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Abstract. We review recent results obtained in the scattering theory of dissipative quantum sys-
tems representing the long-time evolution of a system S interacting with another system S′ and
susceptible of being absorbed by S′. The effective dynamics of S is generated by an operator of the
form H = H0 + V − iC∗C on the Hilbert space of the pure states of S, where H0 is the self-adjoint
generator of the free dynamics of S, V is symmetric and C is bounded. The main example is a
neutron interacting with a nucleus in the nuclear optical model. We recall the basic objects of the
scattering theory for the pair (H,H0), as well as the results, proven in [10, 11], on the spectral
singularities of H and the asymptotic completeness of the wave operators. Next, for the nuclear
optical model, we show that asymptotic completeness generically holds.

1. Introduction

When a physical quantum system interacts with another one, part of its energy may be irreversibly
transferred to the other system. This phenomenon of irreversible loss of energy is usually called
quantum dissipation. In particular, fundamentally, quantum systems cannot be completely isolated
from their environment and, therefore, any quantum system experiences quantum dissipation to
some extent, due to interactions with the environment.

This paper is concerned with the mathematical study of effective or empirical models of quantum
dissipation. We consider a quantum system S interacting with another quantum system S′. Our
main concern is the understanding of the phenomenon of “capture”: We aim at studying models
allowing for the description of both elastic scattering and absorption of S by S′. Such models apply
to various physical situations, especially to neutrons interacting with nuclei in the nuclear optical
model (see Section 3.3).

In [10, 11], the scattering theory for a class of abstract pseudo-Hamiltonians on a Hilbert space
H is studied. In the abstract setting considered in [10, 11], the pseudo-Hamiltonian corresponding
to the generator of the effective dynamics of the system S is given by

H = H0 + V − iC∗C,

where H0 is a self-adjoint operator onH with purely absolutely continuous spectrum, V is symmetric
and relatively compact with respect to H0, and C is bounded and relatively compact with respect to
H0. The operatorH0 is the generator of the unitary free dynamics of S while V −iC∗C represents the
effective interaction between S and S′. The main purpose in [10, 11] is then to study the scattering
theory for the pair (H,H0). Suitable hypotheses on H0, V and C are formulated in such a way that
they can be verified in the particular case where H is given by a dissipative Schrödinger operator.
See the next sections for more details.

Prior to [10, 11], mathematical scattering theory for dissipative operators on Hilbert spaces has
been considered by many authors (see, e.g., [3, 4, 9, 16, 18, 24] and references therein). In these
references, in particular, the existence of the wave operators associated to H and H0 is established
under various conditions. In [10, 11], the asymptotic completeness of the wave operators is studied.
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It is shown that, under suitable assumptions, asymptotic completeness is equivalent to the absence
of spectral singularities embedded into the essential spectrum of H.

Our purpose here is twofold. First, we review the results established in [10, 11]. Next, for the
nuclear optical model, we prove that generically (in a Baire category sense), the pseudo-Hamiltonian
H has no spectral singularities embedded in its essential spectrum. This implies that the wave
operators are generically asymptotically complete.

The paper is organized as follows. In Section 2, we introduce the main objects involved in
dissipative scattering theory and we recall their basic properties. Section 3 concerns the notions of
spectral singularities and asymptotic completeness, as well as the results proven in [10, 11]. Finally,
in Section 4, we state and prove our new result on the generic nature of asymptotic completeness.

2. Mathematical setting

As mentioned in the introduction, we consider a quantum system S interacting with another
quantum system S′ and susceptible of being absorbed by S′. The pure states of S correspond to
the normalized vectors in a complex Hilbert space H. The scalar product in H is denoted by 〈·, ·〉.
The effective dynamics of S is supposed to be generated by a pseudo-Hamiltonian acting on H, of
the form

H = H0 + V − iC∗C = HV − iC∗C,

where H0 is a self-adjoint operator on H corresponding to the generator of the free dynamics of S
and V − iC∗C is an effective interaction term due to the presence of S′.

In this section, we state the abstract assumptions on the operators H0, V and C which were
introduced in [10, 11] in order to establish results on the spectral and scattering theories for the pair
(H,H0). In the next section, we will recall that those abstract assumptions are fulfilled in our main
example, namely the nuclear optical model. In this model, H is a dissipative Schrödinger operator,
with H0 = −∆ on L2(R3) and V , C multiplication operators by bounded, real-valued potentials
decaying sufficiently fast at ∞ (see Section 3.3 for more details).

To shorten notations below, the resolvents of the operators H0, HV and H are denoted by

R0(z) = (H0 − z)−1, RV (z) = (HV − z)−1, R(z) = (H − z)−1,

for any z in the resolvent set of the corresponding operator.

2.1. Basic assumptions. The set of bounded operators on H is denoted by L(H). We recall that
an operator B is called relatively compact with respect to a self-adjoint operator A if D(A) ⊂ D(B)
and B(A+ i)−1 is compact. The following basic assumptions are made:

Hypothesis 1 (Basic assumptions).
(i) H0 ≥ 0 (or, more generally, H0 is self-adjoint and semi-bounded from below),
(ii) V is symmetric and relatively compact with respect to H0,
(iii) C ∈ L(H) and C is relatively compact with respect to H0.

We recall that an operator A on H is called dissipative if, for all u ∈ D(A), Im(〈u,Au〉) ≤ 0.
Moreover, A is called maximal dissipative if A is dissipative and has no proper dissipative extension.
Hypothesis 1 has the following simple consequences.

Proposition 2.1. Suppose that Hypothesis 1 holds. Then
(1) HV = H0 + V is a self-adjoint operator on H with domain D(HV ) = D(H0).

(2) H = HV − iC∗C is a maximal dissipative operator on H with domain D(H) = D(H0).
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(3) The operator −iH generates a strongly continuous group {e−itH}t∈R such that∥∥e−itH
∥∥ ≤ 1 if t ≥ 0,

∥∥e−itH
∥∥ ≤ e‖C∗C‖|t| if t ≤ 0.

In particular, −iH generates the strongly continuous semigroup of contractions {e−itH}t≥0.
(4) The adjoint of H is

H∗ = H0 + V + iC∗C,

with domain D(H∗) = D(H0). Moreover, iH∗ generates of a strongly continuous group {eitH∗}t∈R
such that {eitH∗}t≥0 is a semigroup of contractions.

Proof. For the convenience of the reader, we sketch some of the arguments which were eluded in
[10, 11].

(1) It is a simple consequence of the Kato-Rellich Theorem together with the fact that V is
symmetric and relatively compact with respect to H0, and hence infinitesimally small with respect
to H0 (see, e.g., [21, Corollary 2, p. 113]).

To prove (2), one observes that H is dissipative since, for all u ∈ D(H) = D(H0),

Im(〈u,Hu〉) = −‖Cu‖2 ≤ 0.

To verify that H is maximal dissipative, by a theorem of Phillips [20], it then suffices to show that
Ran(H − iλ) = H for some λ > 0. This easily follows from the fact that H − iλ : D(H0) → H is
invertible for λ > ‖C∗C‖ (here one uses thatHV is self-adjoint, and hence that ‖(HV−iλ)−1‖ ≤ λ−1).

(3) Since HV is self-adjoint, −iHV generates a strongly continuous unitary group {e−itHV }t∈R.
Hence, since C∗C is bounded, a perturbation argument (see, e.g., [5, Theorem 11.4.1]) shows that
−iH generates a strongly continuous group {e−itH}t∈R such that ‖e−itH‖ ≤ e‖C

∗C‖|t| for all t ∈ R.
The fact that e−itH is a contraction for t ≥ 0 is a consequence of the fact that H is maximal
dissipative (see e.g. [5, Theorem 10.4.2]).

(4) Standard arguments show that the adjoint of H is given by H∗ = H0 +V +iC∗C with domain
D(H∗) = D(H0). One then verifies, in the same way as for −iH, that iH∗ generates of a strongly
continuous group {eitH∗}t∈R such that {eitH∗}t≥0 is a semigroup of contractions �

The contraction semigroup {e−itH}t≥0 has the interpretation of a dynamics in the following sense.
If u0 ∈ H, ‖u0‖ = 1, represents the initial state of the quantum system S at time t = 0, then the
state of S at a positive time t > 0 is given by ‖ut‖−1ut, with ut := e−itHu0. Here it should be noted
that ‖ut‖ ≤ 1 for all t ≥ 0 since e−itH is a contraction, and that ut 6= 0 since e−itH is invertible.

2.2. Spectrum and spectral subspaces of H. Since H is maximal dissipative – or equivalently
−iH generates a strongly continuous semigroup of contractions – an application of the Hille-Yosida
Theorem shows that the spectrum of H satisfies

σ(H) ⊂ {z ∈ C, Im(z) ≤ 0}.
In this section, we review the definitions of some spectral subspaces of H.

2.2.1. The space of bound states. If D is a subset of H, we denote by D its closure.

Definition 2.2 (Space of bound states Hb(H)). Suppose that Hypothesis 1 holds. The space of
bound states of H is defined as the closure of the vector space spanned by all eigenvectors of H
corresponding to real eigenvalues, i.e.

Hb(H) := Span{u ∈ D(H), ∃λ ∈ R, Hu = λu}.
Similarly,

Hb(H∗) := Span{u ∈ D(H∗), ∃λ ∈ R, H∗u = λu}.
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In the particular case were H is self-adjoint, i.e. C = 0, we see that the space of bound states
identifies with the pure point spectral subspace of H usually denoted by Hpp(H). In general, Hb(H)
and the pure point spectral subspace of HV are related as follows.

Proposition 2.3. Suppose that Hypothesis 1 holds. Then

Hb(H) = Hb(H∗) ⊂ Hpp(HV ) ∩Ker(C).

Proof. See [10, Lemma 3.1]. �

2.2.2. Discrete and essential spectra. The discrete and essential spectra of H may be defined as
follows. We recall that an operator A on H with domain D(A) is called Fredholm if Ran(A− λId)
is closed, dim Ker(A− λId) <∞ and codim Ran(A− λId) <∞.

Definition 2.4 (Discrete spectrum). Suppose that Hypothesis 1 holds. The discrete spectrum of H,
denoted by σdisc(H), is the set of isolated eigenvalues of H with finite algebraic multiplicity. In other
words, λ ∈ σdisc(H) if λ is an isolated point in σ(H), there exists u ∈ D(H)\{0} such that Hu = λu
and dim Ker(H − λId) <∞.

Definition 2.5 (Essential spectrum). Suppose that Hypothesis 1 holds. The essential spectrum of
H, denoted by σess(H), is the set of λ ∈ C such that H − λId is not Fredholm.

We mention that other possible definitions of the essential spectrum for non self-adjoint operators
may be found in the literature (see, e.g., [8, Section IX]) but these different definitions coincide in
our context [8, Theorem IX.1.6]. The discrete and essential spectra of H are related as follows.

Proposition 2.6. Suppose that Hypothesis 1 holds. Then

σess(H0) = σess(HV ) = σess(H) = σess(H
∗) = σ(H) \ σdisc(H) = σ(H∗) \ σdisc(H

∗).

Proof. The first two equalities are consequences of the facts that V and C∗C are relatively compact
perturbations of H0 (see e.g. [5, Theorem 11.2.6]). The last equality is proven e.g. in [8, Theorem
IX.1.6]. �

Summing up, the spectrum of H is of the form pictured in Figure 1.

Figure 1. Spectrum of H. The spectrum of H is contained in the lower half-plane. The
essential spectrum of H coincides with that of H0 and is contained in [0,∞). The discrete spectrum
of H consists of isolated eigenvalues of finite algebraic multiplicities which may accumulate at any
point of the essential spectrum.

For λ ∈ σdisc(H), the Riesz projection corresponding to λ, denoted by πλ, is defined by

πλ :=
1

2iπ

∫
γ
(zId−H)−1dz,
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where γ is a circle centered at λ, oriented counterclockwise and such that λ is the only point of
σ(H) contained in the interior of γ. We recall that a vector u ∈ H is called a generalized eigenvector
corresponding to λ if there exists a positive integer k such that u ∈ D(Hk) and (H − λ)ku = 0. As
is well-known, for λ ∈ σdisc(H), the range of the Riesz projection πλ coincides with the vector space
spanned by all generalized eigenvectors corresponding to λ.

Proposition 2.7. Suppose that Hypothesis 1 holds and let λ ∈ σdisc(H). Then πλ is a projection
such that dim Ran(πλ) <∞ and

Ran(πλ) =
{
u ∈ D(Hk), (H − λ)ku = 0, for some k ∈ N, 1 ≤ k ≤ dim Ran(πλ)

}
.

Proof. See, e.g., [5, Theorem 1.5.4]. �

In the particular case where λ is a real isolated eigenvalue of H, one can prove that the only
possible generalized eigenvectors corresponding to λ are eigenvectors in the usual sense.

Proposition 2.8. Suppose that Hypothesis 1 holds and let λ ∈ σdisc(H) ∩ R. Then
Ran(πλ) = {u ∈ D(H), (H − λ)u = 0}.

Proof. See [10, Lemma 3.3]. �

Of course, one can define Riesz projections in the same way for H∗ and verify that statements
analogous to Propositions 2.7–2.8 hold for H∗.

2.2.3. The dissipative space.

Definition 2.9 (Space Hd(H)). Suppose that Hypothesis 1 holds. The dissipative space, or space of
decaying states of H, is defined by

Hd(H) :=
{
u ∈ H, lim

t→∞

∥∥e−itHu
∥∥ = 0

}
.

Likewise,
Hd(H∗) :=

{
u ∈ H, lim

t→∞

∥∥eitH∗u
∥∥ = 0

}
.

Since {e−itH}t≥0 and {eitH∗}t≥0 are contraction semigroups, it is easy to verify that Hd(H) and
Hd(H∗) are closed. Moreover, it should be observed that the semigroup property implies that, for all
u ∈ H, the map [0,∞) 3 t 7→ ‖e−itHu‖ is decreasing and hence the limit limt→∞ ‖e−itHu‖ exists for
all u ∈ H. One can actually define the probabilities of elastic scattering and absorption as follows.
Let u0 ∈ Hb(H)⊥, ‖u0‖ = 1, be an initial state orthogonal to all bound states of H. The probability
of elastic scattering of the system S, initially in the state u0, is defined by

pscatt(u0) := lim
t→∞

∥∥e−itHu0

∥∥2
.

Likewise, the probability of absorption of the system S, initially in the state u0, is

pabs(u0) := 1− lim
t→∞

∥∥e−itHu0

∥∥2
.

We introduce the following definition.

Definition 2.10 (Space Hp(H)). Suppose that Hypothesis 1 holds. The subspace Hp(H) is the
closure of the vector space spanned by all generalized eigenvectors of H corresponding to an eigenvalue
with a strictly negative imaginary part,

Hp(H) :=
{
u ∈ Ran(πλ), λ ∈ σdisc(H), Im(λ) < 0

}
.

Likewise,
Hp(H∗) :=

{
u ∈ Ran(πλ), λ ∈ σdisc(H∗), Im(λ) > 0

}
.
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The following easy proposition shows that the dissipative space contains Hp(H). We give the
proof for the convenience of the reader.

Proposition 2.11. Suppose that Hypothesis 1 holds. Then

Hp(H) ⊆ Hd(H) ⊆ Hb(H)⊥, Hp(H∗) ⊆ Hd(H∗) ⊆ Hb(H)⊥.

Proof. First, we prove that Hp(H) ⊆ Hd(H). Let λ ∈ σdisc(H), Im(λ) < 0 and let u ∈ Ran(πλ).
Let k = dim Ran(πλ) <∞. We compute

∥∥e−itHu
∥∥ = etIm(λ)

∥∥e−it(H−λ)u
∥∥ = etIm(λ)

∥∥∥ k−1∑
j=0

(−it)j

j!
(H − λ)ju

∥∥∥→ 0, t→∞,

since Im(λ) < 0. Hence u ∈ Hd(H).
Next, we prove that Hd(H) ⊆ Hb(H)⊥. Let u ∈ Hd(H) and let v be an eigenvector of H∗

corresponding to a real eigenvalue. We have that∣∣〈v, u〉∣∣ =
∣∣〈eitH∗v, e−itHu〉

∣∣ =
∣∣〈v, e−itHu〉

∣∣ ≤ ‖v‖∥∥e−itHu
∥∥→ 0, t→∞.

Hence u is orthogonal to all eigenvectors of H∗ corresponding to real eigenvalues, and therefore
u ∈ Hb(H∗)⊥. Since Hb(H) = Hb(H∗) by Proposition 2.3, this concludes the proof.

The proof of Hp(H∗) ⊆ Hd(H∗) and Hd(H∗) ⊆ Hb(H)⊥ are analogous. �

2.2.4. The absolutely continuous spectral subspace. Now, we turn to a possible definition of an ab-
solutely continuous spectral subspace for the non-self-adjoint operator H, following Davies [4].

Definition 2.12 (Absolutely continuous spectral subspace). Suppose that Hypothesis 1 holds. The
absolutely continuous spectral subspace of H is defined by

Hac(H) := M(H),

where

M(H) :=
{
u ∈ H, ∃cu > 0, ∀v ∈ H,

∫ ∞
0

∣∣〈e−itHu, v〉
∣∣2dt ≤ cu‖v‖2

}
.

The absolutely continuous spectral subspace of H∗ is defined similarly, replacing e−itH by eitH∗ in
the definition above.

In the particular case where H is self-adjoint, the definition of Hac(H) coincides with the usual
one based on the nature of the spectral measures of H. Moreover, if H is self-adjoint, M(H) is
closed and hence Hac(H) = M(H). Another possible definition of an absolutely continuous spectral
subspace of H follows from the theory of unitary dilations of non-self-adjoint operators, see e.g.,
[19]. The relevance of Definition 2.12 may be supported by the following result.

Proposition 2.13. Suppose that Hypothesis 1 holds. Then

Hac(H) = Hb(H)⊥.

In particular,
Hd(H) ⊆ Hac(H) = Hac(H

∗).

Proof. The fact thatHac(H) = Hb(H)⊥ is proven in [4]. The second equation is a direct consequence
of Propositions 2.3 and 2.11. �
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We mention that another natural – and relevant – definition for the absolutely continuous spectral
subspace of H would be the orthogonal complement of all generalized eigenstates of H∗, namely

H̃ac(H) :=
(
Hb(H)⊕Hp(H∗)

)⊥
.

According to the previous proposition and Definition 2.12, we then have that

H̃ac(H) := M̃(H), M̃(H) :=
{
u ∈ Hp(H∗)⊥, ∃cu > 0, ∀v ∈ H,

∫ ∞
0

∣∣〈e−itHu, v〉
∣∣2dt ≤ cu‖v‖2

}
.

2.3. The wave and scattering operators. In this section we define the central objects in the
scattering theory for the pair (H,H0), namely the wave operators, the scattering operator and the
scattering matrices. We begin by introducing hypotheses insuring that these objects are well-defined.

2.3.1. Hypotheses. Recall that, given a self-adjoint operator A on H, Hpp(A), Hac(A) and Hsc(A)
denote the pure point, absolutely continuous and singular continuous spectral subspaces of A, re-
spectively. Likewise, σpp(A), σac(A) and σsc(A) denote the pure point, absolutely continuous and
singular continuous spectra of A.

The next hypothesis concerns the spectra of the self-adjoint operators H0 and HV (recall that H0

and HV have the same essential spectrum, assuming Hypothesis 1).

Hypothesis 2 (Spectra of H0 and HV ).

(i) The spectrum of H0 is purely absolutely continuous, i.e., σac(H0) = σ(H0), σpp(H0) = ∅,
σsc(H0) = ∅.

(ii) HV has no singular spectrum, no embedded eigenvalues, and only finitely many eigenvalues
counting multiplicity, i.e., σsc(HV ) = ∅, σpp(HV ) ⊂ R \ σ(H0) and dimHpp(HV ) <∞.

We denote by Πac(HV ) the orthogonal projection onto Hac(HV ). The symbol s-lim stands for
strong limit. Our second hypothesis concerns the unitary wave operators associated to the self-
adjoint pair (HV , H0) (in the statement of Hypothesis 3 below, it is tacitly assumed that Hypothesis
2 holds).

Hypothesis 3 (Wave operators for (H0, HV )). The wave operators

W±(HV , H0) := s-lim
t→±∞

eitHV e−itH0 , W±(H0, HV ) := s-lim
t→±∞

eitH0e−itHV Πac(HV ),

exist and are asymptotically complete, i.e.,

RanW±(HV , H0) = Hac(HV ) = Hpp(HV )⊥, RanW±(H0, HV ) = H.

In our next assumption, we require that the operator C be relatively smooth with respect to HV

in the sense of Kato [16].

Hypothesis 4 (Relative smoothness of C with respect to HV ). There exists cV > 0 such that, for
all u ∈ Hac(H), ∫

R

∥∥Ce−itHV u
∥∥2

dt ≤ cV ‖u‖2.

In the remainder of this section, we recall properties of the wave and scattering operators for the
pair (H,H0), assuming that Hypotheses 1–4 hold.
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2.3.2. The wave operators W−(H,H0) and W+(H∗, H0). Assuming that H0 has purely absolutely
continuous spectrum, the wave operators W−(H,H0) and W+(H∗, H0) in dissipative scattering the-
ory are defined in the same way as in unitary scattering theory, namely

W−(H,H0) := s-lim
t→∞

e−itHeitH0 , W+(H∗, H0) := s-lim
t→∞

eitH∗e−itH0 ,

where, recall, s-lim stands for strong limit.
The existence and basic properties of W−(H,H0) and W+(H∗, H0) are stated in the following

proposition.

Proposition 2.14. Suppose that Hypotheses 1–4 hold. Then W−(H,H0) and W+(H∗, H0) exist and
are injective contractions. Moreover,

e−itHW−(H,H0) = W−(H,H0)e−itH0 , e−itH∗W+(H∗, H0) = W+(H∗, H0)e−itH0 ,

for all t ∈ R, and

RanW−(H,H0) =
(
Hb(H)⊕Hd(H∗)

)⊥ ⊆ Hac(H),

RanW+(H∗, H0) =
(
Hb(H)⊕Hd(H)

)⊥ ⊆ Hac(H).

Proof. See [10, Propositions 3.4 and 3.5]. �

2.3.3. The wave operators W+(H0, H) and W−(H0, H
∗). Recall that Hac(H) and Hac(H

∗) are de-
fined in Definition 2.12. We denote by Πac(H), respectively Πac(H

∗), the orthogonal projection onto
the absolutely continuous spectral subspace of H, respectively H∗. The wave operators W+(H0, H)
and W−(H0, H

∗) are defined by

W+(H0, H) := s-lim
t→∞

eitH0e−itHΠac(H), W−(H0, H
∗) := s-lim

t→∞
e−itH0eitH∗Πac(H

∗).

Using unitarity of eitH0 , we see that the existence of W+(H0, H) is equivalent to the following
property (sometimes called weak asymptotic completeness): for all u0 ∈ Hb(H)⊥ = Hac(H), there
exists u+ ∈ H such that ‖e−itHu0 − e−itH0u+‖ → 0 as t → ∞, and in this case we have that
u+ = W+(H0, H)u0.

The existence and basic properties of W+(H0, H) and W−(H0, H
∗) are stated in the following

proposition.

Proposition 2.15. Suppose that Hypotheses 1–4 hold. Then W+(H0, H) and W−(H0, H
∗) exist and

are contractions. Moreover,

W+(H0, H)∗ = W+(H∗, H0), W−(H0, H
∗)∗ = W−(H,H0).

In particular,

KerW+(H0, H) =
(
Hb(H)⊕Hd(H)

)⊥
, KerW−(H0, H

∗) =
(
Hb(H)⊕Hd(H∗)

)⊥
,

and W+(H0, H) and W−(H0, H
∗) have dense ranges.

Proof. See [10, Proposition 3.6]. �

We mention that similar results can be obtained using the Kato-Birman theory of trace-class
perturbations instead of relatively smooth perturbations, see [3].
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2.3.4. The scattering operators. In dissipative scattering theory, the scattering operators are defined
by

S(H,H0) := [W+(H∗, H0)]∗W−(H,H0), S(H∗, H0) := [W−(H∗, H0)]∗W+(H∗, H0).

These definitions generalize the usual definition of unitary scattering operators in the sense that, if
H is self-adjoint, then H∗ = H and the previous equalities reduce to the usual definitions.

Combining Propositions 2.14 and 2.15, we arrive at the following result.

Proposition 2.16. Suppose that Hypotheses 1–4 hold. Then S(H,H0) and S(H∗, H0) exist and are
contractions. Moreover,

e−itH0S(H,H0) = S(H,H0)e−itH0 , e−itH0S(H∗, H0) = S(H∗, H0)e−itH0 ,

for all t ∈ R and we have that
S(H,H0)∗ = S(H∗, H0).

An important question, both mathematically and physically, concerns the invertibility of the
scattering operators. Regarding this question, we can state the following proposition (see the next
section for more precise results).

Proposition 2.17. Suppose that Hypotheses 1–4 hold. Then the following conditions are equivalent:
(1) S(H,H0) and S(H∗, H0) are invertible in L(H).
(2) The range of the wave operators W−(H,H0) and W+(H∗, H0) are given by

RanW−(H,H0) =
(
Hb(H)⊕Hd(H∗)

)⊥
, RanW+(H∗, H0) =

(
Hb(H)⊕Hd(H)

)⊥
.

Proof. See [10, Proposition 3.8]. �

2.3.5. The scattering matrices. We recall that the multiplicity of the spectrum of a self-adjoint
operator is defined via the spectral theorem (see, e.g., [21, Section VII]). To study the scattering
matrices, it is convenient to add the following condition to Hypothesis 2(i).

Hypothesis 5 (Multiplicity of σ(H0)). The spectrum of H0 has a constant multiplicity (which may
be infinite).

To simplify notations below, we set
Λ := σ(H0).

Assuming Hypotheses 2(i) and 5, the spectral theorem ensures that there exists a unitary mapping
from H to a direct integral of Hilbert spaces,

F0 : H →
∫ ⊕

Λ
H(λ)dλ,

such that F0H0F∗0 acts as multiplication by λ on each Hilbert space H(λ). Moreover, since σ(H0)
has a constant multiplicity, say k ∈ N∪{+∞}, all spaces H(λ) can be identified with a fixed Hilbert
spaceM. Hence F0 becomes an operator

F0 : H →
∫ ⊕

Λ
Mdλ = L2(Λ;M),

where dimM = k and L2(Λ;M) is the space of square integrable functions from Λ toM, (see e.g.
[26, Chapter 0, Section 1.3]). Note that in the case where H = L2(R3) and H0 = −∆, the Hilbert
spaceM is given byM = L2(S2), where S2 stands for the unit-sphere in R3.
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Using that the scattering operator S(H,H0) commutes with H0, by Proposition 2.16, one can
verify that S(H,H0) admits a fiber decomposition of the form

F0S(H,H0)F∗0 =

∫ ⊕
Λ
S(λ)dλ.

The bounded operators
S(λ) ∈ L(M),

defined for a.e. λ ∈ Λ, are called the scattering matrices (for the pair (H,H0)).
One can define in the same way the scattering matrices S∗(λ) for the pair (H∗, H0) by the relation

F0S(H∗, H0)F∗0 =

∫ ⊕
Λ
S∗(λ)dλ.

Under the conditions of Proposition 2.17, we then have that

[S(λ)]∗ = S∗(λ),

for a.e. λ ∈ Λ.
We set

F± := F0W
∗
±(HV , H0) : H → L2(Λ;M).

Given s ≥ 0, an interval X and a Hilbert space H, we denote by Cs(X;H) the set of Hölder
continuous H-valued functions on X of order s. In order to insure that the map λ 7→ S(λ) is
continuous, it is convenient to require that the operators V and C are strongly smooth with respect
to H0 and HV , respectively, in the following sense.

Hypothesis 6 (Strong smoothness of V with respect to H0).
(i) There exist an auxiliary Hilbert space G and operators G : H → G and K : G → G such that

V = G∗KG, with G(H
1/2
0 + 1)−1 ∈ L(H;G) and K ∈ L(G).

(ii) For all z ∈ C, Im(z) 6= 0, GR0(z)G∗ is compact.
(iii) The operator G is strongly H0-smooth with exponent s0 ∈ (1

2 , 1) on any compact set X b Λ, i.e.

F0[G1X(H0)]∗ : G → Cs0(X;M) is continuous.

Hypothesis 7 (Strong smoothness of C with respect to HV ).
(i) For all z ∈ C, Im(z) 6= 0, CRV (z)C∗ is compact.
(ii) The operator C is strongly HV -smooth with exponent s ∈ (0, 1) on any compact set X b Λ, i.e.

F±[C1X(HV )]∗ : H → Cs(Λ;H) is continuous.

(iii) The map
Λ̊ ∈ λ 7→ C

(
RV (λ+ i0)−RV (λ− i0)

)
C∗ ∈ L(H),

is bounded.

We refer to [25, 26] for details on the theory of strongly smooth operators.
In the statement below, S] stands for S or S∗. Based on a generalization of Kuroda’s represen-

tation formula, the following result was established in [11].

Proposition 2.18. Suppose that Hypotheses 1–7 hold. Then, for all λ ∈ Λ̊, S](λ) is a contraction
and S](λ)− Id is compact. If, in addition, dimM = +∞, then for all λ ∈ Λ̊, ‖S](λ)‖ = 1 and, in
particular, ‖S(H,H0)‖ = 1 = ‖S(H∗, H0)‖.

Proof. See [11, Theorem 2.6 and Remark 2.7]. �
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3. Spectral singularities and asymptotic completeness

Our next concern is to study more precisely the invertibility of the scattering matrices and opera-
tor. Invertibility of S(λ) is a strongly relevant physical property since it shows that to any incoming
state at energy λ corresponds a unique outgoing state and vice versa. In Section 3.1, we explain that
non-invertibility of S(λ) is equivalent to the presence of a spectral singularity at energy λ. Section
3.2 is devoted to the property of asymptotic completeness of the wave operators.

3.1. Spectral singularities. Recall that, under our assumptions and notations, the essential spec-
trum of H is given by σess(H) = σ(H0) = Λ. We recall the notion of a spectral singularity introduced
in [10, 11], distinguishing points in the interior of Λ and points in the boundary Λ \ Λ̊.

Definition 3.1 (Regular spectral point and spectral singularity).
(i) Let λ ∈ Λ̊. We say that λ is a regular spectral point of H if there exists a compact interval

Kλ ⊂ R whose interior contains λ, such that Kλ does not contain any accumulation point of
eigenvalues of H, and such that the limits

CR(µ− i0)C∗ := lim
ε↓0

CR(µ− iε)C∗

exist uniformly in µ ∈ Kλ in the norm topology of L(H). If λ is not a regular spectral point of
H, we say that λ is a spectral singularity of H.

(ii) Let λ ∈ Λ \ Λ̊. We say that λ is a regular spectral point of H if there exists a compact interval
Kλ ⊂ R whose interior contains λ, such that all µ ∈ Kλ ∩ Λ̊ are regular in the sense of (i) and
such that the map

Kλ ∩ Λ̊ 3 µ 7→ CR(µ− i0)C∗ ∈ L(H)

is bounded.
(iii) If Λ is right-unbounded, we say that +∞ is regular if there exists m > 0 such that all µ ∈

[m,∞) ∩ Λ̊ are regular in the sense of (i) and such that the map

[m,∞) ∩ Λ̊ 3 µ 7→ CR(µ− i0)C∗ ∈ L(H)

is bounded.

Note that our definition of a regular spectral point is local. One can rephrase this definition
saying that λ is a regular spectral point of H if the limiting absorption principle for H holds in a
neighborhood of λ, for the weighted resolvent CR(z)C∗, for values of the spectral parameter z in the
lower half-plane. It should be noted that we do not need to require the limiting absorption principle
to hold for values of the spectral parameter in the upper half-plane: This is due to the fact that
H is supposed to be dissipative. We also mention that there is a natural definition of a spectral
singularity for the adjoint operator H∗, such that λ is a spectral singularity of H if and only if λ is
a spectral singularity of H∗.

In the case whereH = −∆+V −iC∗C on L2(R3), with V and C bounded and compactly supported
potentials, a spectral singularity ofH corresponds to a resonance embedded in the essential spectrum
[0,∞) (see, e.g., [7] for the theory of resonances for Schrödinger operators, and [10] for a comparison
between the notions of resonances and spectral singularities).

The next theorem provides several characterizations of a spectral singularity λ ∈ Λ̊. It is based,
in particular, on a generalization of Kuroda’s representation formula to the context of dissipative
scattering theory.

Theorem 3.2. Suppose that Hypotheses 1–7 hold. Let λ ∈ Λ̊. Then the following conditions are
equivalent:
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(1) λ is a regular spectral point of H.
(2) λ is not an accumulation point of eigenvalues of H located in λ− i(0,∞) and the limit

CR(µ− i0)C∗ = lim
ε↓0

CR(µ− iε)C∗

exists in the norm topology of L(H).
(3) The operator Id− iCRV (λ− i0)C∗ is invertible in L(H).
(4) The scattering matrix S(λ) is invertible in L(M).

Proof. See [11, Theorem 2.9 and Lemma 4.1]. �

In general, it is a difficult problem to identify explicitly the spectral singularities of a given
dissipative operator. Nevertheless, one can show that the set of spectral singularities is not too large
in the following sense.

Proposition 3.3. Suppose that Hypotheses 1–7 hold. Then the set of spectral singularities of H is
a closed subset of Λ of Lebesgue measure 0.

Proof. See [11, Proposition 4.2]. �

In Section 4, for the nuclear optical model, we will show that the set of spectral singularities is
generically empty.

Recall from Propositions 2.14 and 2.17 that the scattering operators S(H,H0) and S(H∗, H0)
are invertible if and only if the wave operators W−(H,H0) and W+(H,H0) have closed ranges. The
following proposition shows that the study of spectral singularities is also relevant in order to answer
the question of the invertibility of the scattering operators.

Proposition 3.4. Suppose that Hypotheses 1–7 hold. Suppose in addition that Λ \ Λ̊ is finite and
that all λ ∈ Λ \ Λ̊ are regular in the sense of Definition 3.1 (if Λ is right-unbounded, we also assume
that +∞ is regular). Then the following conditions are equivalent:
(1) S(H,H0) is invertible in L(H),
(2) S(H∗, H0) is invertible in L(H),
(3) H has no spectral singularities in Λ̊.

Proof. See [11, Theorem 2.10]. �

To conclude this section, we propose the following definition of the “order” of a spectral singularity
of H. It will be relevant in the next section.

Definition 3.5 (Order of a spectral singularity). We say that λ ∈ Λ̊ is a spectral singularity of H
of finite order if λ is a spectral singularity of H and there exist ν ∈ N∗ and a compact interval Kλ,
whose interior contains λ, such that the limits

lim
ε↓0

(µ− λ)νCR(µ− iε)C∗

exist uniformly in µ ∈ Kλ in the norm topology of L(H). The order ν0 of the spectral singularity λ
is then defined as the minimum of all ν ∈ N∗ such that the previous limit exists.

As mentioned above, if one considers the nuclear optical model H = −∆+V −iC∗C with bounded
and compactly supported potentials V and C, then a spectral singularity corresponds to a resonance
in the usual sense (see, e.g., [7]). One can then verify that the order of a spectral singularity in
the sense of Definition 3.5 corresponds to the multiplicity of the corresponding resonance, see [10,
Section 6].
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3.2. Asymptotic completeness. We are interested in this section in the property of asymptotic
completeness of the wave operators. In our context, this property can be defined as follows.

Definition 3.6 (Asymptotic completeness). The wave operators W−(H,H0) and W+(H∗, H0) are
said to be asymptotically complete if their ranges coincide with the orthogonal complements of all
generalized eigenstates of H and H∗, respectively. In other words,

Ran(W−(H,H0)) =
(
Hb(H)⊕Hp(H∗)

)⊥
, Ran(W+(H∗, H0)) =

(
Hb(H)⊕Hp(H)

)⊥
.

With the alternative definition H̃ac(H) of the absolutely continuous spectral subspace of H sug-
gested at the end of Section 2.2, we see that the asymptotic completeness of the wave operators is
the statement that Ran(W+(H,H0)) = H̃ac(H) and Ran(W+(H∗, H0)) = H̃ac(H

∗).
In [10], asymptotic completeness is proven under the following further assumption.

Hypothesis 8 (Finiteness of the number of discrete eigenvalues and spectral singularities).
(i) H has at most finitely many (discrete) eigenvalues.
(ii) H has at most finitely many spectral singularities in Λ̊ and each spectral singularity is of finite

order.
(iii) Λ \ Λ̊ is finite and all λ ∈ Λ \ Λ̊ are regular. Moreover, if Λ is right-unbounded, then +∞ is

regular.

We then have the following result.

Theorem 3.7. Suppose that Hypotheses 1–8 hold. Then

Hp(H) = Hd(H), Hp(H∗) = Hd(H∗).

Moreover,

W−(H,H0) and W+(H∗, H0) are asymptotically complete

⇐⇒ H has no spectral singularities in Λ̊.

If these equivalent conditions are satisfied, then
(1) There is an H-invariant direct sum decomposition

H =
{
Hb(H)⊕Hp(H)

}
⊕
(
Hb(H)⊕Hp(H∗)

)⊥
,

and the restriction of H to
(
Hb(H) ⊕ Hp(H∗)

)⊥ is similar to H0. An analogous statement
holds for H∗.

(2) The wave operators W+(H0, H) and W−(H0, H
∗) are surjective and their kernels are given by

KerW+(H0, H) =
(
Hb(H)⊕Hp(H)

)⊥
, KerW−(H0, H

∗) =
(
Hb(H)⊕Hp(H∗)

)⊥
.

(3) The scattering operators S(H,H0) and S(H∗, H0) are bijective.

Proof. See [10, 11]. �

3.3. Application to the nuclear optical model. Now, we describe the main consequences of the
abstract results previously stated for the nuclear optical model. This model was introduced in [13]
as a phenomenological model describing the possible absorption and elastic scattering of a neutron –
or a proton – at a nucleus. In this context, the pseudo-Hamiltonian H considered previously is given
by a dissipative Schrödinger operator. See [12, 14] for a thorough exposition of various versions of
the model and their physical interpretations, and [6] for more recent developments.

Hence, in this section, we focus on the nuclear optical model, setting

H0 = −∆, HV = −∆ + V (x), H = HV − iW (x),
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on L2(R3). We recall that the unit-sphere in R3 is denoted by S2. We refer to [10, 11] for details
showing that the abstract Hypotheses 1–8 are indeed satisfied in the case of the nuclear optical
model, under the conditions on the potentials imposed in the following theorems.

Theorem 3.8. Suppose that
(i) V is real-valued, V ∈ C2(R3) and there exists ρ > 3 such that, for all |α| ≤ 2, ∂αV (x) =

O(〈x〉−ρ−|α|), |x| → ∞,
(ii) W is non-negative, W (x) > 0 on a non-trivial open set and there exists δ > 2 such that

W (x) = O(〈x〉−δ), |x| → ∞,
(iii) 0 is neither an eigenvalue nor a resonance of HV .
Then, for all λ > 0,

S(λ) is invertible in L(L2(S2)) ⇐⇒ λ is not a spectral singularity of H.

Moreover,

S(H,H0) is invertible in L(L2(R3)) ⇐⇒ H has no spectral singularities in (0,∞),

and if these conditions hold, then RanW−(H,H0) = Hd(H∗)⊥.

Proof. See [10, 11]. �

The set of bounded and compactly supported potentials from R3 to C is denoted by L∞c (R3). If
we suppose that V and W belong to L∞c (R3), we have in addition the following more precise results.

Theorem 3.9. Suppose that
(i) V is real-valued and V ∈ L∞c (R3).
(ii) W is non-negative, W (x) > 0 on a non-trivial open set and W ∈ L∞c (R3).
(iii) 0 is neither an eigenvalue nor a resonance of HV .
Then, Hp(H) = Hd(H). Moreover,

W−(H,H0) is asymptotically complete ⇐⇒ RanW−(H,H0) = Hp(H∗)⊥

⇐⇒ H has no spectral singularities in (0,∞).

If these conditions hold, then
(1) S(H,H0) is invertible in L(L2(R3)),
(2) For all λ > 0, S(λ) is invertible in L(L2(S2)),
(3) The restriction of H to Hp(H∗)⊥ is similar to H0.

Proof. See [10, 11]. �

We mention that the fact that Hb(H) = {0} in the context of the present section follows from
unique continuation arguments. Moreover, it is proven in [22] that 0 cannot be a spectral singularity
of H. On the other hand, for any λ > 0, one can construct smooth and compactly supported
potentials V and W such that λ is a spectral singularity of H (see [23]).

4. Generic nature of Asymptotic Completeness

In this section, our purpose is to establish that, under suitable assumptions, the wave operators
W−(H,H0) and W+(H∗, H0) are generically asymptotically complete. We will work in the context
of the nuclear optical model of Section 3.3, where

H = H0 + V − iW = HV − iW,
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on H = L2(R3). Here H0 = −∆, and the real-valued potentials V,W are supposed to be bounded
and compactly supported, with W ≥ 0. We set C =

√
W (so that, in particular, C∗ = C).

We will say that a property PC depending on the choice of the operator C is generically true if
the set of C’s such that PC holds is a countable intersection of dense open sets in a suitable Banach
space. Part of our strategy will be adapted from [1].

Theorem 4.1. Let V ∈ L∞c (R3;R) be such that 0 is not an eigenvalue nor a resonance of HV .
Then, for all Ω ⊂ R3 compact, the set{

C ∈ L∞(R3;R), supp(C) ⊂ Ω and HV − iC∗C has no spectral singularities in (0,∞)
}

=
{
C ∈ L∞(R3;R), supp(C) ⊂ Ω and W−(HV − iC∗C,H0) is asymptotically complete

}
is a countable intersection of dense open sets in {C ∈ L∞(R3;R), supp(C) ⊂ Ω}, for the topology
induced by the ‖ · ‖∞-norm.

Note that the equality in the statement of Theorem 4.1 is a consequence of Theorem 3.9. For all
compact interval J ⊂ (0,∞), we set

EJ :=
{
C ∈ L∞(R3;R), supp(C) ⊂ Ω and HV − iC∗C has no spectral singularities in J

}
.

To establish Theorem 4.1, it then suffices to show that, for all compact interval J ⊂ (0,∞), EJ is
open and dense in {C ∈ L∞(R3;R), supp(C) ⊂ Ω}. This is the purpose of the following two lemmas.

In order to underline the dependence on C of the pseudo-Hamiltonian H, we will use in this
section the notation

HV,C := HV − iC∗C = HV − iC2,

for all C ∈ L∞(R3;R). We also set

L∞Ω :=
{
C ∈ L∞(R3;R), supp(C) ⊂ Ω

}
,

for all compact set Ω ⊂ R3.

Lemma 4.2. Let V ∈ L∞c (R3;R) be such that 0 is not an eigenvalue nor a resonance of HV and let
Ω ⊂ R3 be a compact set. Assume that there are a compact interval J ⊂ (0,∞) and C0 ∈ L∞(R3;R),
supp(C0) ⊂ Ω, such that HV,C0 has no spectral singularities in J . Then there exists r > 0 such that,
for all C ∈ L∞Ω satisfying ‖C − C0‖∞ ≤ r,

HV,C has no spectral singularities in J.

Proof. Let Ω, J and C0 be as in the statement of the lemma. Let λ0 ∈ J . By assumption, λ0 is a
regular spectral point of HV,C0 and therefore, by Theorem 3.2, we know that Id− iC0RV (λ0− i0)C∗0
is invertible in L(H). Since

L∞Ω × (0,∞) 3 (C, λ) 7→ CRV (λ− i0)C∗ = C1ΩRV (λ− i0)1ΩC
∗ ∈ L(H)

is continuous under our assumptions, we deduce that there exist r0 > 0 and a neighborhood Uλ0 ⊂ R
of λ0 such that, for all C ∈ L∞Ω such that ‖C − C0‖ ≤ r0 and all λ ∈ Uλ0 , Id − iCRV (λ − i0)C∗ is
invertible in L(H). Equivalently, by Theorem 3.2, we have that λ is a regular spectral point of HV,C

for all C ∈ L∞Ω such that ‖C − C0‖ ≤ r0 and all λ ∈ Uλ0 .
Now, we have the inclusion

J ⊂
⋃
λ∈J
Uλ,

and since J is compact, we deduce that there are λ1, . . . λn ∈ J such that J ⊂ Uλ1 ∪ · · · ∪ Uλn .
Setting r = min(r1, . . . , rn), we conclude that for all C ∈ L∞Ω such that ‖C −C0‖ ≤ r0, HV,C has no
spectral singularities in J . �
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Lemma 4.2 shows that, given a compact interval J ⊂ (0,∞), the set EJ is open in L∞Ω . Our next
purpose is to prove that EJ is dense in L∞Ω . We recall that for any V,C ∈ L∞c (R3), HV,C has at
most finitely many spectral singularities in (0,∞) counting orders. This follows from the theory of
resonances (see [7] and [10, Section 6] for more details).

Lemma 4.3. Let V ∈ L∞c (R3;R) be such that 0 is not an eigenvalue nor a resonance of HV and
let Ω ⊂ R3 be a compact set. Let J ⊂ (0,∞) be a compact interval. For all C0 ∈ L∞Ω and all ε > 0,
there exists C ∈ L∞Ω such that ‖C − C0‖∞ ≤ ε and HV,C has no spectral singularities in J .

Proof. Let V , Ω and J be as in the statement of the lemma. Assume by contradiction that there
exist C0 ∈ L∞Ω and ε0 > 0 such that, for all C ∈ L∞Ω such that ‖C − C0‖∞ ≤ ε0, HV,C has spectral
singularities in J .

In a first step, we use that resonances are generically simple. Namely, adapting the proof of [7,
Theorem 3.14] in a straightforward way (see also [17]), one can show that there exists C̃0 ∈ L∞Ω such
that ‖C̃0 − C0‖∞ ≤ ε0/2 and all spectral singularities of HV,C̃0

are at most of order 1.
Now, let λ1, . . . , λn be the spectral singularities (of order 1) of HV,C̃0

in J . If C̃0 = 0, then this
set is empty and we obtain a contradiction. Hence we assume in the following that C̃0 6= 0. We
introduce a real parameter g in the pseudo-Hamiltonian, considering the family of operators

HV,gC̃0
= HV − ig2C̃∗0 C̃0,

for g close to 1. We claim that, for all j ∈ {1, . . . , n}, there exist a neighborhood Vλj ⊂ R of λj and
εj > 0 such that, for all g ∈ R satisfying 0 < |g− 1| ≤ εj , HV,gC̃0

has no spectral singularities in Vj .
Indeed, let

A(λ) := C̃0RV (λ− i0)C̃∗0 .

From Theorem 3.2 and the fact that A(λ) is compact, we deduce that λ is a spectral singularity of
HV,gC̃0

if and only if 1 is an eigenvalue of ig2A(λ). In particular, if g = 1 and λ = λj , we see that
1 is a simple, discrete eigenvalue of iA(λj). Therefore, if Γj is a curve oriented counterclockwise,
whose interior contains 1 and no other eigenvalue of iA(λj), it follows from standard perturbation
theory that, for any λ in a neighborhood of λj and g close to 1, ig2A(λ) has a unique eigenvalue,
say µg,λ, in the interior of Γj . We shall show that µg,λ 6= 1 except if g = 1 and λ = λj .

Clearly, we have that µg,λ = g2µ1,λ and µ1,λj = 1. Moreover, letting

πg,λ :=
1

2iπ

∫
Γj

(
z − ig2A(λ)

)−1
dz

be the Riesz projection corresponding to µg,λ, we have that πg,λ = π1,λ.
Let uj ∈ Ran(π1,λj ) be a normalized eigenstate of iA(λj) corresponding to the eigenvalue 1,

iA(λj)uj = λjuj , ‖uj‖ = 1. Then, for (g, λ) near (1, λj), πg,λuj 6= 0 and πg,λuj is an eigenstate of
ig2A(λ) corresponding to µg,λ. We compute

Im(µg,λ) = ‖πg,λuj‖−2Im〈πg,λuj , ig2A(λ)πg,λuj〉

=
1

2
‖πg,λuj‖−2g2

〈
uj , π

∗
g,λ

(
C̃0RV (λ− i0)C̃∗0 + C̃0RV (λ+ i0)C̃∗0

)
πg,λuj

〉
=

1

2
‖πg,λuj‖−2g2

〈
uj , π

∗
1,λ

(
C̃0RV (λ− i0)C̃∗0 + C̃0RV (λ+ i0)C̃∗0

)
π1,λuj

〉
,

where we used that πg,λ = π1,λ in the last equality. Hence we see that Im(µg,λ) = 0 if and only if
the scalar product in the previous equality vanishes. The maps λ 7→ A(λ) and λ 7→ A(λ)∗ are real
analytic in a neighborhood of λj . This implies that

λ 7→
〈
uj , π

∗
1,λ

(
C̃0RV (λ− i0)C̃∗0 + C̃0RV (λ+ i0)C̃∗0

)
π1,λuj

〉
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has a unique zero in a neighborhood of λj . But this zero is λj since Im(µg,λj ) = Im(g2) = 0.
Hence we have proven that for all λ in a neighborhood Vj of λj , λ 6= λj , and all g in a neighborhood

of 1, Im(µg,λ) 6= 0. In particular, µg,λ 6= 1. It remains to show that µg,λj 6= 1 except if g = 1. But
this is obvious, since µg,λj = g2.

Summarizing, for all j ∈ {1, . . . , n}, there exist a neighborhood Vj ⊂ R of λj and εj > 0 such
that, for all 0 < |g − 1| ≤ εj , HV,gC̃0

has no spectral singularities in Vj . Moreover, by assumption,
HV,C̃0

has no spectral singularities in J \∪nj=1Vj . By Lemma 4.2, this implies that there exists r > 0

such that, for all 0 < |g − 1| ≤ r, HV,gC̃0
has no spectral singularities in J \ ∪nj=1Vj . Picking g such

that 0 < |g−1| ≤ min(ε1, . . . , εn, r, ‖C̃0‖−1ε0/2), we obtain that HV,gC̃0
has no spectral singularities

in J . Since, in addition, we have that∥∥gC̃0 − C0

∥∥ ≤ |g − 1|
∥∥C̃0

∥∥+
∥∥C̃0 − C0

∥∥ ≤ ε0,

this gives a contradiction. This concludes the proof of the lemma. �

Now, we can combine the previous two lemmas to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let J ⊂ (0,∞) be a compact interval. By Lemma 4.2, the set EJ is open in
L∞Ω , while, by Lemma 4.3, EJ is dense in L∞Ω . The statement of the theorem then follows from the
fact that{

C ∈ L∞(R3;R), supp(C) ⊂ Ω and HV − iC∗C has no spectral singularities in (0,∞)
}

=
⋂
n∈N∗

E[n−1,n].

�
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