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ABSTRACT. We consider a particle system coupled to the quantized electromagnetic or phonon field. As-
suming that the coupling is small enough and that Fermi’s Golden Rule is satisfied, we prove asymptotic
completeness for Rayleigh scattering on the states for which the expectation of either the photon/phonon
number operator or an operator testing the photon/phonon infrared behaviour is uniformly bounded on
corresponding dense sets. By extending a recent result of De Roeck and Kupiainen in a straightforward way,
we show that the second of these conditions is satisfied for the spin-boson model.

1. INTRODUCTION

In this paper we study the long-time dynamics of a non-relativistic particle system coupled to the quan-
tized electromagnetic or phonon field. For energies below the ionization threshold, we prove asymptotic
completeness (for Rayleigh scattering) on the states for which the expectation of the photon number or
an operator testing the photon infrared behaviour is bounded uniformly in time. In this introduction we
formulate the model, the problem, the results and the outline of the proof.

Standard model of non-relativistic quantum electrodynamics. First, we consider the standard
model of non-relativistic quantum electrodynamics in which particles are minimally coupled to the quantized
electromagnetic field. The state space for this model is given by H := H, ® F, where H, is the particle
state space, say, L?(R3"), or a subspace thereof, and F is the bosonic Fock space, F = I'(h) := C a3, @7,
based on the one-photon space b := L?(R3,C?) (®" stands for the symmetrized tensor product of n factors,
C? accounts for the photon polarization). Its dynamics is generated by the hamiltonian
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Here, m; and z;, j = 1,...,n, are the (‘bare’) particle masses and the particle positions, U(x), v =
(®1,...,xyn), is the total potential affecting the particles, and x; are coupling constants related to the

particle charges. Moreover, A¢ := £ * A, where £ is an ultraviolet cut-off satisfying e.g. |0™¢(k)| < (k) 73,
|m| =0,...,3, and A(y) is the quantized vector potential in the Coulomb gauge (div A(y) = 0), describing
the quantized electromagnetic field and given by

(k) (e™Yay(k) + e *Ya3 (k). (1.2)
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Here, w(k) = |k| denotes the photon dispersion relation (k is the photon wave vector), A is the polarization,
and ax(k) and a%(k) are photon annihilation and creation operators acting on the Fock space F (see Sup-
plement IT for the definition). In (1.2) and in what follows, the integrals without indication of the domain
of integration are taken over entire R3.

The operator Hy in (1.1) is the quantum hamiltonian of the quantized electromagnetic field, describing
the dynamics of the latter, given by Hy = dI'(w), where dI'(7) denotes the lifting of a one-photon operator
7 to the photon Fock space, dT'(7)|c = 0 for n = 0 and, for n > 1,

@nhfZl@ RleTR1® - 1. (1.3)
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(See Supplement II for the expression of dI'(7) in terms of ax(k) and a3 (k).)
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We assume that U(z) € L (R3") and is either confining or relatively bounded with relative bound 0 w.r.t.

—A,, so that the particle hamiltonian H, := — 2?21 ﬁjAzj + U(z), and therefore the total hamiltonian
H, are self-adjoint.

This model goes back to the early days of quantum mechanics (it appears in the review [23] as a well-
known model and is elaborated in an important way in [56]); its rigorous analysis was pioneered in [24, 25]

(see [59, 65] for extensive references).

Phonon hamiltonian. We also consider the standard phonon model of solid state physics (see e.g. [48]).
The state space for it is given by H := H, ® F, where H, is the particle state space and F = I'(h) =
C @52, ®"h is the bosonic Fock space based on the one-phonon space h := L?(R3 C). Its dynamics is
generated by the hamiltonian
H:=H,+ H;+ I(yg), (1.4)
acting on H, where H,, is a self-adjoint particle system Hamiltonian, acting on H,, and Hy = dI'(w) is
the phonon hamiltonian acting on F, where w = w(k) is the phonon dispersion law (k is the phonon wave
vector). For acoustic phonons, w(k) < |k| for small |k| and ¢ < w(k) < ¢!, for some ¢ > 0, away from 0,
while for optical phonons, ¢ < w(k) < ¢!, for some ¢ > 0, for all k. To fix ideas, we consider below only the
most difficult case w(k) = |k|.
The operator I(g) acts on H and represents an interaction energy, labeled by a coupling family g(k) of
operators acting on the particle space H,. In the simplest case of linear coupling (the dipole approximation
in QED or the phonon models), I(g) is given by

1(g) = /(g*(k) ® a(k) + g(k) © a”(k))dk, (1.5)

where a*(k) and a(k) are the phonon creation and annihilation operators acting on F, and g(k) is a family
of operators on H,, (coupling operators), for which we assume the following condition

s 0% g(k) |2, < kP12 (k) =270, o] < 2, (1.6)

where 771 and 73 are bounded, positive operators with unbounded inverses, the specific form of which depends
on the models considered and will be given below. Moreover we assume that there is ¥ > inf o(H,) such
that the following estimate holds

[l " e " F(H) S L, 0 <m,m <2, (1.7)

for any f € CF((—o0,X)).

A primary example for the particle system to have in mind is an electron in a vacuum or in a solid in
an external potential V. In this case, H, = e(p) + V(x), p := —iV,, with €(p) being the standard non-
relativistic kinetic energy, €(p) = 5= |p|*> = —5-A, (the Nelson model), or the electron dispersion law in
a crystal lattice (a standard model in solid state physics), acting on H, = L?(R?). The coupling family
is given by g(k) = |k|*¢(k)e’ ™, where (k) is the ultraviolet cut-off, satisfying e.g. [0™&(k)| < (k)27
m =0,...,3 (and therefore g(k) satisfies (1.6), with 7, = 1 and 7y = (z)~! with (z) = (1 + |z|?)*/?). For
phonons, ;= 1/2, and for the Nelson model, px > —1/2. To have a self-adjoint operator H we assume that
V is a Kato potential and that u > —1/2. This can be easily upgraded to an N—body system (e.g. an atom
or a molecule, see e.g. [40, 59]). A key fact here is that for the particle models discussed above (both for the
non-relativistic QED and phonon models), there is a spectral point ¥ € o(H) U {oc}, called the ionization

threshold, s.t. below X, the particle system is well localized:

1(p)*e” F(H)| S 1, (1.8)
for any 0 < 0 < dist(supp f,X) and any f € C3°((—o0,)). In other words, states decay exponentially in
the particle coordinates z ([37, 6, 7]). Hence (1.7) holds with n; = (p)~! and 7e = (x)~!. To guarantee that
Y > info(Hp) > inf o(H), we assume that the potentials U(x) or V() are such that the particle hamiltonian
H, has discrete eigenvalues below the essential spectrum ([37, 6, 7]). Furthermore, ¥, for which (1.8) is true,
is given by ¥ := limp_. infuep, (v, Hp), where the infimum is taken over Dp = {¢ € D(H)| p(z) =
0if |z| < R, |||l = 1} (see [37]; X is close to inf oess(Hp))-

For the coupling function g, we introduce the norm

(@)= > mns9%gll 2 re - (1.9)

lal<2
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Spin-boson model. Another example fitting into our framework, and one of the simplest one, is the spin-
boson model describing an idealized two-level atom, with state space H,, = C? and hamiltonian H, = o>
where o!,0% 03 are the usual 2 x 2 Pauli matrices, and € > 0 is an atomic energy, interacting with the
massless bosonic field. This model is a rather special case of (1.4)—(1.5). The total hamiltonian is given by
(1.4)—(1.5), with the coupling family given by g(k) = |k|*¢(k)o™, o = 3 (0! Fi0?). For the spin-boson
model, we can take ¥ = oo.

)

Problem. In all above cases, the hamiltonian H is self-adjoint and generates the dynamics through the
Schrodinger equation,

As initial conditions, 1y, we consider states below the ionization threshold X, i.e. g in the range of the
spectral projection E(_ ., )(H). In other words, we are interested in processes, like emission and absorption
of radiation, or scattering of photons on an electron bound by an external potential (created e.g. by an
infinitely heavy nucleus or impurity of a crystal lattice), in which the particle system (say, an atom or a
molecule) is not being ionized. One of the the key problems here is understanding asymptotic behaviour of
the evolution (1.10), with the corresponding statement called asymptotic completeness. To formulate it, we
denote by ®; and E; the eigenfunctions and the corresponding eigenvalues of the hamiltonian H, below ¥, i.e.
E; < X. Then Asymptotic completeness on the interval (—oo, X) states that, for any vy € Ran E(_ »)(H),
and any € > 0, there are photon wave functions f;c € F, with a finite number of photons, s.t. the solution,
Yy = e~ "Hapg, of the Schrodinger equation, (1.10), satisfies

limsup [le ™)y — Z e it @ e I | < e (1.11)
t—00 -
J

(It will be shown in the text that ®; ®; f;c is well-defined, at least for the ground state (j = 0).) In other
words, for any € > 0 and with probability > 1 — ¢, the Schrodinger evolution 1; approaches asymptotically
a superposition of states in which the particle system with a photon cloud bound to it is in one of its bound
states ®;, with additional photons (or possibly none) escaping to infinity with the velocity of light.

The reason for € > 0 in (1.11) is that for the state ®; ®, f to be well defined, as one would expect, one
would have to have a very tight control on the number of photons in f, i.e. the number of photons escaping
the particle system. (See the remark at the end of Subsection 5.4 for a more technical explanation.) For
massive bosons € > 0 can be dropped (set to zero), as the number of photons can be bound by the energy
cut-off.!

Results. Now we formulate our results. We consider both the minimal coupling model (1.1) and the phonon
model (1.4) with the linear interaction (1.5) and the coupling operators g(k) satisfying (1.6) with u > —1/2.

We begin with giving the precise definition of asymptotic completeness. We define the space Hgy =
Hp @ Foin @ Fhin, where Fpy = Fun(h) is the subspace of F consisting of vectors ¥ = (1,,)5%, € F such that
¥, = 0, for all but finitely many n, and the (scattering) map I : Ha, — H as the extension by linearity of
the map (see [43, 19, 27])

[:30 ﬁ a* () — [ a” (ha) e, (1.12)

1

for any ® € 'H, ® Fgn and for any hy,...h, € . Here a”(h) are the creation and annihilation operators
evaluated on a function h, see Supplement II. Another useful representation of I is

1/2

for any ® € H, @ (®2h) and f € ®2h. (We call I the Hibner-Spohn scattering map.) As already clear from
(1.12), the operator I is unbounded.

Now, it is known (see [7, 38]) that the operator H has a unique ground state (denoted here as ®4). Let
Egs be the ground state energy and Egs < a < X be such that the hamiltonian H has no eigenvalues in the

IFor a discussion of scattering of massless bosons in QFT see [11].
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interval (Egs,al. We say that asymptotic completeness holds on the interval A = [Eg, al, if, for every € > 0
and ¢o € Ranya (H), there is ¢o. € Frin s.t.

limsup [|e” ' py — I(e™Fe! Py @ ety ar (Hy)) oc || = O(e), (1.14)
t—o0

where A’ = [0,a — Eg] and P is the orthogonal projection onto .

Generically (e.g. under the Fermi Golden Rule condition), H has no eigenvalues in the interval (Eq, al,
where a < ¥ can be taken arbitrarily close to ¥, depending on the coupling constant and on whether the
particle system has an infinite number of eigenvalues accumulating to its ionization threshold (see [8, 30, 34]).
We assume that this is exactly the case:

Fermi’s Golden Rule ([6, 7]) holds for all excited eigenvalues < a of H,. (1.15)
Assumption (1.15) means that for every excited eigenvalue e; < a of H),, we have
ILWIm((Ho — ej —i07) ;) WIL; > ¢;I1;, ¢; >0, (1.16)

where Hy := Hp, + Hy (fgr either model), W := H — Hy, II,; denotes the projection onto the eigenspace of
Hy associated to e; and II; := 1 — II;. In fact, there is an explicit representation of (1.16). Since it differs
slightly for different models, we present it for the phonon one, assuming for simplicity that the eigenvalue e;
is simple:

/(qu,g*(k)Im(Hp +w(k) —e; —i0T) " 1g(k)p;)dk > 0, (1.17)

where ¢; is an eigenfunction of H,, corresponding to the eigenvalue e; and the inner product is in the space
Hp.

It is clear from (1.17) that Fermi’s Golden Rule holds generally, with a very few exceptions. Treatment
of the (exceptional) situation when excited embedded eigenvalues do occur requires, within our approach,
proving a delicate estimate ||Pof(H)| < (g), where P denotes the projection onto H, ® Q (where  :=
140... is the vacuum in F) and f € CJ((Egs, X) \ 0pp(H)), uniformly in dist(supp f, opp(H)).

Let N := dI'(1) be the photon (or phonon) number operator and N, := dI'(w™”) be the photon (or
phonon) low momentum number operator. In what follows we let v, denote the Schrédinger evolution,
Py = e g, ie. the solution of the Schrodinger equation (1.10), with an initial condition vy, satisfying
Yo = f(H)o, with f € C3°((—o0,X)). We have

Theorem 1.1 (Asymptotic Completeness). Consider the hamiltonian (1.1) with the coupling constants k;
sufficiently small, or the hamiltonian (1.4)—(1.5) satisfying (1.6) with p > 0, (1.7) and (g) < 1. Assume
(1.15) and suppose that either

IN 23]l <IN 2ol + 9o, (1.18)
for any by € fF(H)D(N'/?), with f € C¥ ((Egs, X)), uniformly in t € [0,00), or

N2 e S 1, (1.19)

uniformly in t € [0,00), for any vy € D, where D is such that DN D(dF(w’l/Z(y>w71/2)%) is dense in
Ran E(_ o 5y (H). Then asymptotic completeness holds on [Eg, al.

Assumption (1.18) can be replaced by the slightly weaker hypothesis that there exist 1/2 < §; < d5 such
that for any vo € f(H)D(N%), with f € C((Egs, %)), [[No || < [|N°23bg |+ [|tbo]], uniformly in ¢ € [0, co).

The advantage of Assumption (1.19) is that the uniform bound on N; = dI'(w~!) is required to hold only
for an arbitrary dense set of initial states and, as a result, can be verified for the massless spin-boson model
by modifying slightly the proof of [14] (see the discussion below). Hence asymptotic completeness in this
case holds with no implicit conditions.

As we see from the results above, the uniform bounds, (1.18) or (1.19), on the number of photons (or
phonons) emerge as the remaining stumbling blocks to proving asymptotic completeness without qualifica-
tions. The difficulty in proving these bounds for massless fields is due to the same infrared problem which
pervades this field and which was successfully tackled in other central issues, such as the theory of ground
states and resonances (see [5, 59] for reviews), the local decay and the maximal velocity bound.
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For massive bosons (e.g. optical phonons), the inequality (1.18) (as well as (2.4), with vy = 0) is easily
proven and the proof below simplifies considerably as well. In this case, the result is unconditional. It was
first proven in [19] for models with confined particles, and in [27] for Rayleigh scattering.

As was mentioned above, for the spin-boson model, a uniform bound, (¢/;,eN ;) < C (1)) < 00, § > 0,
on the number of photons, on a dense set of 1y’s, was recently proven in the remarkable paper [14].

To verify (1.19) for the spin-boson model, with p > 0, we proceed precisely in the same way as in [14],
but using a stronger condition on the decay of correlation functions,

/Oodt(1+t)°‘|h(t)|<oo, with  A(t) ;:/ dk e~ F (1 4 [k~ |g (k) 2, (1.20)
0 R3

for some « > 1, instead of Assumption A of [14], and bounding the observable (1 4+ fle/Q)Q instead of e,
Assumption C of [14] on initial states has to be replaced in the same manner. Assuming that our condition
(1.19) on the coupling function g is satisfied with ;1 > 0 (and 7 = 1), we see that (1.20) holds with o = 1+2p.

The form of the observable eV enters [14] through the estimate ||K, ,|lc < C|h(u — v)| of the operator
K, defined in [14, (3.4)] and the standard estimate [14, (4.36)]. Both extend readily to our case (the former
with h(t) given in (1.20)). Moreover, [14, (4.36)] is used in the proof that pressure vanishes — Eq. (4.39)
in [14] — and the latter also follows from our Proposition A.1 (We can also use the observable e~dr(AInw)
equal to I'(w™"), see (1.24) below for the definition of I'(x) — and analyticity — rather than perturbation —
in A.)

Earlier results. Considerable progress has been made in understanding the asymptotic dynamics of non-
relativistic particle systems coupled to quantized electromagnetic or phonon field. The local decay property
was proven in [7, 8, 9, 12, 30, 31, 33, 34|, by the combination of the renormalization group and positive
commutator methods. The maximal velocity estimate was proven in [10].

As mentioned above, an important breakthrough was achieved recently in [14], where the authors proved
relaxation to the ground state and uniform bounds on the number of emitted massless bosons in the spin-
boson model. (Importance of both questions was emphasized earlier by Jirg Frohlich.)

In quantum field theory, asymptotic completeness was proven for (a small perturbation of) a solvable
model involving a harmonic oscillator (see [3, 64]), and for models involving massive boson fields, in [19] for
confined systems, in [27] below the ionization threshold for non-confined systems, and in [28] for Compton
scattering.

Moreover, the remarkable paper [35] obtained some important results for massless bosons (the Nelson
model) in confined potentials (see below for a more detailed discussion). Motivated by the many-body
quantum scattering, [19, 27, 28, 29, 35] defined the main notions of scattering theory on Fock spaces, such
as wave operators, asymptotic completeness and propagation estimates.

Comparison with [35]. The paper [35] treats the Nelson model (1.4)—(1.5), with abstract conditions on the
coupling function g (allowing a coupling function of the form g(k) = |k|“&(k)e™ ™ where £(k) is the ultraviolet
cut-off, with various conditions on p depending on the results involved), and with V(z) growing at infinity
as V() > colx|** — c1, co > 0, a > 0. In this case, in particular, the ionization threshold ¥ is equal to oo.
We reproduce the main results of [35] (Theorems 12.4, 12.5 and 13.3), which are coached in different terms
than ours and present another important view of the subject. Let f, fo € C>°(R) such that 0 < f, fo < 1,
1720, f=0for s<ag, f=1for s >y, f; <0, fo=1for s <ay, fo=0"for s > as, with 0 < g < a1 <
ag. Let Pt = infoew P, with P = slime Lo 'R (e7), RF(e7!) := s-limy o0 € (B + \) e #H
Bt := dTl(bet), ber := f(ly‘t%d) and I’;(fo) = s-limy_oo €T (fo 0 )e™ 1, where fo o4 = fo(lylt%clt)
Then Proposition 12.2 and Theorem 12.3 of [35] state that the operators P exist provided p > ﬁ,
are independent of the choice of f, and are orthogonal projections commuting with H. Furthermore, let
Kt :={® € H : ar(h)® = 0,Vh € h} (called in [35] the set of asymptotic vacua), where (formally)
ax(h) = s-lim; 1 e a(e™™h)e”*H and H} := Ran P} (the spaces containing states with only a finite
number of photons in the region {|y| > ¢t} as t — oo, for all ¢ > ¢). Assuming o > 1 and p > 0,
Theorems 12.4 and 12.5 state that the operator Fj,(fo) exists and is equal to the orthogonal projection on
the space K := KT NH}, provided 0 < ¢ < ¢ < 1 and p > ﬁ (The latter property is called in [35]
geometric asymptotic completeness.) Assuming in addition that the Mourre estimate 14 (H)[H,iB|1A(H) >
cola(H) + R holds on an open interval A C R, with the conjugate operator B := dI'(b), b= 1(k-y+y-k),
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co > 0 and R a compact operator on H, then for 0 < ¢ < ¢(A, ¢p), one has 1 (H)KT = 1a(H)Hpp, where
Hpp is the pure point spectrum eigenspace of H. (Combining results of [7, 8, 30] one can probably prove a
Mourre estimate, with B as conjugate operator, in any spectral interval above Fgs and below ¥ and for the
coupling function g given by g(k) = |k|*&(k)e*®, with u > 1/2.)

Our approach is similar to the one of [35] in as much as it also originates in ideas of the quantum
many-body scattering theory. At this the similarities end.

Approach and organization of the paper. In this paper, as in earlier works, we use the method of
propagation observables, originating in the many body scattering theory ([61, 62, 45, 36, 67, 16], see [18, 44]
for a textbook exposition and a more recent review). It was extended to the non-relativistic quantum
electrodynamics in [19, 35, 26, 27, 28, 29] and to the P(p)2 quantum field theory, in [20] and was used in
[10] to prove the mazimal velocity estimate, which states that, for any ¢’ > 1,
1
AT (it 5,) * | S 7|0 ((w)) + 1) 0

c't —

; (1.21)

with v < min(3(1 — 1), &) for (1.1), and v < min(4(£=4), 15;) for (1.4)-(1.6) with p > 0. We formalize
the method of propagation observables in the next section.

We mention that the observables dI'(1(y)) can be interpreted as giving the number of photons in Borel
sets 2 C R3. They are closely related to those used in [27, 35, 50] (and discussed earlier in [52] and [1]) and
are consistent with a theoretical description of the detection of photons (usually via the photoelectric effect,
see e.g. [53]). The quantity (¢, I'(1a(y))®) is interpreted as the probability that the photons are in the set
Q in the state ¢. This said, we should mention that the subject of photon localization is still far from being
settled. For more discussion see [22].

In Sections 3 and 4, we prove our key propagation estimates — minimal photon escape velocity estimates.
These estimates are formulated in terms of the self-adjoint operators b, defined as b. := 3 (v(k) -y +y-v(k)),
where v(k) := ﬁ? for e = ¢, with some x > 0. Since the vector field v(k) is Lipschitz continuous and
therefore generates a global flow, the operator b, is self-adjoint. Our minimal photon escape velocity estimate

are of the form

o0
[t G )bl < 1%+ )b (1.22)

for some o’ and « satisfying 0 < a < o’ <1, and
102 1
||F(Xc%§1)2¢t|| SO (1A ((y) + 1) 2400]| + [[(AT(b) + 1)bol|?), (1.23)

for some o < 1 and § > 0, where b = %(k -y +y-k) and T'(x) is the lifting of a one-photon operator x (e.g.
a smoothed out characteristic function of y) to the photon Fock space, defined by

I'(x) = &5Z0(®"X), (1.24)
(so that T'(e?) = edT'(®),

Once the minimal velocity estimates are proven, the first step in the proof of asymptotic completeness is
to decouple the photons in the expanding ball {b. < c¢t*} from those inside {b. > c¢t®}. To this end we use
the second quantization, T'(j) : T'(h) — T'(h @ h) of a partition of unity j : h — joh ® jooh on the one-photon
space, j : h — h@h, with jy localizing a photon to a region {b. < ct®}, and joo, to {be > ct®}, and satisfying
jo + 72 = 1. Defining the adjoint map j* : hg @ hoo — jiho + jiheo, 0 that j*j = j2 + j2, = 1, and using
T(j)*T(j) = D(j%j), we see that T(j)T(j) = 1.

The partition I'(j) is further refined as ([19, 27]) I'(j) := UL'(j) : T'(h) — I'(h) @T'(h), where U : T'(hdh) —
I'(h)®T(h) is the unitary map defined through the relations UQ =Q ®Q, Ua*(h) = [a*(h1)®@1+1®a*(he)]U,
for any h = (hq, he) € hPh, and is then lifted from the Fock space F = I'(h) to the full state space H = H,QF.
As above, T'(j)*T'(j) = 1. (We call I'(j) the Dereziriski-Gérard partition of unity.) Using T'(5), we define the
Deift-Simon wave operators ([15, 60, 19, 27]),

Wi = s-lim eI (j)e~ 1, (1.25)

where H = H®1+1® H ¢, on the auxiliary space H := H @ F. The first minimal velocity estimate for
be implies that these operators exist (see Subsection 5.2). The existence of the Deift-Simon wave operators
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implies that

"/Jt ( )* —iHt thI\( ) —thwO (])* _lHt(bO'f'Ot(l) (126)

where ¢g := Wythg. Since et = ¢~Ht @ ¢~ Hst e see that the first term on the r.h.s. describes the
photons in the expanding ball {b. < c¢t*} decoupled from those inside {b. > ct*}.

Next, let A = [E Fgs a] C R, where a < X, and A" =[0,a— Eg]. The existence of W, implies the property
Wixa(H) = xa(H)W,, which gives ¢o = xa(H)o if 1o € Ran(xa(H)). The latter relation together with
xa(H) = (XA(H) ® XA'(Hf))XA(H) implies ¢o = (xa(H) ® xar(Hy))do. Next, we use that for all € > 0,
there is § = d(e) > 0, such that

| (xa(H) @ 1)gg — (xa. (H) @ 1)¢o — (Pes @ L)dho]| <'e, (1.27)

where A, = [Eg + 0,a] and Py is the orthogonal projection onto the ground state of H. Applying this
equation and the relations e "t = e~ @ =it and e~ H! P, = e Fest P to (1.26) gives, after some
manipulations with energy cut-offs,

e = TL() (67 P! Py @ e x ar (Hy)) do + T(7)* 61 + Oe) + 0r(1), (1.28)

where ¢, = (e *thXA (H)®e ity ar(Hy))do. Now, let (o, joo) be localized similarly to (o, joo) and satisfy
J0Jo = J0, JeoJeo = jeo- Then, as shown below, the adjoint I'(j)* to the operator I'(j) can be represented as
LG)* =T3G)* (Do) ® F(joo)) Using this equation in (1.26) and using that (I'(jo) ® 1)¢; — 0, as t — oo,
by the second minimal velocity estimate for b, we see that the second term on the r.h.s. of (1.28) vanishes,
as t — oo.

To conclude the proof of asymptotic completeness, we pass from the operator I'(j)* to the (scattering)
map I defined in (1.12)~(1.13). To this end we use the formula T'(j)* = IT(j%) ® T'(j%,), for any operator
j:h — joh @ jooh, and some elementary estimates in order to remove I'(j§) ® T'(5%,).

Remark. At the expense of slightly lengthier computations, but gaining simpler technicalities, one can also
modify b to make it bounded, by multiplying it with the cut-off function x j, ., with ¢’ > 1, such that the
ct =

k
w+te”

maximal velocity estimate (1.21) holds, or use the smooth vector field v(k) = \/wfﬁ7 instead of v(k) =

To simplify the exposition, in Sections 2-5, we consider hamiltonians of the form (1.4)-(1.5), with the
coupling operators g(k) satisfying (1.6), where n; and 7, obey (1.7). In Section 6, we extend the results
to a general class of hamiltonians that are introduced in the next paragraph. In Section 7, we show that
the minimal coupling model (1.1) can be mapped unitarily to a hamiltonian from this class, and we deduce
Theorem 1.1 for this model.

A general class of hamiltonians. The QED hamiltonian (1.1) can be written in the form (1.4), with
I(g) being quadratic in the creation and annihilation operators af (k), and the coupling functions satisfying
estimates of the form (1.6) with u = —1/2, 91 = (p)~! or 1, and 72 = (z)~!. This infrared behaviour is
too singular for our techniques. However, we show in Subsection 7.1 that under the generalized Pauli-Fierz
transform of [58], (1.1) is unitary equivalent to an operator of the form described below, whose infrared
behaviour is considerably better. We introduce the class of hamiltonians of the form

H = H,+ H; + 1(g), (1.29)

where H, := —A+ V(z), and H; = dT'(w) are the same as before, but the interaction operator, I(g), is of a
more general form

=% ST ity g k) © 0 ol (1.30)

Here the summation in 4,j ranges over the set i,7 > 0,1 < i+ j < 2, k() == (ky,..., k), k; == (kj, A),

fdk(p) =10 E)\ [ dk;, a¥( (k) == =[I} a¥(k ;) ifp>Tand =1,ifp =0, a#(k )= af(kj), and g := (gi5)-
We suppose that the coupling operators, g;; = gi; (k(l E(J ) satisfy

Gij (E(i)&zj)) = g;i(ﬁl(j),k(i))a (1.31)
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and
i+j i+j
o i o B
010 9ig (i) line, S D7 TT kel Che) > ) | 711, (1.32)
m=1/¢=1
where © > —1/2 and, as above, 1, and 7y are estimating operators (unbounded, positive operators with
bounded inverses) on the particle space H,, such that there exists ¥ > inf o(H),) so that (1.7) holds.
We define the norm (g) := 31,1 <0 D<o ||77%_1_]77|2a‘6agij|| of the vector coupling operators g := (g;;),
extending the norms of the scalar coupling operators g, introduced above. It is easy to extend Theorem 1.1
to the hamiltonians of the form (1.29)—(1.32) satisfying (1.7):

Theorem 1.2. Theorem 1.1 still holds if we replace hamiltonians of the form (1.1) or (1.4)—(1.6) with
hamiltonians of the form (1.29)—(1.32), with (1.7).

As mentioned above, Theorem 1.2 is proven in Section 6.

Finally, a low momentum bound of [10] and some standard technical statements are given in Appendices
A, B, Cand D. The paper is essentially self-contained. In order to make it more accessible to non-experts, we
included Supplement I giving standard definitions, proof of the existence and properties of the wave operators,
and Supplement IT defining and discussing the creation and annihilation operators (see also [21, 17]).

Notations. For functions A and B, we will use the notation A < B signifying that A < CB for some
absolute (numerical) constant 0 < C' < co. The symbol Fa stands for the characteristic function of a set
A, while x.<; denotes a smoothed out characteristic function of the interval (—oo, 1], that is it is in C*>°(R),
non-increasing, equal to 1 if z < 1/2 and equal to 0 if x > 1. Moreover, x.>1 := 1 — x.<1 and x.=1 stands
for the derivative of x.>1. Given a self-adjoint operator a and a real number o, we write Xo<q := Xe<t, and
likewise for x,>q. Finally, D(A) denotes the domain of an operator A, (z) := (1+|z[>)*/2, O(¢) denotes an
operator bounded by Ce, 0:(1) denotes a real number tending to 0 as ¢ — oo, and C(€)o:(1) denotes a real
number (depending on € and ¢) which goes to 0 as t — oo for any fixed e.

Acknowledgements. The first author thanks Jean-Francois Bony and Christian Gérard for useful dis-
cussions. His research is supported by ANR grant ANR-12-JS01-0008-01. The second author is grateful
to Volker Bach, Jirg Frohlich, and Avy Soffer for very fruitful collaboration to which he owes whatever
understanding of the subject he has. The authors are grateful to the anonymous referees for a number of
very useful remarks.

2. METHOD OF PROPAGATION OBSERVABLES

Many steps of our proof use the method of propagation observables which we formalize in what follows. Let
Yy = e~y where H is a hamiltonian of the form (1.4)—(1.5), with the coupling operator g(k) satisfying
(1.6) and (1.7). The method reduces propagation estimates for our system say of the form

/0 at || we]|* S ol (2.1)

for some norm ||-||% > |||, to differential inequalities for certain families ¢; of positive, one-photon operators
on the one-photon space L?(R?).

We introduce some notation and definitions. For A > —C, we denote ||| 4 := ||(A+C +1)24y]|. Recall
the notations N, = dI'(w™") and let

T, ={vo € f(H)D(Np%), for some f € C3°((—o0, %))} (2.2)
Notice that, since N_1 f(H) = Hyf(H) is bounded as follows from the bound
19ellmy S l1tbollm, (2.3)

one easily verifies that T, C T, for p > p’ > —1.
We define v, > 0 as the smallest real number satisfying the inequality

(e, Note) S 7 ol (2.4)
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for any v € Ran E(_o x)(H), where [[¢[2 := H¢||?VP It was shown in [10] (see (A.1) of Appendix A) that,

for any —1 < p < 1, the inequality (2.4) is satisfied with
1
vy <l (2.5)
2+ 1
where p is defined by (1.6) (this generalizes an earlier result due to [35]). Also, (2.3) implies that (2.4) holds
for p = —1 with v_; = 0. Let

dpy = 0Py + ilw, Py
We isolate the following useful class of families of positive, one-photon operators:
Definition 2.1. A family of positive operators ¢; on L?(R?) will be called a one-photon weak propagation
observable, if it has the following properties
e there are § > 0 and a family p; of non-negative operators, such that
W 2hd?|| < ()7 and  dey > pr + Z rem,, (2.6)
finite
where rem; are one-photon operators satisfying
[[wPi/? rem; w?i/?|| < (£) N, (2.7)

for some p; and A;, s.t. Ay > 1+ v,
e for some N > 1+ vs and with 7y, 1 satisfying (1.7),

([ im0l o ) 5 0. (2)

(Here ¢; acts on g as a function of k.)
Similarly, a family of operators ¢; on L?(R?) will be called a one-photon strong propagation observable, if
dor < —pt + Z rem;, (2.9)
finite
with p; > 0, rem; are one-photon operators satisfying (2.7) for some A\; > 1+ v,,, and (2.8) holds for some
N > 1+ vs.

The following proposition reduces proving inequalities of the type of (2.1) to showing that ¢; is a one-
photon weak or strong propagation observable, i.e. to one-photon estimates of d¢; and ¢:g.

Proposition 2.2. If ¢, is a one-photon weak (resp. strong) propagation observable, then we have either the
weak propagation estimate, (2.1), or the strong propagation estimate,

e 1
W)+ [ dt Gl S ol (210)
0
with the norm ||¢0Hi,E = [[Yoll% + [[voll2, where ®y := dT(¢y), Gy := dT(py), lvoll« := llvbolls and ||vbollo =

> l1%ollp,» on the subspace Y imax(s,p,)-

Before proceeding to the proof we present some useful definitions. Consider families ®; of operators on
‘H and introduce the Heisenberg derivative

D(I)t = at(Pt + Z [H, (I)t]v

with the property
O (Vr, Purpe) = (Y, DPrify). (2.11)
Definition 2.3. A family of self-adjoint operators ®; on a subspace H; C H will be called a (second

quantized) weak propagation observable, if for all 1y € Hy, it has the following properties

o sup; (e, D41hr) S llvboll2;
° Dq)t > Gt + Rem7 where Gt >0 and fooo dt |<wt7Rem 1/Jt>| SJ ||¢0||%>7

for some norms [|toll«, || ‘|l & > || - ||. Similarly, a family of operators ®; will be called a strong propagation
observable, if it has the following properties

e &, is a family of non-negative operators;
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e D&y < —Gy + Rem, where Gy > 0 and [~ dt |(1b¢, Rem1py)| < 1%0ll%

for some norm || -] & > | - |-

If ®; is a weak propagation observable, then integrating the corresponding differential inequality sand-
wiched by vy’s and using the estimate on (i;, ®;¢0;) and on the remainder Rem, we obtain the (weak
propagation) estimate (2.1), with [|4ol|% = [[o0l|% + [[¢ol|Z. Tf @; is a strong propagation observable, then
the same procedure leads to the (strong propagation) estimate (2.10).

Proof of Proposition 2.2. Let ®; := dI'(¢;). To prove the above statement we use the relations (see
Supplement 1)

DodI'(¢¢) = dI'(dgy), i[1(g),dl ()] = —1(i¢rg), (2.12)
where Dy is the free Heisenberg derivative,

DO(Dt = at(bt + i[HQ, (I)t},
valid for any family of one-particle operators ¢;, to compute
D®; = d(dey) — (irg). (2.13)

Denote (A)y = (1, Av). Applying the Cauchy-Schwarz inequality, we find the following version of a
standard estimate

(E(@)el < 2( / g k) 3, (k) d*k ) ni s 2l 1. (2.14)

Using that ¢, = fi(H)t, with f1 € CF*((=00,%)), fif = f, and using (1.7), we find [In; "3 *vel < [lve]l
Taking this into account, we see that the equations (2.14), (2.8) and (2.3) yield

(T (ideg))p.| S (O l4holl3- (2.15)

Next, using (2.7), we find +rem; < |[w?/?rem;w?/?||wPi < (t)~Yw=ri. This gives +dl'(rem;) <
(t)=*dI'(w™"%), which, due to the bound (2.4), leads to the estimate

(AT (vemi )y, | S (6) 774 [[9hol 7, (2.16)
Let Gy :=dI'(p:) and Rem := > .. dI'(rem;) — I(i¢rg). We have G; > 0, and, by (2.15) and (2.16),
| el Rem )| < (2.17)
0

with (Yo% == ¥oll3 + [%ollZ, llvoll« := llvolls, Idollo := 3= llvo
In the strong case, (2.9) and (2.13) imply

D®, < —G, + Rem, (2.18)

pPi*

and hence by (2.17), ®; is a strong propagation observable.
In the weak case, (2.6) and (2.13) imply

D®; > G; + Rem. (2.19)

Since ¢y < ||w®/ 2w/ ||w™0 < (t)"Yw ™9, we have dT'(¢;) < (t)~**dl'(w™?). Using this estimate and using
again the bound (2.4), we obtain

(1, @) S ()7 (A0 ™))ye S Ilboll3- (2.20)
Estimates (2.17) and (2.20) show that ®; is a weak propagation observable. O

Remarks.

1) Proposition 2.2 reduces a proof of propagation estimates for the dynamics (1.10) to estimates involving
the one-photon datum (w, g) (an ‘effective one-photon system’), parameterizing the hamiltonian (1.4). (The
remaining datum H,, does not enter our analysis explicitly, but through the bound states of H, which lead
to the localization in the particle variables, (1.7)).

2) The condition on the remainder in (2.6) can be weakened to rem = rem’ 4+ rem”, with rem’ and rem”
satisfying (2.7) and

rem”| < Xjy|zerts (2.21)
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for ¢’ as in (1.21), respectively. Moreover, (2.7) can be further weakened to

/0 " dt |, AT (rems )by} < oo. (2.22)

3. THE FIRST PROPAGATION ESTIMATE

Let v5 > 0 be the same as in (2.4) and recall the operator b, defined in the introduction. We write it as

1
be = i(HSVw ‘y+y-Vwb,), where 6. := i, we=w+te e=t"" (3.1)

€

We prove the following two results.

Theorem 3.1. Consider hamiltonians of the form (1.4)—(1.5) with the coupling operators satisfying (1.6)
with u > —1/2 and (1.7). Let vy —vg < k < 1. If eithera <1, oraa=1 and ¢ < 1, and

a>max((3/2+ )" (1+k)/2,1 — Kk + 11 — ), (3.2)

then for any initial condition ¥y € Y1, the Schridinger evolution, vy, satisfies, for any a > 1, the following
estimates

o0
[ e i, )l S ol (3.3)

If vy =0, u >0, « satisfies (3.2) and a < %, with ¢ > 1, then, with the notation x = X(lsly2<qs
ct )T

[, xobal 5 ool (3.4)

Proof. We will use the method of propagation observables outlined in Section 2. We consider the one-
parameter family of one-photon operators

—aw be
Gt :=t " X0y  Xa = Xo>1, U:i= (3.5)

Tt
where a > 1. To show that ¢; is a weak one-photon propagation observable, we obtain differential inequalities
for ¢;. Recall that d¢y = O¢pr + i[w, ¢¢]. To compute d¢;, we use the expansion

2

dgy =t (dv)x)y + Y _ rem,, (3.6)
i=1
rem; :=t" " [dx, — (dv)x,], remy:= —avgt™ ;. (3.7
Using the definitions in (3.1), we compute
1 ab
dv=— (0. — — + O;be). 3.8
v cta( ;o ) (38)

Next, we have 0ibe = 5457 (w7 0. Vw-y+ h.c.) on D(b,), which, due to the relation }(w; 0. Vw-y+ h.c.) =

~1/2,

—1/2
w eWe / , becomes

O, = tl’;w;“%ew;l/?. (3.9)

Using that (see Lemma B.1 of Appendix B)
w b Pxl, = w Phoxws P+ O(2),
and that b > 0 on supp x,,, we obtain

const
Oibexy > e (3.10)

The relations (3.6)—(3.10), together with

Lo Xl < Xb, imply

0. >
b, > tfauo(cTa _ %)x; +) rem;, (3.11)
=1
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where rem; and rems are given in (3.7) and

remg = Ot~ 17tz a0, (3.12)

This, together with 6. = 1 — = and w;'x/, = we 2y we P 4 O(t=oF3%) (see again Lemma B.1 of
Appendix B), implies

5
1 Q
dpy > t7 (— — =)/ 3.13
b0 (g = T Y e (313)
1 - - —2a+%5 —av,
remy = WWE 1/2X/aw£ 1/2, rems — O(t 2a+3 0). (314)

We have ||¢¢]| < t7*° and therefore the first estimate in (2.6) holds with § = 0. If either o < 1 (and ¢
sufficiently large), or & = 1 and ¢ < 1, then p; := ¢t~ (C%a — 2)X4, is non-negative, which implies the second

estimate in (2.6). Thus (2.6) holds. By the definition (3.6) and Corollary B.3 of Appendix B for i = 1, and
by an explicit form for i = 2, 3,4, 5, we have the estimates

me/2 rem,; wpfz/2|| <M (3.15)

i=1,2,3,4,5, with p1 = pa=p3=ps =0, ps =1, \; =2a—k+avy, Ao = 14+avg, A\3 = 14+a—k/2+avy,
A = a+ K+ avy, and A5 = 2o — K/2 + avy. We remark here that the i = 2 term is absent if 19 = 0. The
relation (3.15) implies (2.7) with p = p;, and A = A; provided A; > 1+ v,,.

Finally, in the same way as [10, Lemma 3.1], one shows (by replacing |y| with b. in that lemma) that,
under (1.6) for some p > —1,

3
||77177§XC’;§1 Zlg(k)||L2(R3;Hp) 5 12 ) T< (5 + U’)O‘a (316)

which implies (2.8) with A < avg + (% + p)a. Hence ¢y is a weak one-photon propagation observable,

provided 2a > 1+ k 4+ vy — avy, & — K/2 > vy — avy, a + Kk > 1 + v — avp, and (% + p)a > 1. Therefore, by
Proposition 2.2, we have, under the conditions on the parameters above,

o
[ dr e aned) P £ vl .17
1

This, due to the definition of x/,, implies the estimate (3.3).
be

cte

We now prove (3.4). We use again the notation x, = Xy>1, where v := and we denote w := (%)2

We consider the one-parameter family of one-photon operators

bt = XXaX; (3.18)

and show that ¢; is a weak one-photon propagation observable. We have ||¢:|| < 1 and therefore, due to the
assumption vy = 0, the first estimate in (2.6) holds with § = 0. Now, we show the second estimate in (2.6).
To compute doy, we use the expansion

dey = x(dv)Xox + X' (dw)XaX + XXa(dw)X' + > rem;, (3.19)
i=1,2
where
rem; = x(dxa — (dv)x,)x, remy:= (dx — (dw)x')xaXx + h.c.. (3.20)
As in (3.8)—(3.10), we have
, 1 abe., ,
X(dv)Xax 2 —2X(0e = == )Xo X + rems, (3.21)

where remg = O(t~17*%/2). We consider the term —(ab.)/(ct®*!) in (3.21). By Lemma B.1 of Appendix
B, we have

1 1 1 1 "
XD XX = X(Xa)2be(Xa) 2 X = (Xo) T xbex(Xh)Z + O(t%).

Next, we recall (3.1) and observe that b, can be rewritten as b, = 012600/, with by := 3(Vw-y+h.c.). Note
that by is not a self-adjoint operator, only maximal symmetric. Nevertheless, using Hardy’s inequality, one
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easily verifies that by is well-defined on D(|y|) and that by(y)~! and (y)~'by extend to bounded operators.
Thus, using again Lemma B.1 of Appendix B, we deduce that

1 1 1L 1 1 lir
(Xa)2Xbex (X)) = (Xn) 202 xbox02 (X)) + O(t2T 7).

The maximal velocity cut-off gives ybox < éx? and hence, commuting again y through 0; /% and (xL)
using Lemma B.1, we obtain

1/2
)

be 1 1 1
—X?X&X > —ex02 X, 02 x + O(t%i*%)' (3.22)

Another application of Lemma B.1 for the term 6./(ct*) in (3.21) gives

1 1 1
XOXX = XO2XL02x + Ola=)- (3.23)
Since a > (1 + k)/2, we deduce from (3.22) and (3.23) that

ab,

1 1
= )xax = (1= ae)xb2 x,02 x + O

X(Ge -

t%*%)

L), (3.24)

1_
2

>(1- a5)9§XX;x9§ + O(

|

where in the last inequality we used again Lemma B.1 and the fact that a > (14 &)/2.
Next, we address the second and third terms on the r.h.s. of (3.19). We compute

b w
(ato)2 ot )

dw:2(

By Lemma B.1 of Appendix B and the observation that dw enters (3.19) in combination with (—y’)2, which
is bounded, we have

1

1 1 1 1
X' (dw)xax + XXa(dw)X" = =2(xa)? (=X'X)? (dw) (=X'X)? (Xa)? + O(F75=5)- (3.25)
Using that dw < (£ — 1)} on the support of ¥’ and that x’ < 0 and ¢ > 1, we obtain
I\ I\ 1.1 /
(=X 2 (dw)(=x'x)? = (1 = 2) 5 (=x'x)- (3.26)
The relations (3.19), (3.21), (3.24), (3.25) and (3.26) imply
dpe > pr +pr — Z remy, (3.27)
i=1,2,3,4
where remy = (’)(m) and
l—ac, it , 1
Pri= — 08 XNaX0E, (3.28)
= Ll 4 noos
Bei= (1= 2)xa (=X )xxd. (3.29)

The terms p; and p; are non-negative, provided o < 1/¢ and ¢ > 1. This implies the second estimate in
(2.6). Next, we claim the estimates

[[rem, || S ¢72, (3.30)

i=1,2,3,4, with A = 1/2 4+ o — k/2. Indeed, the definition (3.20) and Corollary B.3 of Appendix B imply
(3.30) for i = 1 since 1/2 + @ — /2 < 2a — k. The estimate for i = 3,4 are obvious. To estimate rems, we
write
- 1 -
(dx = (dw)x)xax = (dx = (dw)x')vXax = —= (dx = (dw)x')Xabex,
where Yo = v 'xo and, recall, v = Cl;;. Using that b, = 6.by + iew-? and that, by Lemma B.4 of Appendix
B

)

[dx = (dw)x'I| S 71,
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gives
1 R 1
(dx — (dw)x)xax = CTa(dX — (dw)x")Xabcbox + O(W) (3.31)

Using in addition Lemma B.1 of Appendix B and the estimate boy = O(t), this yields

1 . 1
(dx = (dw)x)Xax = —7 (dx = (dw) X )wXawe  box + Oliz5=). (3.32)
By Lemma B.4, we also have
[[(dx — (dw)x")wl| S 2.
Combining this with (3.32) and the estimates w_! = O(#*) and byx = O(t), we obtain

1
(dx — (dw)x)xax = O(m)v (3.33)
and hence, since 1/2 + o — kK/2 < 2a — K, the estimate for i = 2 follows.
The relation (3.30) implies (2.7) with A = 1/2 + a — x/2, for rem = rem;, provided 1/2 + o — /2 > 1.
Finally, as above, (2.8) holds with A < avg + (3 + p)a by (3.16). This yields (3.4). O

Remark. The estimate (3.3) is sharp if vy = 0. Assuming this and taking 11 < (3/2 + p)~! (see (A.7) of
Appendix A), the conditions on « in Theorems 3.1 and 4.1 become « > %—l—m, and (3/24+p) ! <a <1,
respectively.

4. THE SECOND PROPAGATION ESTIMATE

Recall the norm (g) = >, ,<» ||77177‘20‘|8°‘g\|L2(R37Hp) for the coupling function g and the notation (A4), =
(¥, Ay). We will use the following set of initial conditions.

Ty = {to € f(H)(D(I((y))) N D(dF(b)z)), for some f € C3°((Egs, a]) },
where b= 2(k-y+y-k) and a < ¥ is given by Assumption (1.15).
Theorem 4.1. Consider hamiltonians of the form (1.4)—(1.5) with the coupling operators satisfying (1.6)

with > —1/2 and (1.7). Assume that (1.15) holds. Let (g) be sufficiently small, 11 < k< 1, and 0 < o < 1.
Let 1o € Y. Then the Schridinger evolution, 1:, satisfies the estimate

12
||F(X%S1)2¢t|| St (1ollar ) + 1%olldrm:2) (4.1)
for 0 <6 <min(k — 11,1 — K, 1 —a — 1) and any ¢ > 0, where, recall, b = %(k: cy+y-k).

We define B, := dI'(b.) and B, := B./(ct). As in [10, Proposition B.3 and Remark B.4], one verifies
that T C D(dT'((y))) C D(Be). The proof of Theorem 4.1 is based on the following result (cf. [61, 45]).

Proposition 4.2. Under the conditions of Theorem 4.1, the evolution 1, = ety obeys

HXBE,tgﬂ/JtH2 <7 (Iolldr ) + 1%ollare?) (4.2)

for any 0 < c < (1—C(g))/(1+ k), where §' :== min (ic@ —1-k,1—kKK—11).
Remark. The constant C' is independent of 7o := dist(Egs, supp f) (but the implicit constant appearing in
the right hand side of (4.2) does depend on 7).

Proof. Let € > 0 be a constant. Let p < min (i@ -1, 1) where C' > 0 is a positive constant defined below

C

(see (4.10)). Consider the propagation observable
@t = —thO(Be’t),
where ¢(Bc;) := (Bt — 2)xB.,<1- Note that ¢ < 0, but ¢ > 0. Let ¢/ = . We use the notations

@ = p(Bet), X = XB..,<1 = X(Bc,¢), and likewise for o', ¢1 and x’. The relations below are understood in
the sense of quadratic forms on Ty. The IMS formula gives

D®, = M + R, (4.3)
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where M 1= —tPp1(DB.)p1 — pt~1TPp and

1

R = [[B1, 1], 1) + 7 ([H, o] —

sy ! —(¢'B1+ B1¢')), (4.4)

2ct

where By := i[H, B.]. First, we compute the main term, M, in (4.3). We leave out a standard proof of
f(H) € CY(B,) (see e.g. [30, Theorem 8]) and standard domain questions such as that Ty C D(B.). We
have

DB, = éDBE - %Be,t. (4.5)
Since, by (I1.3) of Supplement II, i[H, B.] = N,, where N, := dI'(¢.), we have
DB, = N+ I, (4.6)
where I := i[I(g), B.] = —1(ibcg) (see (IL.5) of Supplement IT). To estimate the operator N, from below, we
use that . =1 — = to obtain

N.=N —edl'(w ). (4.7)

Next, Lemma C.2 of Appendix C and the bound (2.4) show that
(1D pr),, S P ol + 1062y 2 (4.8)

Define the first estimating operator F; := N 4 1, 'n; ?ny ' + 1. By (1.6), the condition yu > —1/2 and
(2.14) (with § = 0), we have

lmna i (N + 1)) S Immabegll S (9), (4.9)
and hence,
I > =C(g)En. (4.10)
Combining this with the definition of M, (1.7), (4.5), (4.6), (4.7) and (4.8), we obtain

(M), <~ 1 (or((1 = ClaDN — 7 B. ~ Clg)) o + cpo),,

¢ v S
o (e Yol + 70 o [5)- (4.11)

Let Q:=1®0® ... be the vacuum in F and P be the orthogonal projection on the subspace H, ® €1,
Po¥ = (Q,0)r ® Q. We now use the relation o1 Py = Py, together with the estimate

| Pae= f(HYal| S £*1(B)ull, s < 1/2,
proven in Lemma 4.3 below, to obtain
(p1Pag1)y, = (Pa)y, St [(B)vol® S 72|40l B-- (4.12)
Combining this with N > 1 — P and (4.11), we obtain

(M)y, < — (p1[1 = 7' B. = Clg)lpr + cpi).,,

+

ctl—r

c v —1+4vo — —2s
— (et ol + 70 o 1§ + 7 [lol 52 ) (4.13)

+

Now, recalling the definition w(BE,t) = (B@t — 2) XB. <1, We compute
Beu' + p(=¢) = Bt (X + (Bey = 2)X') — p(Ber — 2)x

= ((1 = p)Be,t + 2p) X + Bei(Bey — 2)X (4.14)
Next, using that B x < X, Be.t(Bet —2)x < (Bt — 2)x/, we find furthermore
Beu' +p(—9) < (1 +p)x+ (Ber —2)X' = px + ¢ < (1+p)¢'. (4.15)

This, together with (4.13), and notation ¢? = ¢’ and o := 1 — O({g)), gives

(M)s, <= [2=1= 4] 75 (b,

+

c v —1+vo — —2s
=5 (7 ollt + ¢ lwoll§ + 7> [woll32). (4.16)
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Next, we introduce the second estimating operator Eo := N +n~2 + 1, with n? := n3n?n3, and show that
the remainder, R, defined in (4.4) satisfies

R< Ot 2¢'Ey. (4.17)
To prove (4.17), it suffices to show that
|E; *RE, ?|| S 72 (4.18)
Proceeding as in the proof of Lemma B.2 of Appendix B, using the Helffer-Sjostrand formula (B.1), one
verifies that
2t RE | < 2| Bty (4.19)

where By := [B, [Be, H]||. Now, writing By = [Be, [B., Hy]] + I, where I := [B, B,
the elementary computations (IL.3) and (IL5) of Supplement II, we find [Be, [Be, Hy]] =
Iy = I(b?g). The estimate ef.w 2 < e~ ! implies

I(g)]], and using
dl'(ef.w?) and

(1 4+ N)"2dl(efow ) (1 + N) "7 S e L (4.20)
Moreover, (1.6), the condition p > —1/2 and (2.14) (with 6 = 0) yield
Imn3 T2 (1 + N)"2 || S [mubZell S € g), (4.21)
and hence
_1 1
| By P LE, 2 || S e ). (4.22)
Thus, we obtain
_1 1
By 2 BBy ?|| S e (4.23)

which together with (4.19) implies (4.18). Together with Equations (4.3) and (4.16) and the fact that
g 0z F(H)] S 1, this implies
o _
(D®y)y, < —(Z = 1=p)t7(e)y,
+ O (et T o | + 720 e o |§ + ¢ 4o | B2).- (4.24)

Thus choosing s such that 2s—p > 0, (4.24), together with the observation ®; > t*x g, ,<1, the conditions
2—-1>p, p<1<2—uyy Hardy’s inequality ||¢o|1 < ||¢0||dp(<y>) and the trivial inequality [|1gllo <
||1/Jo||dp( ), implies that

00w, < @)y, = (B}, im0 + / (D). ds

<(=BexB.<0)yo + Cle " + et + 1) ([[9oll3r(yy) + [¢0ll52)-
Using (—Bexp.<0)wo S [[¥oll3p((y))» and choosing e =", we find

(X)pe < CEPH 875 4 17 P) (ol 3r ) + 1%0ll52),
which in turn gives (4.2). O
We now prove an estimate used in the proof of Proposition 4.2.
Lemma 4.3. Assume (1.6) with p > —1/2, (1.7), (1.15), (g) sufficiently small and f € CF((Egs, X)). Then
|[Poe™ ™ f(H)u| St |(B)ull, s<1/2. (4.25)

Proof. We use the local decay properties established in [31] and [8]. Let ¢; := (ej+€j4+1)/2 and §; := e;+1—e¢;.
We decompose the support of f into different regions, writing
FOH) = f(H)Xr<e, + Y fH)X;(H), (4.26)
finite
where x;(H) denotes a smoothed out characteristic function of the interval [¢; —0;/4, ¢j41 + ;41/4]. Using
Pq = Po(B), and [31], we obtain

[Pae™ T f(H)xn<coul = [|(B) " e™ ™ f(H)xn<coull S t7°|[(B)ull, (4.27)
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for s < 1/2.
To estimate ||Poe™ f(H)x;(H)ul|, we let x;(H) := f(H)x;(H). In [8], assuming (1.15), a conjugate

operator B; is constructed in such a way that the commutators [¥;(H), B;] and [[x;(H), B;], B;] are bounded.
Moreover, the Mourre estimate

X (H)[H,iBj]xX;(H) = mox;(H)?,
holds for some positive constant my. By an abstract result of [45], this implies
[(B;) e~ "3, (H)(B))*|| S 72,

for s < 1. Since the operator Bj is of the form Bj = B + M;, where M; is a bounded operator, it then
follows that

H —s —th~ (H)<B>—5H St—s7
and hence, using again that Pq(B) = PQ, we obtain
[ Poe™ ™ x; (H)ul| = |(B) ™ e ™ X (H)ul| S t7°[[(B)ull. (4.28)
Equations (4.26), (4.27) and (4.28) give (4.25). O
Proof of Theorem 4.1. Since N = dI'(1) and B, = dI'(b.) commute, we have
F(X(%Sl) < XB.<cNte = XB.<eNte (XN<ertr + XN>etr)
S XB.<c'"tv + XN>c't7, (429)
where v := o+ v and ¢’ := ¢¢/. We choose ¢’ <« 1/¢, so that 0 < ¢ < 1. Next, we have

1
Ixnseetl < (€)72t72 [xnsen N2
'l

< ()7HOE [NE,
which, together with (2.4) (with p = 0), implies

)

Ixwzerwrll S |lgollo- (4.30)
The inequality (4.29) with v = 1, Proposition 4.2 and the inequality (4.30) (with v = 1 — &) imply the
estimate (4.1). O

Remarks. 1) The estimate (4.1) states that, as ¢ — oo, with probability — 1, either all photons are
attached to the particle system in the combined ground state, or at least one photon departs the particle
system with the distance growing at least as O(t*). ((4.1) for u > 1/2, some « > 0 and ¢y € Ea(H), with
A C (Egs,e1 — O({g))) and e; the first excited eigenvalue of Hy, can be derived directly from [9, 10].)

2) With some more work, one can remove the assumption (1.15) and relax the condition on ¢ in Theorem
4.1 to the natural one: 1y € Pg(D(dT'({(y))) N D(dT'(b)?)), where Ps is the spectral projection onto the
orthogonal complement of the eigenfunctions of H with the eigenvalues in the interval (—oo, X).

5. PROOF OF THEOREM 1.1

5.1. Partition of unity. We begin with a construction of a partition of unity which separates photons
close to the particle system from those departing it. Following [19, 27] (cf. the many-body scattering
construction), it is defined by first constructing a partition of unity (jo, joo), j& +j% = 1, on the one-photon
space, h = L?(R3), with j localizing a photon to a region near the particle system (the origin) and j., near
infinity, and then associating with it the map j : h — h @ b, given by j : h — joh & jsoh. After that we
lift the map j to the Fock space F = I'(h) by using I'(j) : T'(h) — I'(h @ b) (defined in (1.24)). Next, we
consider the adjoint map j5* : ho @ heo — Jjiho + jihoo, which we also lift to the Fock space F :=T'(h) by
using I'(j*) : T'(h @ h) — I'(h). By definition, the operator I'(j) has the following properties

L) =T("), THIG) =T35). (5.1)

Since j*j = j2 + j% = 1, this implies the relation I'(§)*I'(j) = 1, which is what we mean by a partition of
unity of the Fock space F :=T'(h).
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We refine this construction further by defining the unitary map U : T'(h @ h) — I'(h) @ T'(h), through the
relations

UN=0 ®9Q, Uad(h)=[a"(h)®1+1®a"(h)]U, (5.2)
for any h = (h1, h2) € h@b, and introducing the operators (the Derezinski - Gérard partition of unity)
L(j) = UT(j) : T(h) — I(h) @ I(h). (5-3)

We lift T'(5), as well as T'(j), from the Fock space F = I'(h) to the full state space H = H, ® F, so that e.g.
I'(j) : H — H ®T(h). Now, the partition of unity relation on H becomes I'(j)*T'(j) = 1 (in particular, T'(5)
is an isometry).

Finally, we specify jo to be the operator y,<1 and define j by the relation jg + j2 =1 (hence jo is of
the form x,>1), with v = ?, be is defined in the introduction, e = ¢t~", and the parameters « and x satisfy
1—p/(6+3p) <a<land 141 —a <k < i(5a—3). Since jo — 1 andjOO — 0, strongly, as t — oo, we
have the following useful property of I'(j):

['(j) = 1® Py, strongly as t — oo, (5.4)

where, recall, P denotes the projection onto the Fock vaccum. This property is easy to verify on product
states.

5.2. Deift-Simon wave operators. We define the auxiliary space H=HeF , which will serve as our
repository of asymptotic dynamics, which is governed by the hamiltonian H := H ® 14+1® Hy on H. With
the partition of unity I'(j), we associate the Deift-Simon wave operators,
Wy = ts—liim W(t), where W(t):= eimf‘(j)e_th, (5.5)
— =00
which map the original dynamics, e~H¢, into auxiliary one, e~*#? (to be further refined later). Recall that
P, denotes the orthogonal projection onto the ground state subspace of H. Our goal is to prove

Theorem 5.1. Assume (1.6) with p > 0, (1.7), and that one of the implicit conditions of Theorem 1.1 is
satisfied. Then the Deift-Simon wave operators exist on Ran E(_ s)(H) and satisfy

Wi Pys = Pas @ Po, (5.6)
and, for any smooth, bounded function f,
W f(H) = f(H)Ws. (5.7)
Proof. We begin with the the following lemma
Lemma 5.2. Assume (1.6) with > 0 and (1.7). For any f € CF((—o0, %)) and vy € f(H)D(Nll/Q),

G H) = FADEG) ]| S ¢ =5 oo (5.8)
Proof. We compute, using the Helffer-Sjostrand formula (see (B.1) of Appendix B) for f(H) and f(f]),

C() f(H)Ye — FEH)T () = R

where
/a f(2)(H — 2)"Y(HT(j) —=T(j)H)(H — 2z) ‘¢4 dRe zdIm z. (5.9)
Using (H, ® 1®1)(1®@T1(j)) = (1 ® T'(j))(H, ® 1), we decompose HT'(j) — T'(j)H = G + G1, where
Go = H,T(j) — T(j)Hy, (5.10)
with Hf Hy®1+1® Hy, and
G = (I(g) ® VI(5) = T(5)(g)- (5.11)

We consider Gg. A straightforward computation gives I'(j)dI'(c) = dI'(¢)T'(j) + dI'(j,jc — ¢j), where
= diag(c,c): hdh—hDh and

dI'(a, ¢)|gny Z S RARCRAR - R a. (5.12)

Jj—1 n—j
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It follows from this relation and the equalities UdI'(¢) = (d['(¢) ® 1 + 1 ® dT'(¢))U that ([19, 27])

['(j)dl(c) = (dl'(c) ® 1 + 1 @ d[(e))T'(§) + dT'(j, je — ¢f), (5.13)
where dl'(a, ¢) := UdI'(a, c). We have wj — jw = ([w, jo], [w, joo]), and, by Corollary B.3 of Appendix B,
) O .
lw. gl = —iw (5.14)

where jy stands for jo or joo, ji, is the derivative of j as a function of v = CZ;, and r satisfies ||r|| < t722F*,
Since f. < 1 and since x <a , we deduce that [w,jx] = O(t~*). This gives Gy = —dI'(j, jw — wj) =
dl'(j,0(t™®)). Let N := N®1+1® N be the number operator on H. (5.13) with ¢ = 1 implies

(N +1)"Y2Gy = Go(N +1)~1/2. By (C.6) of Appendix C, we then obtain that

IGo(N + 1)~ = (N +1)"2Go(N +1)"2|| S t7°.

Using the easy property that H € C*(N) (see e.g. [10, Lemma A.6]), we have |[(N+1)(H—z)"}(N+1)7}| <
|lm 2|72, and hence

1Go(H — )" || S 7Tz 72| (N + 1)e]. (5.15)
Applying Corollary A.3 of Appendix A, we obtain
|Go(H = 2)7 0l S ¢ % |lmz| =2 oo 1. (5.16)

Now, we address G1. We use the definition T'(j) = UT'(5) to obtain T'(j)a# (k) = Ua# (jh)T(j), where a#
stands for a or a*. Then using (5.2), and jijo + jijoo = 1, we derive

T (j)a® (k) = (a® (joh) @ 1 + 1 ® a® (jooh))T(4). (5.17)
This implies
L(G)(9) = (1(og) ® 1 +1® I(jucg))T()- (5.18)
The equation (5.18) gives
Gr = (I((1 = jo)9) ® 1 = 1 ® I (jeo9))T(5)- (5.19)

Due to the inequality (3.16), we have
Immijocglice St llmus (L= jo)gllee S, (5.20)
with A < (4 + 2)a. Using this, we have in addition
IG (N +772 + 1)~ St (5.21)

where 1? := n3n?n3. Hence, using (1.7) and, as above, that ||(N + 1)(H — 2)"Y(N + 1)~} < |Im 2|72, we
obtain

G (H — 2)~ || S ¢ [Tmz| 2 4bo 1. (5.22)

From (5.9), (5.16), (5.22), the properties of the almost analytic extension f and the estimate ||(H—z) || <
[Tmz|~!, we conclude that (5.8) holds. O

We want to show that the family W (¢) := eimf‘(j)e’im form a strong Cauchy sequence as t — oo. Let
Yo € ]‘(H)D(N11/2)7 f€C((—0,%)) and f1 € CF((—o0,%)) be such that f1f = f. Lemma 5.2 implies
that

W (t)o = W (£)vbo + Ot~ T4 )|l |1, (5.23)
where

W (t) = e fy ()T (j)e ™ f(H).

Hence, since our conditions on « imply a > 1/(2 4 ), it suffices to show that W (£) form a strong Cauchy
sequence as t — 0o.
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First suppose Assumption (1.18) of Theorem 1.1. We define xp, := X<, and X,, ‘= X>,,, 50 that
Xm + X,m = 1. First, we show that, for any 1y € D(N'/2),

sup [, W (0)%0 | S m % ol (5.24)
Indeed, by Assumption (1.18),

1N L (DGl S NN RG]+ DG - (5.25)

The boundedness of I'(j) and the definition 1; := e™*Htepy imply ||T'(j)v¢]| < [[%o]|. Equation (5.13) with
¢ =1 implies N2I'(j) = I'(j)N2. The latter relation, boundedness of I'(j) and Assumption (1.18) give

INZD()ys]| = TGN s < lltollo,

and therefore, by (5.25), ||N261Htf1( () 0s|| < lltbollo. Since this is true uniformly in ¢, s, it implies
[Nz W ( Yol < ||%ollo, which yields (5.24). Equation (5.24) implies that

sup [, (W (¢') = W (#)voll S m™* [[9ollo- (5.26)
Now we show that, for any m > 0 and for any ¥y € D(dT'((y))2) N Ran E(_o,x)(H),

X (W (') = W ()20l — 0, (5.27)
as t,t’ — oo. This together with (5.26) implies that W(t) form a strong Cauchy sequence. We write

—_ t/ —
W) — W(t) = / ds 9,7 (s), (5.28)
t
and compute oW (t) = et f (H)Ge~Ht f,(H), where G := i(HT'(j) — D'(j)H) + 8,L'(j). We write G =
Go + iG1, where
Go = 1Go + I'(4),

and Gy and G are defined in (5.10)(5.11). We consider Go. Using the notation dj := i(wj — jw) + dvJ,
with w = diag(w, w), and (5.13), we compute readily

Go = UdL'(j,dj) = d'(j, dj). (5.29)

Write 5/ = (4, jl), where j},j.. are the derivatives of jo, joo as functions of v = Cl;g. We first find a
convenient decomposition of dj. Using djf = (djo f, djo f), with de; = iw, ¢i] + Osey, (3.8) and Corollary B.3
of Appendix B, we compute

0. ab,

e Cta+1)+(9(t 2oty (5.30)

dj = (Jo, 3o ) (o

We insert the maximal velocity partition of unity xw<i + Xw>1 = 1, with w := (%)2 and ¢ > 1, into this

formula and use the notation x = xw<1 and the relation vj), = O(1)j, valid due to the localization of j,
to obtain

dj = ?92/2 X(jos ) X0* + rem, (5.31)
rem; = Ot )x(jb, 7o)X + O 2*%) + Ot ) Xw>1- (5.32)

These relations give
Go = G + Remy, (5.33)

where Gj := —-UdI'(j, ¢,), with ¢, = (o, co0) := (91/2)(]0)(91/2 91/2)(]'00)(9 %), and
Rem; := Gy — G, = UdI'(j,rem;).
Next, we write

A:= sup ‘/ ds(ps, Goss)|,
l| b0 ll=1
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where ¢, := e‘iHSfl(fI)qugo. By (C.5) of Appendix C, G}, satisfies
A 1 1 A 1
(6, Govn| < —= ([T (|eo])? @ 16| AT (|eo]) ¢

+][1®dl(Jese]) 2] AT (esc ) Z20])). (5.34)

By the Cauchy-Schwarz inequality, (5.34) implies

t t 1
[ dsltonGowl < ([ dssme (et @ 16.17) / ds s~ AT (o) )

/dss*anl@drqcoon% /dss*a||dr(|coo|> vil?)”.

Since |co|, |coo| are of the form 0L/? XXL_lXee/ , the minimal velocity estimate (3.4) implies
ct® T

) I 5 -
/1 ds s~ (AT 4(|e))2 s[> < lIxmollg < mlldoll?,
where dF#(|c|)% tands for dI'(|co|)2 ® 1 or 1 ® d['(Jeso|) 2, and
/1 ds s~[|dl g (Ie))2¢s|1* < llvoll3,

with dI‘#(|c|)% = dI'(|co])2 or dT'(Jeso|) 2, provided that a < 1/é. The last three relations give

t/
sup ‘/ ds (s, Chibs)| — 0, £t — oo. (5.35)
Ifoll=1

Likewise, applying (C.6) of Appendix C first with ¢; = 1 and ¢; = 1, next with ¢; = 1 and ¢z = xuw>1,
where recall w = (lf’tl) and then applying (C.5) with ¢ = xj{x and coo = XJ5, X, We see that Rem, satisfies
N ol (¢-2etm N _ g 31
(&, Remyh)| S | N2 | (t PAFRINZ Y| + AT (xdox) 2|
_ . 1 _ 1
+ AT (G0 Pl + a5 Fol). (5.36)

Now, using (5.36) and the Cauchy-Schwarz inequality, we obtain

Lo g N T Y
/ ds|<¢S,RemSz/Js>\§(/ ds 57| N2 4, ||2) {(/ dss—2(2“—5>+f|wws||2)
t t

/ ds 527 A0 (i) ¥ ) / ds 527 A0 (o) F1?)

+ (/ d5572a+7||dF(X12u21) Vsl )é} (5.37)

t
Let 7 > 1 and @ = 2 — 7. Then by the estimate (3.3), we have

X s N1
[ dss G0t P £ e,
1
and by the maximal velocity estimate (1.21), we have

> — L0 T l
/1 ds 2 [ AL (G 00 |2 S Idolarcon)-

~1
2¢—1? 2+u
that this condition is satisfied and a < 1/¢. Moreover Assumption (1.18) implies

provided that o > 1 —2v/3, where, recall, v < & mln( ). One verifies that ¢ > 1 can be chosen such

/ ds 5220~ | N3y |12 < 9o,
1
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provided that 5a > 3 4 2k. This and the fact that, by Assumption (1.18), the first integral on the r.h.s. of
(5.37) converge yield

—0, tt — oo. (5.38)

t/
Sup ‘ / ds <¢A)sa Rems ¢5>
lIdoll=1""t

Equations (5.35) and (5.38) imply that
t o
A= / ds o fr (D) 3G || 0, 4,¢ = oo, (5.39)
¢

Now we turn to G1. The equations (5.19), (5.20), (2.14) (with § = 0), (1.7) and N'/2T'(j) = I'(j)N'/2
imply that

[FGUN + 1) 5 £ 17, (5.40)
for A < (u+ 3)a. Together with Assumption (1.18), this implies that | f(H)G1b || < t74ollo, and hence

— 0, t,t' — oo,

H /ttl ds f(F)e Gy,

provided that o > (pu+3)~*. This together with (5.39) gives (5.27) which, as was mentioned above, together

with (5.26) shows that W (t) is a Cauchy sequence as ¢ — oo. Hence by (5.23) W (t) is a strong Cauchy
sequence. This implies the existence of W,.. The proof of the existence of W_ is the same.

The proof of the existence of W under the assumption (1.19) of Theorem 1.1 is similar, except that we
do not need to introduce the cutoff x,,,. We use instead a variant of the weighted propagation estimates of
Theorem 3.1. For reader’s convenience we give this proof in Appendix E.

Finally, (5.6) follows from (5.4) and the relation Wi®z = ei(H_Egs)tf‘(j)@gs. To prove (5.7) we notice
that, by (5.5), we have Wyes = slim etHtD(j)e H(t+s) = g lim (=)D (j)e~ Y = ¢Hs|,  which
implies (5.7). O

5.3. Scattering map. We discuss properties of the Hiibner-Spohn scattering map, I, defined in the intro-
duction. We begin with the definition

ho:={he L2(R3),/dk (14 w(k) IRk < oo}, (5.41)
Properties of the operator I used below are recorded in the following
Lemma 5.3 ([19, 27, 35]). For any operator j : h — joh @ jooh and n € N, the following relations hold
L(j)" = IT(j5) @ T(j%); (5.42)
D((H +1i)~"?) @ (®"ho) C D(I). (5.43)

Proof. Since the operators involved act only on the photonic degrees of freedom, we ignore the particle one.
For g,h € b, we define embeddings ipg := (¢,0) € h @ h and ich := (0,h) € h @ h. By the definition of U
(see (5.2)), we have the relations U*a*(g) ® 1 = a*(igg)U*, and U*1 ® a*(h) = a*(i.och)U*. Hence, using in
addition U*Q ® Q2 = ), we obtain

Ur ﬁ a*(g:)® ﬁ a”(hi)2 = ﬁ a*(iogi) ﬁ a” (iachi )S2.
1 1 1 1
By the definition of I'(j) and the relations j*igg = j5g and j*ich = ji h, this gives
m n n m
TG U [[e (g0 [[a"(h) =[] a* (o) [ [ o* (g hi) - (5.44)
1 1 1 1
Now, by the definition of T'(j) (see (5.2)), we have I'(j)* = T'(4)*U*. On the other hand by (1.12), the r.h.s.

is IT(j5) @ T(52) [11" a* (9:)Q @ [1} a*(h;)S2. This proves (5.42).
To prove (5.43), we use the following elementary properties ([27, 35]):

The operator  Hy(H +1i)~" is bounded Vn €N, (5.45)
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and, for any hq,- - h, € ho, where b is defined in (5.41),
la*(ha) -+ a* (hn) (H g + 1) 72| < Cpllale - ol (5.46)

where ||h||,, := [ dk (1+w(k)~')|h(k)|*>. The previous two estimates and the representation (1.12) imply that
for any ® € D((H +4)™"/?) and hy,--- , hy, € bo, we have [|[I® @ [[} a* (k)| < Collhillw - [P llol| (H +
i)"/2®|| < co. This gives the second statement of the lemma. O

5.4. Asymptotic completeness. Below, the symbol C(e)o,(1) stands for a real function of € and ¢ such
that, for any fixed €, |C(€)oi(1)] — 0 as ¢ — oo, and we denote by xq(A) a smoothed out characteristic
function of a set Q. In this section we prove the following result.

Theorem 5.4. Assume the conditions of Theorem 1.1 for hamiltonians of the form (1.4)—(1.5). Then the
asymptotic completeness (in the sense of the definition (1.14)) holds on the interval A =[ Eg,a], where
a < X is given by (1.15).

Proof. Let « and k be fixed such that the conditions of Theorems 3.1, 4.1 and 5.1 hold. Let (jo,joo) =
(Xv<1, Xv>1) be the partition of unity defined in Subsection 5.1, where v = Cl;fa. Since j2 + j2, = 1, the
operator I'(j) is, as mentioned above, an isometry. Using the relation I'(j)*I'(j) = 1, the boundedness of

I'(j)*, and the existence of W, we obtain
v = D(j) e (e Mo = D(j) e 60 + 01(1), (5.47)

where ¢g := Withg. Next, using the property Wixa(H) = XA(fI)W+, which gives W g = XA(ﬁ)W+¢O,

and xa(H) = (xa(H) @ xar(Hy))xa(H), and again using xa (H)Wtho = Wit = do, we obtain

do = (xa(H) @ xar(Hy))do. (5.48)
For all € > 0, there is ' = §'(¢’) > 0, such that
|[(xa(H) ©1)do — (xa,, (H) © 1)¢o — (Pes @ 1)do| < €', (5.49)
with Ae = [Egs + &', a]. The last two relations give
¢0 = ((xa,, (H) + Pgs) ® xar(Hy))po + O(€'). (5.50)

For any vector space V C §, we let Fgn (V) denote the subspace of F consisting of vectors ¥ = (¢,,)22, € F
such that 1, = 0, for all but finitely many n and ,, € @7V for all n. Let ¢o o € Fan(D({(y))) @ Fan(ho) be
such that ||¢po — ¢oe|| < €. (We require that the ‘first components’ of ¢ are in Fpn(D((y))) in order to
apply the minimal velocity estimate below, and that the ‘second components’ are in Fxy(ho) in order that
(Pgs ® 1)¢oe is in D(I)). This together with (5.47) and (5.50) gives

o= TG e T ((xa, (H) + Pes) @ xar(Hj))boo +O() + or(1). (5.51)

Furthermore, let (Jo, joo) be of the form jo = Xv<1, Joo = Xv>1 Where X, has the same properties as x, and
satisfy j0jo = Jo, jooJoo = jeo- Then, by (5.42), the adjoint T'(j)* to the operator I'(j) can be represented as

L) =T(7)" (T(0) ® T (jsc))- (5.52)

Using this equation in (5.51), together with the relations e~ it — g=iHt g o=iHst a1 e P, = e Pl P,
gives

Yy =T(j) e + A+ B+ C+O(€) + o (1), (5.53)

where
Yre 1= (e7Fe ! Pyg @ e ity (Hy)) doer, (5.54)
A:=T()"(Clo)e ™ xa, (H) @ T(joo)e 1 xar (Hy)) doer, (5.55)
B:=T(j)*((C(jo) = Ve =" Pye @ T(joo )~ ™" xar (Hy)) poer (5.56)
C:=T(j)* (7= Py @ (T(joo) — Ve~ M xar (Hy)) doer- (5.57)



24 J. FAUPIN AND I. M. SIGAL

Since T'(j)* is bounded, the minimal velocity estimate, (4.1), gives (here we use that the first components of
¢oer are in D(AT({y))))

1AL < [[(TGo)e™ " xa,, (H) ® 1)goe || = C(e)or(1).
Now we consider the term given by B. We begin with
1B < [|(CGo) = 1) Pes | (5.58)

Since 0 < 50 < 1, we have that 0 < 1 — I‘(]o) < 1. Using this, the relations 1 — F(;O) < dI'(Xo>1) <
t=22dI'(b?), we obtain the bound

(T Go) = Dyull® < (1 = TGo)) 2ul|* < 2|0 (52) 2. (5.59)
Using the pull-through formula, one verifies that dI'(b2)z s is bounded and that ||dF(b§)%Pgs|| = O(t")
(see Appendix D, Lemma D.1). Hence, since k <« , the above estimates yield
|B]| = o:(1). (5.60)
Next, using I'(joo)e H1t = e7HtD (i@t j e™!) and e“!b.e™ ! = b, + O.t, it is not difficult to verify
(see Appendix C, Lemma C.4) that
[C] < It @ (T(e™ jooe™™") = 1)doer

as t — oo, Ve’ > 0, and hence we obtain

)

[C]| = C()ou(1). (5.61)
Inserting the previous estimates into (5.53) shows that
Gy = T(j) e + O(e) + C()oy(1). (5.62)

Next, we want to pass from I'(j)* to I using the formula (5.42). To this end we use estimates of the
type (5.60) and (5.61) in order to remove the term I'(jo) ® I'(joo). Hence, we need to bound I, for instance
by introducing a cutoff in N. Let X 1= Xn<m and Xm = 1 — X, and write I'(j)* e = Xm ( ) e +
XmD(j)*hrer. Using that N'/2T(j)* = T'(j)*N'/? and that by Lemma D.1 of Appendix D (see also [7, 38]),
Ran Pys C D(N'/2), and therefore ¢, € D(N'/2), we estimate

ek 1yl _1
IXm () e | S m72|[N2tge|| = m™2C(€).
Now, we can use (5.42) to obtain
Uy = XmI (T(jo) @ T(joo))Urer + O(€') + C(€)or (1) + C (€ )om (). (5.63)
Using ||xmI| < 27/? together with estimates of the type (5.60) and (5.61), we find (here we need the cutoff
Xm)
Uy = XmIthe + O(€) + C(/,m)oy(1) + C(€')om (1) (5.64)
Since o € H®Fsin(ho), we can write e as Yy = P ® frer, with fror € Fen(bo), and therefore ¢y € D(I)
(here we need that fe is in Fan(ho)). Hence xmIthte = Ithter + C(€')0n,(1). Combining this with (5.64) and
remembering (5.54), we obtain
Yy :I(eiiEgStPgs & eiintXA’ (Hp))¢oer
+ O(') + C(e,m)or (1) + C(€)om(1). (5.65)
Letting ¢t — oo, next m — oo, the equation (1.14) follows. a
Remark. The reason for €’ in the statement of the theorem is we do not know whether (Pys®1)Wi1)g € D(I).

Indeed, if the latter were true, then the relations (5.65), (5.50) and ||¢o — ¢oe|| < €, where ¢g := Wi,
would give

by =I(e™ P! Pyg @ e~ ni (Hyp)) 0
+ O(') + C(e,m)os (1) + C()om (1), (5.66)
which, after letting ¢ — oo, next m — oo and then ¢ — 0, gives
tlggo [4hs = I(e™"Pe Pyy @ e\ ar (H ) )Wy tho| = 0. (5.67)
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6. PROOF OF THEOREM 1.2: THE MODEL (1.29)—(1.32)

In this section we extend the results of Sections 3-5 to hamiltonians of the form (1.29)-(1.32), with the
operators 1;, j = 1,2, satisfying (1.7), and prove Theorem 1.2. First, to extend the results of Section 2 to
the present case, we replace the assumption (2.8) by the assumptions

([ I (Grg)ss ), w7dk)” £ @), i+ 5 =1,

([ 13(ugpssthn, kB, TT (1 i)™ o i)

0=1,2

(6.1)

Nl

SN, iti=2,

where )\ is the same as in (2.8) and, for any one-particle operator ¢ acting on b, we define (g?)g)ij = 0Gij,
fori+j =1, and (9g)20 = (39)52 == (6® 1+ 18 $)ga0, (B9)11 = (6® 1 — 1@ $)gr1. Then we replace
the second relation in (2.12) by the relation (see Supplement IT)

i[1(g),dT(¢4)] = —1(idg), (6.2)

which is valid for any one-particle operator ¢, and replace the estimate (2.14) by the estimate

(onel < Y ( / g (), (k) i) i 2wl

itj=1
+ 30 ([ Indostaska)l, TT (0™ + wlh))de) "z 0l + Woll-0lwls,— (6:3)
itj=2 0=1,2

which, as in (2.14), implies, together with (6.1) and (1.7),

(T (ideg))v.) S 72+ lwoll3, (6.4)

for any ¢y € Y5, where Y5 is defined in (2.2). This completes the extension of the results of Section 2, and
therefore of Section 3, to hamiltonians of the form (1.29)-(1.32).

To extend the results of Section 4, we have to extend the estimates (4.10) and (4.22) for I} = i[I(g), B
and Iy = [Be, [B, I(g)]] and the estimate (4.18) for the remainder, R, defined in (4.4), to the interactions of
the form (1.30)-(1.32). Using that I; := i[I(g), Bc] = I(ibeg) and Iy := [Be, [B., 1(g)]] = I(b%g), where b, is
defined by the same rules as ¢ after (6.1), and using (6.3), we obtain

L > ~Clg)Ey, (6.5)

and
1B * LE; * (| < € o), (6.6)
where, recall, (g) = 311 ico ja1<2 an_i_jn‘;laagij\\ are the norm of the vector coupling operators

g = (gij), defined in the introduction after (1.32), and Ey = N+t + 58 4+ 1, and By =
N+ Hy +n5°n7*n;2 +15° + 1 are new estimating operators. This extends (4.10) and (4.22). Let R be
defined by (4.4), with By and H replaced by By :=i[H, B.] and H. By (4.19), with R and B, = [B, [B., H]|
replaced by R and B := [Be, [B., H]], and (6.6), we obtain the extension of (4.18) to the interactions of the
form (1.30)—(1.32):
|By *RE; *|| S 7%, (6.7)
To extend the results of Section 5 to hamiltonians of the form (1.29)-(1.32), we have to prove estimates
of the type (5.21) and (5.40) for the operator

G1:= (I(g) @ DI() — T(5)I(9), (6.8)

which replaces G defined in (5.11). To this end, we first extend the relations (5.18), (5.19) to the interactions
of the form (1.30). First, we use

D(j)a* (h) = a* (M) (j), (6.9)
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where a7 (h ) == a”(joh) ® 1+ 1® a*(jooh), with a* standing for a or a*. This together with (6.8) and the
notation a} #(k) = af( )®1— dj\#(k) (1- jo)a)\ (k) ®1 - 1Q® jooa} # (k) gives
G = Ix(9)T (), (6.10)
where
9= / dk (gon (k) ® ax (k) + h.c.) (6.11)
A
+ Z /dkldkg gog(k’l,kg) (a)\l(kl)d)\2(/€2) +CAL)\1 (kl)d)\2(k2) +ay, (k‘l)d)\z(kg)) +h.C.) (6.12)
A1,A2
+ Z /dkldkz g11(k1, k2) @ (a3, (k1)an, (k2) + a3, (k1)ax, (k2) + ax, (k1)ax, (k2)). (6.13)
A1,A2

Here the notation go1(k) ® @ (k) should be read as ((1 — jo)go1) (k)(ax(k) @ 1) = (joogo1) (k) (1 ® ax(k)), and
likewise in the second and third lines. Using this and (3.16), we have in addition

I(Hf+1)72C (N +772+ 1) St (6.14)
with 72 := n3(1 + n})n3, recall, Hy = H; ® 1 +1® Hy, and
IF(H)GN +1)73 | St (6.15)

This extends the proof of the existence and properties of the Deift-Simon wave operators (see Theorem 5.1)
to the interactions of the form (1.30)—(1.32). The remainder of the proof goes the same way as the proof of
Theorem 5.1.

7. PROOF OF THEOREM 1.1 FOR THE QED MODEL

7.1. Generalized Pauli-Fierz transformation. We consider the QED hamiltonian defined in (1.1)—(1.2).
The coupling function gd°d(k, A) := [k|~'/2¢(k)ex(k)e™*¥ in this hamiltonian is more singular in the infrared
than can be handled by our techniques (u > 0). To go around this problem we use the (unitary) generalized
Pauli-Fierz transformation (see [58])

H —s FI = efiZ?zl ”jq’(qz*j)Hei i1 ”J‘I’(qz‘j)7 (71)

where ®(h) is the operator-valued field, ®(h) := \i@(a*(h) + a(h)), and the function g,(k, ) is defined

below, to pass to the new unitarily equivalent hamiltonian H. To define qy(k,N), let ¢ € C®(R;R) be a
non-decreasing function such that ¢(r) = rif [r| < 1/2 and |p(r)| =1 if |[r] > 1. For 0 < v < 1/2, we define

£(k)
k|2

We note that the definition of ®(h) gives A(y) = ®(gd°?). Using (IL7) and (IL8) of Supplement II, we
compute

qy(k; A) = o(|k|"ex(k) - y). (7.2)

n 1 . B 5
A= 3 gy (= ¥ = s Aw)) 4 B+ Hy 4V (@), (3)
where, recall, © = (z1,...,z,), and
( ) (gy) gy(kv >‘) = gged(kv )‘) - quy(/ﬂ, )‘)7
B(x) = =0 mi®(er,),  ey(k,N) = ilklgy(k, \), (7.4)

V() :=U(@) + 5 Xnm12 2j—1 K5 Jga [kllga, (k, A)|?dk.
The operator H is self-adjoint with domain D(H) = D(H) = D(p® + Hy) (see [41, 42]).
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Now, the coupling functions (form factors) g, (k, A) and e, (k, A) in the transformed hamiltonian, [, satisfy
the estimates that are better behaved in the infrared ([10]):

1953y e, M) S (k) 5[] ) 1, (7.5)
|05 ey (R, A)| S (k)2 [k| 21l ) 107, (7.6)

We see that the new hamiltonian (7.3) is of the form
H = H,+ Hy + I(g), (7.7)

with Hy, := =77 ﬁjA% +V(z), and I(g) := — >y k(P A(xj) + Axy) - pj — K A(x5)?) + E(z). We
see that the latter operator is of the form (1.30)—(1.32), with n; = (p) ™', n2 = (2) 17" V¥, n=1/2, |a] < 2,
and 1 < i+ j <2, where p := (p1,...,pn), and therefore the hamiltonian (1.1) satisfy the bound (1.8) and

is of the class described in the introduction.

7.2. Proof of Theorem 1.1. We present the parts of the proof of Theorem 1.1 for the hamiltonian (1.1)
which differ from that for the hamiltonian (1.4), with the interaction (1.5). To begin with, we note that, in
Section 6, we have shown the statements of Theorems 3.1 and 4.1 for hamiltonians of the form (1.29)—(1.32),
with the operators 7;, j = 1,2, satisfying (1.7), and therefore for the operator (7.3). To translate Theorems
3.1 and 4.1 from H, given by (7.3), to the QED hamilonian (1.1), we use the following estimates ([10])

1 2 —a
larcaente| s (v, droa@iue) + v, (7.8)
1 2 —a
[rocente| s (U reem)us) + v, (7.9)
where U 1= ¢ ' Xi=1%%042;) and | recall, v = cbti,, valid for any functions x;(v) and x2(v) supported in

{|v| < e} and {|v| > €}, respectively, for some ¢ > 0, for any o € f(H)D(N'/?), with f € C5°((—o0, X)),
and for 0 < d < 1/2. (7.8) follows from estimates of Section 2 of [10] and (7.9) can be obtained similarly
(see (I1.8) and (IL.9)). Using these estimates for 1; = e~ 1)y, with an initial condition 1 in either Y; or
Y, together with Ue #qpy = e~ 4y, and applying Theorems 3.1 and 4.1 for H to the first terms on
the r.h.s., we see that, to obtain Theorems 3.1 and 4.1 for the hamiltonian (1.1), we need, in addition, the
estimates

<¢,u*N1u¢> < (0, (N + 1)), (7.10)
(U dr (@)U < (¥, (d0((y) + (@))8), (7.11)
[fe£*d0 @)U [| < ([T () + ()*)v ], (7.12)

where, recall, Ny = dI'(w™!) and b = %(k; y+uy-k).
Let ¢, := 2?21 KjQz; so that U := e~*®(=) To prove (7.10), we see that, by (IL.8), we have

. ) 1
U*NU = @) dD (w1 @) = Ny — d(iw'q,) + 5|\w*1/2qm||g. (7.13)

(Since w™lq, ¢ b, the field operator ®(iw~1g,) is not well-defined and therefore this formula should be
modified by introducing, for instance, an infrared cutoff parameter o into g,. One then removes it at the
end of the estimates. Since such a procedure is standard, we omit it here.) This relation, together with

1
[, @i 0 )] S / W2 () 0 k) |0 ) Bl (7.14)
for any € > 0, which follows from the bounds of Lemma 1.1 of Supplement I, and
lo™ 2 gally < o™ (k) 1y, (7.15)

implies (7.10).
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To prove (7.11) and (7.12), we proceed similarly, using, instead of (7.14) and (7.15), the estimates

(w (itg)a )| 5 ([0 20 k) fare o e

s ( / w*2*2”<k>*6dk)%|»dr<<y>>%wu||<x>w||, (7.16)

and
1) 2 aally S (@) [lw™ =" (k) 2 Iy, (7.17)

and
@bl S ( / w*2*2”<k>*6dk)%n<x><ﬂf +1)79), (7.18)

and
(Ga: bga)y S (2)llw™2 7 (k) 312, (7.19)

Next, the existence and the properties of the Deift-Simon wave operators on Ran(_ s)(H)
Wy = slim W(t),  with  W(t):= AT (j)eH (7.20)

where H = H®1+1 ® Hy and the operators I'and j = (Jo, joo) are defined in Subsection 5.1, are equivalent
to the existence and the properties of the modified Deift-Simon wave operators

WimOd) ;= s-lim (e_i‘b(q“) ® 1)eitﬁf(j)e_i"‘Hei‘b(q“)7 (7.21)
t—too
on Ran(_oo’g)(ﬁ) (where H = e~ ®(@) {¢i®(42) is given in (1.29)).
To prove the existence of Wim‘)d), we observe that, due to (6.9), we have I'(j)®(h) = CiJ(h)f‘(j), where
B(h) := B(joh) ® 1+ 1 @ D(juch), (7.22)
which in turn implies that
[(j)e’®™ = M (5). (7.23)

Therefore
(e—itb(qw) ® 1)eitHf\(j)e—itHei¢>(qw) _ (e—id)(qz) ® 1)eitHei<I’(qm)fw(j)e—itH
= e“H(mOd)f‘(j)e_”ﬁ + Remy, (7.24)
where Hmed) .— F @1 + 1® Hf and
Rem; := (e_@(qm) ® 1)eitH (eié(q”) — ) @ 1)f(j)e‘“g.

We claim that
s—liim Rem; = 0. (7.25)

t—Foo

Indeed, let R := ®(q,) — ®(q,) @1 = ®((jo — 1)¢2) ©1+ 1@ B(jooqe) and N := N®1+1® N. Using (7.2),
Lemma II.1 of Supplement IT and (3.16), we obtain

IRV +1)72 || S Go — Daally + lootelly S 707 (@)1,

for any 7 < 1. From this estimate and the relation i®(a:) _ %) @1 = —j fol dse(l_s)i‘i(ql)R(eSiq’(ql) ®1),
it is not difficult to deduce that

H(eicﬁ(qm) _ ¢i®(ax) ® 1)(N+ (x)2+QT + 1)—1H <o

Furthermore, we have (N+<m>2+27+1)f‘(j) =T'(§)(N+(z)?*t?7 +1), and, as in Corollary A.3 of Appendix A,
with p = 1/2, one can verify that |[Ne="Hqpg|| < 2/5||1)o]|1 for any g € f(I‘TI)D(Nllm)7 feCF((—o0,X)).

Using in addition that ||(z)2+2" f(H)|| < oo, it follows that Rem, strongly converges to 0 on Ran(_ . x)(H)
provided that ar > 2/5.
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The equations (7.20), (7.24) and (7.25) imply
W(mod)

= s-lim e
t—+oo

TV (e itH (7.26)

The proof of the existence and properties of the Deift-Simon wave operators (7.26) is a special case of the
corresponding proof for the hamiltonian (1.29)—(1.30) (see Section 6).

Finally, we comment on the proof of Theorem 5.4 for the hamiltonian (1.1) in the QED case. It goes in
the same way as in Section 5, until the point where we have to show that [|dI'(b?)'/2Pys|| = O(t") in the

present case. This estimate can be proven by using the generalized Pauli-Fierz transformation (7.1) together
with (I1.9), to obtain

1 ~ 1 -
|dD(62)3 @ ||” = <¢>gs, (dr(?) - e(ib2q,) + 5 (g qx>h)¢>g8>, (7.27)

where ®g := UDy,. Using Lemma 1.1 of Supplement I, (1.8) and the fact that &, € D(N'/?), we can
estimate the second term of the r.h.s. of (7.27) as

’<<I>gs,<I>(@b2 )égs>

Likewise, |(®gs, (b2, ¢z ) Pgs)| < 27, To estimate the first term of the r.h.s. of (7.27), we apply the standard
pull-through formula, which gives

n

~ H ~ 71 R ~ - ~
ax(k)Pgs =Y ﬁ(H — Egs + k) ((—iVa, — 5;A(x5)) - G, (k, ) — 2mje,, (k,N)) @
g=1"""

We then easily conclude that ||dT(b2)'/2®y || = O(t*) in the same way as in Lemma D.1 of Appendix D.

1

< [[) 2@ || ) @ (ibEar) (N + D)7Z[|(N + 1) By | 5 2

APPENDIX A. PHOTON # AND LOW MOMENTUM ESTIMATE

For simplicity, consider hamiltonians of the form (1.4)—(1.5), with the coupling operators g(k) satis-
fying (1.6) and (1.7) with g > —1/2. The extension to hamiltonians of the form (1.29)—(1.30) is done
along the lines of Section 6. Recall the notations (A)y = (¥, Ay), N, = dI'((w™) and T, = {3 €
f(H)D(Npl/Q), for some f € CF((—o0,%))}. The idea of the proof of the following estimate follows [35] and
[10].
Proposition A.1. Let p € [-1,1]. For any vy € T,
1+p

N, e = —. A1l

(Np)y, Sl vy St (A1)
Proof. Decompose N, = K1 + K3, where

Kl = dl—‘(w_pxtawgl) and K2 = dl—‘(w_pXtale)'

Then, by (2.3),

(Ka)y < (A0t M wxawz1))y, < T H )y, S0 4o . (A.2)
On the other hand, we have by (2.13),
DKy = dl(aw' Pt xja o) = I(iw™ P Xpaw<19)- (A.3)
Since [|n1g(k)||ln, S [k[*(k)=27* (see (1.6)), we obtain
/dk w(k) P xeewtg(R) IR, (w(k)7H 4+ 1) S ¢ 20 R0, (A4)
This together with (2.14) and (2.3) gives
(I (0™ xeowz19)) | S 70O o 2. (A.5)

Hence, by (A.3), since 0¢(K1)y, = (DK1)y,; Xjaw<y < 0, We obtain
(K1), S t7UF70% gy,

and therefore
(K1)y, < O [oll* + (N (A.6)
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where v/ =1—-(1+p—pla, if (1+p—pla<land v =0,if (14 p—p)a> 1. Estimates (A.6) and (A.2)

with a = ﬁ, if p> —1, give (A.1). The case p = —1 follows from (2.3). O
Remark. A minor modification of the proof above give the following bound for p > 0 and V; =3 j’r#,
2
(Np)ye St (IR + 1ol1®) + (Np) o (A7)
Corollary A.2. For any o € Ty, v >0 and ¢ > 0,
2y 14p 2
I, sernthel|? S £ T (b2 + £ (N, )y (A.8)

Proof. We have

1 1
I, zetrull < € F7F xo, 2 NF | < 73473 |INF 4.
Now applying (A.1) we arrive at (A.8). O

Corollary A.3. Let ¢o € Y1. Then ¢y € D(N) and
(N?)y, S 1557 0ol (A.9)
Proof. By the Cauchy-Schwarz inequality, we have N? < dI'(w)dI'(w™') = H;Nj, and hence

1 1
<N2>wf, < <N12HfN12>wt
1 1
= (NP Hf(H — Ege +1)7'N? (H — Egs + 1))y,
1 1
+ <N12 Hf[N12 ) (H - Egs + 1)71](H - Egs + 1))%'

1
Under the assumption (1.6) with g > 0, one verifies that H¢[N?2,(H — Egs + 1)7!] is bounded. Since
H{(H — Eg + 1)~ ! is also bounded, we obtain

1 1
(N?)ge SUNT N (IN? (H = Egs + D)0l + (H = Egs + 1)3¢]]). (A.10)
Applying Proposition A.1 gives
1 1 1
IN? el S 2257 [[4boll + [N 4ol (A.11)

and
1 1 1
[N? (H — Egs + L)he|| S t27 |[thol| + || N7 (H — Egs + 1)¢0|
1 1
S 7 ol + [[NF ol (A.12)

where we used in the last inequality that Nlé f(H)(Nl + 1)_% is bounded for any f € Cg(R3). Combining
(A.10), (A.11) and (A.12), we obtain

2 1
(N2)y, S 77 (INF ol® + [lvo]?).- (A.13)
Hence (A.9) is proven. O

APPENDIX B. ONE-PARTICLE COMMUTATOR ESTIMATES

In this appendix, we estimate some localization terms and commutators appearing in Section 3. We begin
with recalling the Helffer-Sjostrand formula that will be used several times. Let f be a smooth function
satisfying the estimates |07 f(s)| < Cp(s)?~™ for all n > 0, with p < 0. We consider an almost analytic
extension f of f, which means that f is a C*° function on C such that f\R = f,

supp f C {z€C, |[Imz| < C(Rez2)},
|/(2)] < C(Rez)? and, for all n € N,

of

ag(z)’ < Cp(Re 2)P~ 17" Im 2|".
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Moreover, if f is compactly supported, we can assume that this is also the case for f. Given a self-adjoint
operator A, the Helffer-Sjostrand formula (see e.g. [18, 44]) allows one to express f(A) as

f(A) = %/ 8J;<;) (A—2)""dRezdIm 2. (B.1)

Now recall that b, = %(GGVw -y + h.c.), where 0. = 2, w. = w+¢€, e =t7", with K > 0. We have the
relations
) ) 1
ilw,b] = 0c,ilw,y’] = 5(Vw -y +y- Vw), (B.2)
and, using in particular Hardy’s inequality, one can verify the estimate

Ily?, bel )~ = O%). (B.3)

The following lemma gathers several commutator estimates used in the main text. It is a straightforward
consequence of the Helffer-Sjostrand formula together with (B.2), (B.3), and Hardy’s inequality. We do not
detail the proof.

Lemma B.1. Let h, h be smooth function satisfying the estimates |8;‘h(s)‘ < Cp(s)™™ for n > 0 and likewise
for h. Let wo = (|y|/c1t®)?, vg = bc/(cat?), with 0 < a, 3 < 1. The following estimates hold

[h(wa),w] = OE),  [h(vg),w] = O,

[h(wa),02] = O(*3%),  (y)[h(wa),02] = O(13%+3%),

(f(vg),we 2] = O ), befh(vg),we 2] = O(t3%),  [h(vg), 03] = O,
[h(wa),b] = O@F),  [h(wa),h(vs)] = OPTF),  be[h(wa), h(vg)] = O(t%).

Now we prove the following abstract result.

Lemma B.2. Let h be a smooth function satisfying the estimates |8§‘h(s)‘ < Cp(s)™™ forn > 0. Assume
an operator v is s.t. the commutators [v,w] and [v,[v,w]] are bounded, and for some z in C\ R, (v — z)~!
preserves D(w). Then the operator r := [h(v),w] — [v,w]h/(v) is bounded as

Il < [, fo, w1 (B.4)

Proof. We would like to use the Helffer—Sjostrand formula (B.1) for h. Since h might not decay at infinity,
we cannot directly express h(v) by this formula. Therefore, we approximate h(v) as follows. Consider
© € CF(R;[0,1]) equal to 1 near 0 and pgr(-) = ¢(-/R) for R > 0. Let h be an almost analytic extensions

of h such that h|g = h,
supp h C {z €C; |Imz| < C(Rez)}, (B.5)

|h(2)| < C and, for all n € N,

aJl(z)’ < Cp(Rez)?~ 17" Im 2| (B.6)

Similarly let ¢ € C3°(C) be an almost analytic extension of ¢ satisfying these estimates. As a quadratic
form on D(w), we have

[h(l]), w] = %‘Eg [(@Rh)(v)vw] . (B7)

Since (v — 2)~! preserves D(w) for some z in the resolvent set of v (and hence for any such z, see [2, Lemma
6.2.1]), we can compute, using the Helffer-Sjostrand representation (see (B.1)) for (¢rh)(v),

[(prh)(v),w] = %/@(@Rﬁ)(z)[(v—z)_l,w] dRezdIm z
= —% /85(@3%)(2)(1) —2) o, w](v — 2)"*dRezdIm z

= [v,w](prh) (v) + TR, (B.8)
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as a quadratic form on D(w), where

= ——/6 (Prh)(z ) —2)"" [v,w]](v—2)""dRezdIm z

- —/82(@:@}1)(2)(@ — ) o, [0, w]](v — )2 dRe = dTm ». (B.9)
™
Now, using (v — 2z)~* = O(|Im z|~!), we obtain that
(v = 2)" o, [v,w]](v = 2) || S [Tm 2| 7?||[v, [v,w]]||- (B.10)
Besides, for all n € N,
10:(Prh)(2)] < Cp(Rez)?~ 17" Im 2|, (B.11)

where C,, > 0 is independent of R > 1. Using (B.9) together with (B.10), we see that there exists C > 0 such
that [|rg|l < CH [v,w]]||, for all R > 1. Finally, since (¢rh)’(v) converges strongly to h'(v), the lemma

follows from (B.8) and the previous estimate. O
We want apply the lemma above to the time-dependent self-adjoint operator v := clj;.
Corollary B.3. Let h be a smooth function satisfying the estimates |5‘” | < Cp(s)™™ forn > 0 and let

V=

Lo where ¢ >0, e =t~", with 0 < k < 8 < 1. Then the operator r := dh(v) — (dv)}/(v) is bounded as
[rl| St A= 2a — k. (B.12)

Proof. Observe that

dh(v) = (dv)'(v) = [h(v), iw] = [v,iw]h'(v) + Oh(v) — (Opw)h' (v).

It is not difficult to verify that (v — 2)~! preserves D(w) for any z € C\ R. Hence it follows from the
computations

[v,iw] =70, [v, [v,iw]] = t 20w 2, (B.13)
that we can apply Lemma B.2. The estimate
[v, [v,w]] = O(w 't72%) = O(t>*F") (B.14)
then gives
I1A(v), iw] = v, iw]h’ (V)] S t720F".

It remains to estimate ||Oph(v) — (Gyv)h/(v)]]. It is not difficult to verify that D(b) is independent of ¢. Using
the notations of the proof of Lemma B.2 and the fact that 0;h(v) = s-limp_.oc O:(prA)(v), we compute

O(prh)(v /6 ($rh)(2)0:(v — )~  dRe zdIm z

- /82(§5Rh)(z)(v — )Y (Ow)(v — 2)" dRe zdIm 2

= (0r)(orh)'(v) + 'R,

where
———/a (Prh)(z vfz)fl,ﬁtv](vfz)fldRezdImz
= — / 0:(Frh)(2)(v — 2) " v, O] (v — 2) "2 dRe z dIm . (B.15)
™
Now using ;v = —Cf‘abil + ﬁatbe together with (3.9), we estimate

[0, 0] = Ot~ =248 )b, 4 O~ 1-20+2n),

From this, the properties of @, h, and x < 3, we deduce that |7l S t7tmots < ¢=29tF yniformly in R > 1.
This concludes the proof of the corollary. O

The following lemma is taken from [10]. Its proof is similar to the proof of Lemma B.2
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Lemma B.4. Let h be a smooth function satisfying the estimates |07h(s)| < Cp(s)™" forn > 0 and
0<d<1. Let w, = (Jy|/ct®)? with 0 < a < 1. We have
Y

] = 2 h(wa) (L .
[h(wa),iw] = h(wa)(cta Vw+ Vw ”

o ) + rem,
with

||w% rem w? H < gmeld+d),

APPENDIX C. ESTIMATES OF dI', dI' AND T’

In this appendix we prove technical statements about dI', dI" and T, used in the main text. Most of the
results we present here are close to known ones. We begin with the following standard result, which was
used implicitly at several places.

Lemma C.1. Let a,b be two self-adjoint operators on h with b > 0, D(b) C D(a) and |jayp|| < ||be]|| for all
¢ € D(b). Then D(AT(b)) C D(dT(a)) and ||dT(a)®| < [dT(b)®| for all & € D(dT(b)).

Next, we have the following lemma which was used in the proof of Proposition 4.2. We recall the notations
B, = dI'(b.) and B, ; = Z

ct *

Lemma C.2. Let f € C3°(R3). Then
[0 (w )2 f(Bee) (1 +dD(w ™) + 7 2N) 72| < 1, (C.1)
uniformly w.r.t. € >0 and t > 0.
Proof. By interpolation, if suffices to prove that
[dT(w ) f(Be)(1 +dD(w™h) + e (V)| S 1. (C.2)
To this end, we write
A0 (we ) f(Bey) = f(Be)dD(w ) + [T (w ), f(Be, t)]-
Since || f(Bet)| £ 1 and dT'(w 1)? < dI'(w™1)?, the first term is bounded as
[/(Be)dD (w1 +dT(w™ )] S 1. (C.3)
To estimate the second term, we write as above, using the Helffer-Sjostrand formula,
f(Bey) = %/agf(z)(B@t —2z)"'dRezdIm 2,
where fdenotes an almost analytic extension of f. This gives
[dD(w ), f(Bey)] = %/agf(z)(Be,t — 2) M [Bey, dl'(w; H)](Bey — 2) "' dRe zdIm 2, (C4)
with
[Be.t, dT(w:h)] = (et) 1D (Oew?).
Since ||dT(Bew 2)(N) 7| < €2, and since B, ; commutes with N, we obtain that
|(Bet = 2) " [Be, dT(we ))(Bee — 2)7HN) TH S 7 e [Ime| 2,
Hence the formula (C.4) shows that
AT (W), f(Be) (N)TH S 712,
which, together with (C.3), imples (C.2) and hence (C.1) by interpolation. O

We recall that, given two operators a, ¢ on b, the operator dI'(a, ¢) was defined in (5.12), and dI'(a, ¢) :=
UdI'(a,c).
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Lemma C.3. Let j = (Jo,joo) and ¢ = (co,¢x0), Where jo, joo, Co, Coo are operators on by. Furthermore,
assume that jgjo + i joo < 1. Then we have the relation

(6, AT, e)i)| < [T (eol)? @ 16][dT(|eol) 2|
+ 1 @ dT(Jeao) 2l [AT(eso ) 2 9] (C.5)
Likewise, with c; : h — hDbh and c2 : h — b, we have
(. dD(j, cre2)0)| < [[dT(ercf) 2ul [T (chez) o] (C.6)
Proof. Let ¢ = U*¢ and for an operator b on h define operators iob := diag(b,0) and i..b := diag(0,b) on

b @ b. Since U*dT(|eo|)2 @ 1U = dT'(io|co])? and U*1 @ dT(|cos|)2U = AT (iso|coo )2, the statement of the
lemma is equivalent to

(6, dT(j, e)9)]| < AT (ioleol) Bl [T (|col) 7
. 1~ 1
+ [[dL (o oo ]) 2 @[[|AT (Jeoo ) 224 - (C.7)
We decompose dI'(j, ¢) = dI'(j, i0co) + dT'(J, i00Coo ) and estimate each term separately. We have, using that
I3l <1,
i 1 1
(¢, dT(j, dgco) ) Z (liocol 2 &, liocol 211,

where |igcpl; == 1®---® 1 Rigleg] ® 1 ® -+ - ® 1, with the operator |igcy| appearing in the I** component of
the tensor product. By the Cauchy-Schwarz inequality, we obtain

(.40 inco))| < 3 liocol BlllincolF ] < (Z lliocol? 911%) * (S liocol v12)
=1

=1

N

= [[dT (Jiocol) S 1T (Jiocol) 2 -
Since ||dI‘(\ioco\)%z/1H]:(h@h) = ||dI‘(|cO|)%1/J||7.—(b), we obtain the first term in the r.h.s. of (C.7). The second

one is obtained exactly in the same way. (C.6) can be proven in a similar manner. ]

In the following lemma, as in the main text, the operator jo, on L2(R?) is of the form j,, = X be w15
ct™® =

where, recall, b = $(ve(k) -y + h.c.), where v (k) = 0.Vw, 6. = sreande=t"" k> 0.

Lemma C.4. Assume oo+ > 1. Let u € F. Then H —1e _’HftuH — 0, ast — oo.

Proof. Assume that u € D(d['((y))). Using unitarity of e~ and the fact that e *Hs* = ['(e™™*), we
obtain

H(F(]oo) _ 1)e—intuH _ H( zwt] e zwt) _ 1)UH < Hdr(eiwtjooe—iwt)

(C.8)

where jo = 1 — jo. Using the identity e®*“b.e~"“ = b, + 0.t, one shows that
itw —ttw __
€ X%SIG = Xbectget,gl.

Since a + k > 1, we have, by the Helffer-Sjostrand formula, Xpetoct o; = Xbett o + O(t=(e+==1)) Due to
ot = ctd =

—2b€ >1on SUPP X bett < for ¢ sufficiently large, we have

||X%g1¢” < ’

2(y)
a0 < 229,
and therefore

HdF be+9 t<1 H < dF( )UH

Together with (C.8), this shows that ||(I'(jso) — 1)e _ZHftuH — 0, for u € D(dL'((y))). Since D(dI'({y))) is
dense in F, this concludes the proof. O
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APPENDIX D. ESTIMATES OF Py

Lemma D.1. Assume (1.6) with u > —1/2 and (1.7). Then Ran(P,) C D(N2

) N D(AC(b?)2), in other
words, the operators N%Pgs and dI‘(bf)%Pgs are bounded. Moreover, we have ||dT'(b?

2)% Pl = O(t%).
Proof. Let ®4s € Ran(Pys). The well-known pull-through formula gives
a(k)®gs = —(H — Egs + |k|)7lg(k)q)gs- (D.1)

Since ||(H — Egs + |k|) 7| < |k| ™!, one easily deduces that

Img(k)|13, _
[ aapar < ([ ST ) a7 B S e
ks IR

for any 1 > —1/2, where we used (1.6) and (1.7) in the last inequality. This implies that N Py, is bounded.
To estimate HdF(bf)%PgsH, we decompose

i 34| ilk|
be= k- Vi + - .
K[+t T2k iR 2(k] + tR)2
Using again that ||(H — Egs + |k|) || < |k|~!, we obtain
3i[k| . ) .
HW(H — Egs + |k]) 1g(k)q)gs < |kl 1H7719(k3)||77t,[,||771 1‘I’gs||7 (D.2)
and
ilk| _ = _
| s e = B D)™ 0% | S 21K g () o, i @ (D3)

Moreover, we have
IVi(H — Egs + [E) 71 S I(H = Egs + k)72 < k]2,
and hence

k- Vi(H = Egs + [K)) " g (k) gs

1
I
S (R mg (k) e, + t Imn2Veg (k) o, ) Inn 0z sl (D.4)
Estimates (D.2), (D.3), (D.4) together with (D.1) and (1.6)—(1.7) imply that

1 i 3i|k| i|k| 2
ar(p? @52:/ S v - ), || die < 25| @ |2,
|| ( 5)2 g || RS <|]€| +tK kTt 2(|k‘| _"_t_ﬁ) 2(|k‘| +t—n)2)a( ) g ~ H g ||
for any p > —1/2. This shows that [|[d['(b2)2 Pyl|| = O(t%). 0O

APPENDIX E. THE PROOF OF THE EXISTENCE OF W, UNDER ASSUMPTION (1.19)

Let p, := X@i/Qw”/Q and recall that x = xw<1, with w = (%)27 and v = Cl;;. We begin with the following

weighted propagation estimates, which are a straightforward extensions of the estimates of Theorem 3.1:

[ e ar i)t < (E.1)
for p and « as in Theorem 3.1 and any 1y € H, and, if in addition assumption (1.19) of Theorem 1.1 holds,
/Oo dt t=|dT (w2 xpm1w™ ) B ||* S Cluo), (E.2)

and 1
[ e i om0l S Gl (3

for any ¢y € D. Likewise, under assumption (1.19) of Theorem 1.1, the proof of the maximal velocity
estimate (1.21) of [10] can easily be extended to the following weighted maximal velocity estimate:

A0 (@™ 2xz 10 2) B | € (@02 w1 2) + 1) 2o | + Clabo). (E.4)
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for any ¢ > 1, v < min(§ &L, 1) and ¢y € DN D(dI'(w “12()0w=1/2)3),

We only mention that to obtain for instance (E.2), we estimate the interaction term using (2.14) with
d = —1/2 together with the inequality (3.16) and the assumption (1.19).

Now, let 19 € D N D(AT (w2 (y)w=1/2)2). We decompose (W (t') — W (t))io as in Equations (5.28)—
(5.32). Using the commutator estimates of Appendix B and Hardy’s inequality, we verify that

1030, dho) o1 = 012X (b, 3o )Xx0 % + Ot~ ot UFRI/2),

and likewise for the remainder terms rem;. Hence Equations (5.31)—(5.32) can be transformed into

dj = i die ) + 0 2rem] V2 (E:5)

rem) = rem; + O (¢t 20F(1+1)/2), (E.6)
where rem; is given in (5.32). These relations give

Go = G) + Rem), (E.7)
where Gy := L UAL(j,;), with & = (G0, Co) == (p1dhp—1, pidkp—1), and
Rem), := Gy — Gl = UdI'(j, rem)).
Next, we consider, as above, A = Sup| 5, 1=1 | ftt/ ds(és, Gots)|, where ¢, = e~ 15 f(H)dy. Let

‘1/2 |1/2

ap = P1|Jo |J P-1,
aoo:plljooll/2 = [it %=
We have ¢y = —agbg, Coo = @ooboo. Exactly as for (C.5)7 one can show that, if ¢ = (agbo, doobso), Where

ao, by, G, oo are operators on f, then
(6, dT(j, ¢)u)| < [[dT(agag)? @ 14|l AT (bsbo) 24|
+ 11 @ AT (a0caZ,) 2 || [T (b2, boo ) 2 . (E.8)
Hence G} satisfies
(. Go)] < = (14T (a0a) © 18]]aT (b3bo) v
+ 11 ® dT (aseal,) * oll| AL (b boo) 2 9. (B.9)
By the Cauchy-Schwarz inequality, (E.9) implies

1
2

t t’ 1 t’
[ dslton Gl < ([ dsslarann)t © 16,)2) ( / dss-audr<babo>ws||2)
t t

1
/a(ks *|[1® dl(aat,) 161 L/ ds s~ A0 (b2bso) b )
Since agaf and asca’, are of the form p}xp. —ctep1, the weighted minimal velocity estimate (E.3) implies
> —a|| A7 VL7012 n
| dss @ i) b S 1l
1

where c/ll\“(c#lc’#l)% stands for dT'(apag)? @1 or 1 ® dl'(asea’,)?. Likewise, since bby and bf_bso are of the
form p* | xp, =ctop—1, the weighted minimal velocity estimate (E.1) implies

/1 ds s_o‘|‘dF(c;¢2C#2)%¢SHQ < C(¥o),

with cyo = bg or bss. The last three relations give

0, t,t — . (E.10)

t’ _
sup | [ ds (3, G| —
t

lIdoll=1
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Applying likewise Lemma C.3 of Appendix C, one verifies that Rem; satisfies
16, Rem)| < 18] (17204 2 a0 (Yo £ T (™ 2l xo™/2) 2ol
+ A0 @A w0 D) ).

Using (1.19), the weighted minimal velocity estimate (E.2) and the weighted maximal velocity estimate
(E.4), we conclude as above that

t/
sup ‘/ ds{¢s, Remyps)| — 0, ¢, — oo. (E.11)
ldoll=1"t
Equations (E.10) and (E.11) then imply
t’ )
A= H/ dsf(H)e ™G, | — 0, ¢, — oo. (E.12)
t

The estimate of G is the same as above, which shows that W(t), and hence W (t), are strong Cauchy
sequences. Thus the limit W, exists.

SUPPLEMENT I. THE WAVE OPERATORS

In this supplement we briefly review the definition and properties of the wave operator 2, and establish
its relation with W, in Theorem 1.2 below. For simplicity we consider again hamiltonians of the form (1.4)—
(1.5). Let Hp = Hpp(H)NE(_so 5y (H) be the space spanned by the eigenfunctions of H with the eigenvalues
in the interval (—oo,X). Define ho := {h € L2(R?), [ |h[2(|k|~! + |k|?)dk < oo}. The wave operator Q4 on
the space Hp ® Fan(ho), is defined by the formula

Q4 = §—lim eI (emH @ e~ itHr), (I.1)
As in [19, 26, 27, 39], it is easy to show

Theorem I.1. Assume (1.6) with u > —1/2 and (1.7). The wave operator Q. exists on Hy @ Fan(ho) and
extends to an isometric map, Q4 : Has — H, on the space of asymptotic states, Has := Hp @ F.

Proof. Let hy(k) := e~ ¥l n(k). For h € D(w™/?) s.t. 3°h € D(W!®I=1/2), |a| < 2, we define the asymptotic
creation and annihilation operators by (see [19, 26, 27, 35, 39])

o (h)® = tiigloo et a# (hy)e @,

for any ® € D(|H|'/?)Ran E(_x)(H). Here a# stands for a or a*. To show that aj’f(h) exist (see
26, 39]), we define af (h) := e a# (h;)e " and compute aff (h) — af (h) = ftt/ dsdsa? (h) and dsa? (h) =
ief'Ge= "t where G := [H,a*(hs)] — a¥ (whi) = (g, he) 12k for a¥ = a* and —(h, g) r2(ak) for
a? = a. Thus the proof of existence reduces to showing that one-photon terms of the form (ng, h;) are
integrable in ¢. By (1.6), we have ||(ng, he) r2(ar) l|ln, S (1+¢)717%, with 0 < e<p + 1, which is integrable.

Moreover, as in [26, 39], one can show that ai(h) satisfy the canonical commutation relations, the relations

a+(h)¥ =0, and
lim e a#(hyy) - a¥ (hp)e & = a¥ (hy) - - a7 (hn)®, (1.2)

t—+oo
for any ¥ € Hy, h,hi, -+ ,hn € ho, and any & € E(_s ) (H). If we define the wave operator §2, on Hg, by
Qp(P®a*(hy)--a"(hn)Q) :=a’ (h1)---a’ (hn)®, (1.3)
using the canonical commutation relations, one sees that Q. extends to an isometric map Q. : Hf, — H.

Moreover, using the relation e”ﬁ(@ ® a?(hy) - a? (h,)Q) = (D) ® (a¥ (h1y) - a¥ (hnt)S2), together
with (I.1) and (I.2), we identify the definition (I.3) with (I.1). O
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Recall that Fys denotes the orthogonal projection onto the ground state subspace of H. Let Pgs = 1— Py
and P := 1 — Pqg, where, recall, Py is the projection onto the vacuum sector in F. Theorem 5.4 and its
proof imply the following result.

Theorem 1.2. Under the conditions of Theorem 5.4, we have on Ran xa(H)

Q4 (Pys @ Po)Wy Py + Q4 (Pys ® Po)W, Py = 1. (L4)

Proof. Let 1y € Ranxa(H). For every €” > 0 there is 6” = §(¢””) > 0, s.t.

H'lr/)O — YPoerr — PgstH < 6/17 (15)

where Yo = xa_, (H)Yo, with Ao = [Egs + d,a]. Proceeding as in the proof of Theorem 5.4 with e~
instead of g, we arrive at (see (5.65))

Yoor = e M (e= Bt By @ e ity o 1 (Hp)) o + O() + C(¢ymog(1) + C()om(1),  (L6)

where we choose ¢g. such that ¢ € D(AT((y))) ® Fan(ho) and ||Wy thoer — doer|| < €. Now using Theorem
1.1, we let t — oo, next m — oo to obtain

w()e// = Q+ (Pgs ® X(Ovangs] (Hf))¢0€/ + O(el)' (17)
Since Q is isometric, hence bounded, we can let ¢ — 0, which gives
Yoer =y (Pgs ® X(0,a— Egﬁ](Hf))W"’wOE” =0 (P ® PQ)WJr gSQZ}OE” (L.8)

Here Weiused that X(O,a—Egs](Hf) = PQX(O,a—EgS](Hf)a together with X(O,a—Egs](Hf)W—i-wOe” = Witger and
Yoerr = Pygthoer. Introducing (I1.8) into (I.5) and letting ¢ — 0, we obtain

Yo = Q4 (Pes @ Pa) Wy Pastho + Pastbo,
that is
Q4 (Pys @ Po)W, Pys + Pos = 1.
Since, by (5.6) and (I.3), we have Q. (Pys ® Po)W, Pys = Py, this implies (1.4). O

SUPPLEMENT II. CREATION AND ANNIHILATION OPERATORS ON FOCK SPACES

Recall that the propagation speed of the light and the Planck constant divided by 27 are set equal to 1.
Recall also that the one-particle space is b := L2(R?; C), for phonons, and b := L2(R3; C?), for photons. In
both cases we use the momentum representation and write functions from this space as u(k) and u(k, A),
respectively, where k € R3 is the wave vector or momentum of the photon and A € {—1, +1} is its polarization.

With each function f € b, one associates creation and annihilation operators a(f) and a*(f) defined,
for u € ®7H, as

a*(f)iu—vVn+1f@su and a(f):u— /n(f,uyp, (IL.1)

with (f,u)y := [ f(k)u(k, k1,...,kn—1)dk, for phonons, and (f,u)y := Soacro J Akf (R, Nun (k, Ak, Ar,
v kn—1, An—1), for photons. They are unbounded, densely defined operators of T'(h), adjoint of each other
(With respect to the natural scalar product in F) and satisfy the canonical commutation relations (CCR):

[a#(f)’a#( )] =0, [a(f),a*(g)] = <.fvg>7

where a” = a or a*. Since a(f) is anti-linear and a*(f) is linear in f, we write formally

n= [T (5 = [ £ )

Z/fk)\

for phonons, and

-

e

J 7

2
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for photons. Here a(k) and a*(k) and ay(k) and a} (k) are unbounded, operator-valued distributions, which
obey (again formally) the canonical commutation relations (CCR):

[a*(k),a”(K)] =0, [a(k),a" (k)] = o(k — k'),

[a¥ (k),a%,(K)] =0, [ax(k),a} (K)] = 6 n0(k — &),

where a¥ = a or a* and af =ay or a3.

Given an operator 7 acting on the one-particle space b, the operator dF( ) (the second quantization of 7)
defined on the Fock space F by (1.3), can be written (formally) as dT'(t) := [ dk a*(k)7a(k), for phonons,
and dT'(7) := 3°,_, , [ dka}(k)Tax(k), for photons. Here the operator 7 actb on the k-variable. The precise
meaning of the latter expression is (1.3). In particular, one can rewrite the quantum Hamiltonian Hy in
terms of the creation and annihilation operators, a and a*, as

H=Y / dk o (k)w(k)ax (k) (1.2)
A=1,2

for photons, and similarly for phonons.
The relations below are valid for both phonon and photon operators. Commutators of two dI" operators
reduces to commutators of the one-particle operators:

[dL(7),dD(r")] = dT([r, 7']). (IL.3)

Let 7 be a one-photon self-adjoint operator. The following commutation relations involving the field
operator ®(f) = 2= (a*(f) + a(f)) can be readily derived from the definitions of the operators involved:

V3
[@(f), ®(9)] = i Tm(f, g}, (IL.4)
[@(f), dI'(7)] = i®(iT f), (IL5)
[O(r), ®(S)] = T(T)a((1 = 7)f) —a™ (1 = 7) /)T(7). (IL.6)

Exponentiating these relations, we obtain

e ®Np(g)e ) = d(g) — Im(f, g)p, (IL.7)
DA (r)e ™) = dD(1) — (it f) + %Re(wf, o (IL.8)
e ?ND(1)e ) = T(7) + /01 ds eI (N)a((1 = 7)f) — a*((1 = 7) f)T(7))e =120, (11.9)

Finally, we have the following standard estimates for annihilation and creation operators a(f) and a*(f),
whose proof can be found, for instance, in [7], [34, Section 3], [40]:

Lemma II.1. For any f € b such that w™?/2f € b, the operators a¥ (f)(dT(w?) + 1)71/2, where a¥ (f)
stands for a*(f) or a(f), extend to bounded operators on H satisfying

la(f)(dT(w?) +1)72|| < [lw™?/2f|ly,
[|a* (/)@ (WP) + 1) 2] < w2 Fly + 1 f]lo-

If, in addition, g € b is such that w="/%g € b, the operators a¥ (f)a# (g)(dT(wP) 4+ 1)~ extend to bounded
operators on H satisfying

la(f)alg)(dT(w?) +1)7H| < llw™2f Iyl gy,
a* (£)alg)(d0@?) + 1) M| < (o™ flls + 11£1ls) o™ 2glly,
la* (£)a* (@)@l @) + D) 7H < (o™ Fllg + 1£lly) (o™ 2gllg + llglly)-

)
)
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