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MINIMAL PHOTON VELOCITY BOUNDS IN NON-RELATIVISTIC QUANTUM
ELECTRODYNAMICS

JÉRÉMY FAUPIN AND ISRAEL MICHAEL SIGAL

Abstract. We consider non-relativistic quantum particle systems, such as atoms and molecules, coupled
to the quantized electromagnetic field. We prove several photon velocity bounds for total energies below the
ionization threshold. We also consider phonons coupled to such particle systems and prove velocity bounds
for them as well.

1. Introduction

In this paper we study the long-time dynamics of a non-relativistic particle system coupled to the quantized
electromagnetic or phonon field. For energies below the ionization threshold, we prove several lower bounds
on the growth of the distance of the escaping photons to the particle system.

Standard model of non-relativistic quantum electrodynamics. First, we consider the standard
model of non-relativistic quantum electrodynamics in which particles are minimally coupled to the quantized
electromagnetic field. The state space for this model is given by H := Hp ⊗ F , where Hp is the particle
state space, say, L2(R3n), or a subspace thereof, and F is the bosonic Fock space, F ≡ Γ(h) := C⊕∞n=1⊗n

s h,
based on the one-photon space h := L2(R3, C2) (⊗n

s stands for the symmetrized tensor product of n factors,
C2 accounts for the photon polarization). Its dynamics is generated by the hamiltonian

H =
n∑

j=1

1
2mj

(
− i∇xj − κjAξ(xj)

)2 + U(x) + Hf . (1.1)

Here, mj and xj , j = 1, . . . , n, are the (‘bare’) particle masses and the particle positions, U(x), x =
(x1, . . . , xn), is the total potential affecting the particles, and κj are coupling constants related to the
particle charges. Moreover, Aξ := ξ̌ ∗ A, where ξ is an ultraviolet cut-off satisfying e.g. |∂mξ(k)| ! 〈k〉−3,
|m| = 0, . . . , 3, and A(y) is the quantized vector potential in the Coulomb gauge (div A(y) = 0), describing
the quantized electromagnetic field and given by

Aξ(y) =
∑

λ=1,2

∫
dk√
2ω(k)

ξ(k)ελ(k)
(
eik·yaλ(k) + e−ik·ya∗λ(k)

)
. (1.2)

(Here and in what follows, the integrals without indication of the domain of integration are taken over entire
R3.) In (1.2), ω(k) = |k| denotes the photon dispersion relation (k is the photon wave vector), λ is the
polarization, and aλ(k) and a∗λ(k) are photon annihilation and creation operators acting on the Fock space
F (see Supplement I for the definition). The operator Hf is the quantum hamiltonian of the quantized
electromagnetic field, describing the dynamics of the latter, given by Hf = dΓ(ω), where dΓ(τ) denotes the
lifting of a one-photon operator τ to the photon Fock space, dΓ(τ)|C = 0 for n = 0 and, for n ≥ 1,

dΓ(τ)|⊗n
s h =

n∑

j=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗τ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−j

. (1.3)

(See Supplement I for definitions related to the creation and annihilation operators and for the expression
of dΓ(τ) in terms of these operators.)

We assume that U(x) ∈ L2
loc(R3n) and is either confining or relatively bounded with relative bound 0 w.r.t.

−∆x, so that the particle hamiltonian Hp := −
∑n

j=1
1

2mj
∆xj + U(x), and therefore the total hamiltonian

H, are self-adjoint.
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This model goes back to the early days of quantum mechanics (it appears in the review [22] as a well-known
model and is elaborated in an important way in [53]) (see [56, 62] for extensive references).

Phonon hamiltonian. Next, we consider the standard phonon model of the solid state physics (see e.g.
[45]). The state space for it is given by H := Hp ⊗F , where Hp is the particle state space and F ≡ Γ(h) =
C ⊕∞n=1 ⊗n

s h is the bosonic Fock space based on the one-phonon space h := L2(R3, C). Its dynamics is
generated by the hamiltonian

H := Hp + Hf + I(g), (1.4)
acting on H, where Hp is a self-adjoint particle system hamiltonian, acting on Hp, and Hf = dΓ(ω) is
the phonon hamiltonian acting on F , where ω = ω(k) is the phonon dispersion law (k is the phonon wave
vector). For acoustic phonons, ω(k) + |k| for small |k| and c ≤ ω(k) ≤ c−1, for some c > 0, away from 0,
while for optical phonons, c ≤ ω(k) ≤ c−1, for some c > 0, for all k. To fix ideas, we consider below only the
most difficult case ω(k) = |k|.

The operator I(g) acts on H and represents an interaction energy, labeled by a coupling family g(k) of
operators acting on the particle space Hp. In the simplest case of linear coupling (the dipole approximation
in QED or the phonon models), I(g) is given by

I(g) :=
∫

(g∗(k)⊗ a(k) + g(k)⊗ a∗(k))dk, (1.5)

where a∗(k) and a(k) are the phonon creation and annihilation operators acting on F , and g(k) is a family
of operators on Hp (coupling operators), for which we assume the following condition: there are bounded,
positive operators, η1 and η2, with unbounded inverses, s.t.

‖η1η
|α|
2 ∂αg(k)‖L(Hp) ! |k|µ−|α|〈k〉−2−µ, |α| ≤ 2, (1.6)

where the norm is taken in the Banach space, L(Hp), of bounded operators, and for some Σ > inf σ(Hp) the
following estimate holds

‖η−n
2 η−m

1 η−n
2 f(H)‖ ! 1, 0 ≤ n, m ≤ 2, (1.7)

for any f ∈ C∞0 ((−∞,Σ)). The specific form of η1 and η2 depends on the models considered and will be
given below.

A primary example for the particle system to have in mind is an electron in a vacuum or in a solid in
an external potential V . In this case, Hp = ε(p) + V (x), p := −i∇x, with ε(p) being the standard non-
relativistic kinetic energy, ε(p) = 1

2m |p|2 ≡ − 1
2m∆x (the Nelson model), or the electron dispersion law in

a crystal lattice (a standard model in solid state physics), acting on Hp = L2(R3). The coupling family
is given by g(k) = |k|µξ(k)eikx, where ξ(k) is the ultraviolet cut-off, satisfying e.g. |∂mξ(k)| ! 〈k〉−2−µ,
m = 0, . . . , 3 (and therefore g(k) satisfies (1.6), with η1 = 1 and η2 = 〈x〉−1 with 〈x〉 = (1 + |x|2)1/2). For
phonons, µ = 1/2, and for the Nelson model, µ ≥ −1/2. To have a self-adjoint operator H we assume that
V is a Kato potential and that µ ≥ −1/2. This can be easily upgraded to an N−body system (e.g. an atom
or a molecule, see e.g. [37, 56]). A key fact here is that for the particle models discussed above (both for
non-relativistic QED and for phonon models), there is a spectral point Σ ∈ σ(H)∪{∞}, called the ionization
threshold, s.t. below Σ, the particle system is well localized:

‖〈p〉2eδ|x|f(H)‖ ! 1, (1.8)

for any 0 ≤ δ < dist(supp f,Σ) and any f ∈ C∞0 ((−∞,Σ)). In other words, states decay exponentially in
the particle coordinates x ([34, 6, 7]). Hence (1.7) holds with η1 = 〈p〉−1 and η2 = 〈x〉−1. To guarantee that
Σ > inf σ(Hp) ≥ inf σ(H), we assume that the potentials U(x) or V (x) are such that the particle hamiltonian
Hp has discrete eigenvalues below the essential spectrum ([34, 6, 7]). Furthermore, Σ, for which (1.8) is true,
is given by Σ := limR→∞ infϕ∈DR〈ϕ, Hϕ〉, where the infimum is taken over DR = {ϕ ∈ D(H)| ϕ(x) =
0 if |x| < R, ‖ϕ‖ = 1} (see [34]; Σ is close to inf σess(Hp)).

Problem. In all above cases, the hamiltonian H is self-adjoint and generates the dynamics through the
Schrödinger equation,

i∂tψt = Hψt. (1.9)
As initial conditions, ψ0, we consider states below the ionization threshold Σ, i.e. ψ0 in the range of the
spectral projection E(−∞,Σ)(H). In other words, we are interested in processes, like emission and absorption
of radiation, or scattering of photons on an electron bound by an external potential (created e.g. by an
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infinitely heavy nucleus or impurity of a crystal lattice), in which the particle system (say, an atom or a
molecule) is not being ionized.

Denote by Φj and Ej the eigenfunctions and the corresponding eigenvalues of the hamiltonian H, below
Σ, i.e. Ej < Σ. The following are the key characteristics of the evolution of (1.9), in progressive order the
depth of information they provide:

• Local decay stating that some photons are bound to the particle system while others (if any) escape
to infinity, i.e. the probability that they occupy any bounded region of the physical space tends to
zero, as t →∞.

• Minimal photon velocity bound with speed c stating that, as t → ∞, with probability → 1, the
photons are either bound to the particle system or depart from it with the distance ≥ c′t, for any
c′ < c.
Similarly, if the probability that at least one photon is at the distance ≥ c′′t, c′′ > c, from the particle
system vanishes, as t → ∞, we say that the evolution satisfies the maximal photon velocity bound
with speed c.

• Asymptotic completeness on the interval (−∞,Σ) stating that, for any ψ0 ∈ Ran E(−∞,Σ)(H), and
any ε > 0, there are photon wave functions fjε ∈ F , with a finite number of photons, s.t. the
solution, ψt = e−itHψ0, of the Schrödinger equation, (1.9), satisfies

lim sup
t→∞

∥∥e−itHψ0 −
∑

j

e−iEjtΦj ⊗s e−iHf tfjε

∥∥ ≤ ε. (1.10)

(One can verify that Φj ⊗s fjε is well-defined, at least for the ground state (j = 0).) In other words,
for any ε > 0 and with probability ≥ 1− ε, the Schrödinger evolution ψt approaches asymptotically
a superposition of states in which the particle system with a photon cloud bound to it is in one of
its bound states Φj , with additional photons (or possibly none) escaping to infinity with the velocity
of light.

The reason for ε > 0 in (1.10) is that for the state Φj ⊗s fj to be well defined, as one would expect, one
would have to have a very tight control on the number of photons in fj , i.e. the number of photons escaping
the particle system. (See the remark at the end of Subsection 5.4 of [21] for a more technical explanation.)
For massive bosons ε > 0 can be dropped (set to zero), as the number of photons can be bound by the energy
cut-off.1

We define the photon velocity in terms of its space-time (and sometimes phase-space-time) localization.
In a quantum theory this is formulated in terms of quantum localization observables and related to quantum
probabilities. We describe the photon position by the operator y := i∇k on L2(R3), canonically conjugate
to the photon momentum k. To test the photon localization, we use the observables dΓ(1S(y)), where 1S(y)
denotes the characteristic function of a subset S of R3. We also use the localization observables Γ(1S(y)),
where Γ(χ) is the lifting of a one-photon operator χ (e.g. a smoothed out characteristic function of y) to the
photon Fock space, defined by

Γ(χ) = ⊕∞n=0(⊗nχ), (1.11)
(so that Γ(eb) = edΓ(b)), and then to the space of the total system. Let also Th = Γ(τh), with τh : f(y) →
f(h−1y), where h ∈ group of rigid motions of R3. The observables dΓ(1S(y)) and Γ(1S(y)) have the following
natural properties:

• dΓ(1S1∪S2(y)) = dΓ(1S1(y)) + dΓ(1S2(y)) and Γ(1S1(y))Γ(1S2(y)) = PΩ, for S1 and S2 disjoint,
where PΩ denotes the projection onto the vacuum sector,

• TuXS(y)T−1
u = Xu−1S(y), where XS(y) stands for either dΓ(1S(y)) or Γ(1S(y)).

The observables dΓ(1S(y)) can be interpreted as giving the number of photons in Borel sets S ⊂ R3. They
are closely related to those used in [24, 32, 47] (and discussed earlier in [49] and [1]) and are consistent with
a theoretical description of the detection of photons (usually via the photoelectric effect, see e.g. [50]). The
quantity 〈ψ, Γ(1S(y))ψ〉 is interpreted as the probability that the photons are in the set S in the state ψ.
This said, we should mention that the subject of photon localization is still far from being settled.2

1For a discussion of scattering of massless bosons in QFT see [11].
2The issue of localizability of photons is a tricky one and has been intensely discussed in the literature since the 1930 and

1932 papers by Landau and Peierls [46] and Pauli [52] (see also a review in [44]). A set of axioms for localization observables
was proposed by Newton and Wigner [51] and Wightman [63] and further generalized by Jauch and Piron [43]. Observables
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The fact that for photons the observables we use depend on the choice of polarization vector fields, ελ(k),
λ = 1, 2,3 is not an impediment here as our results imply analogous results for e.g. localization observables of
Mandel [49] and of Amrein and Jauch and Piron [1, 43]: dΓ(fman

S ) and dΓ(fajp
S ), where fman

S := P⊥1S(y)P⊥

and fajp
S := 1S(y) ∩ P⊥, respectively, acting in the Fock space based on the space h = L2

transv(R3; C3) :=
{f ∈ L2(R3; C3) : k · f(k) = 0} instead of h = L2(R3; C2). Here P⊥ : f(k) → f(k) − |k|−2k k · f(k) is
the orthogonal projection on the transverse vector fields and, for two orthogonal projections P1 and P2, the
symbol P1 ∩P2 stand for the orthogonal projection on the largest subspace contained in RanP1 and RanP2.

In what follows, we denote by χS(v) a smoothed out characteristic function of the set S, which is defined
precisely at the end of the introduction. (For instance, χx=1 stands for a C∞(R), function, which is = 1 if
|x−1| ≤ 1/10 and = 0 if |x−1| ≥ 1/9. For a self-adjoint operator A, χA=1 is defined by the spectral theory.)
We say that the system obeys the minimal photon velocity bound if the Schrödinger evolution, ψt = e−itHψ0,
obeys the estimates

∫ ∞

1
dt t−α′

∥∥dΓ(χ |y|
ctα =1

)
1
2 ψt

∥∥2 ! ‖ψ0‖20, (1.12)

for some norm ‖ψ0‖0, some 0 < α′ ≤ 1, and for any α > 0 and c > 0 such that either α < 1, or α = 1 and
c < 1. In other words there are no photons which either diffuse or propagate with speed < 1. The maximal
velocity estimate, as proven in [10], states that, for any c′ > 1,

∥∥dΓ
(
χ |y|

c′t≥1

) 1
2 ψt

∥∥ ! t−γ
∥∥(dΓ(〈y〉) + 1)

1
2 ψ0

∥∥, (1.13)

with γ < min( 1
2 (1− 1

c′ ),
1
10 ) for (1.1), and γ < min(µ

2 ( c′−1
2c′−1 ), 1

2+µ ) for (1.4)–(1.6) with µ > 0.

Results. Now we formulate our results. We consider both the minimal coupling model (1.1) and the linear
coupling model (1.4) with the linear interaction (1.5) and the coupling operators g(k) satisfying (1.6) with
µ > −1/2.

It is known (see [7, 35]) that the operator H has a unique ground state (denoted here as Φgs) and that
generically (e.g. under the Fermi Golden Rule condition), H has no eigenvalues in the interval (Egs, a], where
a < Σ can be taken arbitrarily close to Σ, depending on the coupling constant and on whether the particle
system has an infinite number of eigenvalues accumulating to its ionization threshold (see [8, 27, 31]). We
assume that this is exactly the case:

Fermi’s Golden Rule ([6, 7]) holds for all excited eigenvalues ≤ a of Hp. (1.14)

Assumption (1.14) means that for every excited eigenvalue ej ≤ a of Hp, we have

ΠjW Im((H0 − ej − i0+)−1Π̄j)WΠj ≥ cjΠj , cj > 0, (1.15)

where H0 := Hp + Hf (for either model), W := H −H0, Πj denotes the projection onto the eigenspace of
H0 associated to ej and Π̄j := 1 − Πj . In fact, there is an explicit representation of (1.15). Since it differs
slightly for different models, we present it for the phonon one, assuming for simplicity that the eigenvalue ej

is simple:
∫
〈φj , g

∗(k)Im(Hp + ω(k)− ej − i0+)−1g(k)φj〉dk > 0, (1.16)

where φj is an eigenfunction of Hp corresponding to the eigenvalue ej and the inner product is in the space
Hp. It is clear from (1.16) that Fermi’s Golden Rule holds generally, with a very few exceptions.

Let N := dΓ(1) be the photon (or phonon) number operator and Nρ := dΓ(ω−ρ) be the photon (or
phonon) low momentum number operator. In what follows we let ψt denote the Schrödinger evolution,
ψt = e−itHψ0, i.e. the solution of the Schrödinger equation (1.9), with an initial condition ψ0, satisfying
ψ0 = f(H)ψ0, with f ∈ C∞0 ((−∞,Σ)). More precisely, we will consider the following sets of initial conditions

Υρ :=
{
ψ0 ∈ f(H)D(Nρ)

1
2 ), for some f ∈ C∞0 ((−∞,Σ))

}
,

describing localization of massless particles, satisfying the Jauch-Piron version of the Wightman axioms, were constructed by
Amrein in [1].

3Since polarization vector fields are not smooth, using them to reduce the results from one set of localization observables to
another would limit the possible time decay. However, these vector fields can be avoided by using the approach of [48].
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and
Υ# :=

{
ψ0 ∈ f(H)

(
D(dΓ(〈y〉)) ∩D(dΓ(b)2)

)
, for some f ∈ C∞0 ((Egs, a])

}
,

where b := 1
2 (k · y + y · k) and a < Σ is given by Assumption (1.14).

For A ≥ −C, we denote ‖ψ0‖A := ‖(A + C + 1) 1
2 ψ0‖. We define νρ ≥ 0 as the smallest real number

satisfying the inequality
〈ψt, Nρψt〉 ! tνρ‖ψ0‖2ρ, (1.17)

for any ψ0 ∈ RanE(−∞,Σ)(H), where ‖ψ‖2ρ := ‖ψ‖2Nρ
. It was shown in [10] (see (A.1) of Appendix A) that,

for any −1 ≤ ρ ≤ 1, the inequality (1.17) is satisfied with

νρ ≤
1 + ρ

2 + µ
(1.18)

(this generalizes an earlier result due to [32]). Also, the bound

‖ψt‖Hf ! ‖ψ0‖H (1.19)

shows that (1.17) holds for ρ = −1 with ν−1 = 0. With νρ defined by (1.17), we prove the following two
results.

Theorem 1.1 (Minimal photon velocity bound). Consider the hamiltonian (1.1), or the hamiltonian (1.4)–
(1.5) satisfying (1.6) with µ > −1/2 and (1.7). Let either α = 1 and c < 1 or

max
(1

6
(5 + ν1 − ν0),

1
2

+
1

3 + 2µ

)
< α < 1, (1.20)

where µ = 1/2 for (1.1). Then for any initial condition ψ0 ∈ Υ1, the Schrödinger evolution, ψt, satisfies,
for any a > 1, the following estimate

∫ ∞

1
dt t−α−aν0‖dΓ(χ |y|

ctα =1
)

1
2 ψt‖2 ! ‖ψ0‖21. (1.21)

For the coupling function g, we introduce the norm 〈g〉 :=
∑

|α|≤2 ‖η1η
|α|
2 ∂αg‖L2(R3,Hp). We have

Theorem 1.2 (Weak minimal photon escape velocity estimate). Consider the hamiltonian (1.1) with the
coupling constants κj sufficiently small, or the hamiltonian (1.4)–(1.5) satisfying (1.6) with µ > −1/2, (1.7)
and 〈g〉 3 1. Assume (1.14), ν0 + ν1 < α < 1− ν0 and c > 0. Then for any initial condition ψ0 ∈ Υ#, the
Schrödinger evolution, ψt, satisfies the estimate

∥∥Γ(χ |y|
ctα≤1

)ψt

∥∥ ! t−γ
(
‖ψ0‖dΓ(〈y〉) + ‖ψ0‖dΓ(b)2

)
, (1.22)

where γ < 1
2 min(1− α− ν0,

1
2 (α− ν0 − ν1)).

Remarks.
1) The estimate (1.21) is sharp if ν0 = 0. Assuming this and taking ν1 ≤ (3/2 + µ)−1 (see (A.7) of

Appendix A), the conditions on α in Theorems 1.1 and 1.2 become α > 5
6 + 1

6(3/2+µ) , and (3/2+µ)−1 < α < 1,
respectively.

2) The estimate (1.22) states that, as t → ∞, with probability → 1, either all photons are attached to
the particle system in the combined ground state, or at least one photon departs the particle system with
the distance growing at least as O(tα). (Remember that the set Υ# excludes the ground state and the
exited states below Σ are excluded by the condition (1.14). Note that (1.22) for µ ≥ 1/2, some α > 0 and
ψ0 ∈ E∆(H), with ∆ ⊂ (Egs, e1 −O(〈g〉)) and e1 the first excited eigenvalue of Hp, can be derived directly
from [9, 10].)

3) With some more work, one can remove the assumption (1.14) and relax the condition on ψ0 in The-
orem 1.2 to the natural one: ψ0 ∈ PΣD(dΓ(〈y〉)), where PΣ is the spectral projection onto the orthogonal
complement of the eigenfunctions of H with corresponding eigenvalues in the interval (−∞,Σ).

4) For the spin-boson model, a uniform bound, 〈ψt, eδNψt〉 ≤ C(ψ0) < ∞, δ > 0, on the number of
photons, on a dense set of ψ0’s, without controlling the dependence of the constant C(ψ0) on this dense set,
was recently proven in [14]. See [21] for a discussion of such bounds.

5) Some key estimates used in the proof Theorem 1.1 were derived in the proof of asymptotic completeness
for Rayleigh scattering in [21].
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Remarks about the literature. Considerable progress has been made in understanding the asymptotic
dynamics of non-relativistic particle systems coupled to quantized electromagnetic or phonon field. The local
decay property was proven in [7, 8, 9, 12, 27, 28, 30, 31], by the combination of the renormalization group
and positive commutator methods. The maximal velocity estimate was proven in [10].

An important breakthrough was achieved recently in [14], where the authors proved relaxation to the
ground state and uniform bounds on the number of emitted massless bosons in the spin-boson model.

For models involving massive bosons fields, some minimal velocity estimates are proven in [18]. For
massless bosons, Theorems 1.1 and 1.2 seem to be new.

Asymptotic completeness was proven for (a small perturbation of) a solvable model involving a harmonic
oscillator (see [3, 61]), and for models involving massive boson fields ([18, 24, 25, 26]). Moreover, [32] obtained
some important results for massless bosons (the Nelson model) in confined potentials.

In [21], we have proven asymptotic completeness for Rayleigh scattering on the states for which the
expectation of either the photon/phonon number operator, N , or an operator, N1, testing the photon/phonon
infrared behaviour is uniformly bounded on corresponding dense sets. By extending the result of [14] in a
straightforward way, we have shown that the second of these conditions is satisfied for the spin-boson model.

[21] contains also minimal velocity-type estimates (see the paragraph describing our approach), which
play an important role in the present paper.

Approach and organization of the paper. We prove Theorems 1.1 and 1.2 in Sections 2 and 3, respec-
tively. The proofs begin with estimates involving the operator bε := 1

2 (v(k) · y + y · v(k)), where v(k) := k
ω+ε ,

for ε = t−κ, with some κ > 0. The latter estimates were derived in the proof of asymptotic completeness for
Rayleigh scattering in [21]. We reproduce the first of these estimates here for reader’s convenience. Then we
use them to derive the estimates of Theorems 1.1 and 1.2.

Unlike the operator b0 := 1
2 ( k

ω ·y+y · k
ω ), used in [32], the operator bε is self-adjoint. This follows from the

fact that the vector field v(k) is Lipschitz continuous and therefore generates a global flow. Using bε avoids
some technicalities, as compared to the other operator. At the expense of slightly lengthier computations
but gaining simpler technicalities, one can also modify bε to make it bounded, by multiplying it with the
cut-off function χ |y|

c′t≤1
with c′ > 1, such that the maximal velocity estimate (1.13) holds, or use the smooth

vector field v(k) = k√
ω2+ε2

, instead of v(k) = k
ω+ε .)

As in earlier works, to prove the above estimates, we use the method of propagation observables, orig-
inating in the many body scattering theory ([58, 59, 42, 33, 64, 15], see [17, 41] for a textbook expo-
sition and a more recent review). It was extended to the non-relativistic quantum electrodynamics in
[18, 32, 23, 24, 25, 26] and to the P (ϕ)2 quantum field theory, in [19] and was used in [10] to prove the
maximal velocity estimate (1.13). We formalize the method of propagation observables in Appendix B.

To simplify the exposition, in Sections 2–3, we consider hamiltonians of the form (1.4)–(1.5), with the
coupling operators g(k) satisfying (1.6), where η1 and η2 obey (1.7). In Section 4, we extend the results
to a general class of hamiltonians that are introduced in the next paragraph. In Section 5, we show that
the minimal coupling model (1.1) can be mapped unitarily to a hamiltonian from this class, and we deduce
Theorems 1.1 and 1.2 for this model. Finally, a low momentum bound of [10] and some standard technical
statements are given in Appendices A, and C. The paper is essentially self-contained. In order to make it more
accessible to non-experts, we included Supplement I defining and discussing the creation and annihilation
operators (see also [20, 16]).

General class of hamiltonians. The QED hamiltonian (1.1) can be written in the form (1.4), with
I(g) being quadratic in the creation and annihilation operators a#

λ (k), and the coupling functions satisfying
estimates of the form (1.6) with µ = −1/2, η1 = 〈p〉−1 or 1, and η2 = 〈x〉−1. This infrared behaviour is too
singular for our techniques. However, we show in Section 5 that under the generalized Pauli-Fierz transform
of [55], (1.1) is unitary equivalent to an operator of the form described below, whose infrared behaviour is
considerably better. We introduce the class of hamiltonians of the form

H̃ = Hp + Hf + Ĩ(g), (1.23)

with Hp := −∆ + V (x), Hf = dΓ(ω) and

Ĩ(g) :=
∑

ij

∫∫
dk(i)dk′(j)gij(k(i), k

′
(j))⊗ a∗(k(i))a(k′(j)), (1.24)
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where the summation in i, j ranges over the set i, j ≥ 0, 1 ≤ i + j ≤ 2, k(p) := (k1, . . . , kp), kj := (kj , λj),∫
dk(p) :=

∏p
1

∑
λj

∫
dkj , a#(k(p)) :=

∏p
1 a#(kj) if p ≥ 1 and = 1, if p = 0, a#(kj) := a#

λj
(kj), and g := (gij).

We suppose that the coupling operators, gij = gij(k(i), k(j)) obey

gij(k(i), k
′
(j)) = g∗ji(k

′
(j), k(i)), (1.25)

and satisfy the estimates

‖η2−i−j
1 η|α|2 ∂αgij(k(i+j))‖Hp !

i+j∑

m=1

i+j∏

,=1

(|k,|µ〈k,〉−2−µ)|km|−|α|, (1.26)

where µ > −1/2, and, as above, η1, η2 are estimating operators (unbounded, positive operators with bounded
inverses) on the particle space Hp satisfying (1.7) (for some Σ > inf σ(Hp)). We define the norm 〈g〉 :=∑

1≤i+j≤2

∑
|α|≤2 ‖η

2−i−j
1 η|α|2 ∂αgij‖ of the vector coupling operators g := (gij), extending the norms of the

scalar coupling operators g, introduced above. It is easy to extend Theorems 1.1 and 1.2 to the hamiltonians
of the form (1.23)–(1.26) satisfying (1.7):

Theorem 1.3. Theorems 1.1 and 1.2 hold for hamiltonians of the form (1.23)–(1.24), satisfying (1.25)–
(1.26) and (1.7).

As mentioned above, Theorem 1.3 is proven in Section 4.

Notations. For functions A and B, we will use the notation A ! B signifying that A ≤ CB for some
absolute (numerical) constant 0 < C < ∞. The symbol E∆ stands for the characteristic function of a set
∆, while χ·≤1 denotes a smoothed out characteristic function of the interval (−∞, 1], that is it is in C∞(R),
is non-increasing, and = 1 if x ≤ 1/2 and = 0 if x ≥ 1. Moreover, χ·≥1 := 1 − χ·≤1 and χ·=1 stands for
the derivative of χ·≥1. Given a self-adjoint operator a and a real number α, we write χa≤α := χ a

α≤1, and
likewise for χa≥α. Finally, D(A) denotes the domain of an operator A, 〈x〉 := (1 + |x|2)1/2, O(ε) denotes an
operator bounded by Cε.

Acknowledgements. The first author thanks Jean-François Bony and Christian Gérard for useful discus-
sions. His research is supported by ANR grant ANR-12-JS01-0008-01. The second author is grateful to
Volker Bach, Jürg Fröhlich, and Avy Soffer for many useful discussions and for very fruitful collaboration.

2. The first propagation estimate

In this section we to prove the minimal velocity estimates of Theorem 1.1 for hamiltonians of the form
(1.4)–(1.5), with the coupling operators g(k) satisfying (1.6) and (1.7). We begin with a technical result
proving these estimates for the operator bε, which is defined in the introduction, instead of |y|. Let νρ ≥ 0
be the same as in (1.17). We write the operator bε as

bε =
1
2
(θε∇ω · y + y · ∇ω θε), where θε :=

ω

ωε
, ωε := ω + ε, ε = t−κ. (2.1)

Theorem 2.1. Consider hamiltonians of the form (1.4)–(1.5) with the coupling operators satisfying (1.6)
with µ > −1/2 and (1.7). Let ν1 − ν0 < κ < 1. If either α < 1, or α = 1 and c < 1, and

α > max((3/2 + µ)−1, (1 + κ)/2, 1− κ + ν1 − ν0), (2.2)

then for any initial condition ψ0 ∈ Υ1, the Schrödinger evolution, ψt, satisfies, for any a > 1, the following
estimates

∫ ∞

1
dt t−α−aν0

∥∥dΓ(χ bε
ctα =1)

1
2 ψt

∥∥2 ! ‖ψ0‖21. (2.3)

Proof. We will use the method of propagation observables outlined in Appendix B. We consider the one-
parameter family of one-photon operators

φt := t−aν0χα, χα ≡ χv≥1, v :=
bε

ctα
, (2.4)
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where a > 1. To show that φt is a weak one-photon propagation observable, we obtain differential inequalities
for φt. Recall that dφt = ∂tφt + i[ω, φt]. To compute dφt, we use the expansion

dφt = t−aν0(dv)χ′α +
2∑

i=1

remi, (2.5)

rem1 := t−aν0 [dχα − (dv)χ′α], rem2 := −aν0t
−1φt. (2.6)

Using the definitions in (2.1), we compute

dv =
1

ctα
(
θε −

αbε

t
+ ∂tbε

)
. (2.7)

Next, we have ∂tbε = κ
2t1+κ (ω−1

ε θε∇ω·y+ h.c.) on D(bε), which, due to the relation 1
2 (ω−1

ε θε∇ω·y+ h.c.) =
ω−1/2

ε bεω
−1/2
ε , becomes

∂tbε =
κ

t1+κ
ω−1/2

ε bεω
−1/2
ε . (2.8)

Using that (see Lemma C.1 of Appendix C)

ω−1/2
ε bεω

−1/2
ε χ′α = ω−1/2

ε bεχ
′
αω−1/2

ε +O(t
3
2 κ),

and that bε ≥ 0 on suppχ′α, we obtain

∂tbεχ
′
α ≥ −

const
t1−κ/2

. (2.9)

The relations (2.5)–(2.9), together with bε
ctα χ′α ≤ χ′α, imply

dφt ≥ t−aν0
( θε

ctα
− α

t

)
χ′α +

3∑

i=1

remi, (2.10)

where rem1 and rem2 are given in (2.6) and

rem3 = O(t−1−α+ κ
2−aν0). (2.11)

This, together with θε = 1 − t−κ

ωε
and ω−1

ε χ′α = ω−1/2
ε χ′αω−1/2

ε + O(t−α+ 3
2 κ) (see again Lemma C.1 of

Appendix C), implies

dφt ≥ t−aν0
( 1
ctα

− α

t

)
χ′α +

5∑

i=1

remi, (2.12)

rem4 :=
1

ctα+κ+aν0
ω−1/2

ε χ′αω−1/2
ε , rem5 = O(t−2α+ κ

2−aν0). (2.13)

We have ‖φt‖ ≤ t−aν0 and therefore the first estimate in (B.2) holds with δ = 0. If either α < 1 (and t
sufficiently large), or α = 1 and c < 1, then pt := t−aν0( 1

ctα − α
t )χ′α is non-negative, which implies the second

estimate in (B.2). Thus (B.2) holds. By the definition (2.5) and Corollary C.3 of Appendix C for i = 1, and
by an explicit form for i = 2, 3, 4, 5, we have the estimates

‖ωρi/2 remi ωρi/2‖ ! t−λi , (2.14)

i = 1, 2, 3, 4, 5, with ρ1 = ρ2 = ρ3 = ρ5 = 0, ρ4 = 1, λ1 = 2α−κ+ aν0, λ2 = 1+ aν0, λ3 = 1+α−κ/2+ aν0,
λ4 = α + κ + aν0, and λ5 = 2α − κ/2 + aν0. We remark here that the i = 2 term is absent if ν0 = 0. The
relation (2.14) implies (B.3) with ρ = ρi and λ = λi provided λi > 1 + νρi .

Finally, in the same way as [10, Lemma 3.1], one shows (by replacing |y| with bε in that lemma) that,
under (1.6) for some µ ≥ −1

2 ,
∥∥η1η

2
2χ bε

ctα≥1g(k)
∥∥

L2(R3;Hp)
! t−τ , τ < (

3
2

+ µ)α, (2.15)

which implies (B.4) with λ′ < aν0 + ( 3
2 + µ)α. Hence φt is a weak one-photon propagation observable,

provided 2α > 1 + κ + ν0 − aν0, α− κ/2 > ν0 − aν0, α + κ > 1 + ν1 − aν0, and (3
2 + µ)α > 1. Therefore, by
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Proposition B.2, we have, under the conditions on the parameters above,
∫ ∞

1
dt t−α−aν0‖dΓ(χ′α)

1
2 ψt‖2 ! ‖ψ0‖21. (2.16)

This, due to the definition of χ′α, implies the estimate (2.3). "

Proof of Theorem 1.1 for hamiltonians of the form (1.4)–(1.5). To prove (1.21), we use several iterations of
Proposition B.4. We consider the one-parameter family of one-photon operators

φt := t−aν0χwα≥1,

with wα :=
( |y|

c′tα

)2, a > 1, and νρ ≥ 0, the same as in (1.17). We use the notation χ̃α ≡ χwα≥1. As in
(2.5)–(2.6), we use the expansion

dφt = t−aν0(dwα)χ̃′α +
2∑

i=1

remi, (2.17)

rem1 := t−aν0 [dχ̃α − (dv)χ̃′α], rem2 := −aν0t
−1φt. (2.18)

We compute

dwα =
2b0

(c′tα)2
− 2αwα

t
, (2.19)

where b0 = 1
2 (∇ω · y + h.c.). Note that b0 is not a self-adjoint operator, only maximal symmetric. Never-

theless, using Hardy’s inequality, one easily verifies that b0 is well-defined on D(|y|) and that b0〈y〉−1 and
〈y〉−1b0 extend to bounded operators. We write b0 = bε + ε 1

2 ( 1
ωε
∇ω · y + h.c.), where, recall, ωε = ω + ε,

ε = t−κ. We choose κ > 0 satisfying

4α− 3 > κ > 2− 2α + ν1 − ν0. (2.20)

Using the notation v = bε
ctα and the partition of unity χv≥1 + χv≤1 = 1, we find bε ≥ ctα + (bε − ctα)χv≤1.

Commutator estimates of the type considered in Appendix C (see Lemma C.5) give χ bε
c̃tα≤−1(χ̃

′
α)1/2 =

O(t−α+κ) for c̃ > 2c′, which, together with bε(χ̃′α)1/2 = O(tα), yields

(χ̃′α)1/2bεχv≤1(χ̃′α)1/2 ≥ −c̃tα(χ̃′α)1/2χv≤1(χ̃′α)1/2 − Ctκχ̃′α.

This estimate, together with Lemma C.1 of Appendix C and wα ≤ 1 on supp χ̃α, give dφt ≥ pt − p̃t + rem,
where

pt :=
2

taν0

( c

(c′)2tα
− α

t

)
χ̃′α,

p̃t :=
2(c̃ + c)
c′2tα+aν0

(χ̃′α)1/2χv≤1(χ̃′α)1/2,

and rem =
∑4

i=1 remi, with rem1 and rem2 given by (2.18),

rem3 :=
c

(c′tα)2tκ+aν0
(

1
ωε
∇ω · y + h.c.)χ̃′α,

and rem4 = O(t−2α+κ−aν0). If α = 1, then we choose c > (c′)2 so that pt ≥ 0.
As in the proof of Theorem 2.1, we deduce that the remainders remi, i = 1, 2, 3, 4, satisfy the estimates

(2.14), i = 1, 2, 3, 4, with ρ1 = ρ3 = 1, ρ2 = ρ4 = 0, λ1 = 2α + aν0, λ2 = 1 + aν0, λ3 = α + κ + aν0 and
λ4 = 2α−κ+aν0. In particular, the estimate for i = 1 follows from Lemma C.4. Since 2α > α+κ > 1+ν1−aν0

and 2α− κ > 1, the remainder rem =
∑4

i=1 remi gives an integrable term. (Note that rem2 = 0, if ν0 = 0.)
Now, we estimate the contribution of p̃t. Let γ = 2α− 1 ≤ α and decompose p̃t = pt1 + pt2, where

pt1 :=
c′′

tα+aν0
(χ̃′α)1/2χc1tγ≤bε≤ctα(χ̃′α)1/2,

pt2 :=
c′′

tα+aν0
(χ̃′α)1/2χ̄γ(χ̃′α)1/2,
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with χc1tγ≤bε≤ctα ≡ χγχv≤1, χγ ≡ χ bε
c1tγ ≥1, χ̄γ ≡ χ bε

c1tγ ≤1, where c1 < 1 if γ = 1 and c1 < α(c′)2 if γ < 1, and

c′′ := 2(c̃+c)/(c′)2. First, we estimate the contribution of pt1. Since [(χ̃′α)1/2, (χc1tγ≤bε≤ctα)1/2] = O(t−γ+κ)
(see Lemma C.1 of Appendix C) and since α + γ − κ > 1, it suffices to estimate the contribution of
c′′t−α−aν0χc1tγ≤bε≤ctα . To this end, we use the propagation observable

φt1 := t−aν0hαχγ , (2.21)

where hα ≡ h( bε
ctα ), h(λ) :=

∫∞
λ dsχs≤1. As in (2.9), we have

hα∂tbεχ
′
γ ≤

const
t1−κ/2

, h′α∂tbεχγ ≥ −
const
t1−κ/2

. (2.22)

Using this together with (2.5)–(2.7), we compute

dφt1 ≤
1

ctα+aν0
(θε −

αbε

t
)h′αχγ +

1
c1tγ+aν0

hαχ′γ(θε −
γbε

t
) +

3∑

i=1

rem′
i,

where rem′
1 is a sum of two terms of the form of rem1 given in (2.5)–(2.6), with χα replaced by hα, in one,

and by χγ , in the other, rem′
2 := O(t−1−γ+κ/2−aν0), and rem′

3 := −aν0t−1φt1. We estimate

θε −
αbε

t
≥ 1− 1

ωεtκ
− αc

t1−α

on supph′α and

θε −
γbε

t
≤ 1− 1

ωεtκ
− γc1

2t1−γ

on suppχ′γ . Using h′α ≤ 0, χ′γ ≥ 0, hα ≤ 1− bε
ctα and bε

ctα = O(t−α+γ) on suppχ′γ , this gives

dφt1 ≤ −p′t1 + p̃t1 + rem′,

with rem′ :=
∑4

i=1 rem′
i, rem′

4 := ω−1/2O(t−α−κ−aν0)ω−1/2, and

p′t1 := t−aν0(1− α

t
)h′αχγ , p̃t1 :=

1
c1tγ+aν0

χ′γ .

By (2.3), since γ > max((3/2+µ)−1, (1+κ)/2, 1−κ+ν1−ν0), the term p̃t1 gives an integrable contribution.
We deduce as above that the remainders rem′

i, i = 1, 2, 3, 4, satisfy the estimates (2.14), i = 1, 2, 3, 4, with
ρ1 = ρ2 = ρ3 = 0, ρ4 = 1, λ1 = 2γ − κ + aν0, λ2 = 1 + γ − κ/2 + aν0, λ3 = 1 + aν0, and λ4 = α + κ + aν0.
Since 2γ − κ > 1, γ > κ/2, and α + κ > 1 + ν1 − aν0, the remainder rem′ =

∑
i rem′

i is integrable. Finally,
(B.4) with λ′ < aν0 +( 3

2 +µ)γ holds by the inequality (2.15). Hence, φt1 is a strong one-photon propagation
observable and therefore we have the estimate∫ ∞

1
dt ‖dΓ(pt1)

1
2 ψt‖2 !

∫ ∞

1
dt ‖dΓ(p′t1)

1
2 ψt‖2 ! ‖ψ0‖21. (2.23)

(In fact, by multiplying the observable (2.21) by tδ for an appropriate δ > 0, we can obtain a stronger
estimate.)

Now, we consider pt2. Recall the notations χ̃α ≡ χwα≥1, wα =
( |y|

c′tα

)2, and let hγ ≡ h(vγ), with
h(λ) =

∫∞
λ ds χs≤1 and vγ = bε

c1tγ . We use the propagation observable

φt2 := t−aν0(χ̃αhγ + hγχ̃α). (2.24)

Using (2.7), (2.8), (2.19), b = bε+ε 1
2 ( 1

ωε
∇ω ·y+ h.c.), bε ≤ c1tγ on suppχvγ≤1, γ = 2α−1 and [(χ̃′α)1/2, hγ ] =

O(t−γ+κ) (see Lemma C.1 of Appendix C), we compute

dφt2 ≤t−aν0
(( c1

(c′)2
− α

)2
t
(χ̃′α)1/2hγ(χ̃′α)1/2 + χ̃αh′γ(dvγ) + (dvγ)h′γχ̃α

)
+

4∑

i=1

rem′′
i ,

where dvγ = θε
c1tγ − γbε

c1tγ+1 , rem′′
1 is a term of the form of rem1 given in (2.6), with χα replaced by χ̃α, likewise,

rem′′
2 is a term of the form of rem1 given in (2.6), with χα replaced by hγ , rem′′

3 = O(t−1−γ+κ/2−aν0) and
rem′′

4 := −aν0t−1φt2. To estimate dvγ , we use that χ̃′α ≥ 0, h′γ ≤ 0, θε = 1− t−κω−1
ε , vγh′γ ≤ h′γ , and

χ̃αh′γ(dvγ) + (dvγ)h′γχ̃α = −χ̃1/2
α (−h′γ)1/2(dvγ)(−h′γ)1/2χ̃1/2

α +O(t−γ+κ)
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(see again Lemma C.1 of Appendix C), to obtain

dφt2 ≤ −p′t2 + rem′′,

with rem′′ :=
∑6

i=1 rem′′
i , rem′′

5 = O(t−2γ+κ−aν0), rem′′
6 = ω−1/2O(t−γ−κ−aν0)ω−1/2 and (at least for t

sufficiently large)

p′t2 := t−aν0
[
− (

2c1

(c′)2
− 2α)

1
t
(χ̃′α)1/2hγ(χ̃′α)1/2 + (1− γc1

t1−γ
)

1
c1tγ

χ̃1/2
α h′γχ̃1/2

α

]
.

Since c1
(c′)2 < α and either γ < 1, or γ = 1 and c1 < 1, and χ̃′α ≥ 0 and h′γ ≤ 0, both terms in the square

braces on the r.h.s. are non-positive. We deduce as above that the remainders rem′′
i , i = 1, . . . , 6, satisfy the

estimates (2.14), i = 1, . . . , 6, with ρ1 = ρ6 = 1, ρ2 = ρ3 = ρ4 = ρ5 = 0, λ1 = 2α+aν0, λ2 = λ5 = 2γ−κ+aνδ,
λ3 = 1 + γ − κ/2 + aν0, λ4 = 1 + aν0, λ6 = γ + κ + aν0. Since 2α > γ + κ > 1 + ν1 − aν0, 2γ − κ > 1
and γ > κ/2, the condition (B.3) is satisfied. Moreover, (B.4) with λ′ < aν0 + ( 3

2 + µ)α holds by (2.15).
Therefore φt2 is a strong one-photon propagation observable and we have the estimate

∫ ∞

1
dt ‖dΓ(pt2)

1
2 ψt‖2 !

∫ ∞

1
dt ‖dΓ(p′t2)

1
2 ψt‖2 ! ‖ψ0‖21. (2.25)

(Again, by multiplying the observable (2.24) by tδ for an appropriate δ > 0, we can obtain a stronger
estimate.)

Since p̃t = pt1 + pt2, estimates (2.23) and (2.25) imply the estimate
∫ ∞

1
dt ‖dΓ(pt)

1
2 ψt‖2 ! ‖ψ0‖21, (2.26)

which due to χ̃′α ≡ χwα=1, implies the estimate (1.21). "

3. The second propagation estimate

In this section we to prove the minimal velocity estimates of Theorem 1.2 for hamiltonians of the
form (1.4)–(1.5), with the coupling operators g(k) satisfying (1.6) and (1.7). Recall the norm 〈g〉 =∑

|α|≤2 ‖η1η
|α|
2 ∂αg‖L2(R3,Hp) for the coupling function g and the notation 〈A〉ψ = 〈ψ, Aψ〉. We begin with

a technical result, proven in [21], which proves these estimates for the operator bε, which is defined in the
introduction, instead of |y|.

Theorem 3.1. Consider hamiltonians of the form (1.4)–(1.5) with the coupling operators satisfying (1.6)
with µ > −1/2 and (1.7). Assume that (1.14) holds. Let 〈g〉 be sufficiently small, ν1 < κ< 1, and 0 < α < 1.
Let ψ0 ∈ Υ#. Then the Schrödinger evolution, ψt, satisfies the estimate

∥∥Γ(χ bε
ctα≤1)

1
2 ψt

∥∥2 ! t−δ
(
‖ψ0‖2dΓ(〈y〉) + ‖ψ0‖2dΓ(b)2

)
, (3.1)

for 0 ≤ δ < min(κ− ν1, 1− κ, 1− α− ν0) and any c > 0, where, recall, b = 1
2 (k · y + y · k).

Proof of Theorem 1.2 for hamiltonians of the form (1.4)–(1.5). Recall the notations v = bε
ctα and wα =

( |y|
c′tα

)2. To prove (1.22), we begin with the following estimate, proven in the localization lemma C.5 of
Appendix C:

χv≥1χwα≤1 = O(t−(α−κ)), (3.2)

for ε = t−κ, κ < α, and c′ < c/2. Now, let χ2
v≤1 + χ2

v≥1 = 1 and write

χ2
wα≤1 = χv≤1χ

2
wα≤1χv≤1 + R ≤ χ2

v≤1 + R, (3.3)

where R := χv≤1χ2
wα≤1χv≥1 + χv≥1χ2

wα≤1χv≤1 + χv≥1χ2
wα≤1χv≥1. The estimates (3.2) and (3.3) give

χ2
wα≤1 ≤ χ2

v≤1 +O(t−(α−κ)), (3.4)

which in turn implies
∥∥Γ(χwα≤1)

1
2 ψ

∥∥ !
∥∥Γ(χv≤1)

1
2 ψ

∥∥ + Ct−(α−κ)/2
∥∥(N + 1)

1
2 ψ

∥∥. (3.5)

Choosing κ = (α + ν1 − ν0)/2, the estimate (3.5), together with (3.1), yields (1.22). "
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4. Proof of Theorem 1.3: the model (1.23)–(1.24)

In this section we extend the results of Sections 2–3 to hamiltonians of the form (1.23)–(1.24), satisfying
(1.25) –(1.26) and (1.7), and prove Theorem 1.3. First, to extend the results of Appendix B to the present
case, we replace the assumption (B.4) by the assumptions






( ∫
‖η1η

2
2(φ̃tg)ij(k)‖2Hp

ω(k)δdk
) 1

2 ! 〈t〉−λ′ , i + j = 1,
( ∫

‖η2
2(φ̃tg)ij(k1, k2)‖2Hp

∏

,=1,2

(1 + ω(k,)−
1
2 + ω(k,)δ)dk,

) 1
2 ! 〈t〉−λ′ , i + j = 2,

(4.1)

where λ′ is the same as in (B.4) and, for any one-particle operator φ acting on h, we define (φ̃g)ij := φgij ,
for i + j = 1, and (φ̃g)2,0 = (φ̃g)∗0,2 := (φ⊗ 1 + 1⊗ φ)g2,0, (φ̃g)1,1 := (φ⊗ 1− 1⊗ φ)g1,1. Then we replace
the second relation in (B.9) by the relation (see Supplement I)

i[Ĩ(g),dΓ(φt)] = −Ĩ(iφ̃g), (4.2)

which is valid for any one-particle operator φ, and replace the estimate (B.11) by the estimate

|〈Ĩ(g)〉ψ| ≤
∑

i+j=1

( ∫
‖η1η

2
2gij(k)‖2Hp

ω(k)δdk
) 1

2 ‖η−1
1 η−2

2 ψ‖‖ψ‖δ

+
∑

i+j=2

( ∫
‖η2

2gij(k1, k2)‖2Hp

∏

,=1,2

(1 + ω(k,)−1 + ω(k,)δ)dk,

) 1
2
(‖η−4

2 ψ‖+ ‖ψ‖−1)‖ψ‖δ, (4.3)

which, as in (B.11), implies, together with (4.1) and (1.7),

|〈Ĩ(iφ̃tg)〉ψt | ! t−λ′+νδ‖ψ0‖2δ , (4.4)

for any ψ0 ∈ Υδ, where Υδ is defined in (B.6). This completes the extension of the results of Section B, and
therefore of Section 2, to hamiltonians of the form (1.23)–(1.24).

5. Proof of Theorems 1.1–1.2 for the QED model

5.1. Generalized Pauli–Fierz transformation. We consider the QED hamiltonian defined in (1.1)–(1.2).
The coupling function gqed

y (k, λ) := |k|−1/2ξ(k)ελ(k)eik·y in this hamiltonian is more singular in the infrared
than can be handled by our techniques (µ > 0). To go around this problem we use the (unitary) generalized
Pauli–Fierz transformation (see [55])

H −→ H̃ := e−i
Pn

j=1 κjΦ(qxj )Hei
Pn

j=1 κjΦ(qxj ), (5.1)

where Φ(h) is the operator-valued field, Φ(h) := 1√
2
(a∗(h)+a(h)), and the function qy(k, λ) is defined below,

to pass to the new unitarily equivalent hamiltonian H̃.
To define qy(k, λ), let ϕ ∈ C∞(R; R) be a non-decreasing function such that ϕ(r) = r if |r| ≤ 1/2 and

|ϕ(r)| = 1 if |r| ≥ 1. For 0 < ν < 1/2, we define

qy(k, λ) :=
ξ(k)
|k| 12+ν

ϕ(|k|νελ(k) · y). (5.2)

We note that the definition of Φ(h) gives A(y) = Φ(gqed
y ). Using (I.7) and (I.8) of Supplement I, we compute

H̃ =
n∑

j=1

1
2mj

(
− i∇xj − κjÃ(xj)

)2 + E(x) + Hf + V (x), (5.3)

where, recall, x = (x1, . . . , xn), and





Ã(y) := Φ(g̃y), g̃y(k, λ) := gqed
y (k, λ)−∇xqy(k, λ),

E(x) := −
∑n

j=1 κjΦ(exj ), ey(k, λ) := i|k|qy(k, λ),
V (x) := U(x) + 1

2

∑
λ=1,2

∑n
j=1 κ2

j

∫
R3 |k||qxj (k, λ)|2dk.

(5.4)

The operator H̃ is self-adjoint with domain D(H̃) = D(H) = D(p2 + Hf ) (see [38, 39]).
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Now, the coupling functions (form factors) g̃x(k, λ) and ex(k, λ) in the transformed hamiltonian, H̃, satisfy
the estimates that are better behaved in the infrared ([10]):

|∂m
k g̃y(k, λ)| ! 〈k〉−3|k| 12−|m|〈x〉 1

ν +|m|, (5.5)

|∂m
k ey(k, λ)| ! 〈k〉−3|k| 12−|m|〈x〉1+|m|. (5.6)

We see that the new hamiltonian (5.3) is of the form

H̃ = Hp + Hf + Ĩ(g), (5.7)

with Hp := −
∑n

j=1
1

2mj
∆xj + V (x), and Ĩ(g) := −

∑n
j=1 κj(pj · Ã(xj) + Ã(xj) · pj − κjÃ(xj)2) + E(x). We

see that the latter operator is of the form (1.24)–(1.26), with η1 = 〈p〉−1, η2 = 〈x〉−1−1/ν , µ = 1/2, |α| ≤ 2,
and 1 ≤ i + j ≤ 2, where p := (p1, . . . , pn), and therefore the hamiltonian (1.1) satisfy the bound (1.8) and
is of the class described in the introduction.

5.2. Proof of Theorems 1.1–1.2 for the QED model. We have shown the statements of Theorems 1.1
and 1.2 for hamiltonians of the form (1.23)–(1.26), with the operators ηj , j = 1, 2, satisfying (1.7), and
therefore for the operator (5.3). To translate Theorems 1.1 and 1.2 from H̃, given by (5.3), to the QED
hamilonian (1.1), we use the following estimates ([10])

∥∥∥dΓ(χ1(w))
1
2 ψ

∥∥∥
2

!
〈
Uψ, dΓ(χ1(w))Uψ

〉
+ t−αd‖ψ‖2, (5.8)

∥∥∥Γ(χ2(w))
1
2 ψ

∥∥∥
2

!
〈
Uψ, Γ(χ2(w))Uψ

〉
+ t−αd‖ψ‖2, (5.9)

where U := e−i
Pn

j=1 κjΦ(qxj ) and w := y
ctα , valid for any functions χ1(w) and χ2(w) supported in {|w| ≤ ε}

and {|w| ≥ ε}, respectively, for some ε > 0, for any ψ ∈ f(H)D(N1/2), with f ∈ C∞0 ((−∞,Σ)), and for
0 ≤ d < 1/2. (5.8) follows from estimates of Section 2 of [10] and (5.9) can be obtained similarly (see (I.8)
and (I.9)). Using these estimates for ψt = e−itHψ0, with an initial condition ψ0 in either Υ1 or Υ#, together
with Ue−itHψ0 = e−itH̃Uψ0, and applying Theorems 1.1 and 1.2 for H̃ to the first terms on the r.h.s., we
see that, to obtain Theorems 1.1 and 1.2 for the hamiltonian (1.1), we need, in addition, the estimates

〈
ψ,U∗N1Uψ

〉
!

〈
ψ,

(
N1 + 1

)
ψ

〉
, (5.10)

〈
ψ,U∗dΓ(〈y〉)Uψ

〉
!

〈
ψ,

(
dΓ(〈y〉) + 〈x〉2

)
ψ

〉
, (5.11)

∥∥U∗dΓ(b)Uψ
∥∥ !

∥∥(
dΓ(b) + 〈x〉2

)
ψ

∥∥, (5.12)

where, recall, N1 = dΓ(ω−1) and b = 1
2 (k · y + y · k).

Let qx :=
∑n

j=1 κjqxj so that U := e−iΦ(qx). To prove (5.10), we see that, by (I.8) of Supplement I, we
have

U∗N1U = eiΦ(qx)dΓ(ω−1)e−iΦ(qx) = N1 − Φ(iω−1qx) +
1
2
‖ω−1/2qx‖2h. (5.13)

(Since ω−1qx /∈ h, the field operator Φ(iω−1qx) is not well-defined and therefore this formula should be
modified by introducing, for instance, an infrared cutoff parameter σ into qx. One then removes it at the
end of the estimates. Since such a procedure is standard, we omit it here.) This relation, together with

|〈ψ, Φ(iω−1qx)ψ〉| !
( ∫

ω−3−2ν+ε〈k〉−6dk
) 1

2 ∥∥dΓ(ω−ε)
1
2 ψ

∥∥‖ψ‖, (5.14)

for any ε > 0, which follows from the bounds of Lemma I.1 of Supplement I, and

‖ω− 1
2 qx‖h ! ‖ω−1−ν〈k〉−3‖h, (5.15)

implies (5.10).
To prove (5.11) and (5.12), we proceed similarly, using, instead of (5.14) and (5.15), the estimates

|〈ψ, Φ(i〈y〉qx)ψ〉| !
( ∫

ω−2−2ν〈k〉−6dk
) 1

2 ∥∥dΓ(ω−1)
1
2 ψ

∥∥‖〈x〉ψ‖

!
( ∫

ω−2−2ν〈k〉−6dk
) 1

2 ∥∥dΓ(〈y〉) 1
2 ψ

∥∥‖〈x〉ψ‖, (5.16)
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and

‖〈y〉 1
2 qx‖h ! 〈x〉 1

2 ‖ω−1−ν〈k〉−3‖h, (5.17)

and

‖Φ(ibqx)ψ‖ !
( ∫

ω−2−2ν〈k〉−6dk
) 1

2 ‖〈x〉(Hf + 1)
1
2 ψ‖, (5.18)

and

〈qx, bqx〉h ! 〈x〉‖ω− 1
2−ν〈k〉−3‖2h. (5.19)

Appendix A. Photon # and low momentum estimate

For simplicity, consider hamiltonians of the form (1.4)–(1.5), with the coupling operators g(k) satis-
fying (1.6) and (1.7) with µ > −1/2. The extension to hamiltonians of the form (1.23)–(1.24) is done
along the lines of Section 4. Recall the notations 〈A〉ψ = 〈ψ, Aψ〉, Nρ = dΓ(ω−ρ) and Υρ = {ψ0 ∈
f(H)D(N1/2

ρ ), for some f ∈ C∞0 ((−∞,Σ))}. The idea of the proof of the following estimate follows [32] and
[10].

Proposition A.1. Let ρ ∈ [−1, 1]. For any ψ0 ∈ Υρ,

〈Nρ〉ψt ! tνρ‖ψ0‖2ρ, νρ =
1 + ρ

2 + µ
. (A.1)

Proof. Decompose Nρ = K1 + K2, where

K1 := dΓ(ω−ρχtαω≤1) and K2 := dΓ(ω−ρχtαω≥1).

Then, by (1.19),
〈K2〉ψ ≤ 〈dΓ(tα(1+ρ)ωχtαω≥1)〉ψt ≤ tα(1+ρ)〈Hf 〉ψt ! tα(1+ρ)‖ψ0‖. (A.2)

On the other hand, we have by (B.10),

DK1 = dΓ(αω1+ρtα−1χ′tαω≤1)− I(iω−ρχtαω≤1g). (A.3)

Since ‖η1g(k)‖Hp ! |k|µ〈k〉−2−µ (see (1.6)), we obtain
∫

dk ω(k)−2ρχtαω≤1‖g(k)‖2Hp
(ω(k)−1 + 1) ! t−2(1+µ−ρ)α. (A.4)

This together with (B.11) and (1.19) gives

|〈I(iω−ρχtαω≤1g)〉ψt | ! t−(1+µ−ρ)α‖ψ0‖2. (A.5)

Hence, by (A.3), since ∂t〈K1〉ψt = 〈DK1〉ψt , χ′tαω≤1 ≤ 0, we obtain

∂t〈K1〉ψt ! t−(1+µ−ρ)α‖ψ0‖2,
and therefore

〈K1〉ψt ≤ Ctν
′
‖ψ0‖2 + 〈Nρ〉ψ0 , (A.6)

where ν′ = 1− (1 + µ− ρ)α, if (1 + µ− ρ)α < 1 and ν′ = 0, if (1 + µ− ρ)α > 1. Estimates (A.6) and (A.2)
with α = 1

2+µ , if ρ > −1, give (A.1). The case ρ = −1 follows from (1.19). "

Remark. A minor modification of the proof above give the following bound for ρ > 0 and ν′ρ := ρ
3
2+µ

,

〈Nρ〉ψt ! tν
′
ρ
(
‖ψt‖2N + ‖ψ0‖2

)
+ 〈Nρ〉ψ0 . (A.7)

Corollary A.2. For any ψ0 ∈ Υρ, γ ≥ 0 and c > 0,

‖χNρ≥ctγ ψt‖2 ! t−
γ
2 + 1+ρ

2(2+µ) ‖ψ0‖2 + t−
γ
2 〈Nρ〉ψ0 . (A.8)

Proof. We have
‖χNρ≥ctγ ψt‖ ≤ c−

γ
2 t−

γ
2 ‖χNρ≥ctγ K

1
2
ρ ψt‖ ≤ c−

γ
2 t−

γ
2 ‖N

1
2
ρ ψt‖

Now applying (A.1) we arrive at (A.8). "
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Corollary A.3. Let ψ0 ∈ Υ1. Then ψ0 ∈ D(N) and

〈N2〉ψt ! t
2

2+µ ‖ψ0‖21. (A.9)

Proof. By the Cauchy-Schwarz inequality, we have N2 ≤ dΓ(ω)dΓ(ω−1) = HfN1, and hence

〈N2〉ψt ≤ 〈N
1
2
1 HfN

1
2
1 〉ψt

= 〈N
1
2
1 Hf (H − Egs + 1)−1N

1
2
1 (H − Egs + 1)〉ψt

+ 〈N
1
2
1 Hf [N

1
2
1 , (H − Egs + 1)−1](H − Egs + 1)〉ψt .

Under the assumption (1.6) with µ > 0, one verifies that Hf [N
1
2
1 , (H − Egs + 1)−1] is bounded. Since

Hf (H − Egs + 1)−1 is also bounded, we obtain

〈N2〉ψt ! ‖N
1
2
1 ψt‖

(
‖N

1
2
1 (H − Egs + 1)ψt‖+ ‖(H − Egs + 1)ψt‖

)
. (A.10)

Applying Proposition A.1 gives

‖N
1
2
1 ψt‖ ! t

1
2+µ ‖ψ0‖+ ‖N

1
2
1 ψ0‖, (A.11)

and

‖N
1
2
1 (H − Egs + 1)ψt‖ ! t

1
2+µ ‖ψ0‖+ ‖N

1
2
1 (H − Egs + 1)ψ0‖

! t
1

2+µ ‖ψ0‖+ ‖N
1
2
1 ψ0‖, (A.12)

where we used in the last inequality that N
1
2
1 f̃(H)(N1 + 1)− 1

2 is bounded for any f̃ ∈ C∞0 (R3). Combining
(A.10), (A.11) and (A.12), we obtain

〈N2〉ψt ! t
2

2+µ (‖N
1
2
1 ψ0‖2 + ‖ψ0‖2). (A.13)

Hence (A.9) is proven. "

Appendix B. Method of propagation observables

Many steps of our proof the minimal velocity estimates use the method of propagation observables which
we formalize in what follows. Let ψt = e−itHψ0, where H is a hamiltonian of the form (1.4)–(1.5), with the
coupling operator g(k) satisfying (1.6). The method reduces propagation estimates for our system say of the
form ∫ ∞

0
dt

∥∥G
1
2
t ψt

∥∥2 ! ‖ψ0‖2#, (B.1)

for some norm ‖·‖# ≥ ‖·‖, to differential inequalities for certain families φt of positive, one-photon operators
on the one-photon space L2(R3). Let

dφt := ∂tφt + i[ω, φt],
and let νρ ≥ 0 be determined by the estimate (1.17). We isolate the following useful class of families of
positive, one-photon operators:

Definition B.1. A family of positive operators φt on L2(R3) will be called a one-photon weak propagation
observable, if it has the following properties

• there are δ ≥ 0 and a family pt of non-negative operators, such that

‖ωδ/2φtω
δ/2‖ ! 〈t〉−νδ and dφt ≥ pt +

∑

finite

remi, (B.2)

where remi are one-photon operators satisfying

‖ωρi/2 remi ωρi/2‖ ! 〈t〉−λi , (B.3)

for some ρi and λi, s.t. λi > 1 + νρi ,
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• for some λ′ > 1 + νδ and with η1, η2 satisfying (1.7),
( ∫

‖η1η
2
2(φtg)(k)‖2Hp

ω(k)δdk
) 1

2 ! 〈t〉−λ′ . (B.4)

(Here φt acts on g as a function of k.)
Similarly, a family of operators φt on L2(R3) will be called a one-photon strong propagation observable, if

dφt ≤ −pt +
∑

finite

remi, (B.5)

with pt ≥ 0, remi are one-photon operators satisfying (B.3) for some λi > 1 + νρi , and (B.4) holds for some
λ′ > 1 + νδ.

Recall the notations Nρ = dΓ(ω−ρ) and

Υρ =
{
ψ0 ∈ f(H)D(N

1
2
ρ ), for some f ∈ C∞0 ((−∞,Σ))

}
. (B.6)

Notice that, since N−1f(H) = Hff(H) is bounded, one easily verifies that Υρ ⊂ Υρ′ for ρ ≥ ρ′ ≥ −1. The
following proposition reduces proving inequalities of the type of (B.1) to showing that φt is a one-photon
weak or strong propagation observable, i.e. to one-photon estimates of dφt and φtg.

Proposition B.2. If φt is a one-photon weak (resp. strong) propagation observable, then we have either
the weak propagation estimate, (B.1), or the strong propagation estimate,

〈ψt,Φtψt〉+
∫ ∞

0
dt

∥∥G
1
2
t ψt

∥∥2 ! ‖ψ0‖2#, (B.7)

with the norm ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗, where Φt := dΓ(φt), Gt := dΓ(pt), ‖ψ0‖∗ := ‖ψ0‖δ and ‖ψ0‖♦ :=∑
‖ψ0‖ρi , on the subspace Υmax(δ,ρi).

Before proceeding to the proof we present some useful definitions. Consider families Φt of operators on
H and introduce the Heisenberg derivative

DΦt := ∂tΦt + i
[
H,Φt

]
,

with the property

∂t〈ψt,Φtψt〉 = 〈ψt, DΦtψt〉. (B.8)

Definition B.3. A family of self-adjoint operators Φt on a subspace H1 ⊂ H will be called a (second
quantized) weak propagation observable, if for all ψ0 ∈ H1, it has the following properties

• supt〈ψt,Φtψt〉 ! ‖ψ0‖2∗;
• DΦt ≥ Gt + Rem, where Gt ≥ 0 and

∫∞
0 dt |〈ψt,Rem ψt〉| ! ‖ψ0‖2♦,

for some norms ‖ψ0‖∗, ‖ ·‖ ♦ ≥ ‖ · ‖. Similarly, a family of self-adjoint operators Φt will be called a strong
propagation observable, if it has the following properties

• Φt is a family of non-negative operators;
• DΦt ≤ −Gt + Rem, where Gt ≥ 0 and

∫∞
0 dt |〈ψt,Rem ψt〉| ! ‖ψ0‖2#,

for some norm ‖ ·‖ # ≥ ‖ · ‖.

If Φt is a weak propagation observable, then integrating the corresponding differential inequality sand-
wiched by ψt’s and using the estimate on 〈ψt,Φtψt〉 and on the remainder Rem, we obtain the (weak
propagation) estimate (B.1), with ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗. If Φt is a strong propagation observable, then
the same procedure leads to the (strong propagation) estimate (B.7).

Proof. Proof of Proposition B.2. Let Φt := dΓ(φt). To prove the above statement we use the relations (see
Supplement I)

D0dΓ(φt) = dΓ(dφt), i[I(g),dΓ(φt)] = −I(iφtg), (B.9)
where D0 is the free Heisenberg derivative,

D0Φt := ∂tΦt + i[H0,Φt],
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valid for any family of one-particle operators φt, to compute

DΦt = dΓ(dφt)− I(iφtg). (B.10)

Denote 〈A〉ψ := 〈ψ, Aψ〉. Applying the Cauchy-Schwarz inequality, we find the following version of a
standard estimate

|〈I(g)〉ψ| ≤ 2
( ∫

‖η1η
2
2g(k)‖2Hp

ω(k)δd3k
) 1

2 ‖η−1
1 η−2

2 ψ‖‖ψ‖δ. (B.11)

Using that ψt = f1(H)ψt, with f1 ∈ C∞0 ((−∞,Σ)), f1f = f, and using (1.7), we find ‖η−1
1 η−2

2 ψt‖ ! ‖ψt‖.
Taking this into account, we see that the equations (B.11), (B.4) and (1.19) yield

|〈I(iφtg)〉ψt | ! 〈t〉−λ′+νδ‖ψ0‖2δ . (B.12)

Next, using (B.3), we find ±remi ≤ ‖ωρi/2 remi ωρi/2‖ωρi ! 〈t〉−λiω−ρi . This gives ±dΓ(remi) !
〈t〉−λidΓ(ω−ρi), which, due to the bound (1.17), leads to the estimate

∣∣〈dΓ(remi)〉ψt

∣∣ ! 〈t〉−λi+νρi‖ψ0‖2ρi
. (B.13)

Let Gt := dΓ(pt) and Rem :=
∑

finite dΓ(remi)− I(iφtg). We have Gt ≥ 0, and, by (B.12) and (B.13),
∫ ∞

0
dt

∣∣〈ψt,Rem ψt〉
∣∣ ! ‖ψ0‖2♦, (B.14)

with ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗, ‖ψ0‖∗ := ‖ψ0‖δ, ‖ψ0‖♦ :=
∑
‖ψ0‖ρi .

In the strong case, (B.5) and (B.10) imply

DΦt ≤ −Gt + Rem, (B.15)

and hence by (B.14), Φt is a strong propagation observable.
In the weak case, (B.2) and (B.10) imply

DΦt ≥ Gt + Rem. (B.16)

Since φt ≤ ‖ωδ/2φtωδ/2‖ω−δ ! 〈t〉−νδω−δ, we have dΓ(φt) ! 〈t〉−νδdΓ(ω−δ). Using this estimate and using
again the bound (1.17), we obtain

〈ψt,Φtψt〉 ! 〈t〉−νδ〈dΓ(ω−δ)〉ψt ! ‖ψ0‖2δ . (B.17)

Estimates (B.14) and (B.17) show that Φt is a weak propagation observable. "
To prove Theorem 1.1, in Section 2, we also used the following proposition.

Proposition B.4. Let φt be a one-photon family satisfying
• either, for some δ ≥ 0 ,

‖ωδ/2φtω
δ/2‖ ! 〈t〉−νδ and dφt ≥ pt − dφ̃t + rem, (B.18)

or
dφt ≤ −pt + dφ̃t +

∑

finite

remi, (B.19)

where pt ≥ 0, remi are one-photon operators satisfying (B.3), and φ̃t is a weak propagation observ-
able,

• (B.4) holds.
Then, depending on whether (B.18) or (B.19) is satisfied, Φt := dΓ(φt) is a weak, or strong, propagation
observable, on the subspace Υmax(δ,ρi), and therefore we have either the weak or strong propagation estimates,
(B.1) or (B.7), on this subspace.

Proof. Given Proposition B.2 and its proof, the only term we have to control is dΓ(dφ̃t). Using that φ̃t is a
weak propagation observable and using (B.8), (B.10) and (B.12) for Φ̃t := dΓ(φ̃t), we obtain

∣∣∣
∫ ∞

0
dt 〈dΓ(dφ̃t)〉ψt

∣∣∣ ! ‖ψ0‖2#, (B.20)

with ‖ψ0‖2# := ‖ψ0‖2♦+‖ψ0‖2∗, ‖ψ0‖∗ := ‖ψ0‖δ, ‖ψ0‖♦ :=
∑
‖ψ0‖ρi , which leads to the desired estimates. "
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Remarks.
1) Proposition B.2 reduces a proof of propagation estimates for the dynamics (1.9) to estimates involving

the one-photon datum (ω, g) (an ‘effective one-photon system’), parameterizing the hamiltonian (1.4). (The
remaining datum Hp does not enter our analysis explicitly, but through the bound states of Hp which lead
to the localization in the particle variables, (1.7)).

2) The condition on the remainder in (B.2) can be weakened to rem = rem′ + rem′′, with rem′ and rem′′

satisfying (B.3) and
|rem′′| ! χ|y|≥c′t, (B.21)

for c′ as in (1.13), respectively. Moreover, (B.3) can be further weakened to
∫ ∞

0
dt |〈ψt,dΓ(remi)ψt〉| < ∞. (B.22)

3) An iterated form of Proposition B.4 is used to prove Theorem 1.1.

Appendix C. One-particle commutator estimates

In this appendix, we estimate some localization terms and commutators appearing in Section 2. We begin
with recalling the Helffer-Sjöstrand formula that will be used several times. Let f be a smooth function
satisfying the estimates |∂n

s f(s)| ≤ Cn〈s〉ρ−n for all n ≥ 0, with ρ < 0. We consider an almost analytic
extension f̃ of f , which means that f̃ is a C∞ function on C such that f̃ |R = f ,

supp f̃ ⊂
{
z ∈ C, | Im z| ≤ C〈Re z〉

}
,

|f̃(z)| ≤ C〈Re z〉ρ and, for all n ∈ N,
∣∣∣
∂f̃

∂z̄
(z)

∣∣∣ ≤ Cn〈Re z〉ρ−1−n| Im z|n.

Moreover, if f is compactly supported, we can assume that this is also the case for f̃ . Given a self-adjoint
operator A, the Helffer–Sjöstrand formula (see e.g. [17, 41]) allows one to express f(A) as

f(A) =
1
π

∫
∂f̃(z)

∂z̄
(A− z)−1 dRe z dIm z. (C.1)

Now recall that bε := 1
2 (θε∇ω · y + h.c.), where θε = ω

ωε
, ωε := ω + ε, ε = t−κ, with κ ≥ 0. We have the

relations

i[ω, bε] = θε, i[ω, y2] =
1
2
(∇ω · y + y · ∇ω), (C.2)

and, using in particular Hardy’s inequality, one can verify the estimate
∥∥[y2, bε]〈y〉−2

∥∥ = O(tκ). (C.3)

The following lemma is a straightforward consequence of the Helffer-Sjöstrand formula together with (C.2)
and (C.3). We do not detail the proof.

Lemma C.1. Let h, h̃ be smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0 and likewise

for h̃. Let wα = (|y|/c1tα)2, vβ = bε/(c2tβ), with 0 < α, β ≤ 1. The following estimates hold

[h(wα), ω] = O(t−α), [h̃(vβ), ω] = O(t−β),

[h(wα), θ
1
2
ε ] = O(t

1
2 κ− 1

2 α), 〈y〉[h(wα), θ
1
2
ε ] = O(t

1
2 κ+ 1

2 α),

[h̃(vβ), ω−
1
2

ε ] = O(t
3
2 κ−β), bε[h̃(vβ), ω−

1
2

ε ] = O(t
3
2 κ), [h̃(vβ), θ

1
2
ε ] = O(tκ−β),

[h(wα), bε] = O(tκ), [h(wα), h̃(vβ)] = O(t−β+κ), bε[h(wα), h̃(vβ)] = O(tκ).

Now we prove the following abstract result.
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Lemma C.2. Let h be a smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0. Assume

an operator v is s.t. the commutators [v, ω] and [v, [v, ω]] are bounded, and for some z in C \ R, (v − z)−1

preserves D(ω). Then the operator r := [h(v), ω]− [v, ω]h′(v) is bounded as

‖r‖ !
∥∥[v, [v, ω]]‖. (C.4)

Proof. We would like to use the Helffer–Sjöstrand formula (C.1) for h. Since h might not decay at infinity,
we cannot directly express h(v) by this formula. Therefore, we approximate h(v) as follows. Consider
ϕ ∈ C∞0 (R; [0, 1]) equal to 1 near 0 and ϕR(·) = ϕ(·/R) for R > 0. Let h̃ be an almost analytic extensions
of h such that h̃|R = h,

supp h̃ ⊂
{
z ∈ C; | Im z| ≤ C〈Re z〉

}
, (C.5)

|h̃(z)| ≤ C and, for all n ∈ N, ∣∣∣∂z̄h̃(z)
∣∣∣ ≤ Cn〈Re z〉ρ−1−n| Im z|n. (C.6)

Similarly let ϕ̃ ∈ C∞0 (C) be an almost analytic extension of ϕ satisfying these estimates. As a quadratic
form on D(ω), we have [

h(v), ω
]

= s-lim
R→∞

[
(ϕRh)(v), ω

]
. (C.7)

Since (v− z)−1 preserves D(ω) for some z in the resolvent set of v (and hence for any such z, see [2, Lemma
6.2.1]), we can compute, using the Helffer–Sjöstrand representation (see (C.1)) for (ϕRh)(v),

[
(ϕRh)(v), ω

]
=

1
π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, ω

]
dRe z dIm z

= − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, ω](v − z)−1 dRe z dIm z

= [v, ω](ϕRh)′(v) + rR, (C.8)

as a quadratic form on D(ω), where

rR = − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, [v, ω]

]
(v − z)−1 dRe z dIm z

=
1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, [v, ω]](v − z)−2 dRe z dIm z. (C.9)

Now, using (v − z)−1 = O
(
| Im z|−1

)
, we obtain that

∥∥(v − z)−1[v, [v, ω]](v − z)−2
∥∥ ! | Im z|−3

∥∥[v, [v, ω]]
∥∥. (C.10)

Besides, for all n ∈ N,
|∂z̄(ϕ̃Rh̃)(z)| ≤ Cn〈Re z〉ρ−1−n| Im z|n, (C.11)

where Cn > 0 is independent of R ≥ 1. Using (C.9) together with (C.10), we see that there exists C > 0 such
that ‖rR‖ ≤ C

∥∥[v, [v, ω]]‖, for all R ≥ 1. Finally, since (ϕRh)′(v) converges strongly to h′(v), the lemma
follows from (C.8) and the previous estimate. "

We want apply the lemma above to the time-dependent self-adjoint operator v = bε
ctα .

Corollary C.3. Let h be a smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0 and let

v := bε
ctα , where c > 0, ε = t−κ, with 0 ≤ κ ≤ β ≤ 1. Then the operator r := dh(v)− (dv)h′(v) is bounded as

‖r‖ ! t−λ, λ := 2α− κ. (C.12)

Proof. Observe that

dh(v)− (dv)h′(v) = [h(v), iω]− [v, iω]h′(v) + ∂th(v)− (∂tv)h′(v).

It is not difficult to verify that (v − z)−1 preserves D(ω) for any z ∈ C \ R. Hence it follows from the
computations

[v, iω] = t−αθε, [v, [v, iω]] = t−2αθεω
−2
ε ε, (C.13)

that we can apply Lemma C.2. The estimate

[v, [v, ω]] = O(ω−1
ε t−2α) = O

(
t−2α+κ

)
(C.14)
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then gives

‖[h(v), iω]− [v, iω]h′(v)‖ ! t−2α+κ.

It remains to estimate ‖∂th(v)− (∂tv)h′(v)‖. It is not difficult to verify that D(bε) is independent of t. Using
the notations of the proof of Lemma C.2 and the fact that ∂th(v) = s-limR→∞ ∂t(ϕRh)(v), we compute

∂t(ϕRh)(v) =
1
π

∫
∂z̄(ϕ̃Rh̃)(z)∂t(v − z)−1 dRe z dIm z

= − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1(∂tv)(v − z)−1 dRe z dIm z

= (∂tv)(ϕRh)′(v) + r′R,

where

r′R = − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, ∂tv

]
(v − z)−1 dRe z dIm z

=
1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, ∂tv](v − z)−2 dRe z dIm z. (C.15)

Now using ∂tv = − αbε
ctα+1 + 1

ctα ∂tbε together with (2.8), we estimate

[v, ∂tv] = O(t−1−2α+κ)bε +O(t−1−2α+2κ).

From this, the properties of ϕ̃, h̃, and κ ≤ β, we deduce that ‖r′R‖ ! t−1−α+κ ! t−2α+κ uniformly in R ≥ 1.
This concludes the proof of the corollary. "

The following lemma is taken from [10]. Its proof is similar to the proof of Lemma C.2

Lemma C.4. Let h be a smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0 and

0 ≤ δ ≤ 1. Let wα = (|y|/ctα)2 with 0 < α ≤ 1. We have
[
h(wα), iω

]
=

1
ctα

h′(wα)
( y

ctα
· ∇ω +∇ω · y

ctα
)

+ rem,

with ∥∥ω
δ
2 rem ω

δ
2
∥∥ ! t−α(1+δ).

Now we prove a localization lemma. Let vα := bε
c′tα , wα := (|y|/ctα)2.

Lemma C.5. Let κ < α. We have, for c < c′/2,

χvα≥1χwα≤1 = O(t−(α−κ)). (C.16)

Proof. We omit the subindex α in wα and vα write w ≡ wα and v ≡ vα. Observe that by the definition of χ
(see Introduction) and the condition c < c′/2, we have χ|y|≥c′tαχ|y|≤ctα = 0. Let c < c̄ < c′/2 and let χ̃|y|≤c̄t

be such that χ|y|≤ctχ̃|y|≤c̄t = χ|y|≤ct and χ|y|≥c′tχ̃|y|≤c̄t = 0. Define b̄ε := χ̃|y|≤c̄tαbεχ̃|y|≤c̄tα . It follows from
the expression of bε that |〈u, bεu〉| ≤ ‖u‖‖|y|u‖, and hence we deduce that |〈u, b̄εu〉| ≤ c̄tα‖u‖2. This gives
χb̄ε≥c′tα = 0. Using this, we write

χbε≥c′tαχ|y|≤ctα = (χbε≥c′tα − χb̄ε≥c′tα)χ|y|≤ctα . (C.17)

Let v̄ := b̄ε
c′tα . Denote g(v) := χv≥1 and g(v̄) := χv̄≥1. We will use the construction and notations of the

proof of Lemma C.2. Using the Helffer-Sjöstrand formula for (ϕRg)(c), we write

(ϕRg)(v)− (ϕRg)(v̄) =
1
π

∫
∂z̄(ϕ̃Rg)(z)

[
(v − z)−1 − (v̄ − z)−1

]
dRe z dIm z

= − 1
π

∫
∂z̄(ϕ̃Rg̃)(z)(v − z)−1(v − v̄)(v̄ − z)−1 dRe z dIm z. (C.18)

Now we show that (v − v̄)(v̄ − z)−1χ|y|≤ctα = O(t−(α−κ)| Im z|−2). We have

v − v̄ = (1− χ̃|y|≤c̄tα)
bε

c′tα
+ χ̃|y|≤c̄tα

bε

c′tα
(1− χ̃|y|≤c̄tα),

and we observe that, by Lemma C.1,

[(1− χ̃|y|≤c̄tα), bε] = O(tκ). (C.19)



MINIMAL PHOTON VELOCITY BOUNDS 21

Thus
v − v̄ = (1 + χ̃|y|≤c̄tα)

bε

c′tα
(1− χ̃|y|≤c̄tα) +O(t−(α−κ)),

Moreover, we can write

(1− χ̃|y|≤c̄tα)(v̄ − z)−1χ|y|≤ctα =
[
(1− χ̃|y|≤c̄tα), (v̄ − z)−1

]
χ|y|≤ctα

= −(v̄ − z)−1
[
(1− χ̃|y|≤c̄tα),

bε

ctα
]
(v̄ − z)−1χ|y|≤ctα

= O(t−(α−κ)| Im z|−2),

where we used (C.19) to obtain the last estimate. This implies the statement of the lemma. "
Remark. The estimate (C.16) can be improved to χvα≥1χwα≤1 = O(t−m(α−κ)), for any m > 0, if we replace
ωε := ω + ε in the definition of bε by the smooth function ωε :=

√
ω2 + ε2.

Supplement I. Creation and annihilation operators on Fock spaces

Recall that the propagation speed of the light and the Planck constant divided by 2π are set equal to 1.
Recall also that the one-particle space is h := L2(R3; C), for phonons, and h := L2(R3; C2), for photons. In
both cases we use the momentum representation and write functions from this space as u(k) and u(k, λ),
respectively, where k ∈ R3 is the wave vector or momentum of the photon and λ ∈ {−1,+1} is its polarization.

With each function f ∈ h, one associates creation and annihilation operators a(f) and a∗(f) defined,
for u ∈ ⊗n

s h, as
a∗(f) : u →

√
n + 1f ⊗s u and a(f) : u →

√
n〈f, u〉h, (I.1)

with 〈f, u〉h :=
∫

f(k)u(k, k1, . . . , kn−1) dk, for phonons, and 〈f, u〉h :=
∑

λ=1,2

∫
dkf(k, λ)un(k, λ, k1, λ1,

. . . , kn−1, λn−1), for photons. They are unbounded, densely defined operators of Γ(h), adjoint of each other
(with respect to the natural scalar product in F) and satisfy the canonical commutation relations (CCR):

[
a#(f), a#(g)

]
= 0,

[
a(f), a∗(g)

]
= 〈f, g〉,

where a# = a or a∗. Since a(f) is anti-linear and a∗(f) is linear in f , we write formally

a(f) =
∫

f(k)a(k) dk, a∗(f) =
∫

f(k)a∗(k) dk,

for phonons, and

a(f) =
∑

λ=1,2

∫
f(k, λ)aλ(k) dk, a∗(f) =

∑

λ=1,2

∫
f(k, λ)a∗λ(k)dk,

for photons. Here a(k) and a∗(k) and aλ(k) and a∗λ(k) are unbounded, operator-valued distributions, which
obey (again formally) the canonical commutation relations (CCR):

[
a#(k), a#(k′)

]
= 0,

[
a(k), a∗(k′)

]
= δ(k − k′),

[
a#

λ (k), a#
λ′(k

′)
]

= 0,
[
aλ(k), a∗λ′(k

′)
]

= δλ,λ′δ(k − k′),

where a# = a or a∗ and a#
λ = aλ or a∗λ.

Given an operator τ acting on the one-particle space h, the operator dΓ(τ) (the second quantization of τ)
defined on the Fock space F by (1.3), can be written (formally) as dΓ(τ) :=

∫
dk a∗(k)τa(k), for phonons,

and dΓ(τ) :=
∑

λ=1,2

∫
dk a∗λ(k)τaλ(k), for photons. Here the operator τ acts on the k-variable. The precise

meaning of the latter expression is (1.3). In particular, one can rewrite the quantum Hamiltonian Hf in
terms of the creation and annihilation operators, a and a∗, as

Hf =
∑

λ=1,2

∫
dk a∗λ(k)ω(k)aλ(k) (I.2)

for photons, and similarly for phonons.
The relations below are valid for both phonon and photon operators. Commutators of two dΓ operators

reduces to commutators of the one-particle operators:

[dΓ(τ),dΓ(τ ′)] = dΓ([τ, τ ′]). (I.3)
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Let τ be a one-photon self-adjoint operator. The following commutation relations involving the field
operator Φ(f) = 1√

2
(a∗(f) + a(f)) can be readily derived from the definitions of the operators involved:

[Φ(f),Φ(g)] = i Im〈f, g〉h, (I.4)
[Φ(f),dΓ(τ)] = iΦ(iτf), (I.5)
[Γ(τ),Φ(f)] = Γ(τ)a((1− τ)f)− a∗((1− τ)f)Γ(τ). (I.6)

Exponentiating these relations, we obtain

eiΦ(f)Φ(g)e−iΦ(f) = Φ(g)− Im〈f, g〉h, (I.7)

eiΦ(f)dΓ(τ)e−iΦ(f) = dΓ(τ)− Φ(iτf) +
1
2

Re〈ωf, f〉h (I.8)

eiΦ(f)Γ(τ)e−iΦ(f) = Γ(τ) +
∫ 1

0
ds eisΦ(f)(Γ(τ)a((1− τ)f)− a∗((1− τ)f)Γ(τ))e−siΦ(f). (I.9)

Finally, we have the following standard estimates for annihilation and creation operators a(f) and a∗(f),
whose proof can be found, for instance, in [7], [31, Section 3], [37]:
Lemma I.1. For any f ∈ h such that ω−ρ/2f ∈ h, the operators a#(f)(dΓ(ωρ) + 1)−1/2, where a#(f)
stands for a∗(f) or a(f), extend to bounded operators on H satisfying

∥∥a(f)(dΓ(ωρ) + 1)−
1
2
∥∥ ≤ ‖ω−ρ/2f‖h,

∥∥a∗(f)(dΓ(ωρ) + 1)−
1
2
∥∥ ≤ ‖ω−ρ/2f‖h + ‖f‖h.

If, in addition, g ∈ h is such that ω−ρ/2g ∈ h, the operators a#(f)a#(g)(dΓ(ωρ) + 1)−1 extend to bounded
operators on H satisfying

∥∥a(f)a(g)(dΓ(ωρ) + 1)−1
∥∥ ≤ ‖ω−ρ/2f‖h‖ω−ρ/2g‖h,

∥∥a∗(f)a(g)(dΓ(ωρ) + 1)−1
∥∥ ≤

(
‖ω−ρ/2f‖h + ‖f‖h

)
‖ω−ρ/2g‖h,

∥∥a∗(f)a∗(g)(dΓ(ωρ) + 1)−1
∥∥ ≤

(
‖ω−ρ/2f‖h + ‖f‖h

)(
‖ω−ρ/2g‖h + ‖g‖h

)
.
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[3] A. Arai, A note on scattering theory in nonrelativistic quantum electrodynamics, J. Phys. A, 16, (1983), 49–69.
[4] A. Arai, Long-time behavior of an electron interacting with a quantized radiation field, J. Math. Phys., 32, (1991), 2224–

2242.
[5] V. Bach, Mass renormalization in nonrelativisitic quantum electrodynamics, in Quantum Theory from Small to Large

Scales, Lecture Notes of the Les Houches Summer Schools, volume 95. Oxford University Press, 2011.
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[7] V. Bach, J. Fröhlich, and I.M. Sigal, Spectral analysis for systems of atoms and molecules coupled to the quantized radiation

field, Commun. Math. Phys., 207, (1999), 249–290.
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[40] M. Hübner and H. Spohn, Radiative decay: nonperturbative approaches, Rev. Math. Phys., 7, (1995), 363–387.
[41] W. Hunziker and I.M. Sigal, The quantum N-body problem, J. Math. Phys., 41, (2000), 3448–3510.
[42] W. Hunziker, I.M. Sigal and A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations, 24, (1999), 2279–

2295.
[43] J. M. Jauch and C. Piron, Generalized localizability, Helv. Phys. Acta 40 (1967), 559–570.
[44] O. Keller, On the theory of spatial localization of photons, Phys. Rep. 411 (2005), no. 1-3, 1–232.
[45] Ch.. Kittel, Quantum Theory of Solids, 2nd ed, 1987, Wiley.
[46] L. Landau and R. Peierls, Quantenelektrodynamik im Konfigurationsraum, Z. Phys. 62 (1930), 188–200.
[47] E. Lieb and M. Loss, Existence of atoms and molecules in non-relativistic quantum electrodynamics, Adv. Theor. Math.

Phys. 7 (2003), no. 4, 667–710.
[48] E. Lieb and M. Loss, A note on polarization vectors in quantum electrodynamics, Comm. Math. Phys. 252 (2004), no. 1-3,

477–483.
[49] L. Mandel, Configuration-space photon number operators in quantum optics, Phys. Rev. 144 (1966), 1071–1077.
[50] L. Mandel and E. Wolf, Optical coherence and quantum optics, Cambridge University Press, 1995.
[51] T. D. Newton and E. Wigner, Localized states for elementary systems, Rev. Mod. Phys. 21 (1949), 400–406.
[52] W. Pauli, Collected scientific papers, vol. 2, Interscience Publishers, 1964.
[53] W. Pauli and M. Fierz, Zur Theorie der Emission langwelliger Lichtquanten, Il Nuovo Cimento 15 (1938), no. 3, 167–188.
[54] S. Ruijsenaars, On Newton–Wigner localization and superluminal propagation speeds, Ann. Physics 137 (1981), no. 1,

33–43.
[55] I. M. Sigal, Ground state and resonances in the standard model of the non-relativistic QED, J. Stat. Phys. 134 (2009),

no. 5-6, 899–939.



24 J. FAUPIN AND I. M. SIGAL

[56] I. M. Sigal, Renormalization group and problem of radiation, Lecture Notes of Les Houches Summer School on “Quantum
Theory From Small to Large Scales”, vol. 95, 2012. arXiv. :1110.3841.

[57] I.M. Sigal and A. Soffer, The N-particle scattering problem: asymptotic completeness for short-range quantum systems,
Ann. of Math., 125, (1987), 35–108.

[58] I.M. Sigal and A. Soffer, Local decay and propagation estimates for time dependent and time independent hamiltonians,
preprint, Princeton University (1988).

[59] I.M. Sigal and A. Soffer, A. Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent.
Math., 99, (1990), 115–143.

[60] E. Skibsted, Spectral analysis of N-body systems coupled to a bosonic field, Rev. Math. Phys., 10, (1998), 989–1026.
[61] H. Spohn, Asymptotic completeness for Rayleigh scattering, J. Math. Phys., 38, (1997), 2281–2288.
[62] H. Spohn, Dynamics of Charged Particles and their Radiation Field, Cambridge University Press, Cambridge, 2004.
[63] A. Wightman, On the localizibility of quantum mechanical systems, Rev. Mod. Phys. 34 (1962), 845–872.
[64] D. Yafaev, Radiation conditions and scattering theory for N-particle Hamiltonians, Comm. Math. Phys., 154, (1993),

523–554.
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