2s(n+ 1)s|cn|2. (C.1)

On the other hand,

‖〈z〉su‖2L2(C) =

∫
C
〈z〉2s|u(z)|2dL(z)

=
∑
n,m≥0

∫
C
〈z〉2scncmϕn(z)ϕm(z)dL(z)

=
1

π

∑
n,m≥0

∫
C
〈z〉2s cncm√

n!m!
znzme−|z|

2
dL(z).

Now, we make the polar change of variables z = reiθ and use that
∫ 2π

0 ei(n−m)θdθ = 2πδn,m,

‖〈z〉su‖2L2(C) = 2
∑
n≥0

|cn|2

n!

∫ +∞

0
〈r〉2sr2n+1e−r

2
dr.

With the change of variables t = r2 we get

‖〈z〉su‖2L2(C) =
∑
n≥0

|cn|2

n!

∫ +∞

0
(1 + t)stne−tdt. (C.2)

Finally, we use the Stirling formula twice (n ≥ 1)

1

c

(n
e

)n√
n ≤ n! ≤ c

(n
e

)n√
n,

1

c
nn+se−n

√
n ≤

∫ +∞

0
(1 + t)stne−tdt ≤ cnn+se−n

√
n,

and conclude with (C.2) that

1

C

∑
n≥0

(n+ 1)s|cn|2 ≤ ‖〈z〉su‖2L2(C) ≤ C
∑
n≥0

(n+ 1)s|cn|2,

which completes the proof thanks to (C.1). �
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