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Abstract. We consider an abstract pseudo-Hamiltonian for the nuclear optical model, given
by a dissipative operator of the form H = HV −iC∗C, where HV = H0+V is self-adjoint and
C is a bounded operator. We study the wave operators associated to H and H0. We prove
that they are asymptotically complete if and only if H does not have spectral singularities
on the real axis. For Schrödinger operators, the spectral singularities correspond to real
resonances.

1. Introduction

In this paper we study the quantum-mechanical scattering theory for dissipative quantum
systems. A typical example is a neutron interacting with a nucleus. When a neutron is
targeted onto a complex nucleus, it may, after interacting with it, be elastically scattered off
the nucleus or be absorbed by the nucleus, leading to the formation of a compound nucleus.
The concept of a compound nucleus was introduced by Bohr [2].

In [18], Feshbach, Porter and Weisskopf proposed a model describing the interaction of a
neutron with a nucleus, allowing for the description of both elastic scattering and the formation
of a compound nucleus. The force exerted by the nucleus on the neutron is modeled by a
phenomenological potential of the form V − iW , where V , W are real-valued and W ≥ 0. The
nucleus is supposed to be localized in space, which corresponds to the assumption that V and
W are compactly supported or decay rapidly at infinity. On L2(R3), the pseudo-Hamiltonian
for the neutron is given by

H = −∆ + V − iW. (1.1)
In the following, a linear operatorH is called a pseudo-Hamiltonian if−iH generates a strongly
continuous contractive semigroup {e−itH}t≥0. For any initial state u0, with ‖u0‖ = 1, the map
t 7→ ‖e−itHu0‖ is decreasing on [0,∞), and the quantity

pabs := 1− lim
t→∞

∥∥e−itHu0

∥∥2 (1.2)

gives the probability of absorption of the neutron by the nucleus, i.e., the probability of
formation of a compound nucleus. The probability that the neutron, initially in the state u0,
eventually escapes from the nucleus is given by pscat := limt→∞ ‖e−itHu0‖2, and in the case
where this probability is strictly positive, one expects that there exists an (unnormalized)
scattering state u+ such that ‖u+‖2 = pscat and

lim
t→∞

∥∥e−itHu0 − eit∆u+

∥∥ = 0. (1.3)

This model is referred to as the nuclear optical model, the term optical being used in ref-
erence to the phenomenon in optics of refraction and absorption of light waves by a medium.
The model is empirical in that the form of the potentials V and W are determined by opti-
mizing the fit to experimental data. Usually, V and W are decomposed into a sum of terms
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corresponding to the form of the expected interaction potentials in different regions of physical
space, and sometimes a spin-orbit interaction term is included. We refer to e.g. [24] or [17]
for a thorough description. A large range of observed scattering data can then be predicted
by the model to a high precision.

Since the explicit expression of the pseudo-Hamiltonian rests on experimental scattering
data, it is desirable to develop the full scattering theory of a class of models, in order to
justify their use from a theoretical point of view. In this paper, we consider an abstract
pseudo-Hamiltonian generalizing (1.1), of the form

H := H0 + V − iC∗C. (1.4)

Under natural assumptions, (1.4) defines a dissipative operator acting on a Hilbert space,
generating a strongly continuous semigroup of contractions. Our hypotheses on H0, V and C
will be formulated in such a way that they can be verified in the particular case where H is
given by (1.1).

Mathematical scattering theory for dissipative operators on Hilbert spaces has been consid-
ered by many authors. We mention here works, related to ours, by Martin [30], Davies [5, 6]
and Neidhardt [34], for general abstract results, Mochizuki [32] and Simon [39], for Schrödinger
operators of the form (1.1), and by Kato [28], Wang and Zhu [44], and Falconi, Schubnel and
the authors [16] for “weak coupling” results. The existence of the wave operators associated to
H and H0 is established under various conditions. But proving their asymptotic completeness
is a much more difficult problem which, to our knowledge, is solved only in some particular
cases; (see [16, 28, 44] for weak coupling results, and, e.g., Stepin [40], for some models in one
dimension). We will recall the definition of the wave operators and the notion of asymptotic
completeness in the next section.

Scattering theory for dissipative operators on Hilbert spaces also has important applications
in the scattering theory of Lindblad master equations [7, 16]. If one considers a particle
interacting with a dynamical target and takes a trace over the degrees of freedom of the
target, it is known that, in the kinetic limit, the reduced effective dynamics of the particle is
given by a quantum dynamical semigroup generated by a Lindbladian. Scattering theory for
Lindblad master equations provides an alternative approach to studying the phenomenon of
capture. For quantum dynamical semigroups, the probability of particle capture is given by
the difference between 1 and the trace of a certain wave operator Ω applied to the initial state
of the particle, [7]. The definition of Ω and the proof of its existence rest on the scattering
properties of a dissipative operator of the form (1.4). We will outline the consequences of our
results for the scattering theory of Lindblad master equations in Section 7.

Summary of main results: Under suitable assumptions on the abstract pseudo-Hamiltonian
(1.4), we prove that the space of initial states for which the probability of absorption pabs in
(1.2) is equal to 1 coincides with the subspace spanned by the generalized eigenvectors of H
corresponding to non-real eigenvalues. For any initial state u0 orthogonal to all the generalized
eigenstates of H, we show that there exists a scattering state u+ 6= 0 satisfying (1.3). Using
these results, we prove that asymptotic completeness holds if and only if H does not have
“spectral singularities” on the real axis. Asymptotic completeness implies that the restriction
of H to the orthogonal complement of the subspace spanned by the generalized eigenvectors
of the adjoint operator H∗ is similar to H0. Our definition of a spectral singularity is related
to that of J. Schwartz [38] and corresponds to a real resonance in the case of Schrödinger
operators of the form (1.1).
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In the next section we describe the model that we consider and we state our results in
precise form.

2. Hypotheses and statement of the main results

2.1. The model. Let H be a complex separable Hilbert space. On H, we consider the
operator (1.4), where H0 is self-adjoint and bounded from below, V is symmetric and C ∈
L(H). Without loss of generality, we suppose that H0 ≥ 0. Moreover, we assume that V and
C∗C are relatively compact with respect to H0 so that, in particular,

HV := H0 + V,

is self-adjoint on H, with domain D(HV ) = D(H0), and H is a closed maximal dissipative
operator with domain D(H) = D(H0).

That H is dissipative follows from the observation that

Im(〈u,Hu〉) = −‖Cu‖2 ≤ 0,

for all u ∈ D(H). This implies (see e.g. [14] or [8]) that the spectrum of H is contained in the
lower half-plane, {z ∈ C, Im(z) ≤ 0}, and that −iH is the generator of a strongly continuous
one-parameter semigroup of contractions {e−itH}t≥0. In fact, since H is a perturbation of the
self-adjoint operator HV by the bounded operator −iC∗C, −iH generates a group {e−itH}t∈R
satisfying ∥∥e−itH∥∥ ≤ 1, t ≥ 0,

∥∥e−itH∥∥ ≤ e‖C∗C‖|t|, t ≤ 0,

(see [14] or [8]).
Let σ(H) denote the spectrum of H. Because V and C∗C are relatively compact pertur-

bations of H0, the essential spectrum of H, denoted by σess(H), coincides with the essential
spectrum of H0; (see Section 3.1 for the definition of the essential spectrum of a closed op-
erator). Moreover σ(H) \ σess(H) consists of an at most countable number of eigenvalues of
finite algebraic multiplicities, that can only accumulate at points of σess(H). See Figure 1.

Figure 1. Form of the spectrum of H. The essential spectrum coincides with that
of H0 and is contained in [0,∞). The eigenvalues on the real axis are negative, of finite
algebraic multiplicities and associated to eigenvectors belonging to Hb(H) (see (2.1)). The
eigenvalues with strictly negative imaginary parts have finite algebraic multiplicities and are
associated to generalized eigenvectors belonging to Hp(H) (see (2.3)).

Before stating our main results, we introduce some notations (Section 2.2) and our main
hypotheses (Section 2.3).
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2.2. Spectral subspaces. The space of bound states,

Hb(H) := Span
{
u ∈ D(H), ∃λ ∈ R, Hu = λu

}
, (2.1)

is the vector space spanned by the set of eigenvectors of H corresponding to real eigenvalues.
Note that Hb(H) is usually defined as the closure of Span

{
u ∈ D(H), ∃λ ∈ R, Hu = λu

}
[6]. But it will be observed in Section 3.1 that this vector space is actually closed under our
assumptions.

For λ ∈ σ(H) \ σess(H), we denote by

Πλ :=
1

2iπ

∫
γ
(zId−H)−1dz, (2.2)

the usual Riesz projection, where γ is a circle oriented counterclockwise and centered at λ, of
sufficiently small radius (so that λ is the only point of the spectrum of H contained in the
interior of γ). The algebraic multiplicity of λ is dim Ran(Πλ). Since H is not self-adjoint,
its restriction to Ran(Πλ) may have a nontrivial Jordan form, and Ran(Πλ) is in general
spanned by generalized eigenvectors of H associated to λ, i.e., by vectors u ∈ D(Hk) such
that (H − λ)ku = 0 for some 1 ≤ k ≤ dim Ran(Πλ). We set

Hp(H) := Span
{
u ∈ Ran(Πλ), λ ∈ σ(H), Imλ < 0

}
. (2.3)

If H has only a finite number of eigenvalues with strictly negative imaginary parts the vector
space Hp(H) is closed. Moreover, defining the “dissipative space” Hd(H) by

Hd(H) :=
{
u ∈ H, lim

t→∞
‖e−itHu‖ = 0

}
, (2.4)

we have the obvious inclusion

Hp(H) ⊆ Hd(H).

It is easy to verify that the vector space Hd(H) is closed.
An important role in our analysis will be played by the adjoint operator

H∗ = H0 + V + iC∗C = HV + iC∗C. (2.5)

Note that λ ∈ σ(H∗) if and only if λ̄ ∈ σ(H), and that iH∗ generates the contraction semigroup
{eitH∗}t≥0. The spaces Hb(H∗), Hp(H∗) and Hd(H∗) are defined in the same way as for H,
namely

Hb(H∗) := Span
{
u ∈ D(H), ∃λ ∈ R, H∗u = λu

}
, (2.6)

Hp(H∗) := Span
{
u ∈ Ran(Π∗λ), λ ∈ σ(H∗), Imλ > 0

}
, (2.7)

Hd(H∗) :=
{
u ∈ H, lim

t→∞
‖eitH∗u‖ = 0

}
. (2.8)

In (2.7), Π∗λ stands for the Riesz projection associated to λ for H∗, i.e.

Π∗λ :=
1

2iπ

∫
γ
(zId−H∗)−1dz, (2.9)

where γ is any circle oriented counterclockwise and centered at λ, of sufficiently small radius.
Further properties of the subspaces introduced in this section are discussed in Section 3.
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2.3. Hypotheses. Our first hypothesis concerns the spectra of the self-adjoint operators H0

and HV .

Hypothesis 2.1 (Spectra ofH0 andHV ). The spectrum of H0 is purely absolutely continuous,
the singular continuous spectrum of HV is empty, HV has at most finitely many eigenvalues
of finite multiplicity, and each eigenvalue of HV is strictly negative.

The assumptions that the number of eigenvalues of HV is finite and that HV has no em-
bedded eigenvalues are mostly made for the purpose of simplicity of exposition. It is likely
that these assumptions can be relaxed.

It will sometimes be convenient to add the following assumption:

Hypothesis 2.2 (Eigenvalues of H). The number of non-real eigenvalues of H is finite.

Our next hypothesis concerns the wave operators for the self-adjoint operators HV and H0.

Hypothesis 2.3 (Wave operators for HV and H0). The wave operators

W±(HV , H0) := s-lim
t→±∞

eitHV e−itH0 and W±(H0, HV ) := s-lim
t→±∞

eitH0e−itHV Πac(HV )

exist and are asymptotically complete, i.e.,

Ran(W±(HV , H0)) = Hac(HV ) = Hpp(HV )⊥,

Ran(W±(H0, HV )) = H.

Here Hac(HV ) and Hpp(HV ) denote the absolutely continuous and pure-point spectral subspaces
of HV , respectively, and Πac(HV ) denotes the orthogonal projection onto Hac(HV ).

In our next assumption we require that C be relatively smooth with respect to HV , in the
sense of Kato [28].

Hypothesis 2.4 (Relative smoothness of C with respect to HV ). There exists a constant
cV > 0, such that ∫

R

∥∥Ce−itHV Πac(HV )u
∥∥2
dt ≤ c2

V ‖Πac(HV )u‖2, (2.10)

for all u ∈ H.

We recall that (2.10) is equivalent to∫
R

(∥∥C(HV − (λ+ i0+)
)−1

u
∥∥2

+
∥∥C(HV − (λ− i0+)

)−1
u
∥∥2
)
dλ ≤ 2πc2

V ‖u‖2, (2.11)

for all u ∈ Ran(Πac(HV )). See [28].
Before stating our last assumption, we introduce the following definition.

Definition 1. Let λ ∈ [0,∞). We say that λ is a regular spectral point of H if there exists a
compact interval Kλ ⊂ R whose interior contains λ and such that the limit

C
(
H − (µ− i0+)

)−1
C∗ := lim

ε↓0
C
(
H − (µ− iε)

)−1
C∗

exists uniformly in µ ∈ Kλ in the norm topology of L(H). If λ is not a regular spectral point
of H, we say that λ is a “spectral singularity” of H.
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It should be noted that only the limit of the resolvent as the spectral parameter approaches
[0,∞) from below is considered in the previous definition. Due to the fact thatH is dissipative,
the limit of the resolvent on [0,∞) from above is, in a sense that will be made precise in Section
5, automatically well-defined. It is implicitly assumed in Definition 1 that the resolvents
(H − (µ − iε))−1 are well-defined for ε > 0 small enough. In particular, λ cannot be an
accumulation point of eigenvalues of H located in λ − i(0,∞). Our definition of a spectral
singularity of H is related to that of [38] and to the notion of spectral projections for non-self-
adjoint operators [9]. More details will be given in Section 5.

In our last assumption we suppose that H has only finitely many spectral singularities and
that each spectral singularity is of “finite order”.

Hypothesis 2.5 (Spectral singularities of H). H has a finite number of spectral singularities
{λ1, . . . , λn} ⊂ [0,∞) and, for each spectral singularity λj ∈ [0,∞), there exist an integer
νj > 0 and a compact interval Kλj , whose interior contains λj, such that the limit

lim
ε↓0

(µ− λj)νjC
(
H − (µ− iε)

)−1
C∗

exists uniformly in µ ∈ Kλj in the norm topology of L(H). Moreover there exists m > 0 such
that

sup
µ≥m, ε>0

∥∥C(H − (µ− iε)
)−1

C∗
∥∥ <∞. (2.12)

As explained in the introduction, the main application we have in mind concerns Schrödinger
operators of the form (1.1), where H0 = −∆ on L2(R3), and V : R3 → R, C : R3 → C are
potentials. In this case, conditions on V and C that imply Hypotheses 2.1–2.5 are known;
(see Section 6). In particular for bounded, compactly supported potentials V and C, spectral
singularities, in the sense of Definition 1, correspond to real resonances associated to resonant
states with incoming Sommerfeld radiation condition.

2.4. Main results. Our first result shows that the subspace of “dissipative states” Hd(H) =
{u ∈ H, ‖e−itHu‖ → 0, t→∞} coincides with the subspaceHp(H) spanned by the generalized
eigenstates of H corresponding to non-real eigenvalues.

Theorem 2.6. Suppose that Hypotheses 2.1–2.5 hold. Then

Hd(H) = Hp(H).

The problem of finding conditions implying that Hd(H) = Hp(H) is quoted as open in
[6]. For small perturbations, such a result follows from similarity of H and H0 (see [28])
implying that Hd(H) = Hp(H) = {0}; but, to our knowledge, Theorem 2.6 is new, given our
assumptions.

For the nuclear optical model, Theorem 2.6 implies that, unless the initial state is a lin-
ear combination of generalized eigenstates corresponding to non-real eigenvalues of H, the
probability that the neutron eventually escapes from the nucleus is always strictly positive.

Assuming that H has no spectral singularities, we have the following result.

Theorem 2.7. Suppose that Hypotheses 2.1–2.5 hold and that H has no spectral singularities
in [0,∞). Then there exist m1 > 0 and m2 > 0 such that, for all u ∈ Hp(H∗)⊥,

m1‖u‖ ≤
∥∥e−itHu∥∥ ≤ m2‖u‖, t ∈ R.
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The second inequality of the last equation shows that the solution of the Schrödinger equa-
tion {

i∂tut = Hut
u0 ∈ Hp(H∗)⊥,

cannot blow up, as t → −∞, and that the norm of ut is controlled by the norm of the
initial state u0. For Schrödinger operators with a complex potential, a related result has been
established in [21].

Our next results concern the scattering theory forH andH0. The wave operatorW−(H,H0)
is defined by

W−(H,H0) := s-lim
t→∞

e−itHeitH0 .

It will be recalled in Section 3.2 that W−(H,H0) exists under our assumptions. One of
our main concerns is to study the vector space Ran(W−(H,H0)). This is a central issue of
dissipative scattering theory and it is also a crucial input in the scattering theory of Lindblad
master equations, as mentioned in the introduction.

Roughly speaking, the following two theorems will show that W−(H,H0) is asymptotically
complete if and only if H has no spectral singularities in [0,∞).

Theorem 2.8. Suppose that Hypotheses 2.1–2.5 hold and that H has no spectral singularities
in [0,∞). Then W−(H,H0) is asymptotically complete, in the sense that

Ran(W−(H,H0)) =
(
Hb(H)⊕Hp(H∗)

)⊥
.

In particular, the restriction of H to (Hb(H)⊕Hp(H∗))⊥ is similar to H0.

The notion of asymptotic completeness of the wave operators in our context will be discussed
in Section 3.5. It is proven in [16] that, if Hypotheses 2.1, 2.3 and 2.4 hold with cV < 2,
(see Eq. (2.10)), then Ran(W−(H,H0)) = (Hb(H) ⊕ Hd(H∗))⊥. Theorem 2.8 improves this
result in that it does not require any smallness condition on the constant cV , and shows
that Ran(W−(H,H0)) in fact coincides with the orthogonal complement of the vector space
spanned by the generalized eigenvectors of H∗.

Theorem 2.8 has further important consequences that we list in the following corollary. The
wave operator W+(H0, H) is defined by

W+(H0, H) := s-lim
t→∞

eitH0e−itHΠb(H)⊥,

where Πb(H) denotes the orthogonal projection onto Hb(H) and Πb(H)⊥ := Id − Πb(H).
The scattering operator S(H,H0) is defined by

S(H,H0) := W+(H0, H)W−(H,H0).

It will be shown in Section 3 that W+(H0, H) and S(H,H0) are well-defined under our as-
sumptions.

Corollary 2.9. Suppose that Hypotheses 2.1–2.5 hold and that H has no spectral singularities
in [0,∞). Then W+(H0, H) : H → H is surjective and

Ker(W+(H0, H)) = Hb(H)⊕Hp(H). (2.13)

Moreover, S(H,H0) : H → H is bijective.
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The equivalence between the closedness of Ran(W−(H,H0)) and the invertibility of S(H,H0)
was already observed in [6]. The surjectivity of W+(H0, H) is an obvious consequence of the
invertibility of S(H,H0). For the nuclear optical model, (2.13) implies that, for any initial
state u0 orthogonal to all the generalized eigenstates of H, there exists a scattering state
u+ 6= 0 satisfying (1.3).

Finally we will show that the assumption that H has no spectral singularities is essentially
necessary for asymptotic completeness, in the sense that if there exists a non-regular spectral
point ofH with sufficiently singular behavior, thenW−(H,H0) is not asymptotically complete.

Theorem 2.10. Suppose that Hypotheses 2.1–2.5 hold. Assume that there exist an interval
J ⊂ [0,∞) and a vector u ∈ H such that

lim
ε↓0

∫
J

∥∥C(H − (λ− iε))−1C∗u
∥∥2
dλ =∞. (2.14)

Then W−(H,H0) is not asymptotically complete:

Ran(W−(H,H0)) (
(
Hb(H)⊕Hp(H∗))⊥.

As already mentioned before, for Schrödinger operators of the form (1.1), spectral singulari-
ties correspond to real resonances. In other words, in that case, a spectral singularity is a pole
in R of the meromorphic extension of λ 7→ (H − λ2)−1 from the upper half-plane to C, where
(H − λ2)−1 is understood as a map from L2

c(R3) := {u ∈ L2(R3), u is compactly supported}
to L2

loc(R3) := {u : R3 → C, u ∈ L2(K) for all compact set K ⊂ R3}. In particular condition
(2.14) is always satisfied for any such singularity; (see Section 6). Theorem 2.8 and Theorem
2.10 then imply that W−(H,H0) is asymptotically complete if and only if H does not have
real resonances. We will come back to applications of our results to Schrödinger operators in
Section 6.

2.5. Ideas of the proof. The first step of the proof of Theorem 2.6 consists in showing that

Ran(W−(H,H0)) = S(H) ∩Hb(H)⊥, (2.15)

where
S(H) :=

{
u ∈ H, sup

t≥0

∥∥eitHu∥∥ <∞}.
It is easy to verify that Ran(W−(H,H0)) ⊂ S(H) ∩ Hb(H)⊥. The converse inclusion will be
established thanks to the property proven in [6] that Hb(H)⊥ = Hac(H), where Hac(H) is
the absolutely continuous spectral subspace of H defined in a suitable way. The definition of
Hac(H) will be recalled in Section 3.3.

The second step will use in an essential way the notion of a spectral projection for non-self-
adjoint operators [9, 38], defined by

EH(I) := w-lim
ε↓0

1

2iπ

∫
I

(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
dλ, (2.16)

where I ⊂ [0,∞) is a closed interval. We mention that such spectral projections were already
used in a stationary approach to scattering theory, for differential operators in [31, 32], and
in an abstract setting in [22, 23, 25]. We will recall that EH(I) is a well-defined projection if
H has no spectral singularities in I. Its adjoint is given by EH∗(I) and we will show that

Ran(EH∗(I)) ⊂ Ran(W+(H∗, H0)),
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where W+(H∗, H0) = s-lim eitH
∗
e−itH0 , t→∞. Taking the orthogonal complements, we will

deduce that

Hb(H)⊕Hd(H) = Ran(W+(H∗, H0))⊥ ⊂
⋂

I⊂[0,∞)

Ker(EH(I)), (2.17)

where the intersection runs over all closed intervals I ⊂ [0,∞) such that I does not contain
any spectral singularities of H. The equality in this statement is not difficult to verify.

In the last step of our proof of Theorem 2.6, we will establish that⋂
I⊂[0,∞)

Ker(EH(I)) ⊂ Hb(H)⊕Hp(H). (2.18)

The inclusions in (2.17) and (2.18) will then show that Hd(H) = Hp(H). Technically the
verification of (2.18) is the most involved part of the proof. The main ingredient will be a
spectral decomposition formula suitably modified to take into account the spectral singularities
{λj}nj=1 of H. It will be of the form

n∏
j=1

((H − i)−1 − µj)νj =

n∏
j=1

((H − i)−1 − µj)νjΠpp

+ w-lim
ε↓0

1

2iπ

∫ ∞
0

n∏
j=1

(
(λ− i)−1 − µj

)νj((H − (λ+ iε)
)−1 −

(
H − (λ− iε)

)−1)
dλ, (2.19)

where µj = (λj − i)−1 and Πpp is the sum of all Riesz projections of H corresponding to
isolated eigenvalues. Equation (2.19) may be seen as a generalization of the well-known
spectral decomposition formula for self-adjoint operators to dissipative operators with finitely
many spectral singularities. In particular, if H does not have spectral singularities, (2.19)
reduces to

Id = Πpp + w-lim
ε↓0

1

2iπ

∫ ∞
0

((
H − (λ+ iε)

)−1 −
(
H − (λ− iε)

)−1)
dλ. (2.20)

Once Theorem 2.6 is established, we will proceed to prove Theorems 2.8 and 2.10 as follows:
Using Parseval’s theorem, we will justify that, for all ε > 0 and for all u ∈ (Hb(H)⊕Hp(H∗))⊥,∫ ∞

0
e−sε

∥∥CeisHu∥∥2
ds =

1

2π

∫
R

∥∥C(H − (λ− iε))−1u
∥∥2
dλ. (2.21)

If H has no spectral singularities, using the resolvent equation and Hypothesis 2.4, we will
show that the right side of this equation remains bounded, as ε→ 0. This will prove that any
u ∈ (Hb(H) ⊕ Hp(H∗))⊥ belongs to S(H) and hence to Ran(W−(H,H0)), by (2.15). Thus
Theorem 2.8 will follow. If H does have a spectral singularity, and if (2.14) holds, we will
construct a vector u ∈ (Hb(H)⊕Hp(H∗))⊥ such that the limit of (2.21), as ε→ 0, is infinite.
Again, by (2.15), this will prove that u /∈ Ran(W−(H,H0)), and thus establish the statement
of Theorem 2.10.

Finally, Theorem 2.7 will be a consequence of Theorem 2.8.

2.6. Organization of the paper. The remainder of the paper is organized as follows. Section
3 describes preliminaries, recalling several known results that are used in the sequel. In Section
4, we prove (2.15). Our main results are established in Section 5. In Section 6, we verify
our abstract hypotheses for dissipative Schrödinger operators and, in Section 7, we sketch
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consequences of our results for the scattering theory of Lindblad master equations. For the
convenience of the reader, the proofs of several auxiliary results are presented in appendices.

3. Preliminaries

In this section, we gather some basic facts concerning the spectral and scattering theories
for H. Several results described here can be found in the literature, sometimes under slightly
different assumptions (see [5, 6, 15, 16, 30, 39]). For completeness, proofs of the main results
of this section are recalled or elaborated upon in Appendices A and B.

3.1. The spectrum of H. We begin by recalling a few spectral properties of the operator
H. The first one concerns the subspaces Hb(H) and Hb(H∗) defined in (2.1) and (2.6).

Lemma 3.1. Suppose that H = H0 + V − iC∗C, with H0 self-adjoint, V symmetric and
relatively compact w.r.t. H0, and C ∈ L(H). Then

Hb(H) = Hb(H∗) = Span
{
u ∈ D(H), ∃λ ∈ R, Hu = λu

}
⊂ Hpp(HV ) ∩Ker(C).

Lemma 3.1 is a consequence of [39, Theorem 9.1] or [6, Lemma 1]. We give a short proof
in Appendix A. Lemma 3.1 implies that, if Hpp(HV ) is finite dimensional then so is Hb(H).

For a closed operator, there are in general several definitions of essential spectrum; (see
e.g. [12]). Fortunately, these different definitions coincide in our situation. It is convenient to
define the essential spectrum of H as

σess(H) := C \ ρess(H),

where

ρess(H) :=
{
z ∈ C,Ran(H − zId) is closed,

dim Ker(H − zId) <∞ or codim Ran(H − zId) <∞
}
.

We then have that (see [29, Section IV.5.6] and [19, proof of Proposition B.2]):

Lemma 3.2. Suppose that H = H0 + V − iC∗C with H0 self-adjoint, V symmetric and
relatively compact with respect to H0, and C ∈ L(H) relatively compact with respect to H0.
Then

σess(H) = σess(HV ) = σess(H0).

Moreover

σ(H) \ σess(H) =
{
z ∈ C,Ran(H − zId) is closed,

0 < dim Ker(H − zId) = codim Ran(H − zId) <∞
}
,

and σ(H) \ σess(H) is at most countable and consists of eigenvalues of finite algebraic multi-
plicities.

Recall that, for λ ∈ σ(H) \σess(H), Πλ denotes the usual Riesz projection for H associated
to λ (see (2.2)). The range of Πλ is spanned by linear combinations of generalized eigenstates
corresponding to λ. Let

Πpp :=
∑
λ

Πλ,

where the sum runs over all λ ∈ σ(H) \ σess(H). Then

Ran(Πpp) = Hb(H)⊕Hp(H), Ker(Πpp) = (Hb(H)⊕Hp(H∗))⊥, (3.1)
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where Hp(H) and Hp(H∗) are the vector spaces spanned by the generalized eigenvectors of
H and H∗ corresponding to non-real eigenvalues (see (2.3) and (2.7)). Moreover, it is easy to
verify that

Hp(H) ⊂ Hd(H) ⊂ Hb(H)⊥, Hp(H∗) ⊂ Hd(H∗) ⊂ Hb(H∗)⊥,

where Hd(H) and Hd(H∗) are defined in (2.4) and (2.8).
To conclude this section, we remark that the only possible generalized eigenvectors corre-

sponding to a real eigenvalue are eigenvectors in the usual sense, as expressed in the following
easy lemma; (see Appendix A for the proof).

Lemma 3.3. Suppose that H = H0 + V − iC∗C, with H0 self-adjoint, V symmetric and
relatively compact with respect to H0, and C ∈ L(H). Let λ ∈ R be an eigenvalue of H and
suppose that u ∈ H satisfies u ∈ D(Hk), for some k ∈ N, (H−λ)ku = 0 and (H−λ)k−1u 6= 0.
Then k = 1, i.e., u 6= 0 and Hu = λu.

3.2. The wave operators W−(H,H0) and W+(H∗, H0). We recall conditions implying the
existence of the wave operators

W−(H,H0) := s-lim
t→∞

e−itHeitH0 , W+(H∗, H0) := s-lim
t→∞

eitH
∗
e−itH0 .

We remark that

2

∫ t

0

〈
u, eisH

∗
C∗Ce−isHu〉ds = −

∫ t

0
∂s
〈
u, eisH

∗
e−isHu〉ds = ‖u‖2 −

∥∥e−itHu∥∥2
,

and hence ∫ ∞
0

∥∥Ce−itHu∥∥2
dt ≤ 1

2
‖u‖2, (3.2)

for all u ∈ H. The same argument shows that∫ ∞
0

∥∥CeitH∗u∥∥2
dt ≤ 1

2
‖u‖2, (3.3)

for all u ∈ H. Equations (3.2) and (3.3), combined with Hypotheses 2.1, 2.3 and 2.4, imply
the existence of the wave operators W−(H,H0) and W+(H∗, H0). More precisely, recalling
that the domains of H, H∗ and H0 coincide, we have the following result.

Proposition 3.4. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Then the wave operators
W−(H,H0) and W+(H∗, H0) exist and are injective contractions. Moreover, for all t ∈ R,

e−itHW−(H,H0) = W−(H,H0)e−itH0 , e−itH
∗
W+(H∗, H0) = W+(H∗, H0)e−itH0 . (3.4)

In particular, W−(H,H0)D(H0) ⊂ D(H0), W+(H∗, H0)D(H0) ⊂ D(H0), and

HW−(H,H0)u = W−(H,H0)H0u, H∗W+(H∗, H0)u = W+(H∗, H0)H0u, (3.5)

for all u ∈ D(H0).

The existence of W−(H,H0) and W+(H∗, H0) follows from a standard Cook argument.
Contractivity is a consequence of contractivity of {e−itH}t≥0, {eitH

∗}t≥0 and unitarity of
{e−itH0}t∈R. To render our analysis self-contained, we recall a proof of Proposition 3.4 in
Appendix B.
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As mentioned in the previous section, one of our main concerns consists in studying the
vectors spaces Ran(W−(H,H0)) and Ran(W+(H∗, H0)). As stated in the following proposi-
tion, the closures of the ranges of W−(H,H0) and W+(H∗, H0) are known without requiring
any assumption beyond Hypotheses 2.1, 2.3 and 2.4.

Proposition 3.5. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Then

Ran(W−(H,H0)) =
(
Hb(H)⊕Hd(H∗)

)⊥
, Ran(W+(H∗, H0)) =

(
Hb(H)⊕Hd(H)

)⊥
.

See Appendix B for the proof of Proposition 3.5.

3.3. The absolutely continuous subspace. Following [5, 6], we define the “absolutely con-
tinuous subspace” of H, Hac(H), as follows: Let

M(H) :=
{
u ∈ H,∃cu > 0,∀v ∈ H,

∫ ∞
0

∣∣〈e−itHu, v〉∣∣2dt ≤ cu‖v‖2
}
. (3.6)

Then Hac(H) := M(H) is the closure of M(H) in H. When H is self-adjoint, this definition
coincides with the usual one based on the nature of the spectral measures of H. Likewise, we
set Hac(H

∗) := M(H∗), where

M(H∗) :=
{
u ∈ H,∃c∗u > 0, ∀v ∈ H,

∫ ∞
0

∣∣〈eitH∗u, v〉∣∣2dt ≤ c∗u‖v‖2
}
. (3.7)

Another characterization of the absolutely continuous subspace ofH follows from the theory
of unitary dilations of one-parameter contraction semigroups; (see e.g. [41] for the theory of
unitary dilations, and [34] for further relations with dissipative scattering theory). There is a
unique orthogonal decomposition

H = Hu ⊕Hc.n.u.,

where Hu and Hc.n.u. are Hilbert spaces invariant under the action of {e−itH}t≥0, such that
{e−itH}t≥0 is unitary on Hu, and completely non-unitary on Hc.n.u. (meaning that {e−itH}t≥0

is not unitary on any of the nontrivial subspaces of Hc.n.u.). It is shown in [6] (see also [15])
that, for all t ≥ 0 and u ∈ Hu, we have that e−itHu = e−itHV u, which, assuming Hypotheses
2.1, 2.3 and 2.4, implies that (see [6, Proof of Theorem 5])

Hac(H) = Hac(HV )⊕Hc.n.u..

In turn, this equality yields (see [6, Theorem 5])

Hac(H) = Hb(H)⊥, (3.8)

where Hb(H) is defined in (2.1). Likewise, Hac(H
∗) = Hb(H∗)⊥, and therefore

Hac(H) = Hac(H
∗), (3.9)

since Hb(H) = Hb(H∗), by Lemma 3.1.
Assuming thatW−(H,H0) exists, and using the intertwining property (3.4), it is not difficult

to verify that

Ran(W−(H,H0)) ⊂M(H) ⊂ Hac(H), Ran(W+(H∗, H0)) ⊂M(H∗) ⊂ Hac(H), (3.10)

see the proof of Theorem 4.1, below, for details. We further discuss these inclusions in Section
4.
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3.4. The wave operators W+(H0, H), W−(H0, H
∗) and the scattering operators. We

consider now the wave operators

W+(H0, H) := s-lim
t→∞

eitH0e−itHΠac(H), W−(H0, H
∗) := s-lim

t→∞
e−itH0eitH

∗
Πac(H

∗),

where Πac(H), Πac(H
∗) are the orthogonal projections ontoHac(H) andHac(H

∗), respectively.
We have the following result, whose proof uses the Kato smoothness estimate (2.10), an
auxiliary technical lemma that will be recalled in Section 4, Lemma 4.2, and arguments similar
to those in the proof of Proposition 3.4. We refer the reader to Appendix B for details.

Proposition 3.6. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Then the wave operators
W+(H0, H) and W−(H0, H

∗) exist and are contractions. These operators have dense ranges,
and their kernels are given by

Ker(W+(H0, H)) = Hb(H)⊕Hd(H), Ker(W−(H0, H
∗)) = Hb(H)⊕Hd(H∗). (3.11)

Moreover, for all t ∈ R,
e−itH0W+(H0, H) = W+(H0, H)e−itH , e−itH0W−(H0, H

∗) = W−(H0, H
∗)e−itH

∗
. (3.12)

In particular, W+(H0, H)D(H0) ⊂ D(H0), W−(H0, H
∗)D(H0) ⊂ D(H0), and

H0W+(H0, H)u = W+(H0, H)Hu, H0W−(H0, H
∗)u = W−(H0, H

∗)H∗u, (3.13)

for all u ∈ D(H0).

We mention that the existence ofW+(H0, H) andW−(H0, H
∗) can be proven under various

different conditions, using the Kato-Birman theory of trace-class perturbations (see [5]), the
Enss’ method (see [27, 35, 39]), or, as in our situation, Kato’s theory of smooth perturbations
(see [28] for weak coupling results and [26, 33] for assumptions comparable to ours, in the
particular case where V = 0).

In dissipative scattering theory, the scattering operators are defined by

S(H,H0) := W+(H0, H)W−(H,H0), S(H∗, H0) = W−(H0, H
∗)W+(H∗, H0). (3.14)

In view of Proposition 3.4, Proposition 3.6 and (3.10), the scattering operators can be shown
to exist.

Proposition 3.7. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Then the scattering opera-
tors S(H,H0) and S(H∗, H0) exist and are contractions. Moreover,

S(H,H0)∗ = S(H∗, H0).

The following result gives a necessary and sufficient condition for the invertibility of the
scattering operators. It is a consequence of [6, Theorem 7] and Proposition 3.6. We remark
that the proof of [6, Theorem 7] uses the assumption that there exists a conjugation operator
commuting with H0, V and C∗C. We use a slightly differently reasoning process. Details of
the proof can be found in Appendix B.

Proposition 3.8. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Then the following condi-
tions are equivalent:

(i) The scattering operators S(H,H0) and S(H∗, H0) are bijective on H.
(ii) The range of the wave operators W−(H,H0) and W+(H∗, H0) are given by

Ran(W−(H,H0)) =
(
Hb(H)⊕Hd(H∗)

)⊥
,

Ran(W+(H∗, H0)) =
(
Hb(H)⊕Hd(H)

)⊥
.
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Of course, since

Ran(S(H,H0)) ⊂ Ran(W+(H0, H)), Ran(S(H∗, H0)) ⊂ Ran(W−(H0, H
∗)),

we see that if the equivalent conditions of the previous proposition are satisfied, then the wave
operators W+(H0, H) and W−(H0, H

∗) are surjective.
Once it is known that the scattering operators exist, one can define the scattering matrices

in the usual way (see e.g. [45]). Indeed, considering for instance S(H,H0), we observe that,
by the intertwining properties (3.5) and (3.13), the operator S(H,H0) commutes with H0,
and there is therefore a direct integral decomposition of the form

H =

∫ ⊕
σ(H0)

H(λ)dλ,

with the property that

S(H,H0) =

∫ ⊕
σ(H0)

S(λ)dλ.

In other words, S(H,H0) acts as multiplication by the operator-valued function λ 7→ S(λ).
The equalities in the two equations above are interpreted as unitary equivalence. The operator
S(λ) : H(λ)→ H(λ) (for a.e. λ ∈ σ(H0)) is called the scattering matrix. We emphasize that,
in contrast to the unitary case, S(λ) may not be invertible at some points λ0 ∈ σ(H0).

3.5. Asymptotic completeness of the wave operators. To conclude this preliminary
section, we discuss the notion of asymptotic completeness of the wave operators.

Definition 2. The wave operators W−(H,H0) and W+(H∗, H0) are said to be asymptotically
complete if

Ran(W−(H,H0)) =
(
Hb(H)⊕Hp(H∗)

)⊥
, Ran(W+(H∗, H0)) =

(
Hb(H)⊕Hp(H)

)⊥
.

In unitary scattering theory (see e.g. [37]), given two self-adjoint operators A and B in
a Hilbert space, the wave operators W±(A,B) = s-limt→±∞ eitAe−itBΠac(B) are said to be
complete if Ran(W±(A,B)) = Hac(A), and asymptotically complete if Ran(W±(A,B)) =
Hpp(A)⊥. Recall that Hpp(A) (respectively Hac(A)) denotes the pure point (respectively ab-
solutely continuous) spectral subspace of A. Hence Definition 2 is natural in our situation.
Slightly different definitions of (asymptotic) completeness in dissipative scattering theory ap-
pear in the literature (see [5, 30]) but, in many examples, all definitions coincide.

Assuming that Hypotheses 2.1, 2.3 and 2.4 hold, Proposition 3.4 shows that, if W−(H,H0)
is asymptotically complete, then W−(H,H0) : H → (Hb(H)⊕Hp(H∗))⊥ is bijective. By the
intertwining property (3.5), this implies that the restriction of H to (Hb(H) ⊕ Hp(H∗))⊥ is
similar to H0.

Proposition 3.5 and the fact that Hp(H) ⊂ Hd(H) ⊂ Hb(H)⊥ imply the following propo-
sition.

Proposition 3.9. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Then the wave operators
W−(H,H0) and W+(H∗, H0) are asymptotically complete if and only if the following two
conditions are satisfied:

(a) Ran(W−(H,H0)) and Ran(W+(H∗, H)) are closed.
(b) Hp(H) = Hd(H).



DISSIPATIVE SCATTERING THEORY 15

4. Proof of (2.15)

In this section we discuss the relation between Ran(W−(H,H0)) (assuming the wave oper-
ators exists) and the absolutely continuous subspace Hac(H) (see Section 3.3). In particular
we clarify the inclusion Ran(W−(H,H0)) ⊂ Hac(H) by establishing that Ran(W−(H,H0)) =
S(H) ∩Hac(H). We recall that

S(H) =
{
u ∈ H, sup

t≥0

∥∥eitHu∥∥ <∞}. (4.1)

Similarly,
S(H∗) :=

{
u ∈ H, sup

t≥0

∥∥e−itH∗u∥∥ <∞}.
We note that the identities∥∥eitHu∥∥2

= ‖u‖2 + 2

∫ t

0

∥∥CeisHu∥∥2
ds,

∥∥e−itH∗u∥∥2
= ‖u‖2 + 2

∫ t

0

∥∥Ce−isH∗u∥∥2
ds,

which are valid for all t ≥ 0 and all u ∈ H, imply that S(H) and S(H∗) can equivalently be
defined by

S(H) =
{
u ∈ H,

∫ ∞
0

∥∥CeisHu∥∥2
ds <∞

}
, S(H∗) =

{
u ∈ H,

∫ ∞
0

∥∥Ce−isH∗u∥∥2
ds <∞

}
.

The spaces M(H) and M(H∗) have been defined in (3.6) and (3.7) and have the property
that Hac(H) = M(H) and Hac(H

∗) = M(H∗). Moreover, Hac(H) = Hac(H
∗) (see (3.9)).

The main result of this section is the following theorem.

Theorem 4.1. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Then

Ran(W−(H,H0)) = S(H) ∩Hac(H) = S(H) ∩M(H),

Ran(W+(H∗, H0)) = S(H∗) ∩Hac(H) = S(H∗) ∩M(H∗).

The proof of Theorem 4.1 is based on the following two lemmas. The first one is well-known
for self-adjoint operators. Its proof has been extended to generators of strongly continuous
one-parameter contraction semigroups in [5, Lemma 5.1].

Lemma 4.2. Let −iT be the generator of a strongly continuous one-parameter contraction
semigroup in a separable Hilbert space H. Then, for all u ∈ Hac(T ) = M(T ) (where M(T ) is
defined as in (3.6)),

lim
t→∞
〈e−itTu, v〉 = lim

t→∞

∥∥Ke−itTu∥∥ = 0, (4.2)

for all v ∈ H and all compact operators K on H.

Lemma 4.3. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Let u ∈ S(H). Then, for all
v ∈ Hac(H), 〈

v, eitHu
〉
→ 0, t→∞. (4.3)

Likewise, for all u ∈ S(H∗) and v ∈ Hac(H),〈
v, e−itH

∗
u
〉
→ 0, t→∞. (4.4)

In particular, if Hb(H) = {0}, see (2.1), then (4.3)–(4.4) hold for all v ∈ H, and, for all
compact operators K on H, we have that∥∥KeitHu∥∥→ 0,

∥∥Ke−itH∗u∥∥→ 0, t→∞. (4.5)
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Proof. We prove (4.3); the proof of (4.4) is similar. Let u ∈ S(H), v ∈ Hac(H) and ε > 0.
Since, by (3.9), Hac(H) = Hac(H

∗) = M(H∗), there exists vε ∈M(H∗) such that ‖v−vε‖ ≤ ε.
Hence, for all t ≥ 0, ∣∣∣〈v, eitHu〉− 〈vε, eitHu〉∣∣∣ ≤ muε, (4.6)

where mu := supt≥0 ‖eitHu‖.
Let g(t) := 〈vε, eitHu〉. We want to show that g(t) → 0, as t → ∞. We claim that the

function g is uniformly continuous on R. Indeed,∣∣g(t+ t′)− g(t)
∣∣ =

∣∣〈(e−it′H∗ − Id)vε, e
itHu

〉∣∣ ≤ mu

∥∥(e−it
′H∗ − Id)vε

∥∥,
and we have that ‖(e−it′H∗− Id)vε‖ → 0, as t′ → 0. This shows that g is uniformly continuous
on R. Next, we claim that g is square integrable on R. Indeed, let t0 > 0. We have that∫ t0

−∞
|g(t)|2dt =

∫ t0

−∞

∣∣〈vε, eitHu〉∣∣2dt
=

∫ 0

−∞

∣∣〈vε, ei(t+t0)Hu
〉∣∣2dt

=

∫ 0

−∞

∣∣〈e−itH∗vε, eit0Hu〉∣∣2dt ≤ c∗vε‖eit0Hu‖ ≤ c∗vεmu.

Here we have used that vε ∈ M(H∗), c∗vε is defined in (3.7), and mu := supt≥0 ‖eitHu‖,
as above. This shows that g is square integrable on R, and therefore, since g is uniformly
continuous, g(t)→ 0, as t→∞. Together with (4.6), this concludes the proof of (4.3).

To prove (4.5), it suffices to observe that, if Hb(H) = {0} then Hac(H) = H by (3.8), and
hence (4.3) implies that ∥∥KeitHu∥∥→ 0, t→∞,
for any finite-rank operator K. The result for compact operators then follows by approxima-
tion, using that ‖eitHu‖ is uniformly bounded in t, because u ∈ S(H). The same holds for
Ke−itH

∗
u, instead of KeitHu. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We only prove the statement forW−(H,H0). The proof forW+(H∗, H0)
is identical. Since M(H) ⊂ Hac(H), it suffices to prove that

S(H) ∩Hac(H) ⊂ Ran(W−(H,H0)) ⊂ S(H) ∩M(H).

The inclusion Ran(W−(H,H0)) ⊂ S(H)∩M(H) follows from the intertwining property (3.4).
Indeed, let u = W−(H,H0)v ∈ Ran(W−(H,H0)). Then∥∥eitHW−(H,H0)v

∥∥ =
∥∥W−(H,H0)eitH0v

∥∥ ≤ ‖v‖,
for all t ≥ 0, where we have used that W−(H,H0) is a contraction and eitH0 is unitary.
Therefore u ∈ S(H). Furthermore, for all w ∈ H,∫ ∞

0

∣∣〈e−itHu,w〉∣∣2dt =

∫ ∞
0

∣∣〈e−itH0v,W−(H,H0)∗w〉
∣∣2dt

≤ cv
∥∥W−(H,H0)∗w

∥∥2 ≤ cv‖w‖2,
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for some constant cv > 0, where we have used that H0 is a self-adjoint operator with purely
absolutely continuous spectrum, by Hypothesis 2.1, and that W−(H,H0)∗ is a contraction by
Proposition 3.4. Hence u ∈M(H).

To prove that S(H)∩Hac(H) ⊂ Ran(W−(H,H0)), we consider a vector u ∈ S(H)∩Hac(H).
We decompose

u = e−itHΠpp(HV )eitHu+ e−itHΠac(HV )eitHu, (4.7)
where, we recall, Πpp(HV ) and Πac(HV ) are the orthogonal projections onto the pure point
and absolutely continuous spectral subspaces of HV . We claim that∥∥e−itHΠpp(HV )eitHu

∥∥→ 0, t→∞. (4.8)

Indeed, since e−itH is a contraction for t ≥ 0, we have that∥∥e−itHΠpp(HV )eitHu
∥∥ ≤ ∥∥Πpp(HV )eitHu

∥∥.
To prove that ‖Πpp(HV )eitHu‖ → 0, as t → ∞, since Ran(Πpp(HV )) is finite dimensional
according to Hypothesis 2.1, it suffices to verify that〈

w, eitHu
〉
→ 0,

as t → ∞, for all w ∈ Ran(Πpp(HV )). We decompose w = wb + wac, with wb ∈ Hb(H) and
wac ∈ Hb(H)⊥. Since wb ∈ Hb(H) = Hb(H∗) (see Lemma 3.1), we can write〈

wb, e
itHu

〉
=
∑
j

αje
itβj 〈wj , u〉,

where the sum is finite, wj ∈ Hb(H) are eigenvectors of H∗ corresponding to real eigenvalues
βj , and αj ∈ C. Therefore 〈

wb, e
itHu

〉
= 0,

since u ∈ Hac(H) and since Hac(H) = Hb(H)⊥ (see (3.8)). Moreover, since wac ∈ Hac(H)
and u ∈ S(H), Lemma 4.3 shows that〈

wac, e
itHu

〉
→ 0,

as t→∞. Hence (4.8) is proven.
Next, we compute the limit of the second term in the right side of (4.7), e−itHΠac(HV )eitHu,

as t→∞. To this end, we write

e−itHΠac(HV )eitHu = e−itHeitHV Πac(HV )e−itHV eitHu.

Applying Cook’s argument, using (3.2) and Hypothesis 2.4 (exactly as in the proof of Propo-
sition 3.4; see Appendix B), it follows that

W−(H,HV ) := s-lim
t→∞

e−itHeitHV Πac(HV )

exists. Likewise, since u ∈ S(H), we have that
∫∞

0

∥∥CeisHu∥∥2
ds <∞ and hence, by the same

argument,
lim
t→∞

Πac(HV )e−itHV eitHu =: Πac(HV )W−(HV , H)u

exists. The last two equations, combined with the fact that e−itHeitHV is uniformly bounded
in t ≥ 0 since e−itH is a contraction and eitHV is unitary, imply that

lim
t→+∞

e−itHeitHV Πac(HV )e−itHV eitHu = W−(H,HV )Πac(HV )W−(HV , H)u. (4.9)
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Equations (4.7), (4.8) and (4.9) yield

u = W−(H,HV )Πac(HV )W−(HV , H)u.

Since W−(HV , H0) is bijective from H to Hac(HV ) = Ran(Πac(HV )) by Hypothesis 2.3, there
exists ũ ∈ H such that Πac(HV )W−(HV , H)u = W−(HV , H0)ũ. Applying the “chain rule”

u = W−(H,HV )W−(HV , H0)ũ = W−(H,H0)ũ,

we conclude that u ∈ Ran(W−(H,H0)). This completes the proof. �

5. Proof of the main results

In this section, we prove our main theorems. In Section 5.1, we establish various properties of
the spectral projections EH(I) (see (2.16)) and we show that Ran(EH(I)) ⊂ Ran(W−(H,H0)).
Next, in Section 5.2 we prove Theorem 2.6, in Section 5.3 we prove Theorem 2.8, Corollary
2.9 and Theorem 2.10, and in Section 5.4 we prove Theorem 2.7. In Section 5.5, we state and
prove some related results concerning local wave operators.

5.1. Spectral projections. Recall from Definition 1 in Section 2.3 that λ ∈ [0,∞) is said to
be a regular spectral point of H if there exists a closed interval Kλ, whose interior contains
λ, such that the limit

C
(
H − (µ− i0+)

)−1
C∗ := lim

ε↓0
C
(
H − (µ− iε)

)−1
C∗

exists uniformly in µ ∈ Kλ in the norm topology of L(H). A spectral singularity of H is then
a point λ ∈ [0,∞) which is not a regular spectral point. If λ is a regular spectral point of H
then, taking adjoints, we see that it is also a regular spectral point of H∗ in the sense that

C
(
H∗ − (µ+ i0+)

)−1
C∗ := lim

ε↓0
C
(
H∗ − (µ+ iε)

)−1
C∗

exists uniformly in µ ∈ Kλ in the norm topology of L(H).
As already mentioned in Section 2.5, if I ⊂ [0,∞) is a closed interval that does not contain

any spectral singularities, it is possible to define a “spectral projection” forH in I by mimicking
Stone’s formula,

EH(I) := w-lim
ε↓0

1

2iπ

∫
I

(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
dλ. (5.1)

Proposition 5.1 below shows that EH(I) is indeed a well-defined (but generally not an orthog-
onal) projection under our conditions. Such spectral projections for non-self-adjoint operators
have been considered in [9, 38]; see also [10] for a textbook presentation of the related theory
of spectral operators. In [38], a spectral singularity corresponds to an exceptional point λ0

outside of which the “spectral resolution” I 7→ EH(I) determined by (5.1) is countably additive
and uniformly bounded. In our context, this is a weaker requirement than that of Definition
1 in Section 2.3.

The proof of the next proposition invokes known arguments. We provide details in Appendix
C.

Proposition 5.1. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Let I ⊂ [0,∞) be a closed
interval. If I does not contain any spectral singularities of H, the weak limit in (5.1) exists in
L(H) and satisfies

EH(I1)EH(I2) = EH(I1 ∩ I2), (5.2)
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for any closed intervals I1, I2 ⊂ I, with the convention that EH(∅) = 0. In particular, EH(I)
is a projection. Its adjoint is given by

EH(I)∗ = EH∗(I) := w-lim
ε↓0

1

2iπ

∫
I

(
(H∗ − (λ+ iε))−1 − (H∗ − (λ− iε))−1

)
dλ. (5.3)

Moreover, for all t ∈ R,

eitHEH(I) = w-lim
ε↓0

1

2iπ

∫
I
eitλ
(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
dλ, (5.4)

and the family of operators {eitHEH(I)}t∈R ⊂ L(H) is uniformly bounded in t ∈ R.
In the statement of Proposition 5.1, we have only listed properties that will be used in the

proof of our main results. For further general properties concerning the spectral projections
EH(I), we refer to [9] and [10]. The main property that will be used is given in the next
theorem.

Theorem 5.2. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Let I ⊂ [0,∞) be a closed
interval containing no spectral singularities of H. Then

Ran(EH(I)) ⊂ Ran(W−(H,H0)), Ran(EH∗(I)) ⊂ Ran(W−(H∗, H0)).

Proof. We prove the first inclusion; the proof of the second one is identical. According to
Theorem 4.1, it suffices to prove that Ran(EH(I)) ⊂ S(H) ∩ Hac(H), where S(H) is defined
in (4.1) and Hac(H) is the absolutely continuous spectral subspace of H defined in Section
3.3.

Let u ∈ Ran(EH(I)). We first show that u ∈ Hac(H) = Hb(H)⊥ = Hb(H∗)⊥ (see (3.8)
and Lemma 3.1). By Lemma 3.1 and Hypothesis 2.1, we know that H∗ has at most finitely
many real eigenvalues, and that all these eigenvalues are strictly negative. If v is an eigenstate
associated to an eigenvalue λ0 < 0 of H∗, we have that

〈v,EH(I)u〉 = lim
ε↓0

1

2iπ

∫
I

〈
v,
(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
u
〉
dλ

= lim
ε↓0

1

2iπ

∫
I

〈
v,
(
(λ0 − (λ+ iε))−1 − (λ0 − (λ− iε))−1

)
u
〉
dλ = 0,

because λ0 < 0 and I ⊂ [0,∞). This implies that u ∈ Hb(H∗)⊥.
The fact that u ∈ S(H) follows from (5.4). �

5.2. The “dissipative space”. In this section we prove Theorem 2.6. We recall that the vec-
tor spaces Hp(H) and Hd(H) are defined by Hp(H) = Span{u ∈ Ran(Πλ), λ ∈ σ(H), Imλ <
0}, where Πλ denotes the Riesz projection (2.2) associated to an eigenvalue λ, and Hd(H) =
{u ∈ H, ‖e−itHu‖ → 0, t → ∞}. The corresponding spaces for H∗ are defined similarly
(see (2.7)–(2.8)). Using the results obtained in the preceding section, we prove the following
theorem.

Theorem 5.3. Suppose that Hypotheses 2.1–2.5 hold. Then

Hd(H) = Hp(H), Hd(H∗) = Hp(H∗).

Proof. We prove that Hd(H) = Hp(H), the other equality follows in the same way. Applying
Proposition 3.5 and Theorem 5.2, we deduce that

Hb(H)⊕Hd(H) = Ran(W+(H∗, H0))⊥ ⊂
⋂

I⊂[0,∞)

Ran(EH∗(I))⊥, (5.5)
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where EH∗(I) is defined in (5.3) and where the intersection runs over all closed intervals
I ⊂ [0,∞) with the property that I does not contain any spectral singularities of H. By
Proposition 5.1, Ran(EH∗(I))⊥ = Ker(EH(I)). Let

K :=
⋂

I⊂[0,∞)

Ran(EH∗(I))⊥ =
⋂

I⊂[0,∞)

Ker(EH(I)), (5.6)

where, again, it is understood implicitly that the intersection runs over all closed intervals
I ⊂ [0,∞) with the property that I does not contain any spectral singularities of H. The set
K is a closed vector space and we claim that

K ⊂ Hb(H)⊕Hp(H). (5.7)

Some of the arguments used to prove this claim can be found in [38]. It is convenient to work
with a bounded operator instead of the unbounded H. Let

R := (H − i)−1.

Obviously, R ∈ L(H) since the spectrum of H is contained in {z ∈ C, Im(z) ≤ 0}, and it
follows from Proposition 5.1 that R commutes with EH(I), which yields that RK ⊂ K. We
will show that K is contained in the vector space spanned by the generalized eigenstates of R.
Since the generalized eigenstates of R coincide with the generalized eigenstates of H, this will
prove that K ⊂ Hb(H)⊕Hp(H).

For all µ ∈ C \ {0} such that µ−1 + i /∈ σ(H), the resolvent equation implies that

(R− µ)−1 = − 1

µ

(
Id +

1

µ

(
H − (

1

µ
+ i)

)−1
)
. (5.8)

Let Σe := {µ ∈ C \ {0}, µ−1 + i ∈ [0,∞)} ∪ {0} = {(λ− i)−1, λ ∈ [0,∞)} ∪ {0}. One verifies
that

Σe = C ∩ {z ∈ C, Re(z) ≥ 0},

where C = C( i2 ,
1
2) denotes the circle centered at i/2 and of radius 1/2. Moreover, by (5.8),

Σe is contained in the essential spectrum of R. In fact, by the spectral mapping theorem (see,
e.g., Lemma 2 in Section XIII.4 of [36]), we have that

σ(R) = Σe ∪
{
µ ∈ C \ {0}, µ−1 + i is an eigenvalue of H

}
= Σe ∪

{
(λ− i)−1, λ is an eigenvalue of H

}
.

We define a contour whose interior contains Σe but no other points of the spectrum of R. Let
−e0 < 0 be the largest real eigenvalue of H. For ε > 0 small enough, let

Γε := Γ1,ε ∪ Γ2,ε ∪ Γ3,ε ∪ Γ4,ε
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be the curve oriented counterclockwise, defined by

Γ1,ε :=
{

(λ− i− iε)−1, −1

2
e0 ≤ λ ≤ γ1(ε)

}
, γ1(ε) := (ε−2 − (1 + ε)2)

1
2 ,

Γ2,ε =
{
εeiθ, θ1(ε) ≤ θ ≤ θ3(ε)

}
, εeiθ1(ε) = (γ1(ε)− i− iε)−1, θ1(ε) ∈ (0,

π

2
),

εeiθ3(ε) = (γ3(ε)− i+ iε)−1, θ3(ε) ∈ (
3π

2
, 2π),

Γ3,ε =
{

(λ− i+ iε)−1, −1

2
e0 ≤ λ ≤ γ3(ε)

}
, γ3(ε) := (ε−2 − (1− ε)2)

1
2 ,

Γ4,ε =
{

(−1

2
e0 − i+ ix)−1, −ε ≤ x ≤ ε

}
. (5.9)

See Figure 2.

Γ3,εΓ1,ε

Γ2,ε

Γ4,ε

Figure 2. The contour Γε. The thick arc represents the essential spectrum Σe of
R = (H − i)−1 and is contained in the circle C( i

2
, 1
2
). The eigenvalues of R are contained in

the closed disc of radius 1
2
centered at i

2
.

Using Riesz projections, we have that

Id = Πpp(R) +
1

2iπ

∮
Γε

(µ−R)−1dµ, (5.10)

for ε > 0 small enough, where Πpp(R) =
∑

λ Πλ(R) denotes the sum of the Riesz projections,
defined as in (2.2), associated to all the isolated eigenvalues of R corresponding to generalized
eigenstates. Since the generalized eigenstates of R coincide with those of H, we have that

Ran(Πpp(R)) = Hb(H)⊕Hp(H). (5.11)

Therefore, to prove (5.7), using (5.10) and (5.11), it suffices to show that

lim
ε↓0

∮
Γε

(µ−R)−1u dµ = 0, (5.12)

for any u ∈ K. Due to the presence of “spectral singularities” in the essential spectrum Σe of
R, we cannot compute the limit in (5.12) directly. Hence, before taking the limit, we compose
both sides of (5.10) by an operator that regularizes the resolvent (µ−R)−1 in a neighborhood
of the spectral singularities.



22 J. FAUPIN AND J. FRÖHLICH

Let {λ1, . . . λn} ⊂ [0,∞) denote the set of spectral singularities of H, see Hypothesis 2.5,
and let µj = (λj − i)−1, j = 1, . . . , n, be the corresponding “spectral singularities” of R.
Composing (5.10) by R4

∏n
j=1(R− µj)νj gives

R4
n∏
j=1

(R− µj)νj =R4
n∏
j=1

(R− µj)νjΠpp(R)− 1

2iπ

∮
Γε

R4
n∏
j=1

(R− µj)νj (R− µ)−1dµ.

By Cauchy’s formula, this can be rewritten as

R4
n∏
j=1

(R− µj)νj =R4
n∏
j=1

(R− µj)νjΠpp(R)− 1

2iπ

∮
Γε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ. (5.13)

The product µ4
∏n
j=1(µ−µj)νj regularizes the resolvent (R−µ)−1 in neighborhoods of 0 and

of the spectral singularities µj . In Appendix C, we prove that

w-lim
ε↓0

∮
Γε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ

= w-lim
ε↓0

∫ ∞
0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj
[(
H − (λ− iε)

)−1 −
(
H − (λ+ iε)

)−1]
dλ, (5.14)

and that the weak limit in the right side of (5.14) exists in L(H). Moreover, there exists a
constant c > 0 such that, for all v, w ∈ H,

lim
ε↓0

∫ ∞
0

∣∣∣(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj
〈
v,
[(
H − (λ− iε)

)−1 −
(
H − (λ+ iε)

)−1]
w
〉∣∣∣dλ ≤ c‖v‖‖w‖, (5.15)

see Appendix C. As in (5.1), we set

ẼH(I) := w-lim
ε↓0

1

2iπ

∫
I
(λ− i)−4

n∏
j=1

(
(λ− i)−1 − µj

)νj
[(
H − (λ+ iε)

)−1 −
(
H − (λ− iε)

)−1]
dλ,

for any closed interval I ⊂ [0,∞). Taking the weak limit ε→ 0+ in (5.13), we obtain that

R4
n∏
j=1

(R− µj)νj =R4
n∏
j=1

(R− µj)νjΠpp(R) + ẼH([0,∞)). (5.16)

Next, we prove that K (see (5.6)) is contained in Ker(ẼH([0,∞))). Taking the Laplace
transform of the resolvent (H − i)−1 (see (C.7) in Appendix C) it follows from Proposition
5.1 that, if I is a closed interval not containing any spectral singularities of H, then

ẼH(I) = (H − i)−4
n∏
j=1

(
(H − i)−1 − µj

)νjEH(I).
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Hence Ker(EH(I)) ⊂ Ker(ẼH(I)). For any u ∈ K =
⋂
I Ker(EH(I)), where the intersection

runs over all closed intervals I ⊂ [0,∞) \ {λ1, . . . , λn}, and any v ∈ H, τ > 0 small enough,
we thus have that 〈

v, ẼH([0,∞))u
〉

=

n∑
j=1

〈
v, ẼH([λj − τ, λj + τ ])u

〉
.

Letting τ → 0, using (5.15) and Lebesgue’s dominated convergence theorem, we deduce that
〈v, ẼH([0,∞))u〉 = 0, which in turn implies that ẼH([0,∞))u = 0. It then follows from (5.16)
that, for all u ∈ K,

R4
n∏
j=1

(R− µj)νju = R4
n∏
j=1

(R− µj)νjΠpp(R)u. (5.17)

Given Equation (5.17), we can conclude the proof of Theorem 5.3 as follows. Let u ∈ K.
We want to prove that u ∈ Hb(H) ⊕ Hp(H). If Πpp(R)u 6= 0, since R4

∏n
j=1(R − µj)νj is

invertible in Ran(Πpp(R)), Equation (5.17) shows that u ∈ Ran(Πpp(R)) = Hb(H)⊕Hp(H)
(see (5.11)), as claimed. Therefore it remains to show that if u 6= 0 then Πpp(R)u 6= 0.
Suppose that Πpp(R)u = 0. Then (5.17) implies that R4

∏n
j=1(R − µj)νju = 0, which, since

R is invertible, yields
∏n
j=1(R− µj)νju = 0. The identity

(R− µ1)ν1
n∏
j=2

(R− µj)νju = 0, (5.18)

shows that, if µ1 = 0, then
∏n
j=2(R − µj)

νju = 0 (because R is invertible). If µ1 6= 0,
expanding the product (R− µ1)ν1 , we obtain that

(−µ1)ν1
n∏
j=2

(R− µj)νju =

ν1−1∑
l=0

(
ν1

l

)
(−µ1)lRν1−l

n∏
j=2

(R− µj)νju.

This shows that
∏n
j=2(R − µj)νju ∈ D(H). Composing the left side of (5.18) by H − i, we

arrive at

(Id− µ1(H − i))(R− µ1)ν1−1
n∏
j=2

(R− µj)νju = 0,

or equivalently, since µ−1
1 = λ1 − i,

(λ1 −H)(R− µ1)ν1−1
n∏
j=2

(R− µj)νju = 0.

Since λ1 ∈ [0,∞), we know that λ1 is not an eigenvalue of H by Lemma 3.1 and Hypothesis
2.1. Therefore

(R− µ1)ν1−1
n∏
j=2

(R− µj)νju = 0. (5.19)

We have proven that (5.18) implies (5.19). Proceeding by induction, we obtain that u = 0,
which concludes our proof that K ⊂ Hb(H)⊕Hp(H).

By (5.5), this implies that Hb(H)⊕Hd(H) ⊂ Hb(H)⊕Hp(H). Since Hb(H) and Hd(H)
are orthogonal and since Hp(H) ⊂ Hd(H), this finally establishes that Hp(H) = Hd(H). �
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It should be noted that Equation (5.16) implies the spectral decomposition formula (2.19).
To see this, it suffices to compose both sides of (5.16) by (H−i)4 = R−4 and invoke arguments
of Appendix C. Since (5.16) suffices for the purpose of proving Theorem 5.3, we do not
elaborate.

5.3. Asymptotic completeness. We begin this section by proving Theorem 2.8. More
precisely, assuming that H has no spectral singularities in [0,∞), we prove that the wave
operators W−(H,H0) and W+(H∗, H0) are asymptotically complete.

Theorem 5.4. Suppose that Hypotheses 2.1–2.5 hold and that H has no spectral singularities
in [0,∞). Then the wave operators W−(H,H0) and W+(H∗, H0) are asymptotically complete.
In particular, the restriction of H to (Hb(H)⊕Hp(H∗))⊥ is similar to H0 and the restriction
of H∗ to (Hb(H)⊕Hp(H))⊥ is similar to H0.

Proof. We want to prove that

Ran(W−(H,H0)) =
(
Hb(H)⊕Hp(H∗)

)⊥
, Ran(W+(H∗, H0)) =

(
Hb(H)⊕Hp(H)

)⊥
.

By Theorem 5.3 and Proposition 3.5, we have that

Ran(W−(H,H0)) =
(
Hb(H)⊕Hp(H∗)

)⊥
, Ran(W+(H∗, H0)) =

(
Hb(H)⊕Hp(H)

)⊥
.

Therefore we must prove that(
Hb(H)⊕Hp(H∗)

)⊥ ⊂ Ran(W−(H,H0)),
(
Hb(H)⊕Hp(H)

)⊥ ⊂ Ran(W+(H∗, H0)).

Since

Ran(W−(H,H0)) = S(H) ∩Hac(H), Ran(W+(H∗, H0)) = S(H∗) ∩Hac(H)

by Theorem 4.1, and since Hb(H)⊥ = Hac(H) (see (3.8)), it suffices to verify that(
Hb(H)⊕Hp(H∗)

)⊥ ⊂ S(H),
(
Hb(H)⊕Hp(H)

)⊥ ⊂ S(H∗). (5.20)

We prove the first inclusion in (5.20). Recall that S(H) = {u ∈ H,
∫∞

0 ‖Ce
itHu‖2dt <∞}.

Let u ∈ (Hb(H)⊕Hp(H∗))⊥. To prove that u belongs to S(H), we verify that∫ ∞
0

∥∥Ceis(H+iε)u
∥∥2
ds =

1

2π

∫
R

∥∥C(H − (λ− iε))−1u
∥∥2
dλ, (5.21)

for all ε > 0, and we show that the right side of (5.21) is uniformly bounded in ε > 0, for
ε small enough. From Lebesgue’s monotone convergence theorem we can then conclude that∫∞

0 ‖Ce
itHu‖2dt <∞.

We begin by justifying (5.21). Recall that Πpp denotes the sum of all Riesz projections
associated to the isolated eigenvalues of H. Since Ker(Πpp) = (Hb(H) ⊕ Hp(H∗))⊥ (see
(3.1)), the spectrum of the restriction of H to the subspace (Hb(H)⊕Hp(H∗))⊥ is contained
in σess(H) = [0,∞). Moreover, we deduce from the resolvent equation

(H − z)−1 = (HV − z)−1 + i(HV − z)−1C∗C(HV − z)−1

− (HV − z)−1C∗C(H − z)−1C∗C(HV − z)−1,

that, for all z ∈ {z′ ∈ C, Im(z′) < 0},∥∥∥(H − z)−1
∣∣
(Hb(H)⊕Hp(H∗))⊥

∥∥∥ ≤ c|Im(z)|−2, (5.22)

for some positive constant c. Here we used, in particular, that HV is self-adjoint and that
‖C(H − z)−1C∗‖ is uniformly bounded in z ∈ {z′ ∈ C,Re(z′) ≥ 0,−ε0 < Im(z′) < 0}, for
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some ε0 > 0, as follows from the assumptions that H has no spectral singularities in [0,∞)
and that (2.12) in Hypothesis 2.5 holds. The facts that the spectrum of the restriction of
H to the subspace (Hb(H) ⊕ Hp(H∗))⊥ is contained in R and that (5.22) holds imply that
there exists a positive constant c such that, for all v ∈ (Hb(H) ⊕ Hp(H∗))⊥ and t ≥ 0,
‖eitHv‖ ≤ c(1 + t3)‖v‖ (see [13, Theorem 2.1]). In particular, for all ε > 0, s 7→ ‖e−sεeisHu‖2
is integrable on [0,∞). By Parseval’s theorem, this gives (5.21).

Next, we show that the right side of (5.21) is uniformly bounded in ε > 0 small enough. By
Hypothesis 2.1, HV has finitely many eigenvalues and all the eigenvalues of HV are negative.
Let J ⊂ (−∞, 0) be a compact interval whose interior contains all the eigenvalues of HV .
We decompose the integral over R in the right side of (5.21) into a sum of integrals over J
and R \ J and estimate each term separately. Since the spectrum of H|(Hb(H)⊕Hp(H∗))⊥ in a
complex neighborhood of J is empty, we have that∫

J

∥∥C(H − (λ− iε))−1u
∥∥2
dλ ≤ c‖u‖, (5.23)

for some positive constant c independent of ε.
To estimate the integral over R \ J , we use the resolvent equation, writing∫

R\J

∥∥C(H − (λ− iε))−1u
∥∥2
dλ

≤
∫
R\J

∥∥C(HV − (λ− iε))−1u
∥∥2
dλ

+

∫
R\J

∥∥C(H − (λ− iε))−1C∗C(HV − (λ− iε))−1u
∥∥2
dλ. (5.24)

We decompose u = upp + uac with upp ∈ Hpp(HV ) and uac ∈ Hac(HV ). Since H has no
spectral singularities in [0,∞) and (2.12) in Hypothesis 2.5 holds, there exists k > 0 such that
‖C(H − (λ− iε))−1C∗‖ ≤ k, uniformly in λ ∈ R and ε > 0 small enough. Therefore, since in
addition the eigenvalues of HV are in the interior of J , we clearly have that∫

R\J

∥∥C(HV − (λ− iε))−1upp

∥∥2
dλ

+

∫
R\J

∥∥C(H − (λ− iε))−1C∗C(HV − (λ− iε))−1upp

∥∥2
dλ ≤ c‖upp‖2, (5.25)

for some positive constant c independent of ε. For the contribution given by uac, we use
Hypothesis 2.4, which yields∫

R\J

∥∥C(HV − (λ− iε))−1uac

∥∥2
dλ

+

∫
R\J

∥∥C(H − (λ− iε))−1C∗C(HV − (λ− iε))−1uac

∥∥2
dλ ≤ 2π(1 + k)c2

V ‖uac‖2, (5.26)

where cV is the constant in Hypothesis 2.4. Equations (5.24), (5.25) and (5.26) show that∫
R\J

∥∥C(H − (λ− iε))−1u
∥∥2
dλ ≤ c‖u‖,
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for some positive constant c independent of ε. Together with (5.23), this gives∫
R

∥∥C(H − (λ− iε))−1u
∥∥2
dλ ≤ c‖u‖.

Finally, the last equation combined with (5.21) yields that, for all u ∈ (Hb(H)⊕Hp(H∗))⊥

and ε > 0 small enough, ∫ ∞
0

e−εs
∥∥CeisHu∥∥2

ds ≤ c‖u‖2,

for some positive constant c independent of ε. Lebesgue’s monotone convergence theorem
then proves that u ∈ S(H), which concludes the proof of the first inclusion in (5.20). The
proof of the second inclusion is analogous.

The facts that the restriction of H to (Hb(H)⊕Hp(H∗))⊥ and that the restriction of H∗

to (Hb(H)⊕Hp(H))⊥ are similar to H0 follow from the asymptotic completeness of the wave
operators (see Section 3.5). �

We mention that an alternative proof of Theorem 5.4 is based on the representation formula
(2.20). More precisely, if Hypotheses 2.1–2.5 hold and if H has no spectral singularities, i.e.
νj = 0 in (5.16), j = 1, . . . , n, then one can deduce from (5.16) that (2.20) holds. Using that
(Hb(H) ⊕ Hp(H∗))⊥ = Ker(Πpp) together with Equation (5.4) in Proposition 5.1, it is not
difficult to verify that (2.20) yields (Hb(H) ⊕Hp(H∗))⊥ ⊂ S(H). Asymptotic completeness
follows from this inclusion.

Theorem 5.4 combined with Propositions 3.6 and 3.8 has the following direct consequence,
which proves Corollary 2.9.

Corollary 5.5. Suppose that Hypotheses 2.1–2.5 hold and that H has no spectral singularities
in [0,∞). Then W+(H0, H) : H → H and W−(H0, H

∗) : H → H are surjective and

Ker(W+(H0, H)) = Hb(H)⊕Hp(H), Ker(W−(H0, H
∗)) = Hb(H)⊕Hp(H∗).

Moreover, S(H,H0) : H → H and S(H∗, H0) are bijective.

Next, we prove Theorem 2.10. It justifies that the hypothesis used in Theorem 5.4 according
to which H does not have any spectral singularities is essentially necessary for asymptotic
completeness.

Theorem 5.6. Suppose that Hypotheses 2.1–2.5 hold. Assume that there exist an interval
J ⊂ [0,∞) and u ∈ H such that

lim
ε↓0

∫
J

∥∥C(H − (λ− iε))−1C∗u
∥∥2
dλ =∞. (5.27)

Then Ran(W−(H,H0)) is not closed. In particular, W−(H,H0) is not asymptotically com-
plete. Likewise, if there exist an interval J ⊂ [0,∞) and u ∈ H such that

lim
ε↓0

∫
J

∥∥C(H∗ − (λ+ iε))−1C∗u
∥∥2
dλ =∞, (5.28)

then Ran(W+(H∗, H0)) is not closed and W+(H∗, H0) is not asymptotically complete.

Proof. We prove that Ran(W−(H,H0)) is not closed. By Proposition 3.5, it suffices to show
that

Ran(W−(H,H0)) (
(
Hb(H)⊕Hp(H∗)

)⊥
. (5.29)
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Recall that Πpp denotes the sum of Riesz projections associated to all the isolated eigenvalues
of H, and let Πpp := Id − Πpp. Let v := ΠppC

∗u. Then v ∈ (Hb(H) ⊕ Hp(H∗))⊥ (see
(3.1)), and we claim that v /∈ Ran(W−(H,H0)). Indeed, using Hypothesis 2.5 and applying
[13, Theorem 2.1] as in the proof of Theorem 5.4, one verifies that, for all ε > 0, the map
s 7→ ‖e−sεeisHv‖2 is integrable on [0,∞). Hence it follows from Parseval’s theorem that∫ ∞

0

∥∥Ceis(H+iε)v
∥∥2
ds =

1

2π

∫
R

∥∥C(H − (λ− iε))−1v
∥∥2
dλ

≥ 1

2π

∫
J

∥∥C(H − (λ− iε))−1v
∥∥2
dλ. (5.30)

The definition of v implies that

C(H − (λ− iε))−1v = C(H − (λ− iε))−1C∗u− C(H − (λ− iε))−1ΠppC
∗u. (5.31)

Since Πpp is a finite sum of Riesz projections corresponding to eigenvalues located in C\[0,∞),
we deduce that

lim
ε↓0

∫
J

∥∥C(H − (λ− iε))−1ΠppC
∗u
∥∥2
dλ <∞. (5.32)

Equations (5.27), (5.31) and (5.32) imply that

lim
ε↓0

∫
J

∥∥C(H − (λ− iε))−1v
∥∥2
dλ =∞.

Hence (5.30) shows that
∫∞

0 e−εs‖CeisHv‖2ds → ∞, as ε → 0, and therefore, by Lebesgue’s
monotone convergence theorem, v /∈ S(H) = {w ∈ H,

∫∞
0 ‖Ce

isHw‖2ds < ∞}. Since
Ran(W−(H,H0)) = S(H) ∩Hac(H) by Theorem 4.1, we have thus proven that (5.29) holds.

We can argue in the same way to show that Ran(W+(H∗, H0)) ( (Hb(H) ⊕ Hp(H))⊥ if
(5.28) holds. This concludes the proof. �

5.4. Proof of Theorem 2.7. As a consequence of Theorems 5.3 and 5.4, we establish the
following result, which, in particular, proves Theorem 2.7.

Theorem 5.7. Suppose that Hypotheses 2.1–2.5 hold and that H has no spectral singularities
in [0,∞). Then there exist m1 > 0 and m2 > 0 such that, for all u ∈ Hp(H∗)⊥,

m1‖u‖ ≤
∥∥e−itHu∥∥ ≤ m2‖u‖, t ∈ R. (5.33)

Likewise, for all u ∈ Hp(H)⊥,

m1‖u‖ ≤
∥∥eitH∗u∥∥ ≤ m2‖u‖, t ∈ R. (5.34)

Proof. We prove (5.33), the proof of (5.34) is identical. From Theorem 5.4 and the fact that
Hb(H) and Hp(H∗) are orthogonal, we deduce that

Hp(H∗)⊥ = Ran(W−(H,H0))⊕Hb(H),

and we recall from (3.8) and (3.10) that Ran(W−(H,H0)) and Hb(H) are orthogonal.
Let u = ub + uac ∈ Hp(H∗)⊥ with ub ∈ Hb(H) and uac ∈ Ran(W−(H,H0)). Obviously,

‖e−itHub‖ = ‖ub‖ for all t ∈ R. Let v ∈ H be such that uac = W−(H,H0)v. By Proposition
3.4 and Theorem 5.4, W−(H,H0) is injective with closed range and therefore there exists
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m1 > 0 such that ‖W−(H,H0)w‖ ≥ m1‖w‖, for all w ∈ H. Hence, using the intertwining
property (3.4),∥∥e−itHuac

∥∥ =
∥∥e−itHW−(H,H0)v

∥∥
=
∥∥W−(H,H0)e−itH0v

∥∥
≥ m1

∥∥e−itH0v
∥∥ = m1‖v‖ ≥ m1

∥∥W−(H,H0)v
∥∥ = m1‖uac‖,

for all t ∈ R, where in the second inequality we have used that W−(H,H0) is contractive.
Together with the facts thatm1 ≤ 1 (becauseW−(H,H0) is contractive) and that ‖e−itHub‖ =
‖ub‖, this proves the first inequality in (5.33).

To prove the second inequality in (5.33), we write∥∥e−itHuac

∥∥ =
∥∥W−(H,H0)e−itH0v

∥∥
≤
∥∥e−itH0v

∥∥ = ‖v‖ ≤ m−1
1

∥∥W−(H,H0)v
∥∥ = m−1

1 ‖uac‖.

Combined with the facts that m1 ≤ 1 and that ‖e−itHub‖ = ‖ub‖, this proves the second
inequality in (5.33) with m2 = m−1

1 . Hence the theorem is proven. �

5.5. Completeness of the local wave operators. We conclude this section by proving a
result that completes the picture. We have seen that if H has a spectral singularity (and if
(2.14) holds) then W−(H,H0) is not asymptotically complete. Nevertheless, in this case, we
can establish that local wave operators (on intervals not containing any spectral singularities)
are complete in an appropriate sense.

We define the local wave operators on the interval I by setting

W−(H,H0, I) := s-lim
t→∞

e−itHeitH0EH0(I), W+(H∗, H0, I) := s-lim
t→∞

eitH
∗
e−itH0EH0(I),

where EH0(I) denotes the usual spectral projection for the self-adjoint operator H0. By
Proposition 3.4, it is clear that W−(H,H0, I) and W−(H∗, H0, I) exist and that their kernels
equal Ran(EH0(I))⊥. If H has no spectral singularities in I, we can prove that the local wave
operators are complete in the following sense:

Theorem 5.8. Suppose that Hypotheses 2.1, 2.3 and 2.4 hold. Let I ⊂ [0,∞) be a compact
interval containing no spectral singularities of H. Then the maps

W−(H,H0, I) : Ran(EH0(I))→ Ran(EH(I)), (5.35)
W+(H∗, H0, I) : Ran(EH0(I))→ Ran(EH∗(I)), (5.36)

are bijective.

Remark 5.9. Proceeding as in the proof of Theorem 4.1, it is not difficult to verify that the
inverses of the maps (5.35)–(5.36) are given by

W−(H,H0, I)−1 = W−(H0, H, I) := s-lim
t→∞

e−itH0eitHEH(I),

W+(H∗, H0, I)−1 = W+(H0, H
∗, I) := s-lim

t→∞
eitH0e−itH

∗
EH∗(I).

Proof of Theorem 5.8. By Proposition 3.4, the restriction of W−(H,H0, I) to Ran(EH0(I)) is
injective. Moreover, by the intertwining property (3.4), combined with the fact that EH(I) is
well-defined by Proposition 5.1, we have that

W−(H,H0, I) = EH(I)W−(H,H0, I),
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which shows that Ran(W−(H,H0, I)) ⊂ Ran(EH(I)). To prove the converse inclusion, it
suffices to use that EH(I) is a projection (see Proposition 5.1) and apply Theorem 5.2. For if
v ∈ Ran(EH(I)), there exists u ∈ H such that v = W−(H,H0)u. Hence

v = EH(I)v = EH(I)W−(H,H0)u = W−(H,H0)EH0(I)u,

where we used again the intertwining property (3.4) in the last equality. This shows that

Ran(EH(I)) ⊂ Ran(W−(H,H0, I)),

and concludes the proof. �

In a stationary approach to scattering theory, the existence and completeness of local wave
operators has been proven for various non-self-adjoint operators H satisfying appropriate
conditions related to ours; see [22, 23, 25, 31, 32].

6. Application to Schrödinger operators

In this section we apply our abstract results to operators of the form (1.1). Therefore,
throughout the section, we set

H = −∆ + V (x)− iW (x), HV = −∆ + V (x), H0 = −∆, (6.1)

on L2(R3), with V,W : R3 → R and W ≥ 0. Since W ≥ 0 we can write W = C∗C with
C =

√
W and hence H is of the form (1.4). We do not aim at finding optimal conditions on

the potentials V andW such that our abstract hypotheses are satisfied. Rather, we verify that
our results can be applied under the assumption that V and W are bounded and compactly
supported. Extensions of our results to more general potentials are left to future work. Thus,
we assume that

V,W ∈ L∞c (R3;R) := {u ∈ L∞(R3;R), u is compactly supported}, W ≥ 0. (6.2)

This implies that V and W are relatively compact with respect to H0. In addition, we require
that

0 is neither an eigenvalue nor a resonance of HV . (6.3)
We say that 0 is a resonance of HV if the equation HV u = 0 has a solution u ∈ H2

loc(R3) \
L2(R3). Equivalently, 0 is a resonance of HV if it is a pole of the meromorphic extension of the
resolvent of HV in a sense described more precisely below (see the verification of Hypothesis
2.5).

In what follows, we verify that, assuming (6.2) and (6.3), the operators H0, HV and H in
(6.1) satisfy Hypotheses 2.1–2.5.

Verification of Hypothesis 2.1. By Fourier transformation, it is clear that the spectrum
of H0 = −∆ is purely absolutely continuous. The facts that, for V bounded and compactly
supported, the singular continuous spectrum of HV = −∆ + V (x) is empty, that HV has no
positive eigenvalues, and that HV has only finitely many non-positive eigenvalues are well-
known (see, e.g., Theorems XIII.6, XIII.21 and XIII.57 in [36]). To make sure that Hypothesis
2.1 is satisfied, it therefore suffices to assume, in addition to (6.2), that 0 is not an eigenvalue
of HV . This is assumed in (6.3).

Verification of Hypothesis 2.2. Assuming (6.2), it is known that H has only finitely
many eigenvalues with finite algebraic multiplicities. See, e.g., [20] and references therein. In
particular, Hypothesis 2.2 is satisfied.
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Verification of Hypothesis 2.3. Assuming that V is bounded and compactly supported,
the existence and completeness of the wave operators W±(HV , H0) and W±(H0, HV ) follow
from well-known arguments. See, e.g., [37] or [45].

Verification of Hypothesis 2.4. To verify Hypothesis 2.4, one can apply a result proven in
[1] (see also [3]): Assuming (6.3) and that V ∈ L∞c (R3;R), the inequality∫

R

∥∥(1 + x2)−
1+ε
2 e−itHV Πac(HV )u

∥∥2
dt ≤ c2

ε‖Πac(HV )u‖2

holds for all ε > 0, u ∈ L2(R3) and some positive constant cε. Since C =
√
W is compactly

supported, this implies that Hypothesis 2.4 is satisfied.

Verification of Hypothesis 2.5. Hypothesis 2.5 is related to the theory of resonances for
Schrödinger operators. See, e.g., [11]. Since V and W belong to L∞c (R3), the map

{z ∈ C, Im(z) > 0} 3 z 7→ (H − z2)−1 : L2(R3)→ L2(R3)

is meromorphic and extends to a meromorphic map

C 3 z 7→ R(z2) : L2
c(R3)→ L2

loc(R3), (6.4)

where, we recall, L2
c(R3) = {u ∈ L2(R3), u is compactly supported} and L2

loc(R3) = {u : R3 →
C, u ∈ L2(K) for all compact set K ⊂ R3}. Here, a map Ω 3 z 7→ A(z) ∈ L(E;F ), where
Ω ⊂ C is an open set and E, F are Banach spaces, is called meromorphic in Ω if, for all z0 ∈ Ω,
there exist a finite number of finite-rank operators A1, . . . An, and a holomorphic family of
operators z 7→ A0(z), such that

A(z) = A0(z) +
n∑
j=1

Aj
(z − z0)j

,

in a complex neighborhood of z0. A map z 7→ A(z) : L2
c(R3)→ L2

loc(R3) is called meromorphic
if, for arbitrary bounded, compactly supported potentials ρ1, ρ2, the map z 7→ ρ1A(z)ρ2 :
L2(R3) → L2(R3) is meromorphic. Resonances of H are poles of the meromorphic extension
(6.4). Hence, since C =

√
W is compactly supported,

z 7→ C(H − z2)−1C∗ : L2(R3)→ L2(R3), (6.5)

is meromorphic in {z ∈ C, Im(z) > 0} and extends to a meromorphic map in C. Each spectral
singularity z2

0 ∈ [0,∞) (with z0 ≥ 0), in the sense of Definition 1 in Section 2.3, corresponds to
a resonance −z0 ∈ (−∞, 0], i.e., a pole of (6.5). This implies that, for each spectral singularity
λ ∈ [0,∞), there exist an integer ν > 0 and a compact interval Kλ, whose interior contains λ,
such that the limit

lim
ε↓0

(µ− λ)νC
(
H − (µ− iε)

)−1
C∗

exists uniformly in µ ∈ Kλ in the norm topology of L(L2(R3)).
Moreover, it is well-known that∥∥ρ1(−∆− µ− iε)−1ρ2

∥∥ = O(µ−
1
2 ), µ→∞,

uniformly in ε > 0, for arbitrary bounded, compactly supported potentials ρ1, ρ2; see, e.g.,
[11]. Since V and W are compactly supported, it then easily follows from a Neumann series
expansion that there exists m > 0 such that

sup
µ≥m, ε>0

∥∥C(H − (µ− iε)
)−1

C∗
∥∥ <∞.
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In particular H has no resonances in (−∞,−m1/2]. Since, in addition, it is known that there
are only finitely many resonances in [−m1/2, 0], for any m > 0 (see [11]), we can conclude that
H has finitely many spectral singularities, and hence Hypothesis 2.5 is indeed satisfied.

Verification of (2.14). Finally, we verify that, if H has a spectral singularity, then (2.14) is
necessarily satisfied for operators H of the form (6.1) satisfying (6.2). Indeed, suppose that
z2

0 ∈ [0,∞) (with z0 ≥ 0) is a spectral singularity of H. Then −z0 is a resonance of H, in the
sense specified above, so that there exists a complex neighborhood Ωz0 of z0 such that

C(H − z2)−1C∗ = A0(z) +
n∑
j=1

Aj
(z + z0)j

,

for all z ∈ Ωz0 , Im(z) > 0, where z 7→ A0(z) is holomorphic in Ωz0 and Aj , j = 1, . . . , n are
finite-rank operators, with An 6= 0. Picking zλ,ε ∈ Ωz0 , Im(zλ,ε) > 0, such that z2

λ,ε = λ− iε,
for λ in a real neighborhood Jz0 of z2

0 and ε > 0 small enough, we deduce that

C(H − (λ− iε))−1C∗ = A0(zλ,ε) +

n∑
j=1

Aj
(zλ,ε + z0)j

.

For u ∈ H such that Anu 6= 0, it is then not difficult to deduce that

lim
ε↓0

∫
Jz0

∥∥C(H − (λ− iε))−1C∗u
∥∥2
dλ =∞,

which proves that (2.14) holds.

Recall that the subspaces Hb(H), Hp(H), Hd(H) and Hp(H∗) are defined in Section 2.2.
For dissipative Schrödinger operators (6.1), it follows from Lemma 3.1 and the unique contin-
uation principle (see, e.g., [36, Theorem XIII.63]) that, if W (x) > 0 on some non-trivial open
set, then Hb(H) = {0}, i.e., H does not have real eigenvalues.

Applying the results of Section 2.4, we obtain the following result.

Theorem 6.1. Let H = −∆ + V (x) − iW (x) on L2(R3) with W ≥ 0, W (x) > 0 on some
non-trivial open set and V,W ∈ L∞c (R3;R). Suppose that 0 is neither an eigenvalue nor a
resonance of HV = −∆ + V (x). Then

Hp(H) = Hd(H).

Moreover, the wave operator W−(H,H0) = s-limt→∞ e
−itHeitH0, with H0 = −∆, is asymptot-

ically complete in the sense that

Ran(W−(H,H0)) = Hp(H∗)⊥

if and only if H does not have real resonances. In this case, the restriction of H to Hp(H∗)⊥

is similar to H0 and there exist m1 > 0 and m2 > 0 such that, for all u ∈ Hp(H∗)⊥,

m1‖u‖ ≤
∥∥e−itHu∥∥ ≤ m2‖u‖, t ∈ R.

It is proven in [42] that 0 cannot be a resonance of H. Moreover, since H is dissipative, it
does not have positive resonances. It is likely that, generically,H does not have real resonances,
implying that the wave operator W−(H,H0) is generically asymptotically complete. However,
for any z0 > 0, it is not difficult to construct smooth compactly supported potentials V and
W such that −z0 is a resonance of H = −∆ + V (x) − iW (x) (see [43]). Our results clearly
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underline the importance of real resonances in the scattering theory of dissipative Schrödinger
operators.

7. Scattering theory for Lindblad master equations

In this section we outline some consequences of our results for the scattering theory of
Lindblad master equations. We refer the reader to [7] and [16] for more details and references
on this subject.

Let H be a complex separable Hilbert space. On the space of trace-class operators J1(H),
we consider a Lindbladian of the form

L(ρ) = Hρ− ρH∗ + i
∑
j∈N

WjρW
∗
j , H = HV −

i

2

∑
j∈N

W ∗jWj ,

for all ρ ∈ J1(H) where, as above, HV = H0 + V is a self-adjoint operator on H, with H0

self-adjoint and V symmetric and relatively compact with respect to H0. We suppose that,
for all j ∈ N, Wj ∈ L(H), and

∑
j∈NW

∗
jWj ∈ L(H). Since 1

2

∑
j∈NW

∗
jWj is non-negative, its

square root, denoted by C ∈ L(H), satisfies

C∗C :=
1

2

∑
j∈N

W ∗jWj .

Hence, in particular, H is a dissipative operator on H of the form (1.4). We suppose that C
is relatively compact with respect to H0.

The domain of the unbounded operator L is defined by

D(L) =
{
ρ ∈ J1(H), ρ(D(H0)) ⊂ D(H0) and

H0ρ− ρH0, defined on D(H0), extends to an element of J1(H)
}
.

It is known (see [4, Theorem 5.2]) that L is the generator of a quantum dynamical semigroup
{e−itL}t≥0, i.e., a strongly continuous one-parameter semigroup on J1(H) such that, for all
t ≥ 0, e−itL preserves the trace and is a completely positive operator. As mentioned in the
introduction, if one considers a quantum particle interacting with a dynamical target, takes
the trace over the degrees of freedom of the target and studies the reduced effective evolution
of the particle, then, in the kinetic limit, the dynamics of the particle is given by a quantum
dynamical semigroup of the form {e−itL}t≥0. The free dynamics of the particle is supposed
to be given by the group of isometries {e−itL0}t∈R, with generator

L0(ρ) = H0ρ− ρH0,

for all ρ ∈ D(L0) ⊂ J1(H). The domain, D(L0), of L0 coincides with D(L).
Let Π⊥pp : H → H denote the orthogonal projection onto (Hb(H) ⊕Hp(H))⊥. A modified

wave operator Ω̃+(L0,L) is defined by

Ω̃+(L0,L) := s-lim
t→+∞

eitL0
(
Π⊥ppe

−itL(·)Π⊥pp

)
.

In [7], the projection onto (Hb(H)⊕Hd(H))⊥ is considered instead of Π⊥pp; but we know from
Theorem 2.6 that these two projections coincide under our assumptions. It is proven in [7,
Theorem 4] (see also [16]) that the asymptotic completeness of the wave operator W−(H,H0)

implies the existence of Ω̃+(L0,L). Therefore, as a consequence of Theorems 2.6 and 2.8, we
obtain the following result.
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Theorem 7.1. Suppose that Hypotheses 2.1–2.5 hold and that H has no spectral singularities
in [0,∞). Then Ω̃+(L0,L) exists on J1(H).

For all ρ ∈ J1(H) with ρ ≥ 0 and tr(ρ) = 1, the number tr(Ω̃+(L0,L)ρ) ∈ [0, 1] is interpreted
as the probability that the particle, initially in the state ρ, eventually escapes from the target.
This quantity is therefore well-defined under our assumptions.

Appendix A. Proof of Lemmas 3.1 and 3.3

In this section we prove Lemmas 3.1 and 3.3 stated in Section 3.1.

Proof of Lemma 3.1. We prove that

Hb(H) = Span
{
u ∈ D(H), ∃λ ∈ R, Hu = λu

}
⊂ Hpp(HV ) ∩Ker(C). (A.1)

Let u ∈ D(H) be such that Hu = λu with λ ∈ R. Then

λ‖u‖2 = 〈u,Hu〉 = 〈u,HV u〉 − i‖Cu‖2.

Identifying the imaginary parts, this implies that u = 0 or u ∈ Ker(C). If u ∈ Ker(C) then
λu = Hu = HV u and therefore u ∈ Hpp(HV ). Since Hpp(HV ) and Ker(C) are vector spaces,
this establishes (A.1).

Likewise, if λu = Hu and u ∈ Ker(C) then λu = H∗u. This yields Hb(H) = Hb(H∗). �

Proof of Lemma 3.3. Let u be as in the statement of the lemma. Using that λ ∈ R, we write,
for t ≥ 0,

‖e−itHu‖ = ‖e−it(H−λ)u‖ =
∥∥∥ k−1∑
j=0

(−it)j

j!
(H − λ)ju

∥∥∥.
If k > 1, this implies that

‖e−itHu‖ ≥ tk−1

(k − 1)!

∥∥(H − λ)k−1u
∥∥−O(tk−2), t→∞,

which is in contradiction with the fact that e−itH is contractive. �

Appendix B. Existence and properties of the wave operators

In this section we prove Propositions 3.4–3.8 on the existence and properties of the wave
operators. We begin by proving Proposition 3.4.

Proof of Proposition 3.4. We establish the proposition for W−(H,H0), the proof is the same
for W+(H∗, H0). Note that most of the arguments employed here are already present in [16].

We establish the existence ofW−(H,H0). By Hypothesis 2.3, we know thatW−(HV , H0) =
s-limt→∞ e

−itHV eitH0 exists. Hence, since e−itHeitH0 is uniformly bounded in t ≥ 0 (because
e−itH is contractive and eitH0 is unitary),

e−itHeitH0u = e−itHeitHVW−(HV , H0)u+ o(1), t→∞,

for all u ∈ H. Moreover,W−(HV , H0) mapsH to Ran(Πac(HV )) by Hypothesis 2.3. Therefore,
to prove that W−(H,H0) exists, it suffices to verify that

W−(H,HV )u = lim
t→∞

e−itHeitHV u (B.1)
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exists for all u ∈ Ran(Πac(HV )). To this end we use Cook’s argument: We write,

e−itHeitHV u = u−
∫ t

0
e−isHC∗CeisHV uds. (B.2)

For 0 < t1 < t2 <∞, we have that∥∥∥∫ t2

t1

e−isHC∗CeisHV uds
∥∥∥ ≤ sup

v∈H,‖v‖=1

∫ t2

t1

∣∣〈CeisH∗v, CeisHV u〉∣∣ds
≤ sup

v∈H,‖v‖=1

(∫ t2

t1

∥∥CeisH∗v‖2ds) 1
2
(∫ t2

t1

‖CeisHV u‖2ds
) 1

2

≤ 1

2

(∫ t2

t1

‖CeisHV u‖2ds
) 1

2
,

where we used (3.3) in the last inequality. Since, for all u ∈ Ran(Πac(HV )), s 7→ ‖CeisHV u‖2 is
integrable on R by Hypothesis 2.4, this implies that

( ∫ tn
0 eisH0C∗Ce−isHu ds

)
n∈N is a Cauchy

sequence, for any sequence (tn) with tn → ∞. Hence the limit in (B.1) exists, and therefore
W−(H,H0) exists.

Next, we prove that W−(H,H0) is injective. Since

W−(H,H0) = W−(H,HV )W−(HV , H0)

from the above, and since W−(HV , H0) is bijective from H to Ran(Πac(HV )) by Hypothesis
2.3, it suffices to prove that W−(H,HV ) restricted to Ran(Πac(HV )) is injective. We claim
that

lim
t→∞

∥∥W−(H,HV )eitHV u
∥∥ = ‖u‖, (B.3)

for all u ∈ Ran(Πac(HV )). Indeed, from (B.2), we obtain that

W−(H,HV )u = u−
∫ ∞

0
e−isHC∗CeisHV uds,

for all u ∈ Ran(Πac(HV )). Applying this equality to u = eitHV v, with v ∈ Ran(Πac(HV )),
and changing variables, this gives

W−(H,HV )eitHV v = eitHV v −
∫ ∞
t

e−i(s−t)HC∗CeisHV vds.

Proceeding as above, we have that∥∥∥∫ ∞
t

e−i(s−t)HC∗CeisHV vds
∥∥∥ ≤ sup

w∈H,‖w‖=1

(∫ ∞
0

∥∥CeisH∗w∥∥2
ds
) 1

2
(∫ ∞

t

∥∥CeisHV v∥∥2
ds
) 1

2

≤ 1

2

(∫ ∞
t

∥∥CeisHV v∥∥2
ds
) 1

2 → 0, t→∞,

where we used (3.3) in the last inequality, and Hypothesis 2.4 to justify that the limit vanishes.
This proves (B.3). To conclude that W−(H,HV ) is injective, let u ∈ Ran(Πac(HV )) be such
that W−(H,HV )u = 0. Then the usual intertwining property gives

eitHW−(H,HV )u = W−(H,HV )eitHV u = 0,

for all t ≥ 0. Letting t→∞ shows that u = 0 by (B.3).
The fact that W−(H,H0) is a contraction is a direct consequence of the contractivity of

{e−itH}t≥0 and unitarity of {e−itH0}t∈R.
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Finally, the intertwining properties (3.4)–(3.5) follow from standard arguments (see, e.g.,
[37]). �

Before proving Proposition 3.5, we establish Proposition 3.6.

Proof of Proposition 3.6. We establish the existence ofW+(H0, H). The proof of the existence
of W−(H0, H

∗) is identical. Recall that Πpp(HV ) and Πac(H) denote the orthogonal projec-
tions onto Hpp(HV ) and Hac(H), respectively. Since, according to Hypothesis 2.1, Πpp(HV )
is compact, we know that Πpp(HV )e−itHΠac(H) → 0 strongly, as t → ∞, by Lemma 4.2.
Therefore is suffices to prove the existence of s-lim eitH0Πac(HV )e−itHΠac(H), as t→∞. We
write

eitH0Πac(HV )e−itHΠac(H) = eitH0e−itHV Πac(HV )eitHV e−itHΠac(H). (B.4)
Applying Cook’s argument exactly as in the proof of Proposition 3.4, and using Hypothesis
2.4, one verifies that

s-lim
t→∞

Πac(HV )eitHV e−itHΠac(H) =: W+(HV , H)

exists. Together with (B.4) and Hypothesis 2.3, this shows that s-lim eitH0Πac(HV )e−itH

exists, as t→∞, and that

W+(H0, H) = s-lim
t→∞

eitH0Πac(HV )e−itHΠac(H) = W+(H0, HV )W+(HV , H).

The facts that W+(H0, H) and W−(H0, H
∗) are contractions follow from the contractivity

of {e−itH}t≥0, {eitH
∗}t≥0 and unitarity of {e−itH0}t∈R.

To verify that the range of W+(H0, H) is dense in H, we observe that, by (3.8)–(3.10),

Ran(W+(H∗, H0)) ⊂ Hac(H
∗) = Hac(H).

This yields W+(H∗, H0) = Πac(H)W+(H∗, H0), from which one easily deduces that

W+(H0, H)∗ = W+(H∗, H0). (B.5)

Since W+(H∗, H0) is injective by Proposition 3.4, this shows that Ran(W+(H0, H)) is dense
in H. Likewise, Ran(W−(H0, H

∗)) is dense in H.
Next, we prove (3.11). The definitions of W+(H0, H) and Hd(H) (see (2.4)) imply that

Ker(W+(H0, H)) = Hac(H)⊥ ⊕
(
Hac(H) ∩Hd(H)

)
.

Since Hac(H)⊥ = Hb(H) (see (3.8)), and since it is easy to verify that Hd(H) ⊂ Hb(H)⊥, the
latter equation gives

Ker(W+(H0, H)) = Hb(H)⊕Hd(H).

The same arguments apply to W−(H0, H
∗) instead of W+(H0, H).

Finally, the intertwining properties (3.12)–(3.13) follow from standard arguments (see, e.g.,
[37]). �

Now we prove Proposition 3.5.

Proof of Proposition 3.5. To prove Proposition 3.5, it suffices to use (B.5), which implies that

Ran(W+(H∗, H0)) = Ker(W+(H0, H))⊥ =
(
Hb(H)⊕Hd(H)

)⊥
,

where the last equality follows from Proposition 3.6. The same arguments apply toW−(H,H0)
instead of W+(H∗, H0). �
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Finally we prove Propositions 3.7 and 3.8. Recall that the scattering operators S(H,H0)
and S(H∗, H0) are defined in (3.14).

Proof of Proposition 3.7. Existence and contractivity of S(H,H0) and S(H∗, H0) are obvious
consequences of Propositions 3.4 and 3.6. The relation S(H,H0)∗ = S(H∗, H0) follows directly
from the definitions involved. �

Proof of Proposition 3.8. We prove that (i) ⇒ (ii). Since S(H,H0) is bijective, there exists
m > 0 such that, for all u ∈ H,

‖S(H,H0)u‖ = ‖W+(H0, H)W−(H,H0)u‖ ≥ m‖u‖.
Since W+(H0, H) is a contraction, this implies that ‖W−(H,H0)u‖ ≥ m‖u‖, and therefore
W−(H,H0) has closed range. By Proposition 3.5, this yields

Ran(W−(H,H0)) =
(
Hb(H)⊕Hd(H∗)

)⊥
.

In the same way the bijectivity of S(H0, H
∗) implies that Ran(W+(H∗, H0)) =

(
Hb(H) ⊕

Hd(H)
)⊥.

Next, we prove that (ii) ⇒ (i). Proposition 3.4 shows that W−(H,H0) and W+(H∗, H0)
are injective with closed ranges, so that there exists m > 0 such that, for all u ∈ H,
‖W−(H,H0)u‖ ≥ m‖u‖ and ‖W+(H∗, H0)u‖ ≥ m‖u‖. Since

‖S(H,H0)u‖ = lim
t→∞
‖eitH0W−(H,H0)e−itH0u‖

≥ lim
t→∞

m‖e−itH0u‖ = m‖u‖,

we deduce that S(H,H0) is also injective with closed range. Here we have used the intertwining
property (3.4) and unitarity of e−itH . By the same argument, this shows that S(H∗, H0) is
also injective with closed range. Since S(H,H0)∗ = S(H∗, H0) according to Proposition 3.7,
this proves that S(H,H0) and S(H∗, H0) are bijective. �

Appendix C. Spectral projections for non self-adjoint operators

In this section we establish the properties of the spectral projection EH(I) (see (5.1)) stated
in Proposition 5.1. Next, we prove (5.14).

Proof of Proposition 5.1. Let I ⊂ [0,∞) be a closed interval not containing any spectral sin-
gularities of H. We first prove that the weak limit defining EH(I) exists in L(H). By the
uniform boundedness principle, it suffices to prove that

EH(I) := lim
ε↓0

∫
I

〈
u,
(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
v
〉
dλ

exists for all u, v ∈ H. Using the resolvent equation, we have that

(H − (λ± iε))−1 = (HV − (λ± iε))−1 + i(H − (λ± iε))−1C∗C(HV − (λ± iε))−1 (C.1)

= (HV − (λ± iε))−1 + i(HV − (λ± iε))−1C∗C(HV − (λ± iε))−1

− (HV − (λ± iε))−1C∗C(H − (λ± iε))−1C∗C(HV − (λ± iε))−1. (C.2)

Since HV is a self-adjoint operator and I ⊂ [0,∞) does not contain any eigenvalues of HV by
Hypothesis 2.1, Stone’s formula implies that

lim
ε↓0

1

2iπ

∫
I

〈
u,
(
(HV − (λ+ iε))−1 − (HV − (λ− iε))−1

)
v
〉
dλ = 〈u,EHV (I)v〉,
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exists for all u, v ∈ H, where EHV (I) denotes the usual spectral projection for HV .
Next, we show that∫

I

〈
u,
(
(H − (λ+ iε))−1 − (HV − (λ+ iε))−1

)
v
〉
dλ

= i

∫
I

〈
C(H∗ − (λ− iε))−1u,C(HV − (λ+ iε))−1v

〉
dλ

converges, as ε → 0+. Here we have used (C.1). By (3.3) and Parseval’s theorem, we have
that ∫

R

∥∥C(H∗ − (λ− iε))−1u
∥∥2
dλ = 2π

∫ ∞
0

e−2εt
∥∥CeitH∗u∥∥2 ≤ π‖u‖2,

for all ε > 0 and u ∈ H. Therefore Lebesgue’s monotone convergence theorem implies that λ 7→
C(H∗−(λ−iε))−1u converges in L2(R;H), as ε→ 0+, to a limit denoted by λ 7→ C(H∗−(λ−
i0+))−1u. Since HV has only finitely many eigenvalues, all negative, according to Hypothesis
2.1, and since I ⊂ [0,∞), it follows that, for all v ∈ H, λ 7→ C(HV − (λ + iε))−1Πpp(HV )v
converges to λ 7→ C(HV −λ)−1Πpp(HV )v in L2(I;H), as ε→ 0+. Moreover, using Hypothesis
2.4, we deduce from the same argument as above that λ 7→ C(HV − (λ + iε))−1Πac(HV )v
converges to λ 7→ C(HV − (λ+ i0+))−1Πac(HV )v in L2(R;H), as ε→ 0+. Hence we have that

lim
ε↓0

∫
I

〈
u,
(
(H − (λ+ iε))−1 − (HV − (λ+ iε))−1

)
v
〉
dλ

= i

∫
I

〈
C(H∗ − (λ− i0+))−1u,C(HV − (λ+ i0+))−1v

〉
dλ. (C.3)

It remains to verify that∫
I

〈
u,
(
(H − (λ− iε))−1 − (HV − (λ− iε))−1

)
v
〉
dλ

= i

∫
I

〈
u, (HV − (λ− iε))−1C∗C(HV − (λ− iε))−1v

〉
dλ

−
∫
I

〈
u, (HV − (λ− iε))−1C∗C(H − (λ− iε))−1C∗C(HV − (λ− iε))−1v

〉
dλ

converges, as ε → 0+. Here we have used (C.2). The existence of the limit as ε goes to 0
follows in the same way as in (C.3), using in addition that

sup
λ∈I

lim
ε↓0

∥∥C(H − (λ− iε))−1C∗
∥∥ <∞, (C.4)

since H does not have spectral singularities in I. Hence

lim
ε↓0

∫
I

〈
u,
(
(H − (λ− iε))−1 − (HV − (λ− iε))−1

)
v
〉
dλ

= i

∫
I

〈
C(HV − (λ+ i0+))−1u,C(HV − (λ− i0+))−1v

〉
dλ

−
∫
I

〈
C(HV − (λ+ i0+))−1u,C(H − (λ− i0+))−1C∗C(HV − (λ− i0+))−1v

〉
dλ.

Summing up, we have proven that

lim
ε↓0

1

2iπ

∫
I

〈
u,
(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
v
〉
dλ,
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exists for all u, v ∈ H. This proves the existence of EH(I) ∈ L(H) as the weak limit of the
right side of (5.1). The fact that the weak limit in the right side of (5.3) exists in L(H) follows
in the same way. The equality EH(I)∗ = EH∗(I) is a direct consequence of the definitions.

Next, we prove (5.4). Note that the arguments above show that the weak limit in the right
side of (5.4) exists in L(H). We begin by proving (5.4) for a compact interval I. Let

f(t) := w-lim
ε↓0

1

2iπ

∫
I
eit(λ−H)

(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
dλ.

Obviously, f(0) = EH(I), and therefore, to prove (5.4), it suffices to verify that the derivative
of f vanishes. We compute

∂tf(t) = w-lim
ε↓0

1

2π

∫
I
eit(λ−H)(λ−H)

(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
dλ

= w-lim
ε↓0

ε

2iπ

∫
I
eit(λ−H)

(
(H − (λ+ iε))−1 + (H − (λ− iε))−1

)
dλ. (C.5)

We claim that there exists a positive constant cI , depending on the interval I, such that, for
all u ∈ H, ∫

I

∥∥(H − (λ± iε)
)−1

u
∥∥dλ ≤ cIε

− 1
2 ‖u‖. (C.6)

Indeed, by the Cauchy-Schwarz inequality,∫
I

∥∥(H − (λ± iε)
)−1

u
∥∥dλ ≤ |I| 12(∫

I

∥∥(H − (λ± iε)
)−1

u
∥∥2
dλ
) 1

2

= |I|
1
2

(∫
I

〈
u,
(
H∗ − (λ∓ iε)

)−1(
H − (λ± iε)

)−1
u
〉
dλ
) 1

2
.

The resolvent equation gives(
H∗ − (λ∓ iε)

)−1 −
(
H − (λ± iε)

)−1

= −2i
(
H∗ − (λ∓ iε)

)−1
C∗C

(
H − (λ± iε)

)−1 ∓ 2iε
(
H∗ − (λ∓ iε)

)−1(
H − (λ± iε)

)−1
,

and therefore,∫
I

〈
u,
(
H∗ − (λ∓ iε)

)−1(
H − (λ± iε)

)−1
u
〉
dλ

= ± i

2ε

∫
I

〈
u,
(
H∗ − (λ∓ iε)

)−1 −
(
H − (λ± iε)

)−1
u
〉
dλ∓ 1

ε

∫
I

∥∥C(H − (λ± iε)
)−1

u
∥∥2
dλ.

Using the resolvent equations (C.1)–(C.2) and the same arguments as above, it is not difficult
to verify that ∫

I

∣∣〈u, (H∗ − (λ∓ iε)
)−1 −

(
H − (λ± iε)

)−1
u
〉∣∣dλ ≤ c‖u‖2,

for some positive constant c. Likewise, the resolvent equation (C.1) together with Hypothesis
2.4 and the fact that H does not have spectral singularities in I implies that∫

I

∥∥C(H − (λ± iε)
)−1

u
∥∥2 ≤ c‖u‖2.

This proves (C.6) and hence, by (C.5), that ∂tf(t) = 0. This establishes (5.4) for any compact
interval I not containing any spectral singularities. If I is unbounded, it suffices to approximate
I by a sequence of compact intervals In ⊂ I and use that both sides of (5.4), with I replaced
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by In, define operators in L(H) uniformly bounded in n ∈ N as follows from the arguments
above.

It remains to prove (5.2). We write

EH(I1)EH(I2) = w-lim
ε↓0

1

2iπ

∫
I1

(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
EH(I2)dλ.

Using the Laplace transform(
H − (λ± iε)

)−1
= i

∫ ∞
0

e−εte±itλe∓itHdt, (C.7)

which holds in the strong sense on Ran(EH(I2)) (as follows from (5.4)), we obtain from (5.4)
together with Fubini’s theorem that

EH(I1)EH(I2) = w-lim
ε↓0

1

2iπ

∫
I2

1I1(λ′)
(
(H − (λ′ + iε))−1 − (H − (λ′ − iε))−1

)
dλ′

= w-lim
ε↓0

1

2iπ

∫
I1∩I2

(
(H − (λ′ + iε))−1 − (H − (λ′ − iε))−1

)
dλ′ = EH(I1 ∩ I2).

This concludes the proof. �

Next, we prove (5.14). Recall that we want to compute the weak limit

w-lim
ε↓0

1

2iπ

∮
Γε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ,

where R = (H − i)−1, µj = (λj − i)−1, {λj}nj=1 are the spectral singularities of H, and
Γε = Γ1,ε ∪ Γ2,ε ∪ Γ3,ε ∪ Γ4,ε is the curve oriented counterclockwise defined in (5.9).

Proof of (5.14). We decompose

w-lim
ε↓0

∮
Γε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ =
4∑

k=1

w-lim
ε↓0

∮
Γk,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ,

and compute each limit separately. We will show that the integrals over Γ2,ε and Γ4,ε vanish
in the limit ε→ 0+, while the sum of the integrals over Γ1,ε and Γ3,ε converges to the expected
limit. We begin by computing the limit of the integral over Γ3,ε, which is easier than that
over Γ1,ε.

Limit of the integral over Γ3,ε. The integral over Γ3,ε is given by∫
Γ3,ε

µ4
n∏
j=1

(µ− µj)νj+1(R− µ)−1dµ

=

∫ γ3(ε)

− 1
2

e0

(λ− i+ iε)−6
n∏
j=1

(
(λ− i+ iε)−1 − µj

)νj(R− (λ− i+ iε)−1
)−1

dλ

= −
∫ γ3(ε)

− 1
2

e0

(λ− i+ iε)−4
n∏
j=1

(
(λ− i+ iε)−1 − µj

)νj(H − (λ+ iε)
)−1

dλ

−
∫ γ3(ε)

− 1
2

e0

(λ− i+ iε)−5
n∏
j=1

(
(λ− i+ iε)−1 − µj

)νjdλ, (C.8)
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where we used (5.8) in the second equality. We show that the integral over [0, γ3(ε)] can
be replaced by the integral over [0,∞) up to a term that vanishes, as ε → 0+. Using that
λ 7→ (λ− i+ iε)−1 − µj is bounded on [−1

2e0,∞) and that |λ− i+ iε|−1 ≤ 2(λ2 + 1)−1/2, for
ε > 0 small enough, one easily verifies that∫ γ3(ε)

− 1
2

e0

(λ− i+ iε)−5
n∏
j=1

(
(λ− i+ iε)−1 − µj

)νjdλ
=

∫ ∞
− 1

2
e0

(λ− i)−5
n∏
j=1

(
(λ− i)−1 − µj

)νjdλ+O(ε). (C.9)

To treat the first term in the right side of (C.8), we observe that ‖(H − (λ + iε))−1‖ ≤ ε−1

since −iH generates a contraction semigroup. Using that, for λ ∈ [γ3(ε),∞) and ε > 0 small
enough, we have that |(λ− i+ iε)−4| ≤ 2ε(λ2 + 1)−3/2, we deduce that∫ γ3(ε)

− 1
2

e0

(λ− i+ iε)−4
n∏
j=1

(
(λ− i+ iε)−1 − µj

)νj(H − (λ+ iε)
)−1

dλ

=

∫ ∞
− 1

2
e0

(λ− i+ iε)−4
n∏
j=1

(
(λ− i+ iε)−1 − µj

)νj(H − (λ+ iε)
)−1

dλ+O(ε), (C.10)

where O(ε) stands for a bounded operator whose norm is of order O(ε), as ε→ 0+. Next, we
claim that ∫ ∞

− 1
2

e0

|λ− i+ iε|−2
∣∣〈u, (H − (λ+ iε)

)−1
v〉
∣∣dλ ≤ cε−

1
2 ‖u‖‖v‖, (C.11)

for some positive constant c and for all u, v ∈ H. Indeed, by the Cauchy-Schwartz inequality,
it suffices to establish that∫ ∞

− 1
2

e0

∥∥(H − (λ+ iε)
)−1

v
∥∥2
dλ ≤ c2ε−1‖v‖2. (C.12)

Using the resolvent equation, we compute∥∥(H − (λ+ iε)
)−1

v
∥∥2

=
〈
v,
(
H∗ − (λ− iε)

)−1(
H − (λ+ iε)

)−1
v
〉

= (2iε)−1
〈
v,
[(
H − (λ+ iε)

)−1 −
(
H∗ − (λ− iε)

)−1]
v
〉
− ε−1

∥∥C(H∗ − (λ− iε)
)−1

v
∥∥2

= (2iε)−1
〈
v,
[(
HV − (λ+ iε)

)−1 −
(
HV − (λ− iε)

)−1]
v
〉

+ (2ε)−1Re
(〈
C
(
H∗ − (λ− iε)

)−1
v, C

(
HV − (λ− iε)

)−1
v
〉)

− ε−1
∥∥C(H∗ − (λ− iε)

)−1
v
∥∥2
. (C.13)

Since the eigenvalues of HV belong to (−∞,−e0], decomposing v = vpp + vac with vpp ∈
Hpp(HV ) and vac ∈ Hac(HV ), we obtain from Hypothesis 2.4 that∫ ∞

− 1
2

e0

∥∥C(HV − (λ± iε)
)−1

v
∥∥2
dλ ≤ c2‖v‖2, (C.14)
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for some positive constant c. Moreover, by (3.3) and Parseval’s theorem, we also have that∫ ∞
− 1

2
e0

∥∥C(H∗ − (λ− iε)
)−1

v
∥∥2
dλ ≤ π‖v‖2.

The last two inequalities together with (C.13) prove (C.12), and therefore (C.11). Using
(C.11), we then deduce from (C.10) that∫ γ3(ε)

− 1
2

e0

(λ− i+ iε)−4
n∏
j=1

(
(λ− i+ iε)−1 − µj

)νj〈u, (H − (λ+ iε)
)−1

v
〉
dλ

=

∫ ∞
− 1

2
e0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj〈u, (H − (λ+ iε)
)−1

v
〉
dλ+O(ε

1
2 )‖u‖‖v‖, (C.15)

for all u, v ∈ H. Summing up, we have proven that∫
Γ3,ε

µ4
n∏
j=1

(µ− µj)νj
〈
u, (R− µ)−1v

〉
dµ

= −
∫ ∞
− 1

2
e0

(λ− i)−5
n∏
j=1

(
(λ− i)−1 − µj

)νjdλ〈u, v〉
−
∫ ∞
− 1

2
e0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj〈u, (H − (λ+ iε)
)−1

v
〉
dλ

+O(ε
1
2 )‖u‖‖v‖. (C.16)

Limit of the integral over Γ1,ε. To compute the limit of the integral over Γ1,ε, we modify
the argument above as follows. In the same way as for the integral over Γ3,ε (see (C.8) and
(C.9)), we obtain that∫

Γ1,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ

=

∫ γ1(ε)

− 1
2

e0

(λ− i− iε)−4
n∏
j=1

(
(λ− i− iε)−1 − µj

)νj(H − (λ− iε)
)−1

dλ

+

∫ ∞
− 1

2
e0

(λ− i)−5
n∏
j=1

(
(λ− i)−1 − µj

)νjdλ+O(ε). (C.17)

To estimate the norm of the operator (H − (λ− iε))−1 for λ large, we use twice the resolvent
equation:

(H − (λ− iε))−1 = (HV − (λ− iε))−1 + i(HV − (λ− iε))−1C∗C(HV − (λ− iε))−1

− (HV − (λ− iε))−1C∗C(H − (λ− iε))−1C∗C(HV − (λ− iε))−1. (C.18)

By (2.12) in Hypothesis 2.5 and the fact that HV is self-adjoint, this implies that

sup
λ≥m

∥∥(H − (λ− iε))−1
∥∥ ≤ cε−2, (C.19)
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for some positive constant c. Hence, using that, for λ ∈ [γ1(ε),∞) and ε > 0 small enough,
we have that |(λ− i− iε)−4| ≤ ε2(λ2 + 1)−1, we deduce that∫ γ1(ε)

− 1
2

e0

(λ− i− iε)−4
n∏
j=1

(
(λ− i− iε)−1 − µj

)νj(H − (λ− iε)
)−1

dλ

=

∫ ∞
− 1

2
e0

(λ− i− iε)−4
n∏
j=1

(
(λ− i− iε)−1 − µj

)νj(H − (λ− iε)
)−1

dλ+O(ε). (C.20)

We introduce (C.18) into the right side of this equation, thus obtaining a sum of 3 terms. For
the first term, we observe that∫ ∞

− 1
2

e0

|λ− i− iε|−2
∣∣〈u, (HV − (λ− iε))−1v〉

∣∣dλ ≤ cε−
1
2 ‖u‖‖v‖,

for all u, v ∈ H (by the Cauchy-Schwartz inequality and the same argument we used to
establish (C.12)). This yields∫ ∞

− 1
2

e0

(λ− i− iε)−4
n∏
j=1

(
(λ− i− iε)−1 − µj

)νj〈u, (HV − (λ− iε)
)−1

v
〉
dλ

=

∫ ∞
− 1

2
e0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj〈u, (HV − (λ− iε)
)−1

v
〉
dλ

+O(ε
1
2 )‖u‖‖v‖. (C.21)

For the second term coming from the introduction of (C.18) into (C.20), we use (C.14), which
yields∫ ∞

− 1
2

e0

(λ− i− iε)−4
n∏
j=1

(
(λ− i− iε)−1 − µj

)νj
〈
C
(
HV − (λ+ iε)

)−1
u,C

(
HV − (λ− iε)

)−1
v
〉
dλ

=

∫ ∞
− 1

2
e0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj〈C(HV − (λ+ iε)
)−1

u,
(
HV − (λ− iε)

)−1
v
〉
dλ

+O(ε)‖u‖‖v‖. (C.22)

For the last term coming from the introduction of (C.18) into (C.20), we note that

(λ− i− iε)−1 − µj = (λ− i− iε)−1 − (λj − i)−1 = (λ− i− iε)−1(λj − i)−1(λ− iε− λj).

Moreover, it follows from Hypothesis 2.5 that the map

z 7→
n∏
j=1

(z − λj)νj
(z − i)νj

C(H − z)−1C∗ ∈ L(H),
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is uniformly bounded in the region {z ∈ C,Re(z) ≥ −1
2e0,−ε0 < Im(z) < 0}, for ε0 > 0 small

enough. Combining this with (C.14) we obtain that∫ ∞
− 1

2
e0

(λ− i− iε)−4
n∏
j=1

(
(λ− i− iε)−1 − µj

)νj
〈
C
(
HV − (λ+ iε)

)−1
u,C

(
H − (λ− iε)

)−1
C∗C

(
HV − (λ− iε)

)−1
v
〉
dλ

=

∫ ∞
0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj
〈
C
(
HV − (λ+ iε)

)−1
u,C

(
H − (λ− iε)

)−1
C∗C

(
HV − (λ− iε)

)−1
v
〉
dλ

+O(ε)‖u‖‖v‖. (C.23)

Equations (C.17), (C.18), (C.20), (C.21), (C.22) and (C.23) imply that∫
Γ1,ε

µ4
n∏
j=1

(µ− µj)νj
〈
u, (R− µ)−1v

〉
dµ

=

∫ ∞
− 1

2
e0

(λ− i)−5
n∏
j=1

(
(λ− i)−1 − µj

)νjdλ〈u, v〉
+

∫ ∞
− 1

2
e0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj〈u, (H − (λ− iε)
)−1

v
〉
dλ

+O(ε
1
2 )‖u‖‖v‖, (C.24)

for all u, v ∈ H.
Limit of the integral over Γ2,ε. Using (5.8), we see that the integral over Γ2,ε is given by∫

Γ2,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ = −
∫ θ3(ε)

θ1(ε)
ε3e3iθ

n∏
j=1

(εeiθ − µj)νjεieiθdθ

−
∫ θ3(ε)

θ1(ε)
ε2e2iθ

n∏
j=1

(εeiθ − µj)νj
(
H − (ε−1e−iθ + i)

)−1
εieiθdθ. (C.25)

Obviously the first term in the right side of (C.25) vanishes, as ε → 0. To treat the second
term, we decompose the integral into 3 integrals, say over [θ1(ε), θ2], [θ2, θ4] and [θ4, θ3(ε)].
The parameters θ2 and θ4 are chosen such that

Re
(
ε−1e−iθ + i

)
≥ m, for θ ∈ [θ1(ε), θ2],

dist
((
ε−1e−iθ + i

)
, σ(HV )

)
> ‖C∗C‖, for θ ∈ [θ2, θ4],

Re
(
ε−1e−iθ + i

)
≥ m, for θ ∈ [θ4, θ3(ε)].

See Figure 3.
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|

|

−
−m
ε−1e−iθ1(ε) + i

ε−1e−iθ3(ε) + i

ε−1e−iθ2 + i

ε−1e−iθ4 + i

Figure 3. The set
{
ε−1e−iθ + i, θ ∈ [θ1(ε), θ3(ε)]

}
. The eigenvalues of H and HV are

contained in the grey semi-disc. The parameter m satisfies (C.26).

Here m > 0 satisfies
sup
λ≥m

∥∥(H − (λ± iε′))−1
∥∥ ≤ cε0(ε′)−2, (C.26)

for any ε0 > 0 and ε′ ∈ (0, ε0], where cε0 is a positive constant depending on ε0, according to
Hypothesis 2.5 (see (C.19) for (H − (λ− iε′))−1 and use that −iH generates a semigroup of
contractions for (H − (λ + iε′))−1). For ε > 0 small enough, it is not difficult to verifiy that
such choices of θ2 and θ4 are possible.

For θ ∈ [θ1(ε), θ2], we have that Im(ε−1e−iθ+i) ≤ −ε (note that ε−1e−iθ1(ε) +i = γ1(ε)−iε)
and Re

(
ε−1e−iθ + i

)
≥ m. Hence, by (C.26),∫ θ2

θ1(ε)
ε2e2iθ

n∏
j=1

(εeiθ − µj)νj
(
H − (ε−1e−iθ + i)

)−1
εieiθdθ = O(ε), ε→ 0+. (C.27)

Similarly, for θ ∈ [θ4, θ2(ε)], we have that Im(ε−1e−iθ + i) ≥ ε and Re
(
ε−1e−iθ + i

)
≥ m.

Therefore (C.26) yields∫ θ3(ε)

θ4

ε2e2iθ
n∏
j=1

(εeiθ − µj)νj
(
H − (ε−1e−iθ + i)

)−1
εieiθdθ = O(ε), ε→ 0+. (C.28)

For θ ∈ [θ2, θ4], we have dist((ε−1e−iθ + i), σ(HV )) > ‖C∗C‖ and we observe that∥∥(H − z)−1
∥∥ ≤ 2 dist(z,HV )−1,

for any z ∈ C such that dist(z, σ(HV )) > ‖C∗C‖, as follows from the resolvent equation

(H − z)−1 = (HV − z)−1
[
Id + iC∗C(HV − z)−1

]−1
.

This yields∫ θ4

θ2

ε2e2iθ
n∏
j=1

(εeiθ − µj)νj
(
H − (ε−1e−iθ + i)

)−1
εieiθdθ = O(ε3), ε→ 0+. (C.29)
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From (C.25), (C.27), (C.28) and (C.29), we conclude that

w-lim
ε↓0

∫
Γ2,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ = 0. (C.30)

Limit of the integral over Γ4,ε. It follows from (5.8) that the integral over Γ4,ε is given by∫
Γ4,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ

=

∫ ε

−ε
(−1

2
e0 − i+ ix)−4

n∏
j=1

(
(−1

2
e0 − i+ ix)−1 − µj

)νj(H − (−1

2
e0 + ix)

)−1
dx

+

∫ ε

−ε
(−1

2
e0 − i+ ix)−5

n∏
j=1

(
(−1

2
e0 − i+ ix)−1 − µj

)νjdx. (C.31)

Obviously, the second term in the right side of (C.31) is of order O(ε), as ε→ 0+. Moreover,
for any x ∈ [−ε0, ε0], where ε0 is fixed sufficiently small (depending only on H), we have that
dist(−1

2e0 + ix;σ(H)) ≥ ε0/2. This implies that

sup
x∈[−ε0,ε0]

∥∥(H − (−1

2
e0 + ix)

)−1∥∥ ≤ c,

where c is a positive constant depending only on H. Hence the first term in the right side of
(C.31) is also of order O(ε), as ε→ 0+. Therefore,

w-lim
ε↓0

∫
Γ4,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ = 0. (C.32)

Conclusion. Putting together (C.16) and (C.24) gives∫
Γ1,ε

µ4
n∏
j=1

(µ− µj)νj
〈
u, (R− µ)−1v

〉
dµ+

∫
Γ3,ε

µ4
n∏
j=1

(µ− µj)νj
〈
u, (R− µ)−1v

〉
dµ

=

∫ ∞
− 1

2
e0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj〈u, [(H − (λ− iε)
)−1 −

(
H − (λ+ iε)

)−1]
v
〉
dλ

+O(ε
1
2 )‖u‖‖v‖, (C.33)

for all u, v ∈ H. Arguing exactly as in the proof of Proposition 5.1, using, instead of (C.4),
that

sup
λ∈[− 1

2
e0,∞)

lim
ε↓0

n∏
j=1

(
(λ− i)−1 − µj

)νj∥∥C(H − (λ− iε)
)−1

C∗
∥∥ <∞,
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by Hypothesis 2.5, we then deduce that

w-lim
ε↓0

(∫
Γ1,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ+

∫
Γ3,ε

µ4
n∏
j=1

(µ− µj)νj (R− µ)−1dµ
)

= w-lim
ε↓0

∫ ∞
− 1

2
e0

(λ− i)−4
n∏
j=1

(
(λ− i)−1 − µj

)νj
[(
H − (λ− iε)

)−1 −
(
H − (λ+ iε)

)−1]
dλ (C.34)

exists in L(H). Moreover, the integral over [−1
2e0,∞) can be replaced by the integral over

[0,∞) since, for λ ∈ [−1
2e0, 0), we have that (H − (λ ± i0+))−1 = (H − λ)−1. Using in

addition (C.30) and (C.32), we obtain (5.14). The fact that (5.15) holds is a consequence of
the arguments above. This concludes the proof. �
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