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Outline of the talk

1 Regular Mourre theory with a self-adjoint conjugate operator

2 The Nelson model

3 Singular Mourre theory with a non self-adjoint conjugate
operator
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Part I

Regular Mourre theory with

a self-adjoint conjugate operator
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Regularity w.r.t. a self-adjoint operator

• H complex Hilbert space

• H,A self-adjoint operators on H

Definition

Let n ∈ N. We say that H ∈ C n(A) if and only if ∀z ∈ C \ σ(H), ∀φ ∈ H,

s 7→ e isA(H − z)−1e−isAφ ∈ C n(R)

Remarks

• H ∈ C 1(A) if and only if ∀z ∈ C \ σ(H), (H − z)−1D(A) ⊆ D(A), and
∀φ ∈ D(H) ∩ D(A),

|〈Aφ,Hφ〉 − 〈Hφ,Aφ〉| ≤ C(‖Hφ‖2 + ‖φ‖2)

• If H ∈ C 1(A), then D(H) ∩ D(A) is a core for H, and the quadratic form
[H,A] defined on (D(H) ∩ D(A))× (D(H) ∩ D(A)) extend by continuity
to a bounded quadratic form on D(H)× D(H) denoted [H,A]0
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Faupin

Regular
Mourre
theory

Nelson
model

Singular
Mourre
theory

References

Regularity w.r.t. a self-adjoint operator

• H complex Hilbert space

• H,A self-adjoint operators on H

Definition

Let n ∈ N. We say that H ∈ C n(A) if and only if ∀z ∈ C \ σ(H), ∀φ ∈ H,

s 7→ e isA(H − z)−1e−isAφ ∈ C n(R)

Remarks

• H ∈ C 1(A) if and only if ∀z ∈ C \ σ(H), (H − z)−1D(A) ⊆ D(A), and
∀φ ∈ D(H) ∩ D(A),

|〈Aφ,Hφ〉 − 〈Hφ,Aφ〉| ≤ C(‖Hφ‖2 + ‖φ‖2)

• If H ∈ C 1(A), then D(H) ∩ D(A) is a core for H, and the quadratic form
[H,A] defined on (D(H) ∩ D(A))× (D(H) ∩ D(A)) extend by continuity
to a bounded quadratic form on D(H)× D(H) denoted [H,A]0

4 / 25



Second
order per-
turbation

theory

Jérémy
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Mourre estimate

Definition

Let I be a bounded open interval, I ⊂ σ(H). We say that H satisfies a Mourre
estimate on I with A as conjugate operator if ∃ c0 > 0 and K0 compact such
that

1I(H)[H, iA]0
1I(H) ≥ c01I(H)− K0,

in the sense of quadratic forms on H×H

Remarks

• An equivalent formulation is

[H, iA]0 ≥ c ′0 − c ′11R\I(H)〈H〉 − K ′0,

in the sense of quadratic forms on D(H)× D(H), with c ′0 > 0, c ′1 ∈ R,
and K ′0 compact

• If K0 = 0, we say that H satisfies a strict Mourre estimate on I
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The Virial Theorem

Theorem ([Mo ’81], [ABG ’96], [GG ’99])

Let φ be an eigenstate of H. If H ∈ C 1(A), then

〈φ, [H, iA]0φ〉 = 0

Corollary

Assume that H ∈ C 1(A) and that H satisfies a Mourre estimate on I. Then
the number of eigenvalues of H in I is finite, and each such eigenvalue has a
finite multiplicity
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Limiting Absorption Principle

Theorem ([Mo ’81], [ABG ’96], [Ge ’08])

Assume that H ∈ C 2(A) and that H satisfies a strict Mourre estimate on I.
Then for all closed interval J ⊂ I and s > 1/2,

sup
z∈J±

‖〈A〉−s (H − z)−1〈A〉−s‖ <∞,

where J± = {z ∈ C,Re z ∈ J,±Im z > 0} and 〈A〉 = (1 + A2)1/2. In
particular the spectrum of H in I is purely absolutely continuous.
Moreover for 1/2 < s ≤ 1, the maps

J± 3 z 7→ ‖〈A〉−s (H − z)−1〈A〉−s‖ ∈ B(H)

are Hölder continuous of order s − 1/2. In particular, for λ ∈ J, the limits

〈A〉−s (H − λ± i0)−1〈A〉−s := lim
ε↓0
〈A〉−s (H − λ± iε)−1〈A〉−s

exist in the norm topology of B(H), and the corresponding functions of λ are
Hölder continuous of order s − 1/2
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Fermi Golden Rule criterion

Theorem ([AHS ’89], [HuSi ’00])

Suppose

1) (Regularity of H) H ∈ C 2(A) and the quadratic forms [H, iA] and
[[H, iA], iA] extend by continuity to H-bounded operators

2) (Mourre estimate) H satisfies a Mourre estimate on I

Let λ ∈ I be an eigenvalue of H. Let P = 1{λ}(H) be the associated
eigenprojection and P̄ = I − P. Let J ⊂ I be a closed interval such that
σpp(H)∩ J = {λ}. Let W be a symmetric and H-bounded operator. Suppose

3) (Regularity of eigenstates) Ran(P) ⊆ D(A2)

4) (Regularity of the perturbation) [W , iA] and [[W , iA], iA] extend by
continuity to H-bounded operators

If the Fermi Golden Rule criterion is satisfied, i.e.

PW Im((H − λ− i0)−1P̄)WP ≥ cP

with c > 0, then ∃σ0 > 0 such that ∀ 0 < |σ| ≤ σ0,

σpp(H + σW ) ∩ J = ∅
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Regularity of bound states

Theorem ([Ca ’05], [CGH ’06])

Let n ∈ N. Assume that H ∈ C n+2(A) and that adk
A(H) are H-bounded for all

1 ≤ k ≤ n + 2. Assume that H satisfies a Mourre estimate on I. Let λ ∈ I be
an eigenvalue of H and let P = 1{λ}(H) be the associated eigenprojection.
Then we have that

Ran(P) ⊆ D(An)

Remark

In fact H ∈ C n+1(A) is sufficient for the conclusion of the previous theorem to
hold and this is optimal ([FMS’ 10], [MW’ 10]).
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Faupin

Regular
Mourre
theory

Nelson
model

Singular
Mourre
theory

References

Part II

The Nelson model
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Definition of the model

• Hilbert space: H = L2(R3)⊗F ' L2(R3;F) where F is the symmetric

Fock space over L2(R3) defined by F = C⊕
+∞M
n=1

L2(R3)⊗
n
s

• Hamiltonian: Hg = Hel ⊗ 1 + 1⊗ Hf + gφ(h(x)) where

∗
Hel = −∆ + V (x) + U(x)

with V � ∆ and U(x) ≥ c0|x |α − c1, c0 > 0, α > 4

∗
Hf = dΓ(|k|)

∗
φ(h(x)) = a∗(h(x)) + a(h(x))

where ∀ x ∈ R3, h(x) ∈ L2(R3, dk) is given by

h(x , k) =
χ(k)

|k| 12−ε
e−ik·x , χ ∈ C∞0 (R3), ε > 0
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Fermi Golden Rule

• Let H0 be the ’unperturbed‘ operator. Under different assumptions, it is
established that, for sufficiently small values of g , Fermi Golden Rule
holds for excited unperturbed eigenvalues ([BFS ’99], [BFSS ’99], [DJ
’01], [Go ’09]). In particular the spectrum of Hg is purely absolutely
continuous in a neighborhood of the excited unperturbed eigenvalues

• Problem: show that ’generically’ Hg does not have eigenvalue above the
ground state energy for an arbitrary value of g . More precisely, assuming
that λ is an eigenvalue of Hg for a given g ∈ R, we want to show that λ
is unstable under small perturbations according to Fermi Golden Rule
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Choice of the conjugate operator

• Generator of dilatations in Fock space

A1 = 1⊗ dΓ(a1) = 1⊗ dΓ(
i

2
(∇k · k + k · ∇k ))

Formal commutator with Hg :

[Hg , iA1] = dΓ(|k|)− gφ(ia1h(x))

see [FGS ’08]. Difficulty when g is not supposed to be small

• Generator of radial translation in Fock space

A2 = 1⊗ dΓ(a2) = 1⊗ dΓ(
i

2
(∇k ·

k

|k| +
k

|k| · ∇k ))

Formal commutator with Hg :

[Hg , iA2] = dΓ(1)− gφ(ia2h(x))

Mourre estimate established in [GGM ’04] for arbitrary g

13 / 25
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Difficulties

• A2 is not self-adjoint, only maximal symmetric. Mourre theory with a non
self-adjoint conjugate operator initiated in [HüSp ’95] (the conjugate
operator is supposed to be the generator of a C0-semigroup)

• [Hg , iA2] is not controlled by Hg (the quadratic form is not bounded on
D(Hg )× D(Hg )). This situation is referred to as ’singlular’ Mourre
theory ([Sk ’98], [MS ’03], [GGM ’04])

• Each time we commute with iA2, the singularity in the field operator is
increased by a power of |k|. As far as the infrared singularity is
concerned, it is crucial to minimize the number of commutators of Hg

with A2 we need to estimate

14 / 25
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Part III

Singular Mourre theory with

a non self-adjoint conjugate operator
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Framework

• H complex Hilbert space

• H,M self-adjoint operators, M ≥ 0, G = D(M
1
2 ) ∩ D(|H|

1
2 )

• R symmetric operator, D(R) ⊇ D(H)

• A closed operator, densely defined, maximal symmetric. Assuming that A
has deficiency indices (N, 0), this implies that A generates a
C0-semigroup of isometries {Wt}t≥0

Definition

The map [0,∞) 3 t 7→Wt ∈ B(H) is called a C0-semigroup if W0 = I ,
WtWs = Wt+s and w − limt→0 Wt = I . The generator of a C0-semigroup is
defined by

D(A) =
˘
u ∈ H,Au := lim

t→0

1

it
(Wtu − u)exists

¯

16 / 25
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Regularity with respect to C0-semigroups

Definition

Let {W1,t} and {W2,t} be two C0-semigroups in Hilbert spaces H1 and H2

with generators A1 and A2 respectively. A bounded operator B ∈ B(H1;H2) is
said to be in C 1(A1,A2) if

‖W2,tB − BW1,t‖B(H1;H2) ≤ Ct, 0 ≤ t ≤ 1

Remarks

• B ∈ C 1(A1; A2) iff the quadratic form defined on D(A∗2 )× D(A1)

i〈B∗φ,A1ψ〉H1 − i〈A∗2φ,Bψ〉H2

extends by continuity to a bounded quadratic form on H2 ×H1

• The bounded operator in B(H1;H2) associated to the previous quadratic
form is denoted by [B, iA]0, and we have that

[B, iA]0 = s − lim
t→0

1

t
(BW1,t −W2,tB)

• If B ∈ C 1(A1; A2) and [B, iA]0 ∈ C 1(A1; A2) we say that B ∈ C 2(A1; A2)

17 / 25
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with generators A1 and A2 respectively. A bounded operator B ∈ B(H1;H2) is
said to be in C 1(A1,A2) if

‖W2,tB − BW1,t‖B(H1;H2) ≤ Ct, 0 ≤ t ≤ 1

Remarks

• B ∈ C 1(A1; A2) iff the quadratic form defined on D(A∗2 )× D(A1)

i〈B∗φ,A1ψ〉H1 − i〈A∗2φ,Bψ〉H2

extends by continuity to a bounded quadratic form on H2 ×H1

• The bounded operator in B(H1;H2) associated to the previous quadratic
form is denoted by [B, iA]0, and we have that

[B, iA]0 = s − lim
t→0

1

t
(BW1,t −W2,tB)

• If B ∈ C 1(A1; A2) and [B, iA]0 ∈ C 1(A1; A2) we say that B ∈ C 2(A1; A2)
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Assumptions (I)

(Regularity of H with respect to A)

• WtG ⊆ G, W ∗
t G ⊆ G, and ∀φ ∈ G,

sup
0<t<1

‖Wtφ‖ <∞, sup
0<t<1

‖W ∗
t φ‖ <∞

This implies that
∗ Wt |G is a C0-semigroup whose generator is denoted by AG
∗ Wt extends to a C0-semigroup in G∗ whose generator is denoted by AG∗

• H ∈ C 2(AG ; AG∗) and for all φ ∈ D(H) ∩ D(M),

[H, iA]0φ = (M + R)φ

(Regularity of H with respect to M)

H ∈ C 1(M) and [H, iM]0 is H-bounded
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The Virial Theorem

Remark

Under the previous assumptions,

〈φ1, (M + R)φ2〉 = i〈Hφ1,Aφ2〉 − i〈A∗φ1,Hφ2〉

for all φ1 ∈ D(H) ∩ D(M) ∩ D(A∗) and φ2 ∈ D(H) ∩ D(M) ∩ D(A)

Theorem ([GGM ’04])

Assume that the previous hypotheses hold. If ψ is an eigenstate of H such

that ψ ∈ D(M
1
2 ), then

〈ψ, (M + R)ψ〉 := ‖M
1
2ψ‖2 + 〈ψ,Rψ〉 = 0
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Faupin

Regular
Mourre
theory

Nelson
model

Singular
Mourre
theory

References

Assumptions (II)

(Mourre estimate)

∃ an interval I ⊆ R such that ∀ η ∈ I, ∃ c0 > 0, C1 ∈ R, K0 compact, and a
function fη ∈ C∞0 (R; [0, 1]) such that fη = 1 in a neighborhood of η and

M + R ≥ c0 − C1f
⊥
η (H)2〈H〉 − K0,

in the sense of quadratic forms on D(H) ∩ D(M), where f ⊥η = 1− fη

(Regularity of bound states and the perturbation) (∗)

For all compact interval J ⊆ I, ∃ γ > 0 and a set Bγ such that

Bγ ⊆
˘
V symmetric and H-bounded,V ∈ C 1(AG ; AG∗)

‖V ‖1 := ‖V (H − i)−1‖+ ‖[V , iA]0(H − i)−1‖ ≤ γ
¯
,

{0} ⊂ Bγ , Bγ is star-shaped and symmetric w.r.t. 0, and the following holds:
∃C > 0, ∀V ∈ Bγ , ∀λ ∈ J, ∀ψ ∈ D(H), (H + V − λ)ψ = 0, we have that

ψ ∈ D(A) ∩ D(M) and ‖Aψ‖ ≤ C‖ψ‖

20 / 25
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Upper semicontinuity of point spectrum

Theorem ([FMS’ 10])

Assume that the previous hypotheses hold. Let J ⊆ I be a compact interval
such that σpp(H) ∩ J = {λ}. There exists 0 < γ′ ≤ γ such that if V ∈ Bγ
and ‖V ‖1 ≤ γ′, then the total multiplicity of the eigenvalues of H + V in J is
at most dim Ker(H − λ)

Remark

In the case where σpp(H) ∩ J = ∅, Hypothesis (∗) on the regularity of bound
states and the perturbation is not necessary to conclude that
σpp(H + V ) ∩ J = ∅. It is sufficient to assume that

• V ∈ C 2(AG ; AG∗) and V , [V , iA]0 are H-bounded

or

• V ∈ C 1(AG ; AG∗), V and [V , iA]0 are H-bounded, and the possibly

existing eigenstates of H + V belong to D(M
1
2 )
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Fermi Golden Rule criterion

(Further technical hypothesis)

D(M
1
2 ) ∩ D(H) ∩ D(A∗) is a core for A∗

Theorem ([FMS ’10])

Assume that the previous hypotheses hold. Let J ⊆ I be a compact interval
such that σpp(H) ∩ J = {λ}. Let P = 1{λ}(H) and P̄ = I − P. Let V ∈ Bγ
be such that

PV Im
`
(H − λ− i0)−1P̄

´
VP ≥ cP, c > 0.

There exists σ0 > 0 such that for all 0 < |σ| ≤ σ0, σpp(H + σV ) ∩ J = ∅

Remark

Hypothesis (∗) on the regularity of bound states and the perturbation can be
replaced by the following two assumptions:

• Ran(P) ⊆ D(A2)

• V ∈ C 2(AG ; AG∗) and V , [V , iA]0 are H-bounded
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Second order expansion of eigenvalues
(simple case)

Theorem ([FMS ’10])

Assume that the previous hypotheses hold. Let J ⊆ I be a compact interval
such that σpp(H) ∩ J = {λ}. Let P = 1{λ}(H) and P̄ = I − P. Let V ∈ Bγ .
Suppose that

P = |ψ〉〈ψ|.

For all ε > 0, there exists σ0 > 0 such that if |σ| ≤ σ0 and λσ ∈ J is an
eigenvalue of H + σV , then˛̨̨

λσ − λ− σ〈ψ,Vψ〉+ σ2〈Vψ, (H − λ− i0)−1P̄Vψ〉
˛̨̨
≤ εσ2,

and there exists a normalized eigenstate ψσ, Hσψσ = λσψσ, such that‚‚‚ψσ − ψ + σ(H − λ− i0)−1P̄Vψ
‚‚‚

D(A)∗
≤ ε|σ|
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Second order expansion of eigenvalues
(general case)

If Hypothesis (∗) on the regularity of bound states and the perturbation is
replaced by the following two assumptions:

• Ran(P) ⊆ D(A2)

• V ∈ C 2(AG ; AG∗) and V , [V , iA]0 are H-bounded

then the following theorem holds:

Theorem ([FMS ’10])

Let J ⊆ I be a compact interval such that σpp(H) ∩ J = {λ}. Let
P = 1{λ}(H) and P̄ = I − P. There exist C ≥ 0 and σ0 > 0 such that if
|σ| ≤ σ0 and λσ ∈ J is an eigenvalue of Hσ = H + σV , then there exists
ψ ∈ Ran(P), ‖ψ‖ = 1, such that˛̨

λσ − λ− σ〈ψ,Vψ〉+ σ2〈Vψ, (H − λ− i0)−1P̄Vψ〉
˛̨
≤ C |σ|

5
2
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(2006), 583–601.
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