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Abstract. We consider a particle system coupled to the quantized electromagnetic or phonon field. As-
suming that the coupling is small enough and that Fermi’s Golden Rule is satisfied, we prove asymptotic
completeness for Rayleigh scattering on the states for which the expectation of either the photon/phonon
number operator or an operator testing the photon/phonon infrared behaviour is uniformly bounded on
corresponding dense sets. By extending a recent result of De Roeck and Kupiainen in a straightforward way,
we show that the second of these conditions is satisfied for the spin-boson model.

1. Introduction

In this paper we study the long-time dynamics of a non-relativistic particle system coupled to the quan-
tized electromagnetic or phonon field. For energies below the ionization threshold, we prove asymptotic
completeness (for Rayleigh scattering) on the states for which the expectation of the photon number or
an operator testing the photon infrared behaviour is bounded uniformly in time. In this introduction we
formulate the model, the problem, the results and the outline of the proof.

Standard model of non-relativistic quantum electrodynamics. First, we consider the standard
model of non-relativistic quantum electrodynamics in which particles are minimally coupled to the quantized
electromagnetic field. The state space for this model is given by H := Hp ⊗ F , where Hp is the particle
state space, say, L2(R3n), or a subspace thereof, and F is the bosonic Fock space, F ≡ Γ(h) := C⊕∞n=1⊗n

s h,
based on the one-photon space h := L2(R3, C2) (⊗n

s stands for the symmetrized tensor product of n factors,
C2 accounts for the photon polarization). Its dynamics is generated by the hamiltonian

H :=
n∑

j=1

1
2mj

(
− i∇xj − κjAξ(xj)

)2 + U(x) + Hf . (1.1)

Here, mj and xj , j = 1, . . . , n, are the (‘bare’) particle masses and the particle positions, U(x), x =
(x1, . . . , xn), is the total potential affecting the particles, and κj are coupling constants related to the
particle charges. Moreover, Aξ := ξ̌ ∗ A, where ξ is an ultraviolet cut-off satisfying e.g. |∂mξ(k)| ! 〈k〉−3,
|m| = 0, . . . , 3, and A(y) is the quantized vector potential in the Coulomb gauge (div A(y) = 0), describing
the quantized electromagnetic field and given by

Aξ(y) =
∑

λ=1,2

∫
ξ(k)dk√

2ω(k)
ελ(k)

(
eik·yaλ(k) + e−ik·ya∗λ(k)

)
. (1.2)

Here, ω(k) = |k| denotes the photon dispersion relation (k is the photon wave vector), λ is the polarization,
and aλ(k) and a∗λ(k) are photon annihilation and creation operators acting on the Fock space F (see Sup-
plement II for the definition). In (1.2) and in what follows, the integrals without indication of the domain
of integration are taken over entire R3.

The operator Hf in (1.1) is the quantum hamiltonian of the quantized electromagnetic field, describing
the dynamics of the latter, given by Hf = dΓ(ω), where dΓ(τ) denotes the lifting of a one-photon operator
τ to the photon Fock space, dΓ(τ)|C = 0 for n = 0 and, for n ≥ 1,

dΓ(τ)|⊗n
s h =

n∑

j=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗τ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−j

. (1.3)

(See Supplement II for the expression of dΓ(τ) in terms of aλ(k) and a∗λ(k).)
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We assume that U(x) ∈ L2
loc(R3n) and is either confining or relatively bounded with relative bound 0 w.r.t.

−∆x, so that the particle hamiltonian Hp := −
∑n

j=1
1

2mj
∆xj + U(x), and therefore the total hamiltonian

H, are self-adjoint.
This model goes back to the early days of quantum mechanics (it appears in the review [23] as a well-

known model and is elaborated in an important way in [56]); its rigorous analysis was pioneered in [24, 25]
(see [59, 65] for extensive references).

Phonon hamiltonian. We also consider the standard phonon model of solid state physics (see e.g. [48]).
The state space for it is given by H := Hp ⊗ F , where Hp is the particle state space and F ≡ Γ(h) =
C ⊕∞n=1 ⊗n

s h is the bosonic Fock space based on the one-phonon space h := L2(R3, C). Its dynamics is
generated by the hamiltonian

H := Hp + Hf + I(g), (1.4)
acting on H, where Hp is a self-adjoint particle system Hamiltonian, acting on Hp, and Hf = dΓ(ω) is
the phonon hamiltonian acting on F , where ω = ω(k) is the phonon dispersion law (k is the phonon wave
vector). For acoustic phonons, ω(k) + |k| for small |k| and c ≤ ω(k) ≤ c−1, for some c > 0, away from 0,
while for optical phonons, c ≤ ω(k) ≤ c−1, for some c > 0, for all k. To fix ideas, we consider below only the
most difficult case ω(k) = |k|.

The operator I(g) acts on H and represents an interaction energy, labeled by a coupling family g(k) of
operators acting on the particle space Hp. In the simplest case of linear coupling (the dipole approximation
in QED or the phonon models), I(g) is given by

I(g) :=
∫

(g∗(k)⊗ a(k) + g(k)⊗ a∗(k))dk, (1.5)

where a∗(k) and a(k) are the phonon creation and annihilation operators acting on F , and g(k) is a family
of operators on Hp (coupling operators), for which we assume the following condition

‖η1η
|α|
2 ∂αg(k)‖Hp ! |k|µ−|α|〈k〉−2−µ, |α| ≤ 2, (1.6)

where η1 and η2 are bounded, positive operators with unbounded inverses, the specific form of which depends
on the models considered and will be given below. Moreover we assume that there is Σ > inf σ(Hp) such
that the following estimate holds

‖η−n
2 η−m

1 η−n
2 f(H)‖ ! 1, 0 ≤ n, m ≤ 2, (1.7)

for any f ∈ C∞0 ((−∞,Σ)).
A primary example for the particle system to have in mind is an electron in a vacuum or in a solid in

an external potential V . In this case, Hp = ε(p) + V (x), p := −i∇x, with ε(p) being the standard non-
relativistic kinetic energy, ε(p) = 1

2m |p|2 ≡ − 1
2m∆x (the Nelson model), or the electron dispersion law in

a crystal lattice (a standard model in solid state physics), acting on Hp = L2(R3). The coupling family
is given by g(k) = |k|µξ(k)eikx, where ξ(k) is the ultraviolet cut-off, satisfying e.g. |∂mξ(k)| ! 〈k〉−2−µ,
m = 0, . . . , 3 (and therefore g(k) satisfies (1.6), with η1 = 1 and η2 = 〈x〉−1 with 〈x〉 = (1 + |x|2)1/2). For
phonons, µ = 1/2, and for the Nelson model, µ ≥ −1/2. To have a self-adjoint operator H we assume that
V is a Kato potential and that µ ≥ −1/2. This can be easily upgraded to an N−body system (e.g. an atom
or a molecule, see e.g. [40, 59]). A key fact here is that for the particle models discussed above (both for the
non-relativistic QED and phonon models), there is a spectral point Σ ∈ σ(H) ∪ {∞}, called the ionization
threshold, s.t. below Σ, the particle system is well localized:

‖〈p〉2eδ|x|f(H)‖ ! 1, (1.8)

for any 0 ≤ δ < dist(supp f,Σ) and any f ∈ C∞0 ((−∞,Σ)). In other words, states decay exponentially in
the particle coordinates x ([37, 6, 7]). Hence (1.7) holds with η1 = 〈p〉−1 and η2 = 〈x〉−1. To guarantee that
Σ > inf σ(Hp) ≥ inf σ(H), we assume that the potentials U(x) or V (x) are such that the particle hamiltonian
Hp has discrete eigenvalues below the essential spectrum ([37, 6, 7]). Furthermore, Σ, for which (1.8) is true,
is given by Σ := limR→∞ infϕ∈DR〈ϕ, Hϕ〉, where the infimum is taken over DR = {ϕ ∈ D(H)| ϕ(x) =
0 if |x| < R, ‖ϕ‖ = 1} (see [37]; Σ is close to inf σess(Hp)).

For the coupling function g, we introduce the norm

〈g〉 :=
∑

|α|≤2

‖η1η
|α|
2 ∂αg‖L2(R3,Hp). (1.9)
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Spin-boson model. Another example fitting into our framework, and one of the simplest one, is the spin-
boson model describing an idealized two-level atom, with state space Hp = C2 and hamiltonian Hp = εσ3,
where σ1, σ2, σ3 are the usual 2 × 2 Pauli matrices, and ε > 0 is an atomic energy, interacting with the
massless bosonic field. This model is a rather special case of (1.4)–(1.5). The total hamiltonian is given by
(1.4)–(1.5), with the coupling family given by g(k) = |k|µξ(k)σ+, σ± = 1

2 (σ1 ∓ iσ2). For the spin-boson
model, we can take Σ = ∞.

Problem. In all above cases, the hamiltonian H is self-adjoint and generates the dynamics through the
Schrödinger equation,

i∂tψt = Hψt. (1.10)

As initial conditions, ψ0, we consider states below the ionization threshold Σ, i.e. ψ0 in the range of the
spectral projection E(−∞,Σ)(H). In other words, we are interested in processes, like emission and absorption
of radiation, or scattering of photons on an electron bound by an external potential (created e.g. by an
infinitely heavy nucleus or impurity of a crystal lattice), in which the particle system (say, an atom or a
molecule) is not being ionized. One of the the key problems here is understanding asymptotic behaviour of
the evolution (1.10), with the corresponding statement called asymptotic completeness. To formulate it, we
denote by Φj and Ej the eigenfunctions and the corresponding eigenvalues of the hamiltonian H, below Σ, i.e.
Ej < Σ. Then Asymptotic completeness on the interval (−∞,Σ) states that, for any ψ0 ∈ Ran E(−∞,Σ)(H),
and any ε > 0, there are photon wave functions fjε ∈ F , with a finite number of photons, s.t. the solution,
ψt = e−itHψ0, of the Schrödinger equation, (1.10), satisfies

lim sup
t→∞

‖e−itHψ0 −
∑

j

e−iEjtΦj ⊗s e−iHf tfjε‖ ≤ ε. (1.11)

(It will be shown in the text that Φj ⊗s fjε is well-defined, at least for the ground state (j = 0).) In other
words, for any ε > 0 and with probability ≥ 1− ε, the Schrödinger evolution ψt approaches asymptotically
a superposition of states in which the particle system with a photon cloud bound to it is in one of its bound
states Φj , with additional photons (or possibly none) escaping to infinity with the velocity of light.

The reason for ε > 0 in (1.11) is that for the state Φj ⊗s f to be well defined, as one would expect, one
would have to have a very tight control on the number of photons in f , i.e. the number of photons escaping
the particle system. (See the remark at the end of Subsection 5.4 for a more technical explanation.) For
massive bosons ε > 0 can be dropped (set to zero), as the number of photons can be bound by the energy
cut-off.1

Results. Now we formulate our results. We consider both the minimal coupling model (1.1) and the phonon
model (1.4) with the linear interaction (1.5) and the coupling operators g(k) satisfying (1.6) with µ > −1/2.

We begin with giving the precise definition of asymptotic completeness. We define the space Hfin :=
Hp ⊗Ffin ⊗Ffin, where Ffin ≡ Ffin(h) is the subspace of F consisting of vectors Ψ = (ψn)∞n=0 ∈ F such that
ψn = 0, for all but finitely many n, and the (scattering) map I : Hfin → H as the extension by linearity of
the map (see [43, 19, 27])

I : Φ⊗
n∏

1

a∗(hi)Ω →
n∏

1

a∗(hi)Φ, (1.12)

for any Φ ∈ Hp ⊗ Ffin and for any h1, . . . hn ∈ h. Here a#(h) are the creation and annihilation operators
evaluated on a function h, see Supplement II. Another useful representation of I is

I : Φ⊗ f →
(

p + q
p

)1/2

Φ⊗s f, (1.13)

for any Φ ∈ Hp ⊗ (⊗p
sh) and f ∈ ⊗q

sh. (We call I the Hübner-Spohn scattering map.) As already clear from
(1.12), the operator I is unbounded.

Now, it is known (see [7, 38]) that the operator H has a unique ground state (denoted here as Φgs). Let
Egs be the ground state energy and Egs < a < Σ be such that the hamiltonian H has no eigenvalues in the

1For a discussion of scattering of massless bosons in QFT see [11].
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interval (Egs, a]. We say that asymptotic completeness holds on the interval ∆ = [Egs, a], if, for every ε > 0
and φ0 ∈ Ranχ∆(H), there is φ0ε ∈ Ffin s.t.

lim sup
t→∞

‖e−iHtφ0 − I(e−iEgstPgs ⊗ e−iHf tχ∆′(Hf ))φ0ε‖ = O(ε), (1.14)

where ∆′ = [0, a− Egs] and Pgs is the orthogonal projection onto Φgs.
Generically (e.g. under the Fermi Golden Rule condition), H has no eigenvalues in the interval (Egs, a],

where a < Σ can be taken arbitrarily close to Σ, depending on the coupling constant and on whether the
particle system has an infinite number of eigenvalues accumulating to its ionization threshold (see [8, 30, 34]).
We assume that this is exactly the case:

Fermi’s Golden Rule ([6, 7]) holds for all excited eigenvalues ≤ a of Hp. (1.15)

Assumption (1.15) means that for every excited eigenvalue ej ≤ a of Hp, we have

ΠjW Im((H0 − ej − i0+)−1Π̄j)WΠj ≥ cjΠj , cj > 0, (1.16)

where H0 := Hp + Hf (for either model), W := H −H0, Πj denotes the projection onto the eigenspace of
H0 associated to ej and Π̄j := 1 − Πj . In fact, there is an explicit representation of (1.16). Since it differs
slightly for different models, we present it for the phonon one, assuming for simplicity that the eigenvalue ej

is simple:
∫
〈φj , g

∗(k)Im(Hp + ω(k)− ej − i0+)−1g(k)φj〉dk > 0, (1.17)

where φj is an eigenfunction of Hp corresponding to the eigenvalue ej and the inner product is in the space
Hp.

It is clear from (1.17) that Fermi’s Golden Rule holds generally, with a very few exceptions. Treatment
of the (exceptional) situation when excited embedded eigenvalues do occur requires, within our approach,
proving a delicate estimate ‖PΩf(H)‖ ! 〈g〉, where PΩ denotes the projection onto Hp ⊗ Ω (where Ω :=
1⊕ 0⊕ . . . is the vacuum in F) and f ∈ C∞0 ((Egs,Σ) \ σpp(H)), uniformly in dist(supp f, σpp(H)).

Let N := dΓ(1) be the photon (or phonon) number operator and Nρ := dΓ(ω−ρ) be the photon (or
phonon) low momentum number operator. In what follows we let ψt denote the Schrödinger evolution,
ψt = e−itHψ0, i.e. the solution of the Schrödinger equation (1.10), with an initial condition ψ0, satisfying
ψ0 = f(H)ψ0, with f ∈ C∞0 ((−∞,Σ)). We have

Theorem 1.1 (Asymptotic Completeness). Consider the hamiltonian (1.1) with the coupling constants κj

sufficiently small, or the hamiltonian (1.4)–(1.5) satisfying (1.6) with µ > 0, (1.7) and 〈g〉 3 1. Assume
(1.15) and suppose that either

‖N 1
2 ψt‖ ! ‖N 1

2 ψ0‖+ ‖ψ0‖, (1.18)

for any ψ0 ∈ f(H)D(N1/2), with f ∈ C∞0 ((Egs,Σ)), uniformly in t ∈ [0,∞), or

‖N
1
2
1 ψt‖ ! 1, (1.19)

uniformly in t ∈ [0,∞), for any ψ0 ∈ D, where D is such that D ∩ D(dΓ(ω−1/2〈y〉ω−1/2) 1
2 ) is dense in

RanE(−∞,Σ)(H). Then asymptotic completeness holds on [Egs, a].

Assumption (1.18) can be replaced by the slightly weaker hypothesis that there exist 1/2 ≤ δ1 ≤ δ2 such
that for any ψ0 ∈ f(H)D(N δ2), with f ∈ C∞0 ((Egs,Σ)), ‖N δ1ψt‖ ! ‖N δ2ψ0‖+‖ψ0‖, uniformly in t ∈ [0,∞).

The advantage of Assumption (1.19) is that the uniform bound on N1 = dΓ(ω−1) is required to hold only
for an arbitrary dense set of initial states and, as a result, can be verified for the massless spin-boson model
by modifying slightly the proof of [14] (see the discussion below). Hence asymptotic completeness in this
case holds with no implicit conditions.

As we see from the results above, the uniform bounds, (1.18) or (1.19), on the number of photons (or
phonons) emerge as the remaining stumbling blocks to proving asymptotic completeness without qualifica-
tions. The difficulty in proving these bounds for massless fields is due to the same infrared problem which
pervades this field and which was successfully tackled in other central issues, such as the theory of ground
states and resonances (see [5, 59] for reviews), the local decay and the maximal velocity bound.
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For massive bosons (e.g. optical phonons), the inequality (1.18) (as well as (2.4), with ν0 = 0) is easily
proven and the proof below simplifies considerably as well. In this case, the result is unconditional. It was
first proven in [19] for models with confined particles, and in [27] for Rayleigh scattering.

As was mentioned above, for the spin-boson model, a uniform bound, 〈ψt, eδNψt〉 ≤ C(ψ0) < ∞, δ > 0,
on the number of photons, on a dense set of ψ0’s, was recently proven in the remarkable paper [14].

To verify (1.19) for the spin-boson model, with µ > 0, we proceed precisely in the same way as in [14],
but using a stronger condition on the decay of correlation functions,

∫ ∞

0
dt (1 + t)α|h(t)| < ∞, with h(t) :=

∫

R3
dk e−it|k|(1 + |k|−1)|g(k)|2, (1.20)

for some α ≥ 1, instead of Assumption A of [14], and bounding the observable (1 + κN1/2)2 instead of eκN .
Assumption C of [14] on initial states has to be replaced in the same manner. Assuming that our condition
(1.19) on the coupling function g is satisfied with µ > 0 (and η = 1), we see that (1.20) holds with α = 1+2µ.

The form of the observable eκN enters [14] through the estimate ‖Ku,v‖) ≤ C|h(u − v)| of the operator
Ku,v defined in [14, (3.4)] and the standard estimate [14, (4.36)]. Both extend readily to our case (the former
with h(t) given in (1.20)). Moreover, [14, (4.36)] is used in the proof that pressure vanishes – Eq. (4.39)
in [14] – and the latter also follows from our Proposition A.1 (We can also use the observable e−dΓ(λ ln ω) –
equal to Γ(ω−λ), see (1.24) below for the definition of Γ(χ) – and analyticity – rather than perturbation –
in λ.)

Earlier results. Considerable progress has been made in understanding the asymptotic dynamics of non-
relativistic particle systems coupled to quantized electromagnetic or phonon field. The local decay property
was proven in [7, 8, 9, 12, 30, 31, 33, 34], by the combination of the renormalization group and positive
commutator methods. The maximal velocity estimate was proven in [10].

As mentioned above, an important breakthrough was achieved recently in [14], where the authors proved
relaxation to the ground state and uniform bounds on the number of emitted massless bosons in the spin-
boson model. (Importance of both questions was emphasized earlier by Jürg Fröhlich.)

In quantum field theory, asymptotic completeness was proven for (a small perturbation of) a solvable
model involving a harmonic oscillator (see [3, 64]), and for models involving massive boson fields, in [19] for
confined systems, in [27] below the ionization threshold for non-confined systems, and in [28] for Compton
scattering.

Moreover, the remarkable paper [35] obtained some important results for massless bosons (the Nelson
model) in confined potentials (see below for a more detailed discussion). Motivated by the many-body
quantum scattering, [19, 27, 28, 29, 35] defined the main notions of scattering theory on Fock spaces, such
as wave operators, asymptotic completeness and propagation estimates.

Comparison with [35]. The paper [35] treats the Nelson model (1.4)–(1.5), with abstract conditions on the
coupling function g (allowing a coupling function of the form g(k) = |k|µξ(k)eikx where ξ(k) is the ultraviolet
cut-off, with various conditions on µ depending on the results involved), and with V (x) growing at infinity
as V (x) ≥ c0|x|2α − c1, c0 > 0, α > 0. In this case, in particular, the ionization threshold Σ is equal to ∞.

We reproduce the main results of [35] (Theorems 12.4, 12.5 and 13.3), which are coached in different terms
than ours and present another important view of the subject. Let f, f0 ∈ C∞(R) such that 0 ≤ f, f0 ≤ 1,
f ′ ≥ 0, f = 0 for s ≤ α0, f = 1 for s ≥ α1, f ′0 ≤ 0, f0 = 1 for s ≤ α1, f0 = 0 for s ≥ α2, with 0 < α0 < α1 <
α2. Let P+

c := infc<c′ P̂
+
c′ , with P̂+

c′ := s-limε→0 ε−1R̂+
c (ε−1), R̂+

c (ε−1) := s-limt→∞ eitH(Bct + λ)−1e−itH ,
Bct := dΓ(bct), bct := f( |y|−ct

tρ ) and Γ+
c′(f0) := s-limt→∞ eitHΓ(f0,c′,t)e−itH , where f0,c′,t := f0( |y|−c′t

tρ ).
Then Proposition 12.2 and Theorem 12.3 of [35] state that the operators P+

c exist provided ρ > 1
µ+1 ,

are independent of the choice of f , and are orthogonal projections commuting with H. Furthermore, let
K+ := {Φ ∈ H : a±(h)Φ = 0, ∀h ∈ h} (called in [35] the set of asymptotic vacua), where (formally)
a±(h) := s-limt→±∞ eitHa(e−itωh)e−itH and H+

c := RanP+
c (the spaces containing states with only a finite

number of photons in the region {|y| ≥ c′t} as t → ∞, for all c′ > c). Assuming α > 1 and µ > 0,
Theorems 12.4 and 12.5 state that the operator Γ+

c′(f0) exists and is equal to the orthogonal projection on
the space K+

c := K+ ∩ H+
c , provided 0 < c < c′ < 1 and ρ > 1

µ+1 . (The latter property is called in [35]
geometric asymptotic completeness.) Assuming in addition that the Mourre estimate 1∆(H)[H, iB]1∆(H) ≥
c01∆(H) + R holds on an open interval ∆ ⊂ R, with the conjugate operator B := dΓ(b), b = 1

2 (k · y + y · k),
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c0 > 0 and R a compact operator on H, then for 0 < c < c(∆, c0), one has 1∆(H)K+
c = 1∆(H)Hpp, where

Hpp is the pure point spectrum eigenspace of H. (Combining results of [7, 8, 30] one can probably prove a
Mourre estimate, with B as conjugate operator, in any spectral interval above Egs and below Σ and for the
coupling function g given by g(k) = |k|µξ(k)eikx, with µ ≥ 1/2.)

Our approach is similar to the one of [35] in as much as it also originates in ideas of the quantum
many-body scattering theory. At this the similarities end.

Approach and organization of the paper. In this paper, as in earlier works, we use the method of
propagation observables, originating in the many body scattering theory ([61, 62, 45, 36, 67, 16], see [18, 44]
for a textbook exposition and a more recent review). It was extended to the non-relativistic quantum
electrodynamics in [19, 35, 26, 27, 28, 29] and to the P (ϕ)2 quantum field theory, in [20] and was used in
[10] to prove the maximal velocity estimate, which states that, for any c′ > 1,

∥∥dΓ
(
χ |y|

c′t≥1

) 1
2 ψt

∥∥ ! t−γ
∥∥(dΓ(〈y〉) + 1)

1
2 ψ0

∥∥, (1.21)

with γ < min( 1
2 (1− 1

c′ ),
1
10 ) for (1.1), and γ < min(µ

2 ( c′−1
2c′−1 ), 1

2+µ ) for (1.4)–(1.6) with µ > 0. We formalize
the method of propagation observables in the next section.

We mention that the observables dΓ(1Ω(y)) can be interpreted as giving the number of photons in Borel
sets Ω ⊂ R3. They are closely related to those used in [27, 35, 50] (and discussed earlier in [52] and [1]) and
are consistent with a theoretical description of the detection of photons (usually via the photoelectric effect,
see e.g. [53]). The quantity 〈ψ, Γ(1Ω(y))ψ〉 is interpreted as the probability that the photons are in the set
Ω in the state ψ. This said, we should mention that the subject of photon localization is still far from being
settled. For more discussion see [22].

In Sections 3 and 4, we prove our key propagation estimates – minimal photon escape velocity estimates.
These estimates are formulated in terms of the self-adjoint operators bε defined as bε := 1

2 (v(k) · y + y · v(k)),
where v(k) := k

ω+ε , for ε = t−κ, with some κ > 0. Since the vector field v(k) is Lipschitz continuous and
therefore generates a global flow, the operator bε is self-adjoint. Our minimal photon escape velocity estimate
are of the form

∫ ∞

1
dt t−α′

∥∥dΓ(χ bε
ctα =1)

1
2 ψt

∥∥2 ! ‖(N1 + 1)
1
2 ψ0‖2, (1.22)

for some α′ and α satisfying 0 < α ≤ α′ ≤ 1, and
∥∥Γ(χ bε

ctα≤1)
1
2 ψt

∥∥2 ! t−δ
(
‖(dΓ(〈y〉) + 1)

1
2 ψ0‖2 + ‖(dΓ(b) + 1)ψ0‖2

)
, (1.23)

for some α ≤ 1 and δ > 0, where b = 1
2 (k · y + y · k) and Γ(χ) is the lifting of a one-photon operator χ (e.g.

a smoothed out characteristic function of y) to the photon Fock space, defined by

Γ(χ) = ⊕∞n=0(⊗nχ), (1.24)

(so that Γ(eb) = edΓ(b)).
Once the minimal velocity estimates are proven, the first step in the proof of asymptotic completeness is

to decouple the photons in the expanding ball {bε ≤ ctα} from those inside {bε ≥ ctα}. To this end we use
the second quantization, Γ(j) : Γ(h) → Γ(h⊕ h) of a partition of unity j : h → j0h⊕ j∞h on the one-photon
space, j : h → h⊕h, with j0 localizing a photon to a region {bε ≤ ctα}, and j∞, to {bε ≥ ctα}, and satisfying
j2
0 + j2

∞ = 1. Defining the adjoint map j∗ : h0 ⊕ h∞ → j∗0h0 + j∗∞h∞, so that j∗j = j2
0 + j2

∞ = 1, and using
Γ(j)∗Γ(j) = Γ(j∗j), we see that Γ(j)∗Γ(j) = 1.

The partition Γ(j) is further refined as ([19, 27]) Γ̌(j) := UΓ(j) : Γ(h) → Γ(h)⊗Γ(h), where U : Γ(h⊕h) →
Γ(h)⊗Γ(h) is the unitary map defined through the relations UΩ =Ω ⊗Ω, Ua∗(h) = [a∗(h1)⊗1+1⊗a∗(h2)]U,
for any h = (h1, h2) ∈ h⊕h, and is then lifted from the Fock space F = Γ(h) to the full state spaceH = Hp⊗F .
As above, Γ̌(j)∗Γ̌(j) = 1. (We call Γ̌(j) the Dereziński-Gérard partition of unity.) Using Γ̌(j), we define the
Deift-Simon wave operators ([15, 60, 19, 27]),

W± := s-lim
t→±∞

eiĤtΓ̌(j)e−iHt, (1.25)

where Ĥ := H ⊗ 1 + 1 ⊗Hf , on the auxiliary space Ĥ := H ⊗ F . The first minimal velocity estimate for
bε implies that these operators exist (see Subsection 5.2). The existence of the Deift-Simon wave operators
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implies that

ψt = Γ̌(j)∗e−iĤteiĤtΓ̌(j)e−iHtψ0 = Γ̌(j)∗e−iĤtφ0 + ot(1), (1.26)

where φ0 := W+ψ0. Since e−iĤt = e−iHt ⊗ e−iHf t, we see that the first term on the r.h.s. describes the
photons in the expanding ball {bε ≤ ctα} decoupled from those inside {bε ≥ ctα}.

Next, let ∆ = [Egs, a] ⊂ R, where a < Σ, and ∆′ = [0, a−Egs]. The existence of W+ implies the property
W+χ∆(H) = χ∆(Ĥ)W+, which gives φ0 = χ∆(Ĥ)φ0 if ψ0 ∈ Ran(χ∆(H)). The latter relation together with
χ∆(Ĥ) = (χ∆(H) ⊗ χ∆′(Hf ))χ∆(Ĥ) implies φ0 =

(
χ∆(H) ⊗ χ∆′(Hf )

)
φ0. Next, we use that for all ε > 0,

there is δ = δ(ε) > 0, such that
∥∥(χ∆(H)⊗ 1)φ0 − (χ∆ε(H)⊗ 1)φ0 − (Pgs ⊗ 1)φ0

∥∥ ≤ ε, (1.27)

where ∆ε = [Egs + δ, a] and Pgs is the orthogonal projection onto the ground state of H. Applying this
equation and the relations e−iĤt = e−iHt ⊗ e−iHf t and e−iHtPgs = e−iEgstPgs to (1.26) gives, after some
manipulations with energy cut-offs,

ψt = Γ̌(j)∗
(
e−iEgstPgs ⊗ e−iHf tχ∆′(Hf )

)
φ0 + Γ̌(j)∗φt +O(ε) + ot(1), (1.28)

where φt =
(
e−iHtχ∆ε(H)⊗e−iHf tχ∆′(Hf )

)
φ0. Now, let (j̃0, j̃∞) be localized similarly to (j0, j∞) and satisfy

j0j̃0 = j0, j∞j̃∞ = j∞. Then, as shown below, the adjoint Γ̌(j)∗ to the operator Γ̌(j) can be represented as
Γ̌(j)∗ = Γ̌(j)∗

(
Γ(j̃0) ⊗ Γ(j̃∞)

)
. Using this equation in (1.26) and using that

(
Γ(j̃0) ⊗ 1

)
φt → 0, as t → ∞,

by the second minimal velocity estimate for bε, we see that the second term on the r.h.s. of (1.28) vanishes,
as t →∞.

To conclude the proof of asymptotic completeness, we pass from the operator Γ̌(j)∗ to the (scattering)
map I defined in (1.12)–(1.13). To this end we use the formula Γ̌(j)∗ = IΓ(j∗0 ) ⊗ Γ(j∗∞), for any operator
j : h → j0h⊕ j∞h, and some elementary estimates in order to remove Γ(j∗0 )⊗ Γ(j∗∞).

Remark. At the expense of slightly lengthier computations, but gaining simpler technicalities, one can also
modify bε to make it bounded, by multiplying it with the cut-off function χ |y|

c′t≤1
with c′ > 1, such that the

maximal velocity estimate (1.21) holds, or use the smooth vector field v(k) = k√
ω2+ε2

, instead of v(k) = k
ω+ε .

To simplify the exposition, in Sections 2–5, we consider hamiltonians of the form (1.4)–(1.5), with the
coupling operators g(k) satisfying (1.6), where η1 and η2 obey (1.7). In Section 6, we extend the results
to a general class of hamiltonians that are introduced in the next paragraph. In Section 7, we show that
the minimal coupling model (1.1) can be mapped unitarily to a hamiltonian from this class, and we deduce
Theorem 1.1 for this model.

A general class of hamiltonians. The QED hamiltonian (1.1) can be written in the form (1.4), with
I(g) being quadratic in the creation and annihilation operators a#

λ (k), and the coupling functions satisfying
estimates of the form (1.6) with µ = −1/2, η1 = 〈p〉−1 or 1, and η2 = 〈x〉−1. This infrared behaviour is
too singular for our techniques. However, we show in Subsection 7.1 that under the generalized Pauli-Fierz
transform of [58], (1.1) is unitary equivalent to an operator of the form described below, whose infrared
behaviour is considerably better. We introduce the class of hamiltonians of the form

H̃ = Hp + Hf + Ĩ(g), (1.29)

where Hp := −∆ + V (x), and Hf = dΓ(ω) are the same as before, but the interaction operator, Ĩ(g), is of a
more general form

Ĩ(g) :=
∑

ij

∫∫
dk(i)dk′(j)gij(k(i), k

′
(j))⊗ a∗(k(i))a(k′(j)). (1.30)

Here the summation in i, j ranges over the set i, j ≥ 0, 1 ≤ i + j ≤ 2, k(p) := (k1, . . . , kp), kj := (kj , λj),∫
dk(p) :=

∏p
1

∑
λj

∫
dkj , a#(k(p)) :=

∏p
1 a#(kj) if p ≥ 1 and = 1, if p = 0, a#(kj) := a#

λj
(kj), and g := (gij).

We suppose that the coupling operators, gij = gij(k(i), k(j)) satisfy

gij(k(i), k
′
(j)) = g∗ji(k

′
(j), k(i)), (1.31)
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and

‖η2−i−j
1 η|α|2 ∂αgij(k(i+j))‖Hp !

i+j∑

m=1

i+j∏

+=1

(|k+|µ〈k+〉−2−µ)|km|−|α|, (1.32)

where µ > −1/2 and, as above, η1 and η2 are estimating operators (unbounded, positive operators with
bounded inverses) on the particle space Hp such that there exists Σ > inf σ(Hp) so that (1.7) holds.

We define the norm 〈g〉 :=
∑

1≤i+j≤2

∑
|α|≤2 ‖η

2−i−j
1 η|α|2 ∂αgij‖ of the vector coupling operators g := (gij),

extending the norms of the scalar coupling operators g, introduced above. It is easy to extend Theorem 1.1
to the hamiltonians of the form (1.29)–(1.32) satisfying (1.7):

Theorem 1.2. Theorem 1.1 still holds if we replace hamiltonians of the form (1.1) or (1.4)–(1.6) with
hamiltonians of the form (1.29)–(1.32), with (1.7).

As mentioned above, Theorem 1.2 is proven in Section 6.

Finally, a low momentum bound of [10] and some standard technical statements are given in Appendices
A, B, C and D. The paper is essentially self-contained. In order to make it more accessible to non-experts, we
included Supplement I giving standard definitions, proof of the existence and properties of the wave operators,
and Supplement II defining and discussing the creation and annihilation operators (see also [21, 17]).

Notations. For functions A and B, we will use the notation A ! B signifying that A ≤ CB for some
absolute (numerical) constant 0 < C < ∞. The symbol E∆ stands for the characteristic function of a set
∆, while χ·≤1 denotes a smoothed out characteristic function of the interval (−∞, 1], that is it is in C∞(R),
non-increasing, equal to 1 if x ≤ 1/2 and equal to 0 if x ≥ 1. Moreover, χ·≥1 := 1 − χ·≤1 and χ·=1 stands
for the derivative of χ·≥1. Given a self-adjoint operator a and a real number α, we write χa≤α := χ a

α≤1, and
likewise for χa≥α. Finally, D(A) denotes the domain of an operator A, 〈x〉 := (1 + |x|2)1/2, O(ε) denotes an
operator bounded by Cε, ot(1) denotes a real number tending to 0 as t → ∞, and C(ε)ot(1) denotes a real
number (depending on ε and t) which goes to 0 as t →∞ for any fixed ε.

Acknowledgements. The first author thanks Jean-François Bony and Christian Gérard for useful dis-
cussions. His research is supported by ANR grant ANR-12-JS01-0008-01. The second author is grateful
to Volker Bach, Jürg Fröhlich, and Avy Soffer for very fruitful collaboration to which he owes whatever
understanding of the subject he has. The authors are grateful to the anonymous referees for a number of
very useful remarks.

2. Method of propagation observables

Many steps of our proof use the method of propagation observables which we formalize in what follows. Let
ψt = e−itHψ0, where H is a hamiltonian of the form (1.4)–(1.5), with the coupling operator g(k) satisfying
(1.6) and (1.7). The method reduces propagation estimates for our system say of the form

∫ ∞

0
dt

∥∥G
1
2
t ψt

∥∥2 ! ‖ψ0‖2#, (2.1)

for some norm ‖·‖# ≥ ‖·‖, to differential inequalities for certain families φt of positive, one-photon operators
on the one-photon space L2(R3).

We introduce some notation and definitions. For A ≥ −C, we denote ‖ψ0‖A := ‖(A+C +1) 1
2 ψ0‖. Recall

the notations Nρ = dΓ(ω−ρ) and let

Υρ =
{
ψ0 ∈ f(H)D(N

1
2
ρ ), for some f ∈ C∞0 ((−∞,Σ))

}
. (2.2)

Notice that, since N−1f(H) = Hff(H) is bounded as follows from the bound

‖ψt‖Hf ! ‖ψ0‖H , (2.3)

one easily verifies that Υρ ⊂ Υρ′ for ρ ≥ ρ′ ≥ −1.
We define νρ ≥ 0 as the smallest real number satisfying the inequality

〈ψt, Nρψt〉 ! tνρ‖ψ0‖2ρ, (2.4)
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for any ψ0 ∈ RanE(−∞,Σ)(H), where ‖ψ‖2ρ := ‖ψ‖2Nρ
. It was shown in [10] (see (A.1) of Appendix A) that,

for any −1 ≤ ρ ≤ 1, the inequality (2.4) is satisfied with

νρ ≤
1 + ρ

2 + µ
, (2.5)

where µ is defined by (1.6) (this generalizes an earlier result due to [35]). Also, (2.3) implies that (2.4) holds
for ρ = −1 with ν−1 = 0. Let

dφt := ∂tφt + i[ω, φt].
We isolate the following useful class of families of positive, one-photon operators:

Definition 2.1. A family of positive operators φt on L2(R3) will be called a one-photon weak propagation
observable, if it has the following properties

• there are δ ≥ 0 and a family pt of non-negative operators, such that

‖ωδ/2φtω
δ/2‖ ! 〈t〉−νδ and dφt ≥ pt +

∑

finite

remi, (2.6)

where remi are one-photon operators satisfying

‖ωρi/2 remi ωρi/2‖ ! 〈t〉−λi , (2.7)

for some ρi and λi, s.t. λi > 1 + νρi ,
• for some λ′ > 1 + νδ and with η1, η2 satisfying (1.7),

( ∫
‖η1η

2
2(φtg)(k)‖2Hp

ω(k)δdk
) 1

2 ! 〈t〉−λ′ . (2.8)

(Here φt acts on g as a function of k.)
Similarly, a family of operators φt on L2(R3) will be called a one-photon strong propagation observable, if

dφt ≤ −pt +
∑

finite

remi, (2.9)

with pt ≥ 0, remi are one-photon operators satisfying (2.7) for some λi > 1 + νρi , and (2.8) holds for some
λ′ > 1 + νδ.

The following proposition reduces proving inequalities of the type of (2.1) to showing that φt is a one-
photon weak or strong propagation observable, i.e. to one-photon estimates of dφt and φtg.

Proposition 2.2. If φt is a one-photon weak (resp. strong) propagation observable, then we have either the
weak propagation estimate, (2.1), or the strong propagation estimate,

〈ψt,Φtψt〉+
∫ ∞

0
dt

∥∥G
1
2
t ψt

∥∥2 ! ‖ψ0‖2#, (2.10)

with the norm ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗, where Φt := dΓ(φt), Gt := dΓ(pt), ‖ψ0‖∗ := ‖ψ0‖δ and ‖ψ0‖♦ :=∑
‖ψ0‖ρi , on the subspace Υmax(δ,ρi).

Before proceeding to the proof we present some useful definitions. Consider families Φt of operators on
H and introduce the Heisenberg derivative

DΦt := ∂tΦt + i
[
H,Φt

]
,

with the property

∂t〈ψt,Φtψt〉 = 〈ψt, DΦtψt〉. (2.11)

Definition 2.3. A family of self-adjoint operators Φt on a subspace H1 ⊂ H will be called a (second
quantized) weak propagation observable, if for all ψ0 ∈ H1, it has the following properties

• supt〈ψt,Φtψt〉 ! ‖ψ0‖2∗;
• DΦt ≥ Gt + Rem, where Gt ≥ 0 and

∫∞
0 dt |〈ψt,Rem ψt〉| ! ‖ψ0‖2♦,

for some norms ‖ψ0‖∗, ‖ ·‖ ♦ ≥ ‖ · ‖. Similarly, a family of operators Φt will be called a strong propagation
observable, if it has the following properties

• Φt is a family of non-negative operators;



10 J. FAUPIN AND I. M. SIGAL

• DΦt ≤ −Gt + Rem, where Gt ≥ 0 and
∫∞
0 dt |〈ψt,Rem ψt〉| ! ‖ψ0‖2#,

for some norm ‖ ·‖ # ≥ ‖ · ‖.

If Φt is a weak propagation observable, then integrating the corresponding differential inequality sand-
wiched by ψt’s and using the estimate on 〈ψt,Φtψt〉 and on the remainder Rem, we obtain the (weak
propagation) estimate (2.1), with ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗. If Φt is a strong propagation observable, then
the same procedure leads to the (strong propagation) estimate (2.10).

Proof of Proposition 2.2. Let Φt := dΓ(φt). To prove the above statement we use the relations (see
Supplement II)

D0dΓ(φt) = dΓ(dφt), i[I(g),dΓ(φt)] = −I(iφtg), (2.12)
where D0 is the free Heisenberg derivative,

D0Φt := ∂tΦt + i[H0,Φt],

valid for any family of one-particle operators φt, to compute

DΦt = dΓ(dφt)− I(iφtg). (2.13)

Denote 〈A〉ψ := 〈ψ, Aψ〉. Applying the Cauchy-Schwarz inequality, we find the following version of a
standard estimate

|〈I(g)〉ψ| ≤ 2
( ∫

‖η1η
2
2g(k)‖2Hp

ω(k)δd3k
) 1

2 ‖η−1
1 η−2

2 ψ‖‖ψ‖δ. (2.14)

Using that ψt = f1(H)ψt, with f1 ∈ C∞0 ((−∞,Σ)), f1f = f, and using (1.7), we find ‖η−1
1 η−2

2 ψt‖ ! ‖ψt‖.
Taking this into account, we see that the equations (2.14), (2.8) and (2.3) yield

|〈I(iφtg)〉ψt | ! 〈t〉−λ′+νδ‖ψ0‖2δ . (2.15)

Next, using (2.7), we find ±remi ≤ ‖ωρi/2 remi ωρi/2‖ωρi ! 〈t〉−λiω−ρi . This gives ±dΓ(remi) !
〈t〉−λidΓ(ω−ρi), which, due to the bound (2.4), leads to the estimate

∣∣〈dΓ(remi)〉ψt

∣∣ ! 〈t〉−λi+νρi‖ψ0‖2ρi
. (2.16)

Let Gt := dΓ(pt) and Rem :=
∑

finite dΓ(remi)− I(iφtg). We have Gt ≥ 0, and, by (2.15) and (2.16),
∫ ∞

0
dt

∣∣〈ψt,Rem ψt〉
∣∣ ! ‖ψ0‖2♦, (2.17)

with ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗, ‖ψ0‖∗ := ‖ψ0‖δ, ‖ψ0‖♦ :=
∑
‖ψ0‖ρi .

In the strong case, (2.9) and (2.13) imply

DΦt ≤ −Gt + Rem, (2.18)

and hence by (2.17), Φt is a strong propagation observable.
In the weak case, (2.6) and (2.13) imply

DΦt ≥ Gt + Rem. (2.19)

Since φt ≤ ‖ωδ/2φtωδ/2‖ω−δ ! 〈t〉−νδω−δ, we have dΓ(φt) ! 〈t〉−νδdΓ(ω−δ). Using this estimate and using
again the bound (2.4), we obtain

〈ψt,Φtψt〉 ! 〈t〉−νδ〈dΓ(ω−δ)〉ψt ! ‖ψ0‖2δ . (2.20)

Estimates (2.17) and (2.20) show that Φt is a weak propagation observable. "

Remarks.
1) Proposition 2.2 reduces a proof of propagation estimates for the dynamics (1.10) to estimates involving

the one-photon datum (ω, g) (an ‘effective one-photon system’), parameterizing the hamiltonian (1.4). (The
remaining datum Hp does not enter our analysis explicitly, but through the bound states of Hp which lead
to the localization in the particle variables, (1.7)).

2) The condition on the remainder in (2.6) can be weakened to rem = rem′ + rem′′, with rem′ and rem′′

satisfying (2.7) and
|rem′′| ! χ|y|≥c′t, (2.21)
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for c′ as in (1.21), respectively. Moreover, (2.7) can be further weakened to
∫ ∞

0
dt |〈ψt,dΓ(remi)ψt〉| < ∞. (2.22)

3. The first propagation estimate

Let νδ ≥ 0 be the same as in (2.4) and recall the operator bε defined in the introduction. We write it as

bε :=
1
2
(θε∇ω · y + y · ∇ω θε), where θε :=

ω

ωε
, ωε := ω + ε, ε = t−κ. (3.1)

We prove the following two results.

Theorem 3.1. Consider hamiltonians of the form (1.4)–(1.5) with the coupling operators satisfying (1.6)
with µ > −1/2 and (1.7). Let ν1 − ν0 < κ < 1. If either α < 1, or α = 1 and c < 1, and

α > max((3/2 + µ)−1, (1 + κ)/2, 1− κ + ν1 − ν0), (3.2)

then for any initial condition ψ0 ∈ Υ1, the Schrödinger evolution, ψt, satisfies, for any a > 1, the following
estimates ∫ ∞

1
dt t−α−aν0

∥∥dΓ(χ bε
ctα =1)

1
2 ψt

∥∥2 ! ‖ψ0‖21. (3.3)

If ν0 = 0, µ > 0, α satisfies (3.2) and α < 1
c̄ , with c̄ > 1, then, with the notation χ ≡ χ

( |y|
c̄t )2≤1

,
∫ ∞

1
dt t−α

∥∥dΓ(θ
1
2
ε χχ bε

ctα =1χθ
1
2
ε )

1
2 ψt

∥∥2 ! ‖ψ0‖20. (3.4)

Proof. We will use the method of propagation observables outlined in Section 2. We consider the one-
parameter family of one-photon operators

φt := t−aν0χα, χα ≡ χv≥1, v :=
bε

ctα
, (3.5)

where a > 1. To show that φt is a weak one-photon propagation observable, we obtain differential inequalities
for φt. Recall that dφt = ∂tφt + i[ω, φt]. To compute dφt, we use the expansion

dφt = t−aν0(dv)χ′α +
2∑

i=1

remi, (3.6)

rem1 := t−aν0 [dχα − (dv)χ′α], rem2 := −aν0t
−1φt. (3.7)

Using the definitions in (3.1), we compute

dv =
1

ctα
(
θε −

αbε

t
+ ∂tbε

)
. (3.8)

Next, we have ∂tbε = κ
2t1+κ (ω−1

ε θε∇ω·y+ h.c.) on D(bε), which, due to the relation 1
2 (ω−1

ε θε∇ω·y+ h.c.) =
ω−1/2

ε bεω
−1/2
ε , becomes

∂tbε =
κ

t1+κ
ω−1/2

ε bεω
−1/2
ε . (3.9)

Using that (see Lemma B.1 of Appendix B)

ω−1/2
ε bεω

−1/2
ε χ′α = ω−1/2

ε bεχ
′
αω−1/2

ε +O(t
3
2 κ),

and that bε ≥ 0 on suppχ′α, we obtain

∂tbεχ
′
α ≥ −

const
t1−κ/2

. (3.10)

The relations (3.6)–(3.10), together with bε
ctα χ′α ≤ χ′α, imply

dφt ≥ t−aν0
( θε

ctα
− α

t

)
χ′α +

3∑

i=1

remi, (3.11)
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where rem1 and rem2 are given in (3.7) and

rem3 = O(t−1−α+ κ
2−aν0). (3.12)

This, together with θε = 1 − t−κ

ωε
and ω−1

ε χ′α = ω−1/2
ε χ′αω−1/2

ε + O(t−α+ 3
2 κ) (see again Lemma B.1 of

Appendix B), implies

dφt ≥ t−aν0
( 1
ctα

− α

t

)
χ′α +

5∑

i=1

remi, (3.13)

rem4 :=
1

ctα+κ+aν0
ω−1/2

ε χ′αω−1/2
ε , rem5 = O(t−2α+ κ

2−aν0). (3.14)

We have ‖φt‖ ≤ t−aν0 and therefore the first estimate in (2.6) holds with δ = 0. If either α < 1 (and t
sufficiently large), or α = 1 and c < 1, then pt := t−aν0( 1

ctα − α
t )χ′α is non-negative, which implies the second

estimate in (2.6). Thus (2.6) holds. By the definition (3.6) and Corollary B.3 of Appendix B for i = 1, and
by an explicit form for i = 2, 3, 4, 5, we have the estimates

‖ωρi/2 remi ωρi/2‖ ! t−λi , (3.15)

i = 1, 2, 3, 4, 5, with ρ1 = ρ2 = ρ3 = ρ5 = 0, ρ4 = 1, λ1 = 2α−κ+ aν0, λ2 = 1+ aν0, λ3 = 1+α−κ/2+ aν0,
λ4 = α + κ + aν0, and λ5 = 2α − κ/2 + aν0. We remark here that the i = 2 term is absent if ν0 = 0. The
relation (3.15) implies (2.7) with ρ = ρi and λ = λi provided λi > 1 + νρi .

Finally, in the same way as [10, Lemma 3.1], one shows (by replacing |y| with bε in that lemma) that,
under (1.6) for some µ ≥ −1

2 ,
∥∥η1η

2
2χ bε

ctα≥1g(k)
∥∥

L2(R3;Hp)
! t−τ , τ < (

3
2

+ µ)α, (3.16)

which implies (2.8) with λ′ < aν0 + ( 3
2 + µ)α. Hence φt is a weak one-photon propagation observable,

provided 2α > 1 + κ + ν0 − aν0, α− κ/2 > ν0 − aν0, α + κ > 1 + ν1 − aν0, and (3
2 + µ)α > 1. Therefore, by

Proposition 2.2, we have, under the conditions on the parameters above,
∫ ∞

1
dt t−α−aν0‖dΓ(χ′α)

1
2 ψt‖2 ! ‖ψ0‖21. (3.17)

This, due to the definition of χ′α, implies the estimate (3.3).

We now prove (3.4). We use again the notation χα ≡ χv≥1, where v := bε
ctα , and we denote w := ( |y|c̄t )2.

We consider the one-parameter family of one-photon operators

φt := χχαχ, (3.18)

and show that φt is a weak one-photon propagation observable. We have ‖φt‖ ≤ 1 and therefore, due to the
assumption ν0 = 0, the first estimate in (2.6) holds with δ = 0. Now, we show the second estimate in (2.6).
To compute dφt, we use the expansion

dφt = χ(dv)χ′αχ + χ′(dw)χαχ + χχα(dw)χ′ +
∑

i=1,2

remi, (3.19)

where

rem1 := χ(dχα − (dv)χ′α)χ, rem2 := (dχ− (dw)χ′)χαχ + h.c.. (3.20)

As in (3.8)–(3.10), we have

χ(dv)χ′αχ ≥ 1
ctα

χ(θε −
αbε

t
)χ′αχ + rem3, (3.21)

where rem3 = O(t−1−α+κ/2). We consider the term −(αbε)/(ctα+1) in (3.21). By Lemma B.1 of Appendix
B, we have

χbεχ
′
αχ = χ(χ′α)

1
2 bε(χ′α)

1
2 χ = (χ′α)

1
2 χbεχ(χ′α)

1
2 +O(tκ).

Next, we recall (3.1) and observe that bε can be rewritten as bε = θ1/2
ε b0θ

1/2
ε , with b0 := 1

2 (∇ω ·y+h.c.). Note
that b0 is not a self-adjoint operator, only maximal symmetric. Nevertheless, using Hardy’s inequality, one
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easily verifies that b0 is well-defined on D(|y|) and that b0〈y〉−1 and 〈y〉−1b0 extend to bounded operators.
Thus, using again Lemma B.1 of Appendix B, we deduce that

(χ′α)
1
2 χbεχ(χ′α)

1
2 = (χ′α)

1
2 θ

1
2
ε χb0χθ

1
2
ε (χ′α)

1
2 +O(t

1
2+ κ

2 ).

The maximal velocity cut-off gives χb0χ ≤ c̄tχ2 and hence, commuting again χ through θ1/2
ε and (χ′α)1/2,

using Lemma B.1, we obtain

−χ
bε

t
χ′αχ ≥ −c̄χθ

1
2
ε χ′αθ

1
2
ε χ +O(

1
t

1
2−

κ
2

). (3.22)

Another application of Lemma B.1 for the term θε/(ctα) in (3.21) gives

χθεχ
′
αχ = χθ

1
2
ε χ′αθ

1
2
ε χ +O(

1
tα−κ

). (3.23)

Since α > (1 + κ)/2, we deduce from (3.22) and (3.23) that

χ
(
θε −

αbε

t

)
χ′αχ ≥ (1− αc̄)χθ

1
2
ε χ′αθ

1
2
ε χ +O(

1
t

1
2−

κ
2

)

≥ (1− αc̄)θ
1
2
ε χχ′αχθ

1
2
ε +O(

1
t

1
2−

κ
2

), (3.24)

where in the last inequality we used again Lemma B.1 and the fact that α > (1 + κ)/2.
Next, we address the second and third terms on the r.h.s. of (3.19). We compute

dw = 2
( b0

(c̄t)2
− w

t

)
.

By Lemma B.1 of Appendix B and the observation that dw enters (3.19) in combination with (−χ′) 1
2 , which

is bounded, we have

χ′(dw)χαχ + χχα(dw)χ′ = −2(χα)
1
2 (−χ′χ)

1
2 (dw)(−χ′χ)

1
2 (χα)

1
2 +O(

1
t1+α−κ

). (3.25)

Using that dw ≤ ( 1
c̄ − 1) 1

t on the support of χ′ and that χ′ ≤ 0 and c̄ > 1, we obtain

(−χ′χ)
1
2 (dw)(−χ′χ)

1
2 ≥ (1− 1

c̄
)
1
t
(−χ′χ). (3.26)

The relations (3.19), (3.21), (3.24), (3.25) and (3.26) imply

dφt ≥ pt + p̃t −
∑

i=1,2,3,4

remi, (3.27)

where rem4 = O( 1
tα+1/2−κ/2 ) and

pt :=
1− αc̄

ctα
θ

1
2
ε χχ′αχθ

1
2
ε , (3.28)

p̃t := (1− 1
c̄
)
1
t
χ

1
2
α(−χ′)χχ

1
2
α . (3.29)

The terms pt and p̃t are non-negative, provided α < 1/c̄ and c̄ > 1. This implies the second estimate in
(2.6). Next, we claim the estimates

‖remi‖ ! t−λ, (3.30)
i = 1, 2, 3, 4, with λ = 1/2 + α− κ/2. Indeed, the definition (3.20) and Corollary B.3 of Appendix B imply
(3.30) for i = 1 since 1/2 + α− κ/2 < 2α− κ. The estimate for i = 3, 4 are obvious. To estimate rem2, we
write

(dχ− (dw)χ′)χαχ = (dχ− (dw)χ′)vχ̃αχ =
1

ctα
(dχ− (dw)χ′)χ̃αbεχ,

where χ̃α = v−1χα and, recall, v = bε
ctα . Using that bε = θεb0 + iεω−2

ε and that, by Lemma B.4 of Appendix
B, ∥∥dχ− (dw)χ′‖ ! t−1,
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gives

(dχ− (dw)χ′)χαχ =
1

ctα
(dχ− (dw)χ′)χ̃αθεb0χ +O(

1
t1+α−κ

). (3.31)

Using in addition Lemma B.1 of Appendix B and the estimate b0χ = O(t), this yields

(dχ− (dw)χ′)χαχ =
1

ctα
(dχ− (dw)χ′)ωχ̃αω−1

ε b0χ +O(
1

t2α−κ
). (3.32)

By Lemma B.4, we also have ∥∥(dχ− (dw)χ′)ω‖ ! t−2.

Combining this with (3.32) and the estimates ω−1
ε = O(tκ) and b0χ = O(t), we obtain

(dχ− (dw)χ′)χαχ = O(
1

t2α−κ
), (3.33)

and hence, since 1/2 + α− κ/2 < 2α− κ, the estimate for i = 2 follows.
The relation (3.30) implies (2.7) with λ = 1/2 + α − κ/2, for rem = remi, provided 1/2 + α − κ/2 > 1.

Finally, as above, (2.8) holds with λ′ < aν0 + ( 3
2 + µ)α by (3.16). This yields (3.4). "

Remark. The estimate (3.3) is sharp if ν0 = 0. Assuming this and taking ν1 ≤ (3/2 + µ)−1 (see (A.7) of
Appendix A), the conditions on α in Theorems 3.1 and 4.1 become α > 5

6 + 1
6(3/2+µ) , and (3/2+µ)−1 < α < 1,

respectively.

4. The second propagation estimate

Recall the norm 〈g〉 =
∑

|α|≤2 ‖η1η
|α|
2 ∂αg‖L2(R3,Hp) for the coupling function g and the notation 〈A〉ψ =

〈ψ, Aψ〉. We will use the following set of initial conditions.

Υ# :=
{
ψ0 ∈ f(H)

(
D(dΓ(〈y〉)) ∩D(dΓ(b)2)

)
, for some f ∈ C∞0 ((Egs, a])

}
,

where b = 1
2 (k · y + y · k) and a < Σ is given by Assumption (1.15).

Theorem 4.1. Consider hamiltonians of the form (1.4)–(1.5) with the coupling operators satisfying (1.6)
with µ > −1/2 and (1.7). Assume that (1.15) holds. Let 〈g〉 be sufficiently small, ν1 < κ< 1, and 0 < α < 1.
Let ψ0 ∈ Υ#. Then the Schrödinger evolution, ψt, satisfies the estimate

∥∥Γ(χ bε
ctα≤1)

1
2 ψt

∥∥2 ! t−δ
(
‖ψ0‖2dΓ(〈y〉) + ‖ψ0‖2dΓ(b)2

)
, (4.1)

for 0 ≤ δ < min(κ− ν1, 1− κ, 1− α− ν0) and any c > 0, where, recall, b = 1
2 (k · y + y · k).

We define Bε := dΓ(bε) and Bε,t := Bε/(ct). As in [10, Proposition B.3 and Remark B.4], one verifies
that Υ# ⊂ D(dΓ(〈y〉)) ⊂ D(Bε). The proof of Theorem 4.1 is based on the following result (cf. [61, 45]).

Proposition 4.2. Under the conditions of Theorem 4.1, the evolution ψt = e−iHtψ0 obeys
∥∥χBε,t≤1ψt

∥∥2 ! t−δ′
(
‖ψ0‖2dΓ(〈y〉) + ‖ψ0‖2dΓ(b)2

)
, (4.2)

for any 0 < c < (1− C〈g〉)/(1 + κ), where δ′ := min
( 1−C〈g〉

c − 1− κ, 1− κ, κ− ν1

)
.

Remark. The constant C is independent of γ0 := dist(Egs, supp f) (but the implicit constant appearing in
the right hand side of (4.2) does depend on γ0).

Proof. Let ε > 0 be a constant. Let ρ < min
( 1−C〈g〉

c −1, 1
)

where C > 0 is a positive constant defined below
(see (4.10)). Consider the propagation observable

Φt := −tρϕ
(
Bε,t

)
,

where ϕ
(
Bε,t

)
:=

(
Bε,t − 2

)
χBε,t≤1. Note that ϕ ≤ 0, but ϕ′ ≥ 0. Let ϕ′ = ϕ2

1. We use the notations
ϕ := ϕ(Bε,t), χ := χBε,t≤1 ≡ χ(Bε,t), and likewise for ϕ′, ϕ1 and χ′. The relations below are understood in
the sense of quadratic forms on Υ#. The IMS formula gives

DΦt = M + R, (4.3)
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where M := −tρϕ1(DBε,t)ϕ1 − ρt−1+ρϕ and

R :=
1

ct1−ρ
[[B1, ϕ1], ϕ1] + tρ

(
[H,ϕ]− 1

2ct
(ϕ′B1 + B1ϕ

′)
)
, (4.4)

where B1 := i[H,Bε]. First, we compute the main term, M , in (4.3). We leave out a standard proof of
f(H) ∈ C1(Bε) (see e.g. [30, Theorem 8]) and standard domain questions such as that Υ# ⊂ D(Bε). We
have

DBε,t =
1
ct

DBε −
1
t
Bε,t. (4.5)

Since, by (II.3) of Supplement II, i[Hf , Bε] = Nε, where Nε := dΓ(θε), we have

DBε = Nε + I1, (4.6)

where I1 := i[I(g), Bε] = −I(ibεg) (see (II.5) of Supplement II). To estimate the operator Nε from below, we
use that θε = 1− ε

ωε
, to obtain

Nε = N − εdΓ(ω−1
ε ). (4.7)

Next, Lemma C.2 of Appendix C and the bound (2.4) show that
〈
ϕ1dΓ(ω−1

ε )ϕ1

〉
ψt

! tν1‖ψ0‖21 + t−1+ν0ε−2‖ψ0‖20. (4.8)

Define the first estimating operator E1 := N + η−1
2 η−2

1 η−1
2 + 1. By (1.6), the condition µ > −1/2 and

(2.14) (with δ = 0), we have

‖η1η2I1(N + 1)−1/2‖ ! ‖η1η2bεg‖ ! 〈g〉, (4.9)

and hence,

I1 ≥ −C〈g〉E1. (4.10)

Combining this with the definition of M , (1.7), (4.5), (4.6), (4.7) and (4.8), we obtain

〈M〉ψt ≤−
1

ct1−ρ

〈
ϕ1

(
(1− C〈g〉)N − t−1Bε − C〈g〉

)
ϕ1 + cρϕ

〉
ψt

+
C

t1−ρ

(
εtν1‖ψ0‖21 + t−1+ν0ε−1‖ψ0‖20

)
. (4.11)

Let Ω := 1⊕ 0⊕ . . . be the vacuum in F and PΩ be the orthogonal projection on the subspace Hp ⊗ Ω,
PΩΨ := 〈Ω,Ψ〉F ⊗ Ω. We now use the relation ϕ1PΩ = PΩ, together with the estimate

∥∥PΩe−itHf(H)u
∥∥ ! t−s‖〈B〉u‖, s < 1/2,

proven in Lemma 4.3 below, to obtain

〈ϕ1PΩϕ1〉ψt = 〈PΩ〉ψt ! t−2s‖〈B〉ψ0‖2 ! t−2s‖ψ0‖2B2 . (4.12)

Combining this with N ≥ 1− PΩ and (4.11), we obtain

〈M〉ψt ≤−
1

ct1−ρ

〈
ϕ1[1− t−1Bε − C〈g〉]ϕ1 + cρϕ

〉
ψt

+
C

t1−ρ

(
εtν1‖ψ0‖21 + t−1+ν0ε−1‖ψ0‖20 + t−2s‖ψ0‖2B2

)
. (4.13)

Now, recalling the definition ϕ
(
Bε,t

)
:=

(
Bε,t − 2

)
χBε,t≤1, we compute

Bε,tϕ
′ + ρ(−ϕ) = Bε,t

(
χ + (Bε,t − 2)χ′

)
− ρ(Bε,t − 2)χ

=
(
(1− ρ)Bε,t + 2ρ

)
χ + Bε,t(Bε,t − 2)χ′. (4.14)

Next, using that Bε,tχ ≤ χ, Bε,t(Bε,t − 2)χ′ ≤ (Bε,t − 2)χ′, we find furthermore

Bε,tϕ
′ + ρ(−ϕ) ≤ (1 + ρ)χ + (Bε,t − 2)χ′ = ρχ + ϕ′ ≤ (1 + ρ)ϕ′. (4.15)

This, together with (4.13), and notation ϕ2
1 = ϕ′ and σ := 1−O(〈g〉), gives

〈M〉ψt ≤−
[σ

c
− 1− ρ

] 1
t1−ρ

〈ϕ′〉ψt

+
C

t1−ρ

(
εtν1‖ψ0‖21 + t−1+ν0ε−1‖ψ0‖20 + t−2s‖ψ0‖2B2

)
. (4.16)
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Next, we introduce the second estimating operator E2 := N + η−2 + 1, with η2 := η2
2η2

1η2
2 , and show that

the remainder, R, defined in (4.4) satisfies

R ≤ Ct−2ε−1E2. (4.17)

To prove (4.17), it suffices to show that
∥∥E

− 1
2

2 RE
− 1

2
2

∥∥ ! t−2ε−1. (4.18)

Proceeding as in the proof of Lemma B.2 of Appendix B, using the Helffer-Sjöstrand formula (B.1), one
verifies that

∥∥E
− 1

2
2 RE

− 1
2

2

∥∥ ! t−2
∥∥E

− 1
2

2 B2E
− 1

2
2

∥∥, (4.19)

where B2 := [Bε, [Bε, H]]. Now, writing B2 = [Bε, [Bε, Hf ]] + I2, where I2 := [Bε, [Bε, I(g)]], and using
the elementary computations (II.3) and (II.5) of Supplement II, we find [Bε, [Bε, Hf ]] = dΓ(εθεω−2

ε ) and
I2 = I(b2

εg). The estimate εθεω−2
ε ≤ ε−1 implies

∥∥(1 + N)−
1
2 dΓ(εθεω

−2
ε )(1 + N)−

1
2
∥∥ ! ε−1. (4.20)

Moreover, (1.6), the condition µ > −1/2 and (2.14) (with δ = 0) yield

‖η1η
2
2I2(1 + N)−

1
2 ‖ ! ‖η1η

2
2b2

εg‖ ! ε−1〈g〉, (4.21)

and hence
∥∥E

− 1
2

2 I2E
− 1

2
2

∥∥ ! ε−1〈g〉. (4.22)

Thus, we obtain ∥∥E
− 1

2
2 B2E

− 1
2

2 ‖ ! ε−1, (4.23)
which together with (4.19) implies (4.18). Together with Equations (4.3) and (4.16) and the fact that
‖η−1

1 η−2
2 f(H)‖ ! 1, this implies

〈DΦt〉ψt ≤ −
(σ

c
− 1− ρ

)
t−1+ρ〈ϕ′〉ψt

+ C
(
εtν1+ρ−1‖ψ0‖21 + t−2+ν0+ρε−1‖ψ0‖20 + t−1+ρ−2s‖ψ0‖2B2

)
. (4.24)

Thus, choosing s such that 2s−ρ > 0, (4.24), together with the observation Φt ≥ tρχBε,t≤1, the conditions
σ
c − 1 > ρ, ρ < 1 ≤ 2 − ν0, Hardy’s inequality ‖ψ0‖1 ! ‖ψ0‖dΓ(〈y〉) and the trivial inequality ‖ψ0‖0 ≤
‖ψ0‖dΓ(〈y〉), implies that

tρ〈χ〉ψt ≤ 〈Φt〉ψt = 〈Φt〉ψt |t=0 +
∫ t

0
〈DΦs〉ψsds

≤ 〈−BεχBε≤0〉ψ0 + C(ε−1 + εtρ+ν1 + 1)(‖ψ0‖2dΓ(〈y〉) + ‖ψ0‖2B2).

Using 〈−BεχBε≤0〉ψ0 ! ‖ψ0‖2dΓ(〈y〉), and choosing ε = t−κ, we find

〈χ〉ψt ≤ C(t−ρ+κ + tν1−κ + t−ρ)(‖ψ0‖2dΓ(〈y〉) + ‖ψ0‖2B2),

which in turn gives (4.2). "
We now prove an estimate used in the proof of Proposition 4.2.

Lemma 4.3. Assume (1.6) with µ > −1/2, (1.7), (1.15), 〈g〉 sufficiently small and f ∈ C∞0 ((Egs,Σ)). Then
∥∥PΩe−itHf(H)u

∥∥ ! t−s‖〈B〉u‖, s < 1/2. (4.25)

Proof. We use the local decay properties established in [31] and [8]. Let cj := (ej+ej+1)/2 and δj := ej+1−ej .
We decompose the support of f into different regions, writing

f(H) = f(H)χH≤c0 +
∑

finite

f(H)χj(H), (4.26)

where χj(H) denotes a smoothed out characteristic function of the interval [cj − δj/4, cj+1 + δj+1/4]. Using
PΩ = PΩ〈B〉, and [31], we obtain

∥∥PΩe−itHf(H)χH≤c0u
∥∥ =

∥∥〈B〉−1e−itHf(H)χH≤c0u‖ ! t−s
∥∥〈B〉u‖, (4.27)
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for s < 1/2.
To estimate ‖PΩe−itHf(H)χj(H)u‖, we let χ̃j(H) := f(H)χj(H). In [8], assuming (1.15), a conjugate

operator B̃j is constructed in such a way that the commutators [χ̃j(H), B̃j ] and [[χ̃j(H), B̃j ], B̃j ] are bounded.
Moreover, the Mourre estimate

χ̃j(H)[H, iB̃j ]χ̃j(H) ≥ m0χ̃j(H)2,

holds for some positive constant m0. By an abstract result of [45], this implies
∥∥〈B̃j〉−se−itH χ̃j(H)〈B̃j〉−s

∥∥ ! t−s,

for s < 1. Since the operator B̃j is of the form B̃j = B + Mj , where Mj is a bounded operator, it then
follows that ∥∥〈B〉−se−itH χ̃j(H)〈B〉−s

∥∥ ! t−s,

and hence, using again that PΩ〈B〉 = PΩ, we obtain
∥∥PΩe−itH χ̃j(H)u

∥∥ =
∥∥〈B〉−1e−itH χ̃j(H)u‖ ! t−s

∥∥〈B〉u‖. (4.28)

Equations (4.26), (4.27) and (4.28) give (4.25). "

Proof of Theorem 4.1. Since N = dΓ(1) and Bε = dΓ(bε) commute, we have

Γ(χ bε
ctα≤1) ≤ χBε≤cNtα = χBε≤cNtα(χN≤c′tγ + χN≥c′tγ )

≤ χBε≤c′′tν + χN≥c′tγ , (4.29)

where ν := α + γ and c′′ := cc′. We choose c′ 3 1/c, so that 0 < c′′ 3 1. Next, we have

‖χN≥c′tγ ψt‖ ≤ (c′)−
γ
2 t−

γ
2 ‖χN≥c′tγ N

1
2 ψt‖

≤ (c′)−
γ
2 t−

γ
2 ‖N 1

2 ψt‖,

which, together with (2.4) (with ρ = 0), implies

‖χN≥c′tγ ψt‖ ! t−
γ
2 +

ν0
2 ‖ψ0‖0. (4.30)

The inequality (4.29) with ν = 1, Proposition 4.2 and the inequality (4.30) (with γ = 1 − α) imply the
estimate (4.1). "

Remarks. 1) The estimate (4.1) states that, as t → ∞, with probability → 1, either all photons are
attached to the particle system in the combined ground state, or at least one photon departs the particle
system with the distance growing at least as O(tα). ((4.1) for µ ≥ 1/2, some α > 0 and ψ0 ∈ E∆(H), with
∆ ⊂ (Egs, e1 −O(〈g〉)) and e1 the first excited eigenvalue of Hp, can be derived directly from [9, 10].)

2) With some more work, one can remove the assumption (1.15) and relax the condition on ψ0 in Theorem
4.1 to the natural one: ψ0 ∈ PΣ(D(dΓ(〈y〉)) ∩ D(dΓ(b)2)), where PΣ is the spectral projection onto the
orthogonal complement of the eigenfunctions of H with the eigenvalues in the interval (−∞,Σ).

5. Proof of Theorem 1.1

5.1. Partition of unity. We begin with a construction of a partition of unity which separates photons
close to the particle system from those departing it. Following [19, 27] (cf. the many-body scattering
construction), it is defined by first constructing a partition of unity (j0, j∞), j2

0 + j2
∞ = 1, on the one-photon

space, h = L2(R3), with j0 localizing a photon to a region near the particle system (the origin) and j∞ near
infinity, and then associating with it the map j : h → h ⊕ h, given by j : h → j0h ⊕ j∞h. After that we
lift the map j to the Fock space F = Γ(h) by using Γ(j) : Γ(h) → Γ(h ⊕ h) (defined in (1.24)). Next, we
consider the adjoint map j∗ : h0 ⊕ h∞ → j∗0h0 + j∗∞h∞, which we also lift to the Fock space F := Γ(h) by
using Γ(j∗) : Γ(h⊕ h) → Γ(h). By definition, the operator Γ(j) has the following properties

Γ(j)∗ = Γ(j∗), Γ(j̃)Γ(j) = Γ(j̃j). (5.1)

Since j∗j = j2
0 + j2

∞ = 1, this implies the relation Γ(j)∗Γ(j) = 1, which is what we mean by a partition of
unity of the Fock space F := Γ(h).
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We refine this construction further by defining the unitary map U : Γ(h⊕ h) → Γ(h)⊗ Γ(h), through the
relations

UΩ =Ω ⊗ Ω, Ua∗(h) = [a∗(h1)⊗ 1 + 1⊗ a∗(h2)]U, (5.2)
for any h = (h1, h2) ∈ h⊕h, and introducing the operators (the Dereziński - Gérard partition of unity)

Γ̌(j) := UΓ(j) : Γ(h) → Γ(h)⊗ Γ(h). (5.3)

We lift Γ(j), as well as Γ̌(j), from the Fock space F = Γ(h) to the full state space H = Hp ⊗F , so that e.g.
Γ̌(j) : H → H⊗ Γ(h). Now, the partition of unity relation on H becomes Γ̌(j)∗Γ̌(j) = 1 (in particular, Γ̌(j)
is an isometry).

Finally, we specify j0 to be the operator χv≤1 and define j∞ by the relation j2
0 + j2

∞ = 1 (hence j∞ is of
the form χv≥1), with v = bε

ctα , bε is defined in the introduction, ε = t−κ, and the parameters α and κ satisfy
1− µ/(6 + 3µ) < α < 1 and 1 + ν1 − α < κ < 1

2 (5α− 3). Since j0 → 1 and j∞ → 0, strongly, as t →∞, we
have the following useful property of Γ̌(j):

Γ̌(j) → 1⊗ PΩ, strongly as t →∞, (5.4)

where, recall, PΩ denotes the projection onto the Fock vaccum. This property is easy to verify on product
states.

5.2. Deift-Simon wave operators. We define the auxiliary space Ĥ := H ⊗ F , which will serve as our
repository of asymptotic dynamics, which is governed by the hamiltonian Ĥ := H ⊗1+1⊗Hf on Ĥ. With
the partition of unity Γ̌(j), we associate the Deift-Simon wave operators,

W± := s-lim
t→±∞

W (t), where W (t) := eiĤtΓ̌(j)e−iHt, (5.5)

which map the original dynamics, e−iHt, into auxiliary one, e−iĤt (to be further refined later). Recall that
Pgs denotes the orthogonal projection onto the ground state subspace of H. Our goal is to prove

Theorem 5.1. Assume (1.6) with µ > 0, (1.7), and that one of the implicit conditions of Theorem 1.1 is
satisfied. Then the Deift-Simon wave operators exist on RanE(−∞,Σ)(H) and satisfy

W±Pgs = Pgs ⊗ PΩ, (5.6)

and, for any smooth, bounded function f ,

W±f(H) = f(Ĥ)W±. (5.7)

Proof. We begin with the the following lemma

Lemma 5.2. Assume (1.6) with µ > 0 and (1.7). For any f ∈ C∞0 ((−∞,Σ)) and ψ0 ∈ f(H)D(N1/2
1 ),

∥∥(Γ̌(j)f(H)− f(Ĥ)Γ̌(j))ψt

∥∥ ! t−α+ 1
2+µ ‖ψ0‖1. (5.8)

Proof. We compute, using the Helffer-Sjöstrand formula (see (B.1) of Appendix B) for f(H) and f(Ĥ),

Γ̌(j)f(H)ψt − f(Ĥ)Γ̌(j)ψt = R,

where

R :=
1
π

∫
∂z̄ f̃(z)(Ĥ − z)−1(ĤΓ̌(j)− Γ̌(j)H)(H − z)−1ψt dRe z dIm z. (5.9)

Using (Hp ⊗ 1⊗ 1)(1⊗ Γ̌(j)) = (1⊗ Γ̌(j))(Hp ⊗ 1), we decompose ĤΓ̌(j)− Γ̌(j)H = G0 + G1, where

G0 = Ĥf Γ̌(j)− Γ̌(j)Hf , (5.10)

with Ĥf = Hf ⊗ 1 + 1⊗Hf , and

G1 := (I(g)⊗ 1)Γ̌(j)− Γ̌(j)I(g). (5.11)

We consider G0. A straightforward computation gives Γ(j)dΓ(c) = dΓ(c)Γ(j) + dΓ(j, jc − cj), where
c = diag(c, c) : h⊕ h → h⊕ h and

dΓ(a, c)|⊗n
s h =

n∑

j=1

a⊗ · · · ⊗ a︸ ︷︷ ︸
j−1

⊗c⊗ a⊗ · · · ⊗ a︸ ︷︷ ︸
n−j

. (5.12)
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It follows from this relation and the equalities UdΓ(c) = (dΓ(c)⊗ 1 + 1⊗ dΓ(c))U that ([19, 27])

Γ̌(j)dΓ(c) = (dΓ(c)⊗ 1 + 1⊗ dΓ(c))Γ̌(j) + dΓ̌(j, jc− cj), (5.13)

where dΓ̌(a, c) := UdΓ(a, c). We have ωj − jω = ([ω, j0], [ω, j∞]), and, by Corollary B.3 of Appendix B,

[ω, j#] =
θε

ctα
j′# + r, (5.14)

where j# stands for j0 or j∞, j′# is the derivative of j# as a function of v = bε
ctα , and r satisfies ‖r‖ ! t−2α+κ.

Since θε ≤ 1 and since κ <α , we deduce that [ω, j#] = O(t−α). This gives G0 = −dΓ̌(j, jω − ωj) =
dΓ̌(j,O(t−α)). Let N̂ := N ⊗ 1 + 1 ⊗ N be the number operator on Ĥ. (5.13) with c = 1 implies
(N̂ + 1)−1/2G0 = G0(N + 1)−1/2. By (C.6) of Appendix C, we then obtain that

‖G0(N + 1)−1‖ = ‖(N̂ + 1)−
1
2 G0(N + 1)−

1
2 ‖ ! t−α.

Using the easy property that H ∈ C1(N) (see e.g. [10, Lemma A.6]), we have ‖(N+1)(H−z)−1(N+1)−1‖ !
|Im z|−2, and hence

‖G0(H − z)−1ψt‖ ! t−α|Imz|−2‖(N + 1)ψt‖. (5.15)

Applying Corollary A.3 of Appendix A, we obtain

‖G0(H − z)−1ψt‖ ! t−α+ 1
2+µ |Imz|−2‖ψ0‖1. (5.16)

Now, we address G1. We use the definition Γ̌(j) = UΓ(j) to obtain Γ̌(j)a#(h) = Ua#(jh)Γ(j), where a#

stands for a or a∗. Then using (5.2), and j∗0j0 + j∗∞j∞ = 1, we derive

Γ̌(j)a#(h) = (a#(j0h)⊗ 1 + 1⊗ a#(j∞h))Γ̌(j). (5.17)

This implies

Γ̌(j)I(g) = (I(j0g)⊗ 1 + 1⊗ I(j∞g))Γ̌(j). (5.18)

The equation (5.18) gives

G1 = (I((1− j0)g)⊗ 1− 1⊗ I(j∞g))Γ̌(j). (5.19)

Due to the inequality (3.16), we have

‖η1η
2
2j∞g‖L2 ! t−λ, ‖η1η

2
2(1− j0)g‖L2 ! t−λ, (5.20)

with λ < (µ + 3
2 )α. Using this, we have in addition

‖G1(N + η−2 + 1)−1‖ ! t−λ, (5.21)

where η2 := η2
2η2

1η2
2 . Hence, using (1.7) and, as above, that ‖(N + 1)(H − z)−1(N + 1)−1‖ ! |Im z|−2, we

obtain

‖G1(H − z)−1ψt‖ ! t−λ+ 1
2+µ |Imz|−2‖ψ0‖1. (5.22)

From (5.9), (5.16), (5.22), the properties of the almost analytic extension f̃ and the estimate ‖(H−z)−1‖ !
|Imz|−1, we conclude that (5.8) holds. "

We want to show that the family W (t) := eiĤtΓ̌(j)e−iHt form a strong Cauchy sequence as t → ∞. Let
ψ0 ∈ f(H)D(N1/2

1 ), f ∈ C∞0 ((−∞,Σ)) and f1 ∈ C∞0 ((−∞,Σ)) be such that f1f = f . Lemma 5.2 implies
that

W (t)ψ0 = W̃ (t)ψ0 +O(t−α+ 1
2+µ )‖ψ0‖1, (5.23)

where

W̃ (t) := eiĤtf1(Ĥ)Γ̌(j)e−iHtf1(H).

Hence, since our conditions on α imply α > 1/(2 + µ), it suffices to show that W̃ (t) form a strong Cauchy
sequence as t →∞.
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First suppose Assumption (1.18) of Theorem 1.1. We define χm := χN̂≤m and χm := χN̂≥m, so that
χm + χm = 1. First, we show that, for any ψ0 ∈ D(N1/2),

sup
t
‖χmW̃ (t)ψ0‖ ! m− 1

2 ‖ψ0‖0. (5.24)

Indeed, by Assumption (1.18),

‖N̂ 1
2 eiĤtf1(Ĥ)Γ̌(j)ψs‖ ! ‖N̂ 1

2 Γ̌(j)ψs‖+ ‖Γ̌(j)ψs‖. (5.25)

The boundedness of Γ̌(j) and the definition ψt := e−iHtψ0 imply ‖Γ̌(j)ψt‖ ≤ ‖ψ0‖. Equation (5.13) with
c = 1 implies N̂

1
2 Γ̌(j) = Γ̌(j)N 1

2 . The latter relation, boundedness of Γ̌(j) and Assumption (1.18) give

‖N̂ 1
2 Γ̌(j)ψs‖ = ‖Γ̌(j)N

1
2 ψs‖ ! ‖ψ0‖0,

and therefore, by (5.25), ‖N̂ 1
2 eiĤtf1(Ĥ)Γ̌(j)ψs‖ ! ‖ψ0‖0. Since this is true uniformly in t, s, it implies

‖N̂ 1
2 W̃ (t)ψ0‖ ! ‖ψ0‖0, which yields (5.24). Equation (5.24) implies that

sup
t,t′

‖χm(W̃ (t′)− W̃ (t))ψ0‖ ! m− 1
2 ‖ψ0‖0. (5.26)

Now we show that, for any m > 0 and for any ψ0 ∈ D(dΓ(〈y〉) 1
2 ) ∩ RanE(−∞,Σ)(H),

‖χm(W̃ (t′)− W̃ (t))ψ0‖ → 0, (5.27)

as t, t′ →∞. This together with (5.26) implies that W̃ (t) form a strong Cauchy sequence. We write

W̃ (t′)− W̃ (t) =
∫ t′

t
ds ∂sW̃ (s), (5.28)

and compute ∂tW̃ (t) = eiĤtf1(Ĥ)Ge−iHtf1(H), where G := i(ĤΓ̌(j) − Γ̌(j)H) + ∂tΓ̌(j). We write G =
G̃0 + iG1, where

G̃0 := iG0 + ∂tΓ̌(j),
and G0 and G1 are defined in (5.10)–(5.11). We consider G̃0. Using the notation dj := i(ωj − jω) + ∂tj,
with ω = diag(ω, ω), and (5.13), we compute readily

G̃0 = UdΓ(j, dj) = dΓ̌(j, dj). (5.29)

Write j′ = (j′0, j′∞), where j′0, j
′
∞ are the derivatives of j0, j∞ as functions of v = bε

ctα . We first find a
convenient decomposition of dj. Using djf = (dj0f, dj∞f), with dct = i[ω, ct]+∂tct, (3.8) and Corollary B.3
of Appendix B, we compute

dj = (j′0, j
′
∞)(

θε

ctα
− αbε

ctα+1
) +O(t−2α+κ). (5.30)

We insert the maximal velocity partition of unity χw≤1 + χw≥1 = 1, with w := ( |y|c̄t )2 and c̄ > 1, into this
formula and use the notation χ ≡ χw≤1 and the relation vj′# = O(1)j′#, valid due to the localization of j′#,
to obtain

dj =
1

ctα
θ1/2

ε χ(j′0, j
′
∞)χθ1/2

ε + remt, (5.31)

remt = O(t−1)χ(j′0, j
′
∞)χ +O(t−2α+κ) +O(t−α)χw≥1. (5.32)

These relations give

G̃0 = G′
0 + Remt, (5.33)

where G′
0 := 1

ctα UdΓ(j, ct), with ct = (c0, c∞) := (θ1/2
ε χj′0χθ1/2

ε , θ1/2
ε χj′∞χθ1/2

ε ), and

Remt := G̃0 −G′
0 = UdΓ(j, remt).

Next, we write

A := sup
‖φ̂0‖=1

∣∣∣
∫ t′

t
ds〈φ̂s, G0ψs〉

∣∣∣,
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where φ̂s := e−iĤsf1(Ĥ)χmφ̂0. By (C.5) of Appendix C, G′
0 satisfies

|〈φ̂, G′
0ψ〉| ≤

1
ctα

(
‖dΓ(|c0|)

1
2 ⊗ 1φ̂‖ ‖dΓ(|c0|)

1
2 ψ‖

+ ‖1⊗ dΓ(|c∞|)
1
2 φ̂‖ ‖dΓ(|c∞|)

1
2 ψ‖

)
. (5.34)

By the Cauchy-Schwarz inequality, (5.34) implies
∫ t′

t
ds|〈φ̂s, G

′
0ψs〉| !

( ∫ t′

t
ds s−α‖dΓ(|c0|)

1
2 ⊗ 1φ̂s‖2

) 1
2
( ∫ t′

t
ds s−α‖dΓ(|c0|)

1
2 ψs‖2

) 1
2

+
( ∫ t′

t
ds s−α‖1⊗ dΓ(|c∞|)

1
2 φ̂s‖2

) 1
2
( ∫ t′

t
ds s−α‖dΓ(|c∞|)

1
2 ψs‖2

) 1
2
.

Since |c0|, |c∞| are of the form θ1/2
ε χχ bε

ctα =1χθ1/2
ε , the minimal velocity estimate (3.4) implies

∫ ∞

1
ds s−α‖d̂Γ#(|c|) 1

2 φ̂s‖2 ! ‖χmφ̂0‖20 ! m‖φ̂0‖2,

where d̂Γ#(|c|) 1
2 stands for dΓ(|c0|)

1
2 ⊗ 1 or 1⊗ dΓ(|c∞|)

1
2 , and

∫ ∞

1
ds s−α‖dΓ#(|c|) 1

2 ψs‖2 ! ‖ψ0‖20,

with dΓ#(|c|) 1
2 = dΓ(|c0|)

1
2 or dΓ(|c∞|)

1
2 , provided that α < 1/c̄. The last three relations give

sup
‖φ̂0‖=1

∣∣∣
∫ t′

t
ds 〈φ̂s, G

′
0ψs〉

∣∣∣ → 0, t, t′ →∞. (5.35)

Likewise, applying (C.6) of Appendix C first with c1 = 1 and c2 = 1, next with c1 = 1 and c2 = χw≥1,
where recall w = ( |y|c̄t )2, and then applying (C.5) with c0 = χj′0χ and c∞ = χj′∞χ, we see that Remt satisfies

|〈φ̂,Remtψ〉| ! ‖N̂ 1
2 φ̂‖

(
t−2α+κ‖N 1

2 ψ‖+ t−1‖dΓ(χj′0χ)
1
2 ψ‖

+ t−1‖dΓ(χj′∞χ)
1
2 ψ‖+ t−α‖dΓ(χ2

w≥1)
1
2 ψ‖

)
. (5.36)

Now, using (5.36) and the Cauchy-Schwarz inequality, we obtain
∫ t′

t
ds |〈φ̂s,Remsψs〉| ≤

( ∫ t′

t
ds s−τ‖N̂ 1

2 φ̂s‖2
) 1

2
{( ∫ t′

t
ds s−2(2α−κ)+τ‖N 1

2 ψs‖2
) 1

2

+
( ∫ t′

t
ds s−2+τ‖dΓ(χj′0χ)

1
2 ψs‖2

) 1
2

+
( ∫ t′

t
ds s−2+τ‖dΓ(χj′∞χ)

1
2 ψs‖2

) 1
2

+
( ∫ t′

t
ds s−2α+τ‖dΓ(χ2

w≥1)
1
2 ψs‖2

) 1
2
}

. (5.37)

Let τ > 1 and α = 2− τ . Then by the estimate (3.3), we have
∫ ∞

1
ds s−2+τ‖dΓ(χj′∞χ)

1
2 ψs‖2 ! ‖ψ0‖21,

and by the maximal velocity estimate (1.21), we have
∫ ∞

1
ds s−2α+τ‖dΓ(χ2

w≥1)
1
2 ψs‖2 ! ‖ψ0‖dΓ(〈y〉),

provided that α > 1− 2γ/3, where, recall, γ < µ
2 min( c̄−1

2c̄−1 , 1
2+µ ). One verifies that c̄ > 1 can be chosen such

that this condition is satisfied and α < 1/c̄. Moreover, Assumption (1.18) implies
∫ ∞

1
ds s−2(2α−κ)+τ‖N 1

2 ψs‖2 ! ‖ψ0‖0,
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provided that 5α > 3 + 2κ. This and the fact that, by Assumption (1.18), the first integral on the r.h.s. of
(5.37) converge yield

sup
‖φ̂0‖=1

∣∣∣
∫ t′

t
ds 〈φ̂s,Remsψs〉

∣∣∣ → 0, t, t′ →∞. (5.38)

Equations (5.35) and (5.38) imply that

A =
∥∥∥

∫ t′

t
ds χmf1(Ĥ)eiĤsG̃0ψs

∥∥∥ → 0, t, t′ →∞. (5.39)

Now we turn to G1. The equations (5.19), (5.20), (2.14) (with δ = 0), (1.7) and N̂1/2Γ̌(j) = Γ̌(j)N1/2

imply that
‖f(Ĥ)G1(N + 1)−

1
2 ‖ ! t−λ, (5.40)

for λ < (µ + 3
2 )α. Together with Assumption (1.18), this implies that ‖f(Ĥ)G1ψt‖ ! t−λ‖ψ0‖0, and hence

∥∥∥
∫ t′

t
ds f(Ĥ)eiĤsG1ψs

∥∥∥ → 0, t, t′ →∞,

provided that α > (µ+ 3
2 )−1. This together with (5.39) gives (5.27) which, as was mentioned above, together

with (5.26) shows that W̃ (t) is a Cauchy sequence as t → ∞. Hence by (5.23) W (t) is a strong Cauchy
sequence. This implies the existence of W+. The proof of the existence of W− is the same.

The proof of the existence of W± under the assumption (1.19) of Theorem 1.1 is similar, except that we
do not need to introduce the cutoff χm. We use instead a variant of the weighted propagation estimates of
Theorem 3.1. For reader’s convenience we give this proof in Appendix E.

Finally, (5.6) follows from (5.4) and the relation W±Φgs = ei(Ĥ−Egs)tΓ̌(j)Φgs. To prove (5.7) we notice
that, by (5.5), we have W±eiĤs = s-lim eiĤtΓ̌(j)e−iH(t+s) = s-lim eiĤ(t′−s)Γ̌(j)e−iHt′ = eiĤsW±, which
implies (5.7). "

5.3. Scattering map. We discuss properties of the Hübner-Spohn scattering map, I, defined in the intro-
duction. We begin with the definition

h0 :=
{

h ∈ L2(R3),
∫

dk (1 + ω(k)−1)|h(k)|2 < ∞
}

. (5.41)

Properties of the operator I used below are recorded in the following

Lemma 5.3 ([19, 27, 35]). For any operator j : h → j0h⊕ j∞h and n ∈ N, the following relations hold

Γ̌(j)∗ = IΓ(j∗0 )⊗ Γ(j∗∞), (5.42)

D((H + i)−n/2)⊗ (⊗n
s h0) ⊂ D(I). (5.43)

Proof. Since the operators involved act only on the photonic degrees of freedom, we ignore the particle one.
For g, h ∈ h, we define embeddings i0g := (g, 0) ∈ h ⊕ h and i∞h := (0, h) ∈ h ⊕ h. By the definition of U
(see (5.2)), we have the relations U∗a∗(g)⊗ 1 = a∗(i0g)U∗, and U∗1⊗ a∗(h) = a∗(i∞h)U∗. Hence, using in
addition U∗Ω⊗ Ω = Ω, we obtain

U∗
m∏

1

a∗(gi)Ω⊗
n∏

1

a∗(hi)Ω =
m∏

1

a∗(i0gi)
n∏

1

a∗(i∞hi)Ω.

By the definition of Γ(j) and the relations j∗i0g = j∗0g and j∗i∞h = j∗∞h, this gives

Γ(j)∗U∗
m∏

1

a∗(gi)Ω⊗
n∏

1

a∗(hi)Ω =
n∏

1

a∗(j∗∞gi)
m∏

1

a∗(j∗0hi)Ω. (5.44)

Now, by the definition of Γ̌(j) (see (5.2)), we have Γ̌(j)∗ = Γ(j)∗U∗. On the other hand by (1.12), the r.h.s.
is IΓ(j∗0 )⊗ Γ(j∗∞)

∏m
1 a∗(gi)Ω⊗

∏n
1 a∗(hi)Ω. This proves (5.42).

To prove (5.43), we use the following elementary properties ([27, 35]):

The operator Hn
f (H + i)−n is bounded ∀n ∈ N, (5.45)
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and, for any h1, · · ·hn ∈ h0, where h0 is defined in (5.41),

‖a∗(h1) · · · a∗(hn)(Hf + 1)−n/2‖ ≤ Cn‖h1‖ω · · · ‖hn‖ω, (5.46)

where ‖h‖ω :=
∫

dk (1+ω(k)−1)|h(k)|2. The previous two estimates and the representation (1.12) imply that
for any Φ ∈ D((H + i)−n/2) and h1, · · · , hn ∈ h0, we have ‖IΦ ⊗

∏n
1 a∗(hi)Ω‖ ≤ Cn‖h1‖ω · · · ‖hn‖ω‖(H +

i)n/2Φ‖ < ∞. This gives the second statement of the lemma. "

5.4. Asymptotic completeness. Below, the symbol C(ε)ot(1) stands for a real function of ε and t such
that, for any fixed ε, |C(ε)ot(1)| → 0 as t → ∞, and we denote by χΩ(λ) a smoothed out characteristic
function of a set Ω. In this section we prove the following result.

Theorem 5.4. Assume the conditions of Theorem 1.1 for hamiltonians of the form (1.4)–(1.5). Then the
asymptotic completeness (in the sense of the definition (1.14)) holds on the interval ∆ =[ Egs, a], where
a < Σ is given by (1.15).

Proof. Let α and κ be fixed such that the conditions of Theorems 3.1, 4.1 and 5.1 hold. Let (j0, j∞) =
(χv≤1, χv≥1) be the partition of unity defined in Subsection 5.1, where v = bε

ctα . Since j2
0 + j2

∞ = 1, the
operator Γ̌(j) is, as mentioned above, an isometry. Using the relation Γ(j)∗Γ(j) = 1, the boundedness of
Γ̌(j)∗, and the existence of W+, we obtain

ψt = Γ̌(j)∗e−iĤteiĤtΓ̌(j)e−iHtψ0 = Γ̌(j)∗e−iĤtφ0 + ot(1), (5.47)

where φ0 := W+ψ0. Next, using the property W+χ∆(H) = χ∆(Ĥ)W+, which gives W+ψ0 = χ∆(Ĥ)W+ψ0,
and χ∆(Ĥ) = (χ∆(H)⊗ χ∆′(Hf ))χ∆(Ĥ), and again using χ∆(Ĥ)W+ψ0 = W+ψ0 = φ0, we obtain

φ0 =
(
χ∆(H)⊗ χ∆′(Hf )

)
φ0. (5.48)

For all ε′ > 0, there is δ′ = δ′(ε′) > 0, such that
∥∥(χ∆(H)⊗ 1)φ0 − (χ∆ε′ (H)⊗ 1)φ0 − (Pgs ⊗ 1)φ0

∥∥ ≤ ε′, (5.49)

with ∆ε′ = [Egs + δ′, a]. The last two relations give

φ0 =
(
(χ∆ε′ (H) + Pgs)⊗ χ∆′(Hf )

)
φ0 +O(ε′). (5.50)

For any vector space V ⊂ h, we let Ffin(V) denote the subspace of F consisting of vectors Ψ = (ψn)∞n=0 ∈ F
such that ψn = 0, for all but finitely many n and ψn ∈ ⊗n

sV for all n. Let φ0,ε′ ∈ Ffin(D(〈y〉))⊗Ffin(h0) be
such that ‖φ0 − φ0ε′‖ ≤ ε′. (We require that the ‘first components’ of φ0ε′ are in Ffin(D(〈y〉)) in order to
apply the minimal velocity estimate below, and that the ‘second components’ are in Ffin(h0) in order that
(Pgs ⊗ 1)φ0ε′ is in D(I)). This together with (5.47) and (5.50) gives

ψt = Γ̌(j)∗e−iĤt((χ∆ε′ (H) + Pgs)⊗ χ∆′(Hf ))φ0ε′ +O(ε′) + ot(1). (5.51)

Furthermore, let (j̃0, j̃∞) be of the form j̃0 = χ̃v≤1, j̃∞ = χ̃v≥1 where χ̃, has the same properties as χ, and
satisfy j0j̃0 = j0, j∞j̃∞ = j∞. Then, by (5.42), the adjoint Γ̌(j)∗ to the operator Γ̌(j) can be represented as

Γ̌(j)∗ = Γ̌(j)∗
(
Γ(j̃0)⊗ Γ(j̃∞)

)
. (5.52)

Using this equation in (5.51), together with the relations e−iĤt = e−iHt⊗ e−iHf t and e−iHtPgs = e−iEgstPgs,
gives

ψt = Γ̌(j)∗ψtε′ + A + B + C +O(ε′) + ot(1), (5.53)

where

ψtε′ :=
(
e−iEgstPgs ⊗ e−iHf tχ∆′(Hf )

)
φ0ε′ , (5.54)

A := Γ̌(j)∗
(
Γ(j̃0)e−iHtχ∆ε′ (H)⊗ Γ(j̃∞)e−iHf tχ∆′(Hf )

)
φ0ε′ , (5.55)

B := Γ̌(j)∗
(
(Γ(j̃0)− 1)e−iEgstPgs ⊗ Γ(j̃∞)e−iHf tχ∆′(Hf )

)
φ0ε′ , (5.56)

C := Γ̌(j)∗
(
e−iEgstPgs ⊗ (Γ(j̃∞)− 1)e−iHf tχ∆′(Hf )

)
φ0ε′ . (5.57)



24 J. FAUPIN AND I. M. SIGAL

Since Γ(j)∗ is bounded, the minimal velocity estimate, (4.1), gives (here we use that the first components of
φ0ε′ are in D(dΓ(〈y〉)))

‖A‖ ≤
∥∥(Γ(j̃0)e−iHtχ∆ε′ (H)⊗ 1)φ0ε′

∥∥ = C(ε′)ot(1).

Now we consider the term given by B. We begin with
∥∥B‖ ≤

∥∥(Γ(j̃0)− 1)Pgs

∥∥. (5.58)

Since 0 ≤ j̃0 ≤ 1, we have that 0 ≤ 1 − Γ(j̃0) ≤ 1. Using this, the relations 1 − Γ(j̃0) ≤ dΓ(χ̃v≥1) ≤
t−2αdΓ(b2

ε), we obtain the bound
∥∥(Γ(j̃0)− 1)u‖2 ≤ ‖(1− Γ(j̃0))

1
2 u‖2 ≤ t−2α‖dΓ(b2

ε)
1
2 u‖2. (5.59)

Using the pull-through formula, one verifies that dΓ(b2
ε)

1
2 Pgs is bounded and that ‖dΓ(b2

ε)
1
2 Pgs‖ = O(tκ)

(see Appendix D, Lemma D.1). Hence, since κ <α , the above estimates yield
∥∥B

∥∥ = ot(1). (5.60)

Next, using Γ(j∞)e−iHf t = e−iHf tΓ(eiωtj∞e−iωt) and eiωtbεe−iωt = bε + θεt, it is not difficult to verify
(see Appendix C, Lemma C.4) that

∥∥C
∥∥ ≤

∥∥1⊗ (Γ(eiωtj̃∞e−iωt)− 1)φ0ε′
∥∥ → 0,

as t →∞, ∀ε′ > 0, and hence we obtain
∥∥C

∥∥ = C(ε′)ot(1). (5.61)

Inserting the previous estimates into (5.53) shows that

ψt = Γ̌(j)∗ψtε′ +O(ε′) + C(ε′)ot(1). (5.62)

Next, we want to pass from Γ̌(j)∗ to I using the formula (5.42). To this end we use estimates of the
type (5.60) and (5.61) in order to remove the term Γ(j0)⊗ Γ(j∞). Hence, we need to bound I, for instance
by introducing a cutoff in N . Let χm := χN≤m and χ̄m := 1 − χm and write Γ̌(j)∗ψtε′ = χmΓ̌(j)∗ψtε′ +
χ̄mΓ̌(j)∗ψtε′ . Using that N1/2Γ̌(j)∗ = Γ̌(j)∗N̂1/2 and that by Lemma D.1 of Appendix D (see also [7, 38]),
RanPgs ⊂ D(N1/2), and therefore ψtε′ ∈ D(N̂1/2), we estimate

‖χ̄mΓ̌(j)∗ψtε′‖ ! m− 1
2 ‖N̂ 1

2 ψtε′‖ = m− 1
2 C(ε′).

Now, we can use (5.42) to obtain

ψt = χmI
(
Γ(j0)⊗ Γ(j∞)

)
ψtε′ +O(ε′) + C(ε′)ot(1) + C(ε′)om(1). (5.63)

Using ‖χmI‖ ≤ 2m/2 together with estimates of the type (5.60) and (5.61), we find (here we need the cutoff
χm)

ψt = χmIψtε′ +O(ε′) + C(ε′, m)ot(1) + C(ε′)om(1). (5.64)

Since φ0ε′ ∈ H⊗Ffin(h0), we can write ψtε′ as ψtε′ = Φgs⊗ftε′ , with ftε′ ∈ Ffin(h0), and therefore ψtε′ ∈ D(I)
(here we need that fε′ is in Ffin(h0)). Hence χmIψtε′ = Iψtε′ + C(ε′)om(1). Combining this with (5.64) and
remembering (5.54), we obtain

ψt =I(e−iEgstPgs ⊗ e−iHf tχ∆′(Hf ))φ0ε′

+O(ε′) + C(ε′, m)ot(1) + C(ε′)om(1). (5.65)

Letting t →∞, next m →∞, the equation (1.14) follows. "
Remark. The reason for ε′ in the statement of the theorem is we do not know whether (Pgs⊗1)W+ψ0 ∈ D(I).
Indeed, if the latter were true, then the relations (5.65), (5.50) and ‖φ0 − φ0ε′‖ ≤ ε′, where φ0 := W+ψ0,
would give

ψt =I(e−iEgstPgs ⊗ e−iHf tχ∆′(Hf ))φ0

+O(ε′) + C(ε′, m)ot(1) + C(ε′)om(1), (5.66)

which, after letting t →∞, next m →∞ and then ε′ → 0, gives

lim
t→∞

‖ψt − I(e−iEgstPgs ⊗ e−iHf tχ∆′(Hf ))W+ψ0‖ = 0. (5.67)
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6. Proof of Theorem 1.2: the model (1.29)–(1.32)

In this section we extend the results of Sections 3–5 to hamiltonians of the form (1.29)–(1.32), with the
operators ηj , j = 1, 2, satisfying (1.7), and prove Theorem 1.2. First, to extend the results of Section 2 to
the present case, we replace the assumption (2.8) by the assumptions






( ∫
‖η1η

2
2(φ̃tg)ij(k)‖2Hp

ω(k)δdk
) 1

2 ! 〈t〉−λ′ , i + j = 1,
( ∫

‖η2
2(φ̃tg)ij(k1, k2)‖2Hp

∏

+=1,2

(1 + ω(k+)−
1
2 + ω(k+)δ)dk+

) 1
2 ! 〈t〉−λ′ , i + j = 2,

(6.1)

where λ′ is the same as in (2.8) and, for any one-particle operator φ acting on h, we define (φ̃g)ij := φgij ,
for i + j = 1, and (φ̃g)2,0 = (φ̃g)∗0,2 := (φ⊗ 1 + 1⊗ φ)g2,0, (φ̃g)1,1 := (φ⊗ 1− 1⊗ φ)g1,1. Then we replace
the second relation in (2.12) by the relation (see Supplement II)

i[Ĩ(g),dΓ(φt)] = −Ĩ(iφ̃g), (6.2)

which is valid for any one-particle operator φ, and replace the estimate (2.14) by the estimate

|〈Ĩ(g)〉ψ| ≤
∑

i+j=1

( ∫
‖η1η

2
2gij(k)‖2Hp

ω(k)δdk
) 1

2 ‖η−1
1 η−2

2 ψ‖‖ψ‖δ

+
∑

i+j=2

( ∫
‖η2

2gij(k1, k2)‖2Hp

∏

+=1,2

(1 + ω(k+)−1 + ω(k+)δ)dk+

) 1
2
(‖η−4

2 ψ‖+ ‖ψ‖−1)‖ψ‖δ, (6.3)

which, as in (2.14), implies, together with (6.1) and (1.7),

|〈Ĩ(iφ̃tg)〉ψt | ! t−λ′+νδ‖ψ0‖2δ , (6.4)

for any ψ0 ∈ Υδ, where Υδ is defined in (2.2). This completes the extension of the results of Section 2, and
therefore of Section 3, to hamiltonians of the form (1.29)–(1.32).

To extend the results of Section 4, we have to extend the estimates (4.10) and (4.22) for I1 = i[I(g), Bε]
and I2 = [Bε, [Bε, I(g)]] and the estimate (4.18) for the remainder, R, defined in (4.4), to the interactions of
the form (1.30)–(1.32). Using that Ĩ1 := i[Ĩ(g), Bε] = Ĩ(ib̃εg) and Ĩ2 := [Bε, [Bε, Ĩ(g)]] = Ĩ(b̃2

εg), where b̃ε is
defined by the same rules as φ̃ after (6.1), and using (6.3), we obtain

Ĩ1 ≥ −C〈g〉Ẽ1, (6.5)

and

‖Ẽ− 1
2

2 Ĩ2Ẽ
− 1

2
2 ‖ ! ε−1〈g〉, (6.6)

where, recall, 〈g〉 :=
∑

1≤i+j≤2

∑
|α|≤2 ‖η

2−i−j
1 η|α|2 ∂αgij‖ are the norm of the vector coupling operators

g := (gij), defined in the introduction after (1.32), and Ẽ1 := N + η−1
2 η−2

1 η−1
2 + η−8

2 + 1, and Ẽ2 :=
N + Hf + η−2

2 η−2
1 η−2

2 + η−8
2 + 1 are new estimating operators. This extends (4.10) and (4.22). Let R̃ be

defined by (4.4), with B1 and H replaced by B̃1 := i[H̃, Bε] and H̃. By (4.19), with R and B2 = [Bε, [Bε, H]]
replaced by R̃ and B̃2 := [Bε, [Bε, H̃]], and (6.6), we obtain the extension of (4.18) to the interactions of the
form (1.30)–(1.32):

‖Ẽ− 1
2

2 R̃Ẽ
− 1

2
2 ‖ ! t−2ε−1. (6.7)

To extend the results of Section 5 to hamiltonians of the form (1.29)–(1.32), we have to prove estimates
of the type (5.21) and (5.40) for the operator

G̃1 := (Ĩ(g)⊗ 1)Γ̌(j)− Γ̌(j)Ĩ(g), (6.8)

which replaces G1 defined in (5.11). To this end, we first extend the relations (5.18), (5.19) to the interactions
of the form (1.30). First, we use

Γ̌(j)a#(h) = â#(h)Γ̌(j), (6.9)
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where â#(h) := a#(j0h)⊗ 1 + 1⊗ a#(j∞h), with a# standing for a or a∗. This together with (6.8) and the
notation ã#

λ (k) := a#
λ (k)⊗ 1− â#

λ (k) = (1− j0)a#
λ (k)⊗ 1− 1⊗ j∞a#

λ (k) gives

G̃1 = I#(g)Γ̌(j), (6.10)

where

I#(g) =
∑

λ

∫
dk

(
g01(k)⊗ ãλ(k) + h.c.

)
(6.11)

+
∑

λ1,λ2

∫
dk1dk2

(
g02(k1, k2)⊗ (ãλ1(k1)âλ2(k2) + âλ1(k1)ãλ2(k2) + ãλ1(k1)ãλ2(k2)) + h.c.

)
(6.12)

+
∑

λ1,λ2

∫
dk1dk2 g11(k1, k2)⊗ (ã∗λ1

(k1)âλ2(k2) + â∗λ1
(k1)ãλ2(k2) + ã∗λ1

(k1)ãλ2(k2)). (6.13)

Here the notation g01(k)⊗ ãλ(k) should be read as
(
(1− j0)g01

)
(k)(aλ(k)⊗ 1)− (j∞g01)(k)(1⊗ aλ(k)), and

likewise in the second and third lines. Using this and (3.16), we have in addition

‖(Ĥf + 1)−
1
2 G̃1(N + η̃−2 + 1)−1‖ ! t−λ, (6.14)

with η̃2 := η2
2(1 + η2

1)η2
2 , recall, Ĥf = Hf ⊗ 1 + 1⊗Hf , and

‖f(Ĥ)G̃1(N + 1)−
1
2 ‖ ! t−λ. (6.15)

This extends the proof of the existence and properties of the Deift-Simon wave operators (see Theorem 5.1)
to the interactions of the form (1.30)–(1.32). The remainder of the proof goes the same way as the proof of
Theorem 5.1.

7. Proof of Theorem 1.1 for the QED model

7.1. Generalized Pauli–Fierz transformation. We consider the QED hamiltonian defined in (1.1)–(1.2).
The coupling function gqed

y (k, λ) := |k|−1/2ξ(k)ελ(k)eik·y in this hamiltonian is more singular in the infrared
than can be handled by our techniques (µ > 0). To go around this problem we use the (unitary) generalized
Pauli–Fierz transformation (see [58])

H −→ H̃ := e−i
Pn

j=1 κjΦ(qxj )Hei
Pn

j=1 κjΦ(qxj ), (7.1)

where Φ(h) is the operator-valued field, Φ(h) := 1√
2
(a∗(h) + a(h)), and the function qy(k, λ) is defined

below, to pass to the new unitarily equivalent hamiltonian H̃. To define qy(k, λ), let ϕ ∈ C∞(R; R) be a
non-decreasing function such that ϕ(r) = r if |r| ≤ 1/2 and |ϕ(r)| = 1 if |r| ≥ 1. For 0 < ν < 1/2, we define

qy(k, λ) :=
ξ(k)
|k| 12+ν

ϕ(|k|νελ(k) · y). (7.2)

We note that the definition of Φ(h) gives A(y) = Φ(gqed
y ). Using (II.7) and (II.8) of Supplement II, we

compute

H̃ =
n∑

j=1

1
2mj

(
− i∇xj − κjÃ(xj)

)2 + E(x) + Hf + V (x), (7.3)

where, recall, x = (x1, . . . , xn), and





Ã(y) := Φ(g̃y), g̃y(k, λ) := gqed
y (k, λ)−∇xqy(k, λ),

E(x) := −
∑n

j=1 κjΦ(exj ), ey(k, λ) := i|k|qy(k, λ),
V (x) := U(x) + 1

2

∑
λ=1,2

∑n
j=1 κ2

j

∫
R3 |k||qxj (k, λ)|2dk.

(7.4)

The operator H̃ is self-adjoint with domain D(H̃) = D(H) = D(p2 + Hf ) (see [41, 42]).
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Now, the coupling functions (form factors) g̃y(k, λ) and ey(k, λ) in the transformed hamiltonian, H̃, satisfy
the estimates that are better behaved in the infrared ([10]):

|∂m
k g̃y(k, λ)| ! 〈k〉−3|k| 12−|m|〈y〉 1

ν +|m|, (7.5)

|∂m
k ey(k, λ)| ! 〈k〉−3|k| 12−|m|〈y〉1+|m|. (7.6)

We see that the new hamiltonian (7.3) is of the form

H̃ = Hp + Hf + Ĩ(g), (7.7)

with Hp := −
∑n

j=1
1

2mj
∆xj + V (x), and Ĩ(g) := −

∑n
j=1 κj(pj · Ã(xj) + Ã(xj) · pj − κjÃ(xj)2) + E(x). We

see that the latter operator is of the form (1.30)–(1.32), with η1 = 〈p〉−1, η2 = 〈x〉−1−1/ν , µ = 1/2, |α| ≤ 2,
and 1 ≤ i + j ≤ 2, where p := (p1, . . . , pn), and therefore the hamiltonian (1.1) satisfy the bound (1.8) and
is of the class described in the introduction.

7.2. Proof of Theorem 1.1. We present the parts of the proof of Theorem 1.1 for the hamiltonian (1.1)
which differ from that for the hamiltonian (1.4), with the interaction (1.5). To begin with, we note that, in
Section 6, we have shown the statements of Theorems 3.1 and 4.1 for hamiltonians of the form (1.29)–(1.32),
with the operators ηj , j = 1, 2, satisfying (1.7), and therefore for the operator (7.3). To translate Theorems
3.1 and 4.1 from H̃, given by (7.3), to the QED hamilonian (1.1), we use the following estimates ([10])

∥∥∥dΓ(χ1(v))
1
2 ψ

∥∥∥
2

!
〈
Uψ, dΓ(χ1(v))Uψ

〉
+ t−αd‖ψ‖2, (7.8)

∥∥∥Γ(χ2(v))
1
2 ψ

∥∥∥
2

!
〈
Uψ, Γ(χ2(v))Uψ

〉
+ t−αd‖ψ‖2, (7.9)

where U := e−i
Pn

j=1 κjΦ(qxj ) and , recall, v := bε
ctα , valid for any functions χ1(v) and χ2(v) supported in

{|v| ≤ ε} and {|v| ≥ ε}, respectively, for some ε > 0, for any ψ ∈ f(H)D(N1/2), with f ∈ C∞0 ((−∞,Σ)),
and for 0 ≤ d < 1/2. (7.8) follows from estimates of Section 2 of [10] and (7.9) can be obtained similarly
(see (II.8) and (II.9)). Using these estimates for ψt = e−itHψ0, with an initial condition ψ0 in either Υ1 or
Υ2, together with Ue−itHψ0 = e−itH̃Uψ0, and applying Theorems 3.1 and 4.1 for H̃ to the first terms on
the r.h.s., we see that, to obtain Theorems 3.1 and 4.1 for the hamiltonian (1.1), we need, in addition, the
estimates

〈
ψ,U∗N1Uψ

〉
!

〈
ψ,

(
N1 + 1

)
ψ

〉
, (7.10)

〈
ψ,U∗dΓ(〈y〉)Uψ

〉
!

〈
ψ,

(
dΓ(〈y〉) + 〈x〉2

)
ψ

〉
, (7.11)

∥∥U∗dΓ(b)Uψ
∥∥ !

∥∥(
dΓ(b) + 〈x〉2

)
ψ

∥∥, (7.12)

where, recall, N1 = dΓ(ω−1) and b = 1
2 (k · y + y · k).

Let qx :=
∑n

j=1 κjqxj so that U := e−iΦ(qx). To prove (7.10), we see that, by (II.8), we have

U∗N1U = eiΦ(qx)dΓ(ω−1)e−iΦ(qx) = N1 − Φ(iω−1qx) +
1
2
‖ω−1/2qx‖2h. (7.13)

(Since ω−1qx /∈ h, the field operator Φ(iω−1qx) is not well-defined and therefore this formula should be
modified by introducing, for instance, an infrared cutoff parameter σ into qx. One then removes it at the
end of the estimates. Since such a procedure is standard, we omit it here.) This relation, together with

|〈ψ, Φ(iω−1qx)ψ〉| !
( ∫

ω−3−2ν+ε〈k〉−6dk
) 1

2 ∥∥dΓ(ω−ε)
1
2 ψ

∥∥‖ψ‖, (7.14)

for any ε > 0, which follows from the bounds of Lemma I.1 of Supplement I, and

‖ω− 1
2 qx‖h ! ‖ω−1−ν〈k〉−3‖h, (7.15)

implies (7.10).
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To prove (7.11) and (7.12), we proceed similarly, using, instead of (7.14) and (7.15), the estimates

|〈ψ, Φ(i〈y〉qx)ψ〉| !
( ∫

ω−2−2ν〈k〉−6dk
) 1

2 ∥∥dΓ(ω−1)
1
2 ψ

∥∥‖〈x〉ψ‖

!
( ∫

ω−2−2ν〈k〉−6dk
) 1

2 ∥∥dΓ(〈y〉) 1
2 ψ

∥∥‖〈x〉ψ‖, (7.16)

and

‖〈y〉 1
2 qx‖h ! 〈x〉 1

2 ‖ω−1−ν〈k〉−3‖h, (7.17)

and

‖Φ(ibqx)ψ‖ !
( ∫

ω−2−2ν〈k〉−6dk
) 1

2 ‖〈x〉(Hf + 1)
1
2 ψ‖, (7.18)

and

〈qx, bqx〉h ! 〈x〉‖ω− 1
2−ν〈k〉−3‖2h. (7.19)

Next, the existence and the properties of the Deift-Simon wave operators on Ran(−∞,Σ)(H)

W± := s-lim
t→±∞

W (t), with W (t) := eitĤ Γ̌(j)e−itH , (7.20)

where Ĥ = H⊗1+1⊗Hf and the operators Γ̌ and j = (j0, j∞) are defined in Subsection 5.1, are equivalent
to the existence and the properties of the modified Deift-Simon wave operators

W (mod)
± := s-lim

t→±∞

(
e−iΦ(qx) ⊗ 1

)
eitĤ Γ̌(j)e−itHeiΦ(qx), (7.21)

on Ran(−∞,Σ)(H̃) (where H̃ = e−iΦ(qx)HeiΦ(qx) is given in (1.29)).
To prove the existence of W (mod)

± , we observe that, due to (6.9), we have Γ̌(j)Φ(h) = Φ̂(h)Γ̌(j), where

Φ̂(h) := Φ(j0h)⊗ 1 + 1⊗ Φ(j∞h), (7.22)

which in turn implies that

Γ̌(j)eiΦ(h) = eiΦ̂(h)Γ̌(j). (7.23)

Therefore
(
e−iΦ(qx) ⊗ 1

)
eitĤ Γ̌(j)e−itHeiΦ(qx) =

(
e−iΦ(qx) ⊗ 1

)
eitĤeiΦ̂(qx)Γ̌(j)e−itH̃

= eitĤ(mod)
Γ̌(j)e−itH̃ + Remt, (7.24)

where Ĥ(mod) := H̃ ⊗ 1 + 1⊗Hf and

Remt :=
(
e−iΦ(qx) ⊗ 1

)
eitĤ

(
eiΦ̂(qx) − eiΦ(qx) ⊗ 1

)
Γ̌(j)e−itH̃ .

We claim that
s-lim
t→±∞

Remt = 0. (7.25)

Indeed, let R := Φ̂(qx)−Φ(qx)⊗1 = Φ((j0− 1)qx)⊗1+1⊗Φ(j∞qx) and N̂ := N ⊗1+1⊗N . Using (7.2),
Lemma II.1 of Supplement II and (3.16), we obtain

∥∥R(N̂ + 1)−
1
2
∥∥ ! ‖(j0 − 1)qx‖h + ‖j∞qx‖h ! t−ατ 〈x〉1+τ ,

for any τ < 1. From this estimate and the relation eiΦ̂(qx)− eiΦ(qx)⊗1 = −i
∫ 1
0 dse(1−s)iΦ̂(qx)R(esiΦ(qx)⊗1),

it is not difficult to deduce that
∥∥(

eiΦ̂(qx) − eiΦ(qx) ⊗ 1
)
(N̂ + 〈x〉2+2τ + 1)−1

∥∥ ! t−ατ .

Furthermore, we have (N̂ +〈x〉2+2τ +1)Γ̌(j) = Γ̌(j)(N +〈x〉2+2τ +1), and, as in Corollary A.3 of Appendix A,
with µ = 1/2, one can verify that ‖Ne−itH̃ψ0‖ ! t2/5‖ψ0‖1 for any ψ0 ∈ f(H̃)D(N1/2

1 ), f ∈ C∞0 ((−∞,Σ)).
Using in addition that ‖〈x〉2+2τf(H̃)‖ < ∞, it follows that Remt strongly converges to 0 on Ran(−∞,Σ)(H̃)
provided that ατ > 2/5.
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The equations (7.20), (7.24) and (7.25) imply

W (mod)
± = s-lim

t→±∞
eitĤ(mod)

Γ̌(j)e−itH̃ . (7.26)

The proof of the existence and properties of the Deift-Simon wave operators (7.26) is a special case of the
corresponding proof for the hamiltonian (1.29)–(1.30) (see Section 6).

Finally, we comment on the proof of Theorem 5.4 for the hamiltonian (1.1) in the QED case. It goes in
the same way as in Section 5, until the point where we have to show that ‖dΓ(b2

ε)1/2Pgs‖ = O(tκ) in the
present case. This estimate can be proven by using the generalized Pauli-Fierz transformation (7.1) together
with (II.9), to obtain

∥∥dΓ(b2
ε)

1
2 Φgs

∥∥2 =
〈
Φ̃gs,

(
dΓ(b2

ε)− Φ(ib2
εqx) +

1
2
〈b2

εqx, qx〉h
)
Φ̃gs

〉
, (7.27)

where Φ̃gs := UΦgs. Using Lemma I.1 of Supplement I, (1.8) and the fact that Φ̃gs ∈ D(N1/2), we can
estimate the second term of the r.h.s. of (7.27) as

∣∣∣
〈
Φ̃gs,Φ(ib2

εqx)Φ̃gs

〉∣∣∣ ≤
∥∥〈x〉3Φ̃gs

∥∥∥∥〈x〉−3Φ(ib2
εqx)(N + 1)−

1
2
∥∥‖(N + 1)

1
2 Φ̃gs‖ ! t2κ.

Likewise, |〈Φ̃gs, 〈b2
εqx, qx〉hΦ̃gs〉| ! t2κ. To estimate the first term of the r.h.s. of (7.27), we apply the standard

pull-through formula, which gives

aλ(k)Φ̃gs =
n∑

j=1

κj

2mj

(
H̃ − Egs + |k|

)−1((−i∇xj − κjÃ(xj)) · g̃xj (k, λ)− 2mjexj (k, λ)
)
Φ̃gs.

We then easily conclude that ‖dΓ(b2
ε)1/2Φ̃gs‖ = O(tκ) in the same way as in Lemma D.1 of Appendix D.

Appendix A. Photon # and low momentum estimate

For simplicity, consider hamiltonians of the form (1.4)–(1.5), with the coupling operators g(k) satis-
fying (1.6) and (1.7) with µ > −1/2. The extension to hamiltonians of the form (1.29)–(1.30) is done
along the lines of Section 6. Recall the notations 〈A〉ψ = 〈ψ, Aψ〉, Nρ = dΓ(ω−ρ) and Υρ = {ψ0 ∈
f(H)D(N1/2

ρ ), for some f ∈ C∞0 ((−∞,Σ))}. The idea of the proof of the following estimate follows [35] and
[10].

Proposition A.1. Let ρ ∈ [−1, 1]. For any ψ0 ∈ Υρ,

〈Nρ〉ψt ! tνρ‖ψ0‖2ρ, νρ =
1 + ρ

2 + µ
. (A.1)

Proof. Decompose Nρ = K1 + K2, where

K1 := dΓ(ω−ρχtαω≤1) and K2 := dΓ(ω−ρχtαω≥1).

Then, by (2.3),
〈K2〉ψ ≤ 〈dΓ(tα(1+ρ)ωχtαω≥1)〉ψt ≤ tα(1+ρ)〈Hf 〉ψt ! tα(1+ρ)‖ψ0‖. (A.2)

On the other hand, we have by (2.13),

DK1 = dΓ(αω1+ρtα−1χ′tαω≤1)− I(iω−ρχtαω≤1g). (A.3)

Since ‖η1g(k)‖Hp ! |k|µ〈k〉−2−µ (see (1.6)), we obtain
∫

dk ω(k)−2ρχtαω≤1‖g(k)‖2Hp
(ω(k)−1 + 1) ! t−2(1+µ−ρ)α. (A.4)

This together with (2.14) and (2.3) gives

|〈I(iω−ρχtαω≤1g)〉ψt | ! t−(1+µ−ρ)α‖ψ0‖2. (A.5)

Hence, by (A.3), since ∂t〈K1〉ψt = 〈DK1〉ψt , χ′tαω≤1 ≤ 0, we obtain

∂t〈K1〉ψt ! t−(1+µ−ρ)α‖ψ0‖2,
and therefore

〈K1〉ψt ≤ Ctν
′
‖ψ0‖2 + 〈Nρ〉ψ0 , (A.6)



30 J. FAUPIN AND I. M. SIGAL

where ν′ = 1− (1 + µ− ρ)α, if (1 + µ− ρ)α < 1 and ν′ = 0, if (1 + µ− ρ)α > 1. Estimates (A.6) and (A.2)
with α = 1

2+µ , if ρ > −1, give (A.1). The case ρ = −1 follows from (2.3). "

Remark. A minor modification of the proof above give the following bound for ρ > 0 and ν′ρ := ρ
3
2+µ

,

〈Nρ〉ψt ! tν
′
ρ
(
‖ψt‖2N + ‖ψ0‖2

)
+ 〈Nρ〉ψ0 . (A.7)

Corollary A.2. For any ψ0 ∈ Υρ, γ ≥ 0 and c > 0,

‖χNρ≥ctγ ψt‖2 ! t−
γ
2 + 1+ρ

2(2+µ) ‖ψ0‖2 + t−
γ
2 〈Nρ〉ψ0 . (A.8)

Proof. We have
‖χNρ≥ctγ ψt‖ ≤ c−

γ
2 t−

γ
2 ‖χNρ≥ctγ N

1
2
ρ ψt‖ ≤ c−

γ
2 t−

γ
2 ‖N

1
2
ρ ψt‖.

Now applying (A.1) we arrive at (A.8). "

Corollary A.3. Let ψ0 ∈ Υ1. Then ψ0 ∈ D(N) and

〈N2〉ψt ! t
2

2+µ ‖ψ0‖21. (A.9)

Proof. By the Cauchy-Schwarz inequality, we have N2 ≤ dΓ(ω)dΓ(ω−1) = HfN1, and hence

〈N2〉ψt ≤ 〈N
1
2
1 HfN

1
2
1 〉ψt

= 〈N
1
2
1 Hf (H − Egs + 1)−1N

1
2
1 (H − Egs + 1)〉ψt

+ 〈N
1
2
1 Hf [N

1
2
1 , (H − Egs + 1)−1](H − Egs + 1)〉ψt .

Under the assumption (1.6) with µ > 0, one verifies that Hf [N
1
2
1 , (H − Egs + 1)−1] is bounded. Since

Hf (H − Egs + 1)−1 is also bounded, we obtain

〈N2〉ψt ! ‖N
1
2
1 ψt‖

(
‖N

1
2
1 (H − Egs + 1)ψt‖+ ‖(H − Egs + 1)ψt‖

)
. (A.10)

Applying Proposition A.1 gives

‖N
1
2
1 ψt‖ ! t

1
2+µ ‖ψ0‖+ ‖N

1
2
1 ψ0‖, (A.11)

and

‖N
1
2
1 (H − Egs + 1)ψt‖ ! t

1
2+µ ‖ψ0‖+ ‖N

1
2
1 (H − Egs + 1)ψ0‖

! t
1

2+µ ‖ψ0‖+ ‖N
1
2
1 ψ0‖, (A.12)

where we used in the last inequality that N
1
2
1 f̃(H)(N1 + 1)− 1

2 is bounded for any f̃ ∈ C∞0 (R3). Combining
(A.10), (A.11) and (A.12), we obtain

〈N2〉ψt ! t
2

2+µ (‖N
1
2
1 ψ0‖2 + ‖ψ0‖2). (A.13)

Hence (A.9) is proven. "

Appendix B. One-particle commutator estimates

In this appendix, we estimate some localization terms and commutators appearing in Section 3. We begin
with recalling the Helffer-Sjöstrand formula that will be used several times. Let f be a smooth function
satisfying the estimates |∂n

s f(s)| ≤ Cn〈s〉ρ−n for all n ≥ 0, with ρ < 0. We consider an almost analytic
extension f̃ of f , which means that f̃ is a C∞ function on C such that f̃ |R = f ,

supp f̃ ⊂
{
z ∈ C, | Im z| ≤ C〈Re z〉

}
,

|f̃(z)| ≤ C〈Re z〉ρ and, for all n ∈ N,
∣∣∣
∂f̃

∂z̄
(z)

∣∣∣ ≤ Cn〈Re z〉ρ−1−n| Im z|n.
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Moreover, if f is compactly supported, we can assume that this is also the case for f̃ . Given a self-adjoint
operator A, the Helffer–Sjöstrand formula (see e.g. [18, 44]) allows one to express f(A) as

f(A) =
1
π

∫
∂f̃(z)

∂z̄
(A− z)−1 dRe z dIm z. (B.1)

Now recall that bε = 1
2 (θε∇ω · y + h.c.), where θε = ω

ωε
, ωε = ω + ε, ε = t−κ, with κ ≥ 0. We have the

relations

i[ω, bε] = θε, i[ω, y2] =
1
2
(∇ω · y + y · ∇ω), (B.2)

and, using in particular Hardy’s inequality, one can verify the estimate
∥∥[y2, bε]〈y〉−2

∥∥ = O(tκ). (B.3)

The following lemma gathers several commutator estimates used in the main text. It is a straightforward
consequence of the Helffer-Sjöstrand formula together with (B.2), (B.3), and Hardy’s inequality. We do not
detail the proof.

Lemma B.1. Let h, h̃ be smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0 and likewise

for h̃. Let wα = (|y|/c1tα)2, vβ = bε/(c2tβ), with 0 < α, β ≤ 1. The following estimates hold

[h(wα), ω] = O(t−α), [h̃(vβ), ω] = O(t−β),

[h(wα), θ
1
2
ε ] = O(t

1
2 κ− 1

2 α), 〈y〉[h(wα), θ
1
2
ε ] = O(t

1
2 κ+ 1

2 α),

[h̃(vβ), ω−
1
2

ε ] = O(t
3
2 κ−β), bε[h̃(vβ), ω−

1
2

ε ] = O(t
3
2 κ), [h̃(vβ), θ

1
2
ε ] = O(tκ−β),

[h(wα), bε] = O(tκ), [h(wα), h̃(vβ)] = O(t−β+κ), bε[h(wα), h̃(vβ)] = O(tκ).

Now we prove the following abstract result.

Lemma B.2. Let h be a smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0. Assume

an operator v is s.t. the commutators [v, ω] and [v, [v, ω]] are bounded, and for some z in C \ R, (v − z)−1

preserves D(ω). Then the operator r := [h(v), ω]− [v, ω]h′(v) is bounded as

‖r‖ !
∥∥[v, [v, ω]]‖. (B.4)

Proof. We would like to use the Helffer–Sjöstrand formula (B.1) for h. Since h might not decay at infinity,
we cannot directly express h(v) by this formula. Therefore, we approximate h(v) as follows. Consider
ϕ ∈ C∞0 (R; [0, 1]) equal to 1 near 0 and ϕR(·) = ϕ(·/R) for R > 0. Let h̃ be an almost analytic extensions
of h such that h̃|R = h,

supp h̃ ⊂
{
z ∈ C; | Im z| ≤ C〈Re z〉

}
, (B.5)

|h̃(z)| ≤ C and, for all n ∈ N, ∣∣∣∂z̄h̃(z)
∣∣∣ ≤ Cn〈Re z〉ρ−1−n| Im z|n. (B.6)

Similarly let ϕ̃ ∈ C∞0 (C) be an almost analytic extension of ϕ satisfying these estimates. As a quadratic
form on D(ω), we have [

h(v), ω
]

= s-lim
R→∞

[
(ϕRh)(v), ω

]
. (B.7)

Since (v− z)−1 preserves D(ω) for some z in the resolvent set of v (and hence for any such z, see [2, Lemma
6.2.1]), we can compute, using the Helffer–Sjöstrand representation (see (B.1)) for (ϕRh)(v),

[
(ϕRh)(v), ω

]
=

1
π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, ω

]
dRe z dIm z

= − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, ω](v − z)−1 dRe z dIm z

= [v, ω](ϕRh)′(v) + rR, (B.8)
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as a quadratic form on D(ω), where

rR = − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, [v, ω]

]
(v − z)−1 dRe z dIm z

=
1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, [v, ω]](v − z)−2 dRe z dIm z. (B.9)

Now, using (v − z)−1 = O
(
| Im z|−1

)
, we obtain that

∥∥(v − z)−1[v, [v, ω]](v − z)−2
∥∥ ! | Im z|−3

∥∥[v, [v, ω]]
∥∥. (B.10)

Besides, for all n ∈ N,
|∂z̄(ϕ̃Rh̃)(z)| ≤ Cn〈Re z〉ρ−1−n| Im z|n, (B.11)

where Cn > 0 is independent of R ≥ 1. Using (B.9) together with (B.10), we see that there exists C > 0 such
that ‖rR‖ ≤ C

∥∥[v, [v, ω]]‖, for all R ≥ 1. Finally, since (ϕRh)′(v) converges strongly to h′(v), the lemma
follows from (B.8) and the previous estimate. "

We want apply the lemma above to the time-dependent self-adjoint operator v := bε
ctα .

Corollary B.3. Let h be a smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0 and let

v := bε
ctα , where c > 0, ε = t−κ, with 0 ≤ κ ≤ β ≤ 1. Then the operator r := dh(v)− (dv)h′(v) is bounded as

‖r‖ ! t−λ, λ := 2α− κ. (B.12)

Proof. Observe that

dh(v)− (dv)h′(v) = [h(v), iω]− [v, iω]h′(v) + ∂th(v)− (∂tv)h′(v).

It is not difficult to verify that (v − z)−1 preserves D(ω) for any z ∈ C \ R. Hence it follows from the
computations

[v, iω] = t−αθε, [v, [v, iω]] = t−2αθεω
−2
ε ε, (B.13)

that we can apply Lemma B.2. The estimate

[v, [v, ω]] = O(ω−1
ε t−2α) = O

(
t−2α+κ

)
(B.14)

then gives

‖[h(v), iω]− [v, iω]h′(v)‖ ! t−2α+κ.

It remains to estimate ‖∂th(v)− (∂tv)h′(v)‖. It is not difficult to verify that D(bε) is independent of t. Using
the notations of the proof of Lemma B.2 and the fact that ∂th(v) = s-limR→∞ ∂t(ϕRh)(v), we compute

∂t(ϕRh)(v) =
1
π

∫
∂z̄(ϕ̃Rh̃)(z)∂t(v − z)−1 dRe z dIm z

= − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1(∂tv)(v − z)−1 dRe z dIm z

= (∂tv)(ϕRh)′(v) + r′R,

where

r′R = − 1
π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, ∂tv

]
(v − z)−1 dRe z dIm z

=
1
π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, ∂tv](v − z)−2 dRe z dIm z. (B.15)

Now using ∂tv = − αbε
ctα+1 + 1

ctα ∂tbε together with (3.9), we estimate

[v, ∂tv] = O(t−1−2α+κ)bε +O(t−1−2α+2κ).

From this, the properties of ϕ̃, h̃, and κ ≤ β, we deduce that ‖r′R‖ ! t−1−α+κ ! t−2α+κ uniformly in R ≥ 1.
This concludes the proof of the corollary. "

The following lemma is taken from [10]. Its proof is similar to the proof of Lemma B.2
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Lemma B.4. Let h be a smooth function satisfying the estimates
∣∣∂n

s h(s)
∣∣ ≤ Cn〈s〉−n for n ≥ 0 and

0 ≤ δ ≤ 1. Let wα = (|y|/ctα)2 with 0 < α ≤ 1. We have

[
h(wα), iω

]
=

1
ctα

h′(wα)
( y

ctα
· ∇ω +∇ω · y

ctα
)

+ rem,

with ∥∥ω
δ
2 rem ω

δ
2
∥∥ ! t−α(1+δ).

Appendix C. Estimates of dΓ, dΓ̌ and Γ

In this appendix we prove technical statements about dΓ, dΓ̌ and Γ, used in the main text. Most of the
results we present here are close to known ones. We begin with the following standard result, which was
used implicitly at several places.

Lemma C.1. Let a, b be two self-adjoint operators on h with b ≥ 0, D(b) ⊂ D(a) and ‖aϕ‖ ≤ ‖bϕ‖ for all
ϕ ∈ D(b). Then D(dΓ(b)) ⊂ D(dΓ(a)) and ‖dΓ(a)Φ‖ ≤ ‖dΓ(b)Φ‖ for all Φ ∈ D(dΓ(b)).

Next, we have the following lemma which was used in the proof of Proposition 4.2. We recall the notations
Bε = dΓ(bε) and Bε,t = Bε

ct .

Lemma C.2. Let f ∈ C∞0 (R3). Then
∥∥dΓ(ω−1

ε )
1
2 f(Bε,t)(1 + dΓ(ω−1) + t−1ε−2N)−

1
2
∥∥ ! 1, (C.1)

uniformly w.r.t. ε > 0 and t > 0.

Proof. By interpolation, if suffices to prove that
∥∥dΓ(ω−1

ε )f(Bε,t)(1 + dΓ(ω−1) + t−1ε−2〈N〉)
∥∥ ! 1. (C.2)

To this end, we write

dΓ(ω−1
ε )f(Bε,t) = f(Bε,t)dΓ(ω−1

ε ) + [dΓ(ω−1
ε ), f(Bε, t)].

Since ‖f(Bε,t)‖ ! 1 and dΓ(ω−1
ε )2 ≤ dΓ(ω−1)2, the first term is bounded as

∥∥f(Bε,t)dΓ(ω−1
ε )(1 + dΓ(ω−1))

∥∥ ! 1. (C.3)

To estimate the second term, we write as above, using the Helffer-Sjöstrand formula,

f(Bε,t) =
1
π

∫
∂z̄ f̃(z)(Bε,t − z)−1 dRe z dIm z,

where f̃ denotes an almost analytic extension of f . This gives

[dΓ(ω−1
ε ), f(Bε,t)] =

1
π

∫
∂z̄ f̃(z)(Bε,t − z)−1[Bε,t,dΓ(ω−1

ε )](Bε,t − z)−1 dRe z dIm z, (C.4)

with

[Bε,t,dΓ(ω−1
ε )] = (ct)−1dΓ(θεω

−2
ε ).

Since ‖dΓ(θεω−2
ε )〈N〉−1‖ ! ε−2, and since Bε,t commutes with N , we obtain that

‖(Bε,t − z)−1[Bε,t,dΓ(ω−1
ε )](Bε,t − z)−1〈N〉−1‖ ! t−1ε−2|Imz|−2,

Hence the formula (C.4) shows that

‖[dΓ(ω−1
ε ), f(Bε,t)]〈N〉−1‖ ! t−1ε−2,

which, together with (C.3), imples (C.2) and hence (C.1) by interpolation. "

We recall that, given two operators a, c on h, the operator dΓ(a, c) was defined in (5.12), and dΓ̌(a, c) :=
UdΓ(a, c).
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Lemma C.3. Let j = (j0, j∞) and c = (c0, c∞), where j0, j∞, c0, c∞ are operators on h. Furthermore,
assume that j∗0j0 + j∗∞j∞ ≤ 1. Then we have the relation

|〈φ̂,dΓ̌(j, c)ψ〉| ≤ ‖dΓ(|c0|)
1
2 ⊗ 1φ̂‖‖dΓ(|c0|)

1
2 ψ‖

+ ‖1⊗ dΓ(|c∞|)
1
2 φ̂‖‖dΓ(|c∞|)

1
2 ψ‖. (C.5)

Likewise, with c1 : h → h⊕ h and c2 : h → h, we have

|〈u,dΓ(j, c1c2)v〉| ≤ ‖dΓ(c1c
∗
1)

1
2 u‖‖dΓ(c∗2c2)

1
2 v‖. (C.6)

Proof. Let φ̃ = U∗φ̂ and for an operator b on h define operators i0b := diag(b, 0) and i∞b := diag(0, b) on
h ⊕ h. Since U∗dΓ(|c0|)

1
2 ⊗ 1U = dΓ(i0|c0|)

1
2 and U∗1 ⊗ dΓ(|c∞|)

1
2 U = dΓ(i∞|c∞|)

1
2 , the statement of the

lemma is equivalent to

|〈φ̃,dΓ(j, c)ψ〉| ≤ ‖dΓ(i0|c0|)
1
2 φ̃‖‖dΓ(|c0|)

1
2 ψ‖

+ ‖dΓ(i∞|c∞|)
1
2 φ̃‖‖dΓ(|c∞|)

1
2 ψ‖. (C.7)

We decompose dΓ(j, c) = dΓ(j, i0c0) + dΓ(j, i∞c∞) and estimate each term separately. We have, using that
‖j‖ ≤ 1,

|〈φ̃,dΓ(j, i0c0)ψ〉| ≤
n∑

l=1

|〈|i0c0|
1
2
l φ̃, |i0c0|

1
2
l ψ〉|,

where |i0c0|l := 1⊗ · · · ⊗ 1⊗ i0|c0| ⊗ 1⊗ · · · ⊗ 1, with the operator |i0c0| appearing in the lth component of
the tensor product. By the Cauchy-Schwarz inequality, we obtain

|〈φ̃,dΓ(j, i0c0)ψ〉| ≤
n∑

l=1

‖|i0c0|
1
2
l φ̃‖‖|i0c0|

1
2
l ψ‖ ≤

( n∑

l=1

‖|i0c0|
1
2
l φ̃‖2

) 1
2
( n∑

l=1

‖|i0c0|
1
2
l ψ‖2

) 1
2

= ‖dΓ(|i0c0|)
1
2 φ̃‖‖dΓ(|i0c0|)

1
2 ψ‖.

Since ‖dΓ(|i0c0|)
1
2 ψ‖F(h⊕h) = ‖dΓ(|c0|)

1
2 ψ‖F(h), we obtain the first term in the r.h.s. of (C.7). The second

one is obtained exactly in the same way. (C.6) can be proven in a similar manner. "

In the following lemma, as in the main text, the operator j∞ on L2(R3) is of the form j∞ = χ bε
ctα≥1,

where, recall, bε = 1
2 (vε(k) · y + h.c.), where vε(k) = θε∇ω, θε = ω

ω+ε , and ε = t−κ, κ > 0.

Lemma C.4. Assume α + κ > 1. Let u ∈ F . Then
∥∥(Γ(j∞)− 1)e−iHf tu

∥∥ → 0, as t →∞.

Proof. Assume that u ∈ D(dΓ(〈y〉)). Using unitarity of e−iHf t and the fact that e−iHf t = Γ(e−iωt), we
obtain

∥∥(Γ(j∞)− 1)e−iHf tu
∥∥ =

∥∥(Γ(eiωtj∞e−iωt)− 1)u
∥∥ ≤

∥∥dΓ(eiωtj̄∞e−iωt)u
∥∥, (C.8)

where j̄∞ = 1− j∞. Using the identity eitωbεe−itω = bε + θεt, one shows that

eitωχ bε
ctα≤1e

−itω = χ bε+θεt
ctα ≤1.

Since α + κ > 1, we have, by the Helffer-Sjöstrand formula, χ bε+θεt
ctα ≤1 = χ bε+t

ctα ≤1 + O(t−(α+κ−1)). Due to
−2bε

t ≥ 1 on suppχ bε+t
ctα ≤1 for t sufficiently large, we have

‖χ bε+t
ctα ≤1φ‖ ≤

∥∥−2bε

t
χ bε+t

ctα ≤1φ
∥∥ ≤

∥∥2〈y〉
t

φ
∥∥,

and therefore
∥∥∥dΓ

(
χ bε+θεt

ctα ≤1

)
u
∥∥∥ ≤

2
t

∥∥dΓ
(
〈y〉

)
u
∥∥.

Together with (C.8), this shows that
∥∥(Γ(j∞) − 1)e−iHf tu

∥∥ → 0, for u ∈ D
(
dΓ(〈y〉)

)
. Since D

(
dΓ(〈y〉)

)
is

dense in F , this concludes the proof. "
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Appendix D. Estimates of Pgs

Lemma D.1. Assume (1.6) with µ > −1/2 and (1.7). Then Ran(Pgs) ⊂ D(N 1
2 ) ∩ D(dΓ(b2

ε)
1
2 ), in other

words, the operators N
1
2 Pgs and dΓ(b2

ε)
1
2 Pgs are bounded. Moreover, we have ‖dΓ(b2

ε)
1
2 Pgs‖ = O(tκ).

Proof. Let Φgs ∈ Ran(Pgs). The well-known pull-through formula gives

a(k)Φgs = −(H − Egs + |k|)−1g(k)Φgs. (D.1)

Since ‖(H − Egs + |k|)−1‖ ≤ |k|−1, one easily deduces that
∫

R3
‖a(k)Φgs‖2dk ≤

( ∫

R3

‖η1g(k)‖2Hp

|k|2 dk
)
‖η−1

1 Φgs‖2 ! ‖Φgs‖2,

for any µ > −1/2, where we used (1.6) and (1.7) in the last inequality. This implies that N
1
2 Pgs is bounded.

To estimate ‖dΓ(b2
ε)

1
2 Pgs‖, we decompose

bε =
i

|k|+ t−κ
k · ∇k +

3i|k|
2(|k|+ t−κ)

− i|k|
2(|k|+ t−κ)2

.

Using again that ‖(H − Egs + |k|)−1‖ ≤ |k|−1, we obtain
∥∥∥

3i|k|
2(|k|+ t−κ)

(H − Egs + |k|)−1g(k)Φgs

∥∥∥ ! |k|−1‖η1g(k)‖Hp‖η−1
1 Φgs‖, (D.2)

and
∥∥∥

i|k|
2(|k|+ t−κ)2

(H − Egs + |k|)−1g(k)Φgs

∥∥∥ ! tκ|k|−1‖η1g(k)‖Hp‖η−1
1 Φgs‖. (D.3)

Moreover, we have

‖∇k(H − Egs + |k|)−1‖ ! ‖(H − Egs + |k|)−2‖ ≤ |k|−2,

and hence
∥∥∥

i

|k|+ t−κ
k · ∇k(H − Egs + |k|)−1g(k)Φgs

∥∥∥

!
(
tκ|k|−1‖η1g(k)‖Hp + tκ‖η1η2∇kg(k)‖Hp

)
‖η−1

1 η−1
2 Φgs‖. (D.4)

Estimates (D.2), (D.3), (D.4) together with (D.1) and (1.6)–(1.7) imply that

‖dΓ(b2
ε)

1
2 Φgs‖2 =

∫

R3

∥∥∥
( i

|k|+ t−κ
k · ∇k +

3i|k|
2(|k|+ t−κ)

− i|k|
2(|k|+ t−κ)2

)
a(k)Φgs

∥∥∥
2
dk ! t2κ‖Φgs‖2,

for any µ > −1/2. This shows that ‖dΓ(b2
ε)

1
2 Pgs‖ = O(tκ). "

Appendix E. The proof of the existence of W+ under assumption (1.19)

Let ρν := χθ1/2
ε ων/2 and recall that χ ≡ χw≤1, with w = ( |y|c̄t )2, and v = bε

ctα . We begin with the following
weighted propagation estimates, which are a straightforward extensions of the estimates of Theorem 3.1:

∫ ∞

1
dt t−β

∥∥dΓ(ρ∗1χv=1ρ1)
1
2 ψt

∥∥2 ! ‖ψ0‖2, (E.1)

for µ and α as in Theorem 3.1 and any ψ0 ∈ H, and, if in addition assumption (1.19) of Theorem 1.1 holds,
∫ ∞

1
dt t−α

∥∥dΓ(ω−1/2χv=1ω
−1/2)

1
2 ψt

∥∥2 ! C(ψ0), (E.2)

and ∫ ∞

1
dt t−α

∥∥dΓ(ρ∗−1χv=1ρ−1)
1
2 ψt

∥∥2 ! C(ψ0). (E.3)

for any ψ0 ∈ D. Likewise, under assumption (1.19) of Theorem 1.1, the proof of the maximal velocity
estimate (1.21) of [10] can easily be extended to the following weighted maximal velocity estimate:

∥∥dΓ
(
ω−1/2χw≥1ω

−1/2
) 1

2 ψt

∥∥ ! t−γ
(∥∥(dΓ(ω−1/2〈y〉ω−1/2) + 1)

1
2 ψ0

∥∥ + C(ψ0)
)
, (E.4)
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for any c̄ > 1, γ < min(µ
2

c̄−1
2c̄−1 , 1

2 ) and ψ0 ∈ D ∩D(dΓ(ω−1/2〈y〉ω−1/2) 1
2 ).

We only mention that to obtain for instance (E.2), we estimate the interaction term using (2.14) with
δ = −1/2 together with the inequality (3.16) and the assumption (1.19).

Now, let ψ0 ∈ D ∩ D(dΓ(ω−1/2〈y〉ω−1/2) 1
2 ). We decompose (W̃ (t′) − W̃ (t))ψ0 as in Equations (5.28)–

(5.32). Using the commutator estimates of Appendix B and Hardy’s inequality, we verify that

ρ∗−1(j
′
0, j

′
∞)ρ1 = θ1/2

ε χ(j′0, j
′
∞)χθ1/2

ε +O(t−α+(1+κ)/2),

and likewise for the remainder terms remt. Hence Equations (5.31)–(5.32) can be transformed into

dj =
1

ctα
ρ∗1(j

′
0, j

′
∞)ρ−1 + ω1/2rem′

t ω−1/2 (E.5)

rem′
t = remt +O(t−2α+(1+κ)/2), (E.6)

where remt is given in (5.32). These relations give

G0 = G̃′
0 + Rem′

t, (E.7)

where G̃′
0 := 1

ctα UdΓ(j, c̃t), with c̃t = (c̃0, c̃∞) := (ρ∗1j′0ρ−1, ρ∗1j
′
∞ρ−1), and

Rem′
t := G0 − G̃′

0 = UdΓ(j, rem′
t).

Next, we consider, as above, Ã = sup‖φ̂0‖=1 |
∫ t′

t ds〈φ̂s, G0ψs〉|, where φ̂s = e−iĤsf(Ĥ)φ̂0. Let

a0 = ρ∗1|j′0|1/2, b0 = |j′0|1/2ρ−1,

a∞ = ρ∗1|j′∞|1/2, b∞ = |j′∞|1/2ρ−1.

We have c̃0 = −a0b0, c̃∞ = a∞b∞. Exactly as for (C.5), one can show that, if c = (a0b0, a∞b∞), where
a0, b0, a∞, b∞ are operators on h, then

|〈φ̂,dΓ̌(j, c)ψ〉| ≤ ‖dΓ(a0a
∗
0)

1
2 ⊗ 1φ̂‖‖dΓ(b∗0b0)

1
2 ψ‖

+ ‖1⊗ dΓ(a∞a∗∞)
1
2 φ̂‖‖dΓ(b∗∞b∞)

1
2 ψ‖. (E.8)

Hence G̃′
0 satisfies

|〈φ̂, G̃′
0ψ〉| ≤

1
ctα

(
‖dΓ(a0a

∗
0)

1
2 ⊗ 1φ̂‖‖dΓ(b∗0b0)

1
2 ψ‖

+ ‖1⊗ dΓ(a∞a∗∞)
1
2 φ̂‖‖dΓ(b∗∞b∞)

1
2 ψ‖

)
. (E.9)

By the Cauchy-Schwarz inequality, (E.9) implies
∫ t′

t
ds |〈φ̂s, G̃

′
0ψs〉| !

( ∫ t′

t
ds s−α‖dΓ(a0a

∗
0)

1
2 ⊗ 1φ̂s‖2

) 1
2
( ∫ t′

t
ds s−α‖dΓ(b∗0b0)

1
2 ψs‖2

) 1
2

+
( ∫ t′

t
ds s−α‖1⊗ dΓ(a∞a∗∞)

1
2 φ̂s‖2

) 1
2
( ∫ t′

t
ds s−α‖dΓ(b∗∞b∞)

1
2 ψs‖2

) 1
2
.

Since a0a∗0 and a∞a∗∞ are of the form ρ∗1χbε=ctαρ1, the weighted minimal velocity estimate (E.3) implies
∫ ∞

1
ds s−α

∥∥d̂Γ(c#1c
∗
#1)

1
2 φ̂s

∥∥2 ! ‖φ̂0‖2,

where d̂Γ(c#1c∗#1)
1
2 stands for dΓ(a0a∗0)

1
2 ⊗ 1 or 1⊗ dΓ(a∞a∗∞) 1

2 . Likewise, since b∗0b0 and b∗∞b∞ are of the
form ρ∗−1χbε=ctαρ−1, the weighted minimal velocity estimate (E.1) implies

∫ ∞

1
ds s−α

∥∥dΓ(c∗#2c#2)
1
2 ψs

∥∥2 ! C(ψ0),

with c#2 = b0 or b∞. The last three relations give

sup
‖φ̂0‖=1

∣∣∣
∫ t′

t
ds 〈φ̂s, G̃

′
0ψs〉

∣∣∣ → 0, t, t′ →∞. (E.10)
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Applying likewise Lemma C.3 of Appendix C, one verifies that Rem′
t satisfies

|〈φ̂,Rem′
tψ〉| ! ‖φ̂‖

(
t−2α+(1+κ)/2‖dΓ(ω−1)

1
2 ψ‖+ t−1‖dΓ(ω−1/2χj′∞χω−1/2)

1
2 ψ‖

+ t−α‖dΓ(ω−1/2χ2
w≥1ω

−1/2)
1
2 ψ‖

)
.

Using (1.19), the weighted minimal velocity estimate (E.2) and the weighted maximal velocity estimate
(E.4), we conclude as above that

sup
‖φ̂0‖=1

∣∣∣
∫ t′

t
ds〈φ̂s,Rem′

sψs〉
∣∣∣ → 0, t, t′ →∞. (E.11)

Equations (E.10) and (E.11) then imply

Ã =
∥∥∥

∫ t′

t
dsf(Ĥ)eiĤsG0ψs

∥∥∥ → 0, t, t′ →∞. (E.12)

The estimate of G1 is the same as above, which shows that W̃ (t), and hence W (t), are strong Cauchy
sequences. Thus the limit W+ exists.

Supplement I. The wave operators

In this supplement we briefly review the definition and properties of the wave operator Ω+, and establish
its relation with W+ in Theorem I.2 below. For simplicity we consider again hamiltonians of the form (1.4)–
(1.5). Let Hb ≡ Hpp(H)∩E(−∞,Σ)(H) be the space spanned by the eigenfunctions of H with the eigenvalues
in the interval (−∞,Σ). Define h̃0 := {h ∈ L2(R3),

∫
|h|2(|k|−1 + |k|2)dk < ∞}. The wave operator Ω+ on

the space Hb ⊗Ffin(h̃0), is defined by the formula

Ω+ := s-lim
t→∞

eitHI(e−itH ⊗ e−itHf ). (I.1)

As in [19, 26, 27, 39], it is easy to show

Theorem I.1. Assume (1.6) with µ > −1/2 and (1.7). The wave operator Ω+ exists on Hb⊗Ffin(h̃0) and
extends to an isometric map, Ω+ : Has → H, on the space of asymptotic states, Has := Hb ⊗F .

Proof. Let ht(k) := e−it|k|h(k). For h ∈ D(ω−1/2) s.t. ∂αh ∈ D(ω|α|−1/2), |α| ≤ 2, we define the asymptotic
creation and annihilation operators by (see [19, 26, 27, 35, 39])

a#
±(h)Φ := lim

t→±∞
eitHa#(ht)e−itHΦ,

for any Φ ∈ D(|H|1/2)
⋂

RanE(−∞,Σ)(H). Here a# stands for a or a∗. To show that a#
±(h) exist (see

[26, 39]), we define a#
t (h) := eitHa#(ht)e−itH and compute a#

t′ (h)− a#
t (h) =

∫ t′

t ds∂sa#
s (h) and ∂sa#

s (h) =
ieiHtGe−iHt, where G := [H, a#(hs)] − a#(ωht) = 〈g, ht〉L2(dk) for a# = a∗ and −〈ht, g〉L2(dk) for
a# = a. Thus the proof of existence reduces to showing that one-photon terms of the form 〈ηg, ht〉 are
integrable in t. By (1.6), we have ‖〈ηg, ht〉L2(dk)‖Hp ! (1 + t)−1−ε, with 0 < ε<µ + 1, which is integrable.
Moreover, as in [26, 39], one can show that a#

±(h) satisfy the canonical commutation relations, the relations
a±(h)Ψ = 0, and

lim
t→±∞

eitHa#(h1,t) · · · a#(hn,t)e−itHΦ = a#
±(h1) · · · a#

±(hn)Φ, (I.2)

for any Ψ ∈ Hb, h, h1, · · · , hn ∈ h̃0, and any Φ ∈ E(−∞,Σ)(H). If we define the wave operator Ω+ on Hfin by

Ω+(Φ⊗ a∗(h1) · · · a∗(hn)Ω) := a∗+(h1) · · · a∗+(hn)Φ, (I.3)

using the canonical commutation relations, one sees that Ω+ extends to an isometric map Ω+ : H+
as → H.

Moreover, using the relation eitĤ(Φ ⊗ a#(h1) · · · a#(hn)Ω) = (eitHΦgs) ⊗ (a#(h1,t) · · · a#(hn,t)Ω), together
with (I.1) and (I.2), we identify the definition (I.3) with (I.1). "
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Recall that Pgs denotes the orthogonal projection onto the ground state subspace of H. Let P̄gs := 1−Pgs

and P̄Ω := 1 − PΩ, where, recall, PΩ is the projection onto the vacuum sector in F . Theorem 5.4 and its
proof imply the following result.

Theorem I.2. Under the conditions of Theorem 5.4, we have on Ranχ∆(H)

Ω+(Pgs ⊗ P̄Ω)W+P̄gs + Ω+(Pgs ⊗ PΩ)W+Pgs = 1. (I.4)

Proof. Let ψ0 ∈ Ranχ∆(H). For every ε′′ > 0 there is δ′′ = δ(ε′′) > 0, s.t.

‖ψ0 − ψ0ε′′ − Pgsψ0‖ ≤ ε′′, (I.5)

where ψ0ε′′ = χ∆ε′′ (H)ψ0, with ∆ε′ = [Egs + δ, a]. Proceeding as in the proof of Theorem 5.4 with ψ0ε′′

instead of ψ0, we arrive at (see (5.65))

ψ0ε′′ = e−iHtI(e−iEgstPgs ⊗ e−iHf tχ(0,a−Egs](Hf ))φ0ε′ +O(ε′) + C(ε′, m)ot(1) + C(ε′)om(1), (I.6)

where we choose φ0ε′ such that φ0,ε′ ∈ D(dΓ(〈y〉))⊗Ffin(h̃0) and ‖W+ψ0ε′′ −φ0ε′‖ ≤ ε′. Now using Theorem
I.1, we let t →∞, next m →∞ to obtain

ψ0ε′′ = Ω+(Pgs ⊗ χ(0,a−Egs](Hf ))φ0ε′ +O(ε′). (I.7)

Since Ω+ is isometric, hence bounded, we can let ε′ → 0, which gives

ψ0ε′′ = Ω+(Pgs ⊗ χ(0,a−Egs](Hf ))W+ψ0ε′′ = Ω+(Pgs ⊗ P̄Ω)W+P̄gsψ0ε′′ . (I.8)

Here we used that χ(0,a−Egs](Hf ) = P̄Ωχ(0,a−Egs](Hf ), together with χ(0,a−Egs](Hf )W+ψ0ε′′ = W+ψ0ε′′ and
ψ0ε′′ = P̄gsψ0ε′′ . Introducing (I.8) into (I.5) and letting ε′′ → 0, we obtain

ψ0 = Ω+(Pgs ⊗ P̄Ω)W+P̄gsψ0 + Pgsψ0,

that is

Ω+(Pgs ⊗ P̄Ω)W+P̄gs + Pgs = 1.

Since, by (5.6) and (I.3), we have Ω+(Pgs ⊗ PΩ)W+Pgs = Pgs, this implies (I.4). "

Supplement II. Creation and annihilation operators on Fock spaces

Recall that the propagation speed of the light and the Planck constant divided by 2π are set equal to 1.
Recall also that the one-particle space is h := L2(R3; C), for phonons, and h := L2(R3; C2), for photons. In
both cases we use the momentum representation and write functions from this space as u(k) and u(k, λ),
respectively, where k ∈ R3 is the wave vector or momentum of the photon and λ ∈ {−1,+1} is its polarization.

With each function f ∈ h, one associates creation and annihilation operators a(f) and a∗(f) defined,
for u ∈ ⊗n

s h, as
a∗(f) : u →

√
n + 1f ⊗s u and a(f) : u →

√
n〈f, u〉h, (II.1)

with 〈f, u〉h :=
∫

f(k)u(k, k1, . . . , kn−1) dk, for phonons, and 〈f, u〉h :=
∑

λ=1,2

∫
dkf(k, λ)un(k, λ, k1, λ1,

. . . , kn−1, λn−1), for photons. They are unbounded, densely defined operators of Γ(h), adjoint of each other
(with respect to the natural scalar product in F) and satisfy the canonical commutation relations (CCR):

[
a#(f), a#(g)

]
= 0,

[
a(f), a∗(g)

]
= 〈f, g〉,

where a# = a or a∗. Since a(f) is anti-linear and a∗(f) is linear in f , we write formally

a(f) =
∫

f(k)a(k) dk, a∗(f) =
∫

f(k)a∗(k) dk,

for phonons, and

a(f) =
∑

λ=1,2

∫
f(k, λ)aλ(k) dk, a∗(f) =

∑

λ=1,2

∫
f(k, λ)a∗λ(k)dk,
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for photons. Here a(k) and a∗(k) and aλ(k) and a∗λ(k) are unbounded, operator-valued distributions, which
obey (again formally) the canonical commutation relations (CCR):

[
a#(k), a#(k′)

]
= 0,

[
a(k), a∗(k′)

]
= δ(k − k′),

[
a#

λ (k), a#
λ′(k

′)
]

= 0,
[
aλ(k), a∗λ′(k

′)
]

= δλ,λ′δ(k − k′),

where a# = a or a∗ and a#
λ = aλ or a∗λ.

Given an operator τ acting on the one-particle space h, the operator dΓ(τ) (the second quantization of τ)
defined on the Fock space F by (1.3), can be written (formally) as dΓ(τ) :=

∫
dk a∗(k)τa(k), for phonons,

and dΓ(τ) :=
∑

λ=1,2

∫
dk a∗λ(k)τaλ(k), for photons. Here the operator τ acts on the k-variable. The precise

meaning of the latter expression is (1.3). In particular, one can rewrite the quantum Hamiltonian Hf in
terms of the creation and annihilation operators, a and a∗, as

Hf =
∑

λ=1,2

∫
dk a∗λ(k)ω(k)aλ(k) (I.2)

for photons, and similarly for phonons.
The relations below are valid for both phonon and photon operators. Commutators of two dΓ operators

reduces to commutators of the one-particle operators:

[dΓ(τ),dΓ(τ ′)] = dΓ([τ, τ ′]). (II.3)

Let τ be a one-photon self-adjoint operator. The following commutation relations involving the field
operator Φ(f) = 1√

2
(a∗(f) + a(f)) can be readily derived from the definitions of the operators involved:

[Φ(f),Φ(g)] = i Im〈f, g〉h, (II.4)
[Φ(f),dΓ(τ)] = iΦ(iτf), (II.5)
[Γ(τ),Φ(f)] = Γ(τ)a((1− τ)f)− a∗((1− τ)f)Γ(τ). (II.6)

Exponentiating these relations, we obtain

eiΦ(f)Φ(g)e−iΦ(f) = Φ(g)− Im〈f, g〉h, (II.7)

eiΦ(f)dΓ(τ)e−iΦ(f) = dΓ(τ)− Φ(iτf) +
1
2

Re〈ωf, f〉h (II.8)

eiΦ(f)Γ(τ)e−iΦ(f) = Γ(τ) +
∫ 1

0
ds eisΦ(f)(Γ(τ)a((1− τ)f)− a∗((1− τ)f)Γ(τ))e−siΦ(f). (II.9)

Finally, we have the following standard estimates for annihilation and creation operators a(f) and a∗(f),
whose proof can be found, for instance, in [7], [34, Section 3], [40]:

Lemma II.1. For any f ∈ h such that ω−ρ/2f ∈ h, the operators a#(f)(dΓ(ωρ) + 1)−1/2, where a#(f)
stands for a∗(f) or a(f), extend to bounded operators on H satisfying

∥∥a(f)(dΓ(ωρ) + 1)−
1
2
∥∥ ≤ ‖ω−ρ/2f‖h,

∥∥a∗(f)(dΓ(ωρ) + 1)−
1
2
∥∥ ≤ ‖ω−ρ/2f‖h + ‖f‖h.

If, in addition, g ∈ h is such that ω−ρ/2g ∈ h, the operators a#(f)a#(g)(dΓ(ωρ) + 1)−1 extend to bounded
operators on H satisfying

∥∥a(f)a(g)(dΓ(ωρ) + 1)−1
∥∥ ≤ ‖ω−ρ/2f‖h‖ω−ρ/2g‖h,

∥∥a∗(f)a(g)(dΓ(ωρ) + 1)−1
∥∥ ≤

(
‖ω−ρ/2f‖h + ‖f‖h

)
‖ω−ρ/2g‖h,

∥∥a∗(f)a∗(g)(dΓ(ωρ) + 1)−1
∥∥ ≤

(
‖ω−ρ/2f‖h + ‖f‖h

)(
‖ω−ρ/2g‖h + ‖g‖h

)
.
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