> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

On second order perturbation theory for embedded eigenvalues

Jérémy Faupin

Institut de Mathématiques de Bordeaux Université de Bordeaux 1

Joint work with J.S. Møller and E. Skibsted

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

$\ensuremath{{\rm 1}}\xspace{1.5mm} {\rm Regular}\xspace{1.5mm} {\rm Mourre}\xspace{1.5mm} {\rm theory}\xspace{1.5mm} {\rm with}\xspace{1.5mm} {\rm a}\xspace{1.5mm} {\rm self-adjoint}\xspace{1.5mm} {\rm conjugate}\xspace{1.5mm} {\rm operator}\xspace{1.5mm} {\rm conjugate}\xspace{1.5mm} {\rm operator}\xspace{1.5mm} {\rm a}\xspace{1.5mm} {\rm conjugate}\xspace{1.5mm} {\rm operator}\xspace{1.5mm} {\rm a}\xspace{1.5mm} {\rm conjugate}\xspace{1.5mm} {\rm a}\xspace{1.5mm} {\rm a}\xs$

Outline of the talk

2 The Nelson model

3 Singular Mourre theory with a non self-adjoint conjugate operator

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Part I

Regular Mourre theory with a self-adjoint conjugate operator

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Regularity w.r.t. a self-adjoint operator

- ${\mathcal H}$ complex Hilbert space
- H, A self-adjoint operators on $\mathcal H$

Definition

Let $n \in \mathbb{N}$. We say that $H \in C^n(A)$ if and only if $\forall z \in \mathbb{C} \setminus \sigma(H)$, $\forall \phi \in \mathcal{H}$,

 $s\mapsto e^{isA}(H-z)^{-1}e^{-isA}\phi\in C^n(\mathbb{R})$

Remarks

• $H \in C^1(A)$ if and only if $\forall z \in \mathbb{C} \setminus \sigma(H)$, $(H - z)^{-1}D(A) \subseteq D(A)$, and $\forall \phi \in D(H) \cap D(A)$,

 $|\langle A\phi, H\phi \rangle - \langle H\phi, A\phi \rangle| \le C(||H\phi||^2 + ||\phi||^2)$

If H ∈ C¹(A), then D(H) ∩ D(A) is a core for H, and the quadratic form
 [H, A] defined on (D(H) ∩ D(A)) × (D(H) ∩ D(A)) extend by continuity
 to a bounded quadratic form on D(H) × D(H) denoted [H, A]⁰

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Regularity w.r.t. a self-adjoint operator

- ${\mathcal H}$ complex Hilbert space
- H, A self-adjoint operators on \mathcal{H}

Definition

Let $n \in \mathbb{N}$. We say that $H \in C^n(A)$ if and only if $\forall z \in \mathbb{C} \setminus \sigma(H)$, $\forall \phi \in \mathcal{H}$,

$$s\mapsto e^{isA}(H-z)^{-1}e^{-isA}\phi\in \mathit{C}^n(\mathbb{R})$$

Remarks

• $H \in C^1(A)$ if and only if $\forall z \in \mathbb{C} \setminus \sigma(H)$, $(H - z)^{-1}D(A) \subseteq D(A)$, and $\forall \phi \in D(H) \cap D(A)$,

 $|\langle A\phi, H\phi \rangle - \langle H\phi, A\phi \rangle| \le C(||H\phi||^2 + ||\phi||^2)$

If H ∈ C¹(A), then D(H) ∩ D(A) is a core for H, and the quadratic form
 [H, A] defined on (D(H) ∩ D(A)) × (D(H) ∩ D(A)) extend by continuity
 to a bounded quadratic form on D(H) × D(H) denoted [H, A]⁰

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Regularity w.r.t. a self-adjoint operator

- ${\mathcal H}$ complex Hilbert space
- H, A self-adjoint operators on \mathcal{H}

Definition

Let $n \in \mathbb{N}$. We say that $H \in C^n(A)$ if and only if $\forall z \in \mathbb{C} \setminus \sigma(H)$, $\forall \phi \in \mathcal{H}$,

$$\mathfrak{s}\mapsto e^{\mathfrak{i}\mathfrak{s}\mathsf{A}}(\mathsf{H}-z)^{-1}e^{-\mathfrak{i}\mathfrak{s}\mathsf{A}}\phi\in C^n(\mathbb{R})$$

Remarks

• $H \in C^1(A)$ if and only if $\forall z \in \mathbb{C} \setminus \sigma(H)$, $(H - z)^{-1}D(A) \subseteq D(A)$, and $\forall \phi \in D(H) \cap D(A)$,

$$|\langle A\phi, H\phi \rangle - \langle H\phi, A\phi \rangle| \leq C(||H\phi||^2 + ||\phi||^2)$$

If H ∈ C¹(A), then D(H) ∩ D(A) is a core for H, and the quadratic form
 [H, A] defined on (D(H) ∩ D(A)) × (D(H) ∩ D(A)) extend by continuity
 to a bounded quadratic form on D(H) × D(H) denoted [H, A]⁰

Mourre estimate

theory Jérémy Faupin

Second order per-

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Definition

Let I be a bounded open interval, $I \subset \sigma(H)$. We say that H satisfies a Mourre estimate on I with A as conjugate operator if $\exists c_0 > 0$ and K_0 compact such that

 $\mathbb{1}_{\mathrm{I}}(H)[H, iA]^{0}\mathbb{1}_{\mathrm{I}}(H) \geq c_{0}\mathbb{1}_{\mathrm{I}}(H) - K_{0},$

in the sense of quadratic forms on $\mathcal{H}\times\mathcal{H}$

Remarks

• An equivalent formulation is

$$[H, iA]^0 \geq c_0' - c_1' \mathbb{1}_{\mathbb{R} \setminus \mathrm{I}}(H) \langle H \rangle - K_0',$$

in the sense of quadratic forms on $D(H) \times D(H)$, with $c_0' > 0$, $c_1' \in \mathbb{R}$, and K_0' compact

• If $K_0 = 0$, we say that H satisfies a strict Mourre estimate on I

Mourre estimate

Jérémy Faupin

Second order per-

theory

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Definition

Let I be a bounded open interval, $I \subset \sigma(H)$. We say that H satisfies a Mourre estimate on I with A as conjugate operator if $\exists c_0 > 0$ and K_0 compact such that

 $1\!\!1_{\mathrm{I}}(H)[H, iA]^0 1\!\!1_{\mathrm{I}}(H) \geq c_0 1\!\!1_{\mathrm{I}}(H) - K_0,$

in the sense of quadratic forms on $\mathcal{H}\times\mathcal{H}$

Remarks

• An equivalent formulation is

$$[H, iA]^0 \geq c'_0 - c'_1 \mathbb{1}_{\mathbb{R}\setminus I}(H) \langle H \rangle - K'_0,$$

in the sense of quadratic forms on $D(H) \times D(H)$, with $c_0' > 0$, $c_1' \in \mathbb{R}$, and K_0' compact

• If $K_0 = 0$, we say that H satisfies a strict Mourre estimate on I

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

The Virial Theorem

Theorem ([Mo '81], [ABG '96], [GG '99])

Let ϕ be an eigenstate of H. If $H \in C^1(A)$, then

 $\langle \phi, [H, iA]^0 \phi \rangle = 0$

Corollary

Assume that $H \in C^1(A)$ and that H satisfies a Mourre estimate on I. Then the number of eigenvalues of H in I is finite, and each such eigenvalue has a finite multiplicity

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

The Virial Theorem

Theorem ([Mo '81], [ABG '96], [GG '99])

Let ϕ be an eigenstate of H. If $H \in C^1(A)$, then

 $\langle \phi, [H, iA]^0 \phi \rangle = 0$

Corollary

Assume that $H \in C^1(A)$ and that H satisfies a Mourre estimate on I. Then the number of eigenvalues of H in I is finite, and each such eigenvalue has a finite multiplicity

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Limiting Absorption Principle

Theorem ([Mo '81], [ABG '96], [Ge '08])

Assume that $H \in C^2(A)$ and that H satisfies a strict Mourre estimate on I. Then for all closed interval $J \subset I$ and s > 1/2,

$$\sup_{z\in J^{\pm}}\|\langle A\rangle^{-s}(H-z)^{-1}\langle A\rangle^{-s}\|<\infty,$$

where $J^{\pm} = \{z \in \mathbb{C}, \operatorname{Re} z \in J, \pm \operatorname{Im} z > 0\}$ and $\langle A \rangle = (1 + A^2)^{1/2}$. In particular the spectrum of H in I is purely absolutely continuous. Moreover for $1/2 < s \leq 1$, the maps

$$J^{\pm} \ni z \mapsto \|\langle A
angle^{-s} (H-z)^{-1} \langle A
angle^{-s}\| \in B(\mathcal{H})$$

are Hölder continuous of order s-1/2. In particular, for $\lambda \in J$, the limits

$$\langle A
angle^{-s} (H - \lambda \pm i0)^{-1} \langle A
angle^{-s} := \lim_{\epsilon \downarrow 0} \langle A
angle^{-s} (H - \lambda \pm i\epsilon)^{-1} \langle A
angle^{-s}$$

exist in the norm topology of $B(\mathcal{H}),$ and the corresponding functions of λ are Hölder continuous of order s-1/2

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Fermi Golden Rule criterion

Theorem ([AHS '89], [HuSi '00])

Suppose

- 1) (Regularity of *H*) $H \in C^2(A)$ and the quadratic forms [H, iA] and [[H, iA], iA] extend by continuity to *H*-bounded operators
- 2) (Mourre estimate) H satisfies a Mourre estimate on I

Let $\lambda \in I$ be an eigenvalue of H. Let $P = \mathbb{1}_{\{\lambda\}}(H)$ be the associated eigenprojection and $\overline{P} = I - P$. Let $J \subset I$ be a closed interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. Let W be a symmetric and H-bounded operator. Suppose

- 3) (Regularity of eigenstates) $\operatorname{Ran}(P) \subseteq D(A^2)$
- (Regularity of the perturbation) [W, iA] and [[W, iA], iA] extend by continuity to H-bounded operators

If the Fermi Golden Rule criterion is satisfied, i.e.

$$\mathsf{PW}\mathrm{Im}((\mathsf{H}-\lambda-\mathsf{i}\mathsf{0})^{-1}ar{\mathsf{P}})\mathsf{W}\mathsf{P}\geq \mathsf{c}\mathsf{P}$$

with c > 0, then $\exists \sigma_0 > 0$ such that $\forall 0 < |\sigma| \le \sigma_0$,

 $\sigma_{\rm pp}(H + \sigma W) \cap J = \emptyset$

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Regularity of bound states

Theorem ([Ca '05], [CGH '06])

Let $n \in \mathbb{N}$. Assume that $H \in C^{n+2}(A)$ and that $\mathrm{ad}_A^k(H)$ are H-bounded for all $1 \leq k \leq n+2$. Assume that H satisfies a Mourre estimate on I. Let $\lambda \in I$ be an eigenvalue of H and let $P = \mathbb{1}_{\{\lambda\}}(H)$ be the associated eigenprojection. Then we have that

 $\operatorname{Ran}(P)\subseteq D(A^n)$

Remark

In fact $H \in C^{n+1}(A)$ is sufficient for the conclusion of the previous theorem to hold and this is optimal ([FMS' 10], [MW' 10]).

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Regularity of bound states

Theorem ([Ca '05], [CGH '06])

Let $n \in \mathbb{N}$. Assume that $H \in C^{n+2}(A)$ and that $\mathrm{ad}_A^k(H)$ are H-bounded for all $1 \leq k \leq n+2$. Assume that H satisfies a Mourre estimate on I. Let $\lambda \in I$ be an eigenvalue of H and let $P = \mathbb{1}_{\{\lambda\}}(H)$ be the associated eigenprojection. Then we have that

 $\operatorname{Ran}(P) \subseteq D(A^n)$

Remark

In fact $H \in C^{n+1}(A)$ is sufficient for the conclusion of the previous theorem to hold and this is optimal ([FMS' 10], [MW' 10]).

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Part II

The Nelson model

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Definition of the model

• Hilbert space: $\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F} \simeq L^2(\mathbb{R}^3; \mathcal{F})$ where \mathcal{F} is the symmetric Fock space over $L^2(\mathbb{R}^3)$ defined by $\mathcal{F} = \mathbb{C} \oplus \bigoplus_{n=1}^{+\infty} L^2(\mathbb{R}^3)^{\otimes_s^n}$

• Hamiltonian:
$$H_g = H_{el} \otimes \mathbb{1} + \mathbb{1} \otimes H_f + g\phi(h(x))$$
 where
* $H_{el} = -\Delta + V(x) + U(x)$

with $V\ll\Delta$ and $U(x)\geq c_0|x|^lpha-c_1$, $c_0>$ 0, lpha>4

 \ast

$$H_f = \mathrm{d}\Gamma(|k|)$$

*

$$\phi(h(x))=a^*(h(x))+a(h(x))$$

nere $orall x\in \mathbb{R}^3,$ $h(x)\in \mathrm{L}^2(\mathbb{R}^3,\mathrm{d} k)$ is given by

$$h(x,k) = \frac{\chi(k)}{|k|^{\frac{1}{2}-\epsilon}} e^{-ik \cdot x}, \quad \chi \in \mathcal{C}_0^{\infty}(\mathbb{R}^3), \quad \epsilon > 0$$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Definition of the model

- Hilbert space: $\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F} \simeq L^2(\mathbb{R}^3; \mathcal{F})$ where \mathcal{F} is the symmetric Fock space over $L^2(\mathbb{R}^3)$ defined by $\mathcal{F} = \mathbb{C} \oplus \bigoplus_{n=1}^{+\infty} L^2(\mathbb{R}^3)^{\otimes_s^n}$
- Hamiltonian: $H_g = H_{el} \otimes \mathbb{1} + \mathbb{1} \otimes H_f + g\phi(h(x))$ where

$$H_{\rm el} = -\Delta + V(x) + U(x)$$

with $V \ll \Delta$ and $U(x) \ge c_0 |x|^{\alpha} - c_1, c_0 \ge 0, \alpha \ge 4$

 *

$$H_f = \mathrm{d}\Gamma(|k|)$$

*

$$\phi(h(x))=a^*(h(x))+a(h(x))$$

here $orall x\in \mathbb{R}^3$, $h(x)\in \mathrm{L}^2(\mathbb{R}^3,\mathrm{d} k)$ is given by

$$h(x,k) = \frac{\chi(k)}{|k|^{\frac{1}{2}-\epsilon}} e^{-ik \cdot x}, \quad \chi \in \mathcal{C}_0^{\infty}(\mathbb{R}^3), \quad \epsilon > 0$$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Definition of the model

- Hilbert space: $\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F} \simeq L^2(\mathbb{R}^3; \mathcal{F})$ where \mathcal{F} is the symmetric Fock space over $L^2(\mathbb{R}^3)$ defined by $\mathcal{F} = \mathbb{C} \oplus \bigoplus_{n=1}^{+\infty} L^2(\mathbb{R}^3)^{\otimes_s^n}$
- Hamiltonian: $H_g = H_{el} \otimes \mathbb{1} + \mathbb{1} \otimes H_f + g\phi(h(x))$ where *

$$H_{
m el}=-\Delta+V(x)+U(x)$$

or $V\ll \Delta$ and $U(x)\geq c_0|x|^lpha-c_1,\ c_0>0,\ lpha>4$

 $H_f = \mathrm{d} \Gamma(|k|)$

*

with

$$\phi(h(x)) = a^*(h(x)) + a(h(x))$$

where $\forall x \in \mathbb{R}^3$, $h(x) \in L^2(\mathbb{R}^3, dk)$ is given by

$$h(x,k) = \frac{\chi(k)}{|k|^{\frac{1}{2}-\epsilon}} e^{-ik \cdot x}, \quad \chi \in \mathcal{C}_0^{\infty}(\mathbb{R}^3), \quad \epsilon > 0$$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Definition of the model

- Hilbert space: $\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F} \simeq L^2(\mathbb{R}^3; \mathcal{F})$ where \mathcal{F} is the symmetric Fock space over $L^2(\mathbb{R}^3)$ defined by $\mathcal{F} = \mathbb{C} \oplus \bigoplus_{n=1}^{+\infty} L^2(\mathbb{R}^3)^{\otimes_s^n}$
- Hamiltonian: $H_g = H_{el} \otimes \mathbb{1} + \mathbb{1} \otimes H_f + g\phi(h(x))$ where *

$$H_{
m el}=-\Delta+V(x)+U(x)$$
 with $V\ll\Delta$ and $U(x)\geq c_0|x|^lpha-c_1$, $c_0>0$, $lpha>4$

*

$$H_f = \mathrm{d}\Gamma(|k|)$$

*

$$\phi(h(x)) = a^*(h(x)) + a(h(x))$$

where $\forall x \in \mathbb{R}^3$, $h(x) \in L^2(\mathbb{R}^3, dk)$ is given by

$$h(x,k) = \frac{\chi(k)}{|k|^{\frac{1}{2}-\epsilon}} e^{-ik \cdot x}, \quad \chi \in \mathcal{C}_0^{\infty}(\mathbb{R}^3), \quad \epsilon > 0$$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Definition of the model

- Hilbert space: $\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F} \simeq L^2(\mathbb{R}^3; \mathcal{F})$ where \mathcal{F} is the symmetric Fock space over $L^2(\mathbb{R}^3)$ defined by $\mathcal{F} = \mathbb{C} \oplus \bigoplus_{n=1}^{+\infty} L^2(\mathbb{R}^3)^{\otimes_s^n}$
- Hamiltonian: $H_g = H_{el} \otimes \mathbb{1} + \mathbb{1} \otimes H_f + g\phi(h(x))$ where *

$$H_{
m el}=-\Delta+V(x)+U(x)$$
 with $V\ll\Delta$ and $U(x)\geq c_0|x|^lpha-c_1$, $c_0>0$, $lpha>4$

*

$$H_f = \mathrm{d}\Gamma(|k|)$$

*

$$\phi(h(x))=a^*(h(x))+a(h(x))$$

where $orall x\in \mathbb{R}^3,$ $h(x)\in \mathrm{L}^2(\mathbb{R}^3,\mathrm{d}k)$ is given by

$$h(x,k) = \frac{\chi(k)}{|k|^{\frac{1}{2}-\epsilon}} e^{-ik \cdot x}, \quad \chi \in \mathrm{C}^{\infty}_{0}(\mathbb{R}^{3}), \quad \epsilon > 0$$

Fermi Golden Rule

turbation theory Jérémy Faupin

Second order per-

Regular Mourre theory

Nelson model

Singular Mourre theory

References

- Let H_0 be the 'unperturbed' operator. Under different assumptions, it is established that, for sufficiently small values of g, Fermi Golden Rule holds for excited unperturbed eigenvalues ([BFS '99], [BFSS '99], [DJ '01], [Go '09]). In particular the spectrum of H_g is purely absolutely continuous in a neighborhood of the excited unperturbed eigenvalues
- Problem: show that 'generically' H_g does not have eigenvalue above the ground state energy for an arbitrary value of g. More precisely, assuming that λ is an eigenvalue of H_g for a given $g \in \mathbb{R}$, we want to show that λ is unstable under small perturbations according to Fermi Golden Rule

Fermi Golden Rule

order perturbation theory

Second

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

- Let H_0 be the 'unperturbed' operator. Under different assumptions, it is established that, for sufficiently small values of g, Fermi Golden Rule holds for excited unperturbed eigenvalues ([BFS '99], [BFSS '99], [DJ '01], [Go '09]). In particular the spectrum of H_g is purely absolutely continuous in a neighborhood of the excited unperturbed eigenvalues
- Problem: show that 'generically' H_g does not have eigenvalue above the ground state energy for an arbitrary value of g. More precisely, assuming that λ is an eigenvalue of H_g for a given $g \in \mathbb{R}$, we want to show that λ is unstable under small perturbations according to Fermi Golden Rule

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Choice of the conjugate operator

• Generator of dilatations in Fock space

$$A_1 = \mathbf{1} \otimes \mathrm{d} \Gamma(\mathbf{a}_1) = \mathbf{1} \otimes \mathrm{d} \Gamma(\frac{i}{2} (\nabla_k \cdot \mathbf{k} + \mathbf{k} \cdot \nabla_k))$$

Formal commutator with H_g :

$$[H_g, iA_1] = \mathrm{d}\Gamma(|k|) - g\phi(ia_1h(x))$$

see [FGS '08]. Difficulty when g is not supposed to be smallGenerator of radial translation in Fock space

$$A_2 = \mathbb{1} \otimes \mathrm{d}\Gamma(a_2) = \mathbb{1} \otimes \mathrm{d}\Gamma(\frac{i}{2}(\nabla_k \cdot \frac{k}{|k|} + \frac{k}{|k|} \cdot \nabla_k))$$

Formal commutator with H_g :

$$[H_g, iA_2] = \mathrm{d}\Gamma(\mathbf{1}) - g\phi(ia_2h(x))$$

Mourre estimate established in [GGM '04] for arbitrary g

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Choice of the conjugate operator

• Generator of dilatations in Fock space

$$A_1 = \mathbf{1} \otimes \mathrm{d} \Gamma(\mathbf{a}_1) = \mathbf{1} \otimes \mathrm{d} \Gamma(\frac{i}{2} (\nabla_k \cdot \mathbf{k} + \mathbf{k} \cdot \nabla_k))$$

Formal commutator with H_g :

$$[H_g, iA_1] = \mathrm{d}\Gamma(|k|) - g\phi(ia_1h(x))$$

see [FGS '08]. Difficulty when g is not supposed to be small

• Generator of radial translation in Fock space

$$A_2 = \mathbf{1} \otimes \mathrm{d} \Gamma(a_2) = \mathbf{1} \otimes \mathrm{d} \Gamma(\frac{i}{2} (\nabla_k \cdot \frac{k}{|k|} + \frac{k}{|k|} \cdot \nabla_k))$$

Formal commutator with H_g :

$$[H_g, iA_2] = \mathrm{d}\Gamma(1) - g\phi(ia_2h(x))$$

Mourre estimate established in [GGM '04] for arbitrary g

Difficulties

- Second order perturbation theory
- Jérémy Faupin
- Regular Mourre theory
- Nelson model
- Singular Mourre theory
- References

- A₂ is not self-adjoint, only maximal symmetric. Mourre theory with a non self-adjoint conjugate operator initiated in [HüSp '95] (the conjugate operator is supposed to be the generator of a C₀-semigroup)
- $[H_g, iA_2]$ is not controlled by H_g (the quadratic form is not bounded on $D(H_g) \times D(H_g)$). This situation is referred to as 'singlular' Mourre theory ([Sk '98], [MS '03], [GGM '04])
- Each time we commute with iA_2 , the singularity in the field operator is increased by a power of |k|. As far as the infrared singularity is concerned, it is crucial to minimize the number of commutators of H_g with A_2 we need to estimate

Difficulties

- Second order perturbation theory
- Jérémy Faupin
- Regular Mourre theory
- Nelson model
- Singular Mourre theory
- References
- A₂ is not self-adjoint, only maximal symmetric. Mourre theory with a non self-adjoint conjugate operator initiated in [HüSp '95] (the conjugate operator is supposed to be the generator of a C₀-semigroup)
- $[H_g, iA_2]$ is not controlled by H_g (the quadratic form is not bounded on $D(H_g) \times D(H_g)$). This situation is referred to as 'singlular' Mourre theory ([Sk '98], [MS '03], [GGM '04])
- Each time we commute with iA_2 , the singularity in the field operator is increased by a power of |k|. As far as the infrared singularity is concerned, it is crucial to minimize the number of commutators of H_g with A_2 we need to estimate

Difficulties

- Second order perturbation theory
- Jérémy Faupin
- Regular Mourre theory
- Nelson model
- Singular Mourre theory
- References
- A₂ is not self-adjoint, only maximal symmetric. Mourre theory with a non self-adjoint conjugate operator initiated in [HüSp '95] (the conjugate operator is supposed to be the generator of a C₀-semigroup)
- $[H_g, iA_2]$ is not controlled by H_g (the quadratic form is not bounded on $D(H_g) \times D(H_g)$). This situation is referred to as 'singlular' Mourre theory ([Sk '98], [MS '03], [GGM '04])
- Each time we commute with iA_2 , the singularity in the field operator is increased by a power of |k|. As far as the infrared singularity is concerned, it is crucial to minimize the number of commutators of H_g with A_2 we need to estimate

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Part III

Singular Mourre theory with a non self-adjoint conjugate operator

Framework

- Second order perturbation theory
- Jérémy Faupin
- Regular Mourre theory
- Nelson model
- Singular Mourre theory
- References

- \mathcal{H} complex Hilbert space
- H, M self-adjoint operators, $M \ge 0$, $\mathcal{G} = D(M^{\frac{1}{2}}) \cap D(|H|^{\frac{1}{2}})$
- R symmetric operator, $D(R) \supseteq D(H)$
- A closed operator, densely defined, maximal symmetric. Assuming that A has deficiency indices (N,0), this implies that A generates a C₀-semigroup of isometries {W_t}_{t≥0}

Definition

The map $[0, \infty) \ni t \mapsto W_t \in B(\mathcal{H})$ is called a C_0 -semigroup if $W_0 = I$, $W_t W_s = W_{t+s}$ and $w - \lim_{t\to 0} W_t = I$. The generator of a C_0 -semigroup is defined by

$$D(A) = \left\{ u \in \mathcal{H}, Au := \lim_{t \to 0} rac{1}{it} (W_t u - u) ext{exists}
ight.$$

Framework

- Second order perturbation theory
- Jérémy Faupin
- Regular Mourre theory
- Nelson model
- Singular Mourre theory
- References

- \mathcal{H} complex Hilbert space
- H, M self-adjoint operators, $M \ge 0$, $\mathcal{G} = D(M^{\frac{1}{2}}) \cap D(|H|^{\frac{1}{2}})$
- R symmetric operator, $D(R) \supseteq D(H)$
- A closed operator, densely defined, maximal symmetric. Assuming that A has deficiency indices (N, 0), this implies that A generates a C₀-semigroup of isometries {W_t}_{t≥0}

Definition

The map $[0,\infty) \ni t \mapsto W_t \in B(\mathcal{H})$ is called a C_0 -semigroup if $W_0 = I$, $W_t W_s = W_{t+s}$ and $w - \lim_{t\to 0} W_t = I$. The generator of a C_0 -semigroup is defined by

$$D(A) = \left\{ u \in \mathcal{H}, Au := \lim_{t \to 0} \frac{1}{it} (W_t u - u) exists
ight\}$$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Regularity with respect to C₀-semigroups

Definition

Let $\{W_{1,t}\}$ and $\{W_{2,t}\}$ be two C_0 -semigroups in Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 with generators A_1 and A_2 respectively. A bounded operator $B \in B(\mathcal{H}_1; \mathcal{H}_2)$ is said to be in $C^1(A_1, A_2)$ if

 $\|W_{2,t}B - BW_{1,t}\|_{\mathcal{B}(\mathcal{H}_1;\mathcal{H}_2)} \leq Ct, \quad 0 \leq t \leq 1$

Remarks

• $B \in C^1(A_1; A_2)$ iff the quadratic form defined on $D(A_2^*) imes D(A_1)$

 $i\langle B^*\phi, A_1\psi\rangle_{\mathcal{H}_1} - i\langle A_2^*\phi, B\psi\rangle_{\mathcal{H}_2}$

extends by continuity to a bounded quadratic form on $\mathcal{H}_2 imes \mathcal{H}_1$

• The bounded operator in $B(\mathcal{H}_1; \mathcal{H}_2)$ associated to the previous quadratic form is denoted by $[B, iA]^0$, and we have that

$$[B, iA]^{0} = s - \lim_{t \to 0} \frac{1}{t} (BW_{1,t} - W_{2,t}B)$$

• If $B \in C^1(A_1; A_2)$ and $[B, iA]^0 \in C^1(A_1; A_2)$ we say that $B \in C^2(A_1; A_2)$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Regularity with respect to C₀-semigroups

Definition

Let $\{W_{1,t}\}$ and $\{W_{2,t}\}$ be two C_0 -semigroups in Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 with generators A_1 and A_2 respectively. A bounded operator $B \in B(\mathcal{H}_1; \mathcal{H}_2)$ is said to be in $C^1(A_1, A_2)$ if

$$\|W_{2,t}B - BW_{1,t}\|_{\mathcal{B}(\mathcal{H}_1;\mathcal{H}_2)} \leq Ct, \quad 0 \leq t \leq 1$$

Remarks

• $B \in C^1(A_1; A_2)$ iff the quadratic form defined on $D(A_2^*) imes D(A_1)$

$$i\langle B^*\phi, A_1\psi\rangle_{\mathcal{H}_1} - i\langle A_2^*\phi, B\psi\rangle_{\mathcal{H}_2}$$

extends by continuity to a bounded quadratic form on $\mathcal{H}_2\times\mathcal{H}_1$

• The bounded operator in $B(\mathcal{H}_1; \mathcal{H}_2)$ associated to the previous quadratic form is denoted by $[B, iA]^0$, and we have that

$$[B, iA]^{0} = s - \lim_{t \to 0} \frac{1}{t} (BW_{1,t} - W_{2,t}B)$$

• If $B\in C^1(A_1;A_2)$ and $[B,iA]^0\in C^1(A_1;A_2)$ we say that $B\in C^2(A_1;A_2)$

Assumptions (I)

Second order perturbation theory

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

(Regularity of H with respect to A)

• $W_t \mathcal{G} \subseteq \mathcal{G}$, $W_t^* \mathcal{G} \subseteq \mathcal{G}$, and $\forall \phi \in \mathcal{G}$,

 $\sup_{0 < t < 1} \|W_t \phi\| < \infty, \quad \sup_{0 < t < 1} \|W_t^* \phi\| < \infty$

This implies that

- $* W_t|_{\mathcal{G}}$ is a C_0 -semigroup whose generator is denoted by $A_{\mathcal{G}}$
- $* W_t$ extends to a C_0 -semigroup in \mathcal{G}^* whose generator is denoted by $A_{\mathcal{G}^*}$
- $H \in C^2(A_{\mathcal{G}}; A_{\mathcal{G}^*})$ and for all $\phi \in D(H) \cap D(M)$,

 $[H, iA]^0 \phi = (M+R)\phi$

(Regularity of H with respect to M) $H \in C^{1}(M)$ and $[H, iM]^{0}$ is H-bounded

Assumptions (I)

Second order perturbation theory

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

(Regularity of H with respect to A)

• $W_t \mathcal{G} \subseteq \mathcal{G}$, $W_t^* \mathcal{G} \subseteq \mathcal{G}$, and $\forall \phi \in \mathcal{G}$,

 $\sup_{0 < t < 1} \|W_t \phi\| < \infty, \quad \sup_{0 < t < 1} \|W_t^* \phi\| < \infty$

This implies that

- $* W_t|_{\mathcal{G}}$ is a C_0 -semigroup whose generator is denoted by $A_{\mathcal{G}}$
- $* W_t$ extends to a C_0 -semigroup in \mathcal{G}^* whose generator is denoted by $A_{\mathcal{G}^*}$
- $H \in C^2(A_{\mathcal{G}}; A_{\mathcal{G}^*})$ and for all $\phi \in D(H) \cap D(M)$,

 $[H, iA]^0 \phi = (M+R)\phi$

(Regularity of *H* with respect to *M*) $H \in C^{1}(M)$ and $[H, iM]^{0}$ is *H*-bounded

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

The Virial Theorem

Remark

Under the previous assumptions,

$$\langle \phi_1, (M+R)\phi_2 \rangle = i \langle H\phi_1, A\phi_2 \rangle - i \langle A^*\phi_1, H\phi_2 \rangle$$

for all $\phi_1 \in D(H) \cap D(M) \cap D(A^*)$ and $\phi_2 \in D(H) \cap D(M) \cap D(A)$

Theorem ([GGM '04])

Assume that the previous hypotheses hold. If ψ is an eigenstate of H such that $\psi \in D(M^{\frac{1}{2}})$, then

$$\langle \psi, (M+R)\psi \rangle := \|M^{\frac{1}{2}}\psi\|^2 + \langle \psi, R\psi \rangle = 0$$

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

The Virial Theorem

Remark

Under the previous assumptions,

$$\langle \phi_1, (M+R)\phi_2 \rangle = i \langle H\phi_1, A\phi_2 \rangle - i \langle A^*\phi_1, H\phi_2 \rangle$$

for all $\phi_1 \in D(H) \cap D(M) \cap D(A^*)$ and $\phi_2 \in D(H) \cap D(M) \cap D(A)$

Theorem ([GGM '04])

Assume that the previous hypotheses hold. If ψ is an eigenstate of H such that $\psi\in D(M^{\frac{1}{2}}),$ then

$$\langle \psi, (M+R)\psi \rangle := \|M^{\frac{1}{2}}\psi\|^2 + \langle \psi, R\psi \rangle = 0$$

Assumptions (II)

(Mourre estimate)

Second order per-

> theory Jérémy Faupin

theory

Singular Mourre

theory References \exists an interval $I \subseteq \mathbb{R}$ such that $\forall \eta \in I$, $\exists c_0 > 0$, $C_1 \in \mathbb{R}$, K_0 compact, and a function $f_\eta \in C_0^{\infty}(\mathbb{R}; [0, 1])$ such that $f_\eta = 1$ in a neighborhood of η and

$$M+R\geq c_0-C_1f_\eta^\perp(H)^2\langle H
angle-K_0,$$

in the sense of quadratic forms on $D(H) \cap D(M)$, where $f_\eta^\perp = 1 - f_\eta$

(Regularity of bound states and the perturbation) (*) For all compact interval $J \subseteq I$, $\exists \gamma > 0$ and a set B_{γ} such that $B_{\gamma} \subseteq \{V \text{ symmetric and } H \text{-bounded}, V \in C^{1}(A_{\mathcal{G}}; A_{\mathcal{G}}*)$ $\|V\|_{1} := \|V(H-i)^{-1}\| + \|[V, iA]^{0}(H-i)^{-1}\| \leq \gamma\},$

 $\{0\} \subset B_{\gamma}$, B_{γ} is star-shaped and symmetric w.r.t. 0, and the following holds: $\exists C > 0, \forall V \in B_{\gamma}, \forall \lambda \in J, \forall \psi \in D(H)$, $(H + V - \lambda)\psi = 0$, we have that

 $\psi \in D(A) \cap D(M)$ and $||A\psi|| \leq C ||\psi|$

Assumptions (II)

(Mourre estimate)

Second order perturbation

> theory Jérémy Faupin

theory

Singular Mourre

theory References \exists an interval $I \subseteq \mathbb{R}$ such that $\forall \eta \in I$, $\exists c_0 > 0$, $C_1 \in \mathbb{R}$, K_0 compact, and a function $f_\eta \in C_0^{\infty}(\mathbb{R}; [0, 1])$ such that $f_\eta = 1$ in a neighborhood of η and

$$M+R\geq c_0-C_1f_\eta^\perp(H)^2\langle H
angle-K_0,$$

in the sense of quadratic forms on $D(H) \cap D(M)$, where $f_\eta^\perp = 1 - f_\eta$

(Regularity of bound states and the perturbation) (*) For all compact interval $J \subseteq I$, $\exists \gamma > 0$ and a set B_{γ} such that

 $B_{\gamma} \subseteq \big\{ V \text{ symmetric and } H \text{-bounded}, V \in C^{1}(A_{\mathcal{G}}; A_{\mathcal{G}^{*}}) \\ \|V\|_{1} := \|V(H-i)^{-1}\| + \|[V, iA]^{0}(H-i)^{-1}\| \le \gamma \big\},$

 $\{0\} \subset B_{\gamma}, B_{\gamma}$ is star-shaped and symmetric w.r.t. 0, and the following holds: $\exists C > 0, \forall V \in B_{\gamma}, \forall \lambda \in J, \forall \psi \in D(H), (H + V - \lambda)\psi = 0$, we have that

 $\psi \in D(A) \cap D(M)$ and $||A\psi|| \leq C ||\psi||$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Upper semicontinuity of point spectrum

Theorem ([FMS' 10])

Assume that the previous hypotheses hold. Let $J \subseteq I$ be a compact interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. There exists $0 < \gamma' \leq \gamma$ such that if $V \in B_{\gamma}$ and $\|V\|_1 \leq \gamma'$, then the total multiplicity of the eigenvalues of H + V in J is at most dim Ker $(H - \lambda)$

Remark

In the case where $\sigma_{\rm pp}(H) \cap J = \emptyset$, Hypothesis (*) on the regularity of bound states and the perturbation is not necessary to conclude that $\sigma_{\rm pp}(H + V) \cap J = \emptyset$. It is sufficient to assume that

• $V \in C^2(A_{\mathcal{G}}; A_{\mathcal{G}^*})$ and V, $[V, iA]^0$ are *H*-bounded

or

V ∈ C¹(A_G; A_{G*}), V and [V, iA]⁰ are H-bounded, and the possibly existing eigenstates of H + V belong to D(M^{1/2})

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Upper semicontinuity of point spectrum

Theorem ([FMS' 10])

Assume that the previous hypotheses hold. Let $J \subseteq I$ be a compact interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. There exists $0 < \gamma' \leq \gamma$ such that if $V \in B_{\gamma}$ and $\|V\|_1 \leq \gamma'$, then the total multiplicity of the eigenvalues of H + V in J is at most dim Ker $(H - \lambda)$

Remark

In the case where $\sigma_{pp}(H) \cap J = \emptyset$, Hypothesis (*) on the regularity of bound states and the perturbation is not necessary to conclude that $\sigma_{pp}(H+V) \cap J = \emptyset$. It is sufficient to assume that

• $V\in C^2(A_{\mathcal{G}};A_{\mathcal{G}^*})$ and V, $[V,iA]^0$ are H-bounded

or

V ∈ C¹(A_G; A_{G*}), V and [V, iA]⁰ are H-bounded, and the possibly existing eigenstates of H + V belong to D(M^{1/2})

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Fermi Golden Rule criterion

(Further technical hypothesis)

 $D(M^{\frac{1}{2}}) \cap D(H) \cap D(A^*)$ is a core for A^*

Theorem ([FMS '10])

Assume that the previous hypotheses hold. Let $J \subseteq I$ be a compact interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. Let $P = \mathbb{1}_{\{\lambda\}}(H)$ and $\overline{P} = I - P$. Let $V \in B_{\gamma}$ be such that

$$PV \operatorname{Im}((H - \lambda - i0)^{-1}\overline{P}) VP \ge cP, \quad c > 0$$

There exists $\sigma_0 > 0$ such that for all $0 < |\sigma| \le \sigma_0$, $\sigma_{\rm pp}(H + \sigma V) \cap J = \emptyset$

Remark

Hypothesis (*) on the regularity of bound states and the perturbation can be replaced by the following two assumptions:

- $\operatorname{Ran}(P) \subseteq D(A^2)$
- $V\in {\mathcal C}^2(A_{{\mathcal G}};A_{{\mathcal G}^*})$ and $V,\,[V,iA]^0$ are $H ext{-bounded}$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Fermi Golden Rule criterion

(Further technical hypothesis)

 $D(M^{\frac{1}{2}}) \cap D(H) \cap D(A^*)$ is a core for A^*

Theorem ([FMS '10])

Assume that the previous hypotheses hold. Let $J \subseteq I$ be a compact interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. Let $P = \mathbb{1}_{\{\lambda\}}(H)$ and $\overline{P} = I - P$. Let $V \in B_{\gamma}$ be such that

$$PV \operatorname{Im}((H - \lambda - i0)^{-1}\overline{P}) VP \ge cP, \quad c > 0.$$

There exists $\sigma_0 > 0$ such that for all $0 < |\sigma| \le \sigma_0$, $\sigma_{\rm pp}(H + \sigma V) \cap J = \emptyset$

Remark

Hypothesis (*) on the regularity of bound states and the perturbation can be replaced by the following two assumptions:

- $\operatorname{Ran}(P) \subseteq D(A^2)$
- $V\in \mathcal{C}^2(A_\mathcal{G};A_{\mathcal{G}^*})$ and $V,\,[V,iA]^0$ are $H ext{-bounded}$

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Fermi Golden Rule criterion

(Further technical hypothesis)

 $D(M^{rac{1}{2}}) \cap D(H) \cap D(A^*)$ is a core for A^*

Theorem ([FMS '10])

Assume that the previous hypotheses hold. Let $J \subseteq I$ be a compact interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. Let $P = \mathbb{1}_{\{\lambda\}}(H)$ and $\overline{P} = I - P$. Let $V \in B_{\gamma}$ be such that

$$PV \operatorname{Im}((H - \lambda - i0)^{-1}\overline{P}) VP \ge cP, \quad c > 0.$$

There exists $\sigma_0 > 0$ such that for all $0 < |\sigma| \le \sigma_0$, $\sigma_{\rm pp}(H + \sigma V) \cap J = \emptyset$

Remark

Hypothesis (*) on the regularity of bound states and the perturbation can be replaced by the following two assumptions:

- $\operatorname{Ran}(P) \subseteq D(A^2)$
- $V\in C^2(A_{\mathcal{G}};A_{\mathcal{G}^*})$ and V, $[V,iA]^0$ are H-bounded

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Second order expansion of eigenvalues (simple case)

Theorem ([FMS '10])

Assume that the previous hypotheses hold. Let $J \subseteq I$ be a compact interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. Let $P = \mathbb{1}_{\{\lambda\}}(H)$ and $\overline{P} = I - P$. Let $V \in B_{\gamma}$. Suppose that

 ${\it P}=|\psi\rangle\langle\psi|.$

For all $\epsilon > 0$, there exists $\sigma_0 > 0$ such that if $|\sigma| \le \sigma_0$ and $\lambda_{\sigma} \in J$ is an eigenvalue of $H + \sigma V$, then

$$\left|\lambda_{\sigma}-\lambda-\sigma\langle\psi,V\psi
angle+\sigma^{2}\langle V\psi,(H-\lambda-i0)^{-1}\bar{P}V\psi
angle
ight|\leq\epsilon\sigma^{2},$$

and there exists a normalized eigenstate ψ_{σ} , $H_{\sigma}\psi_{\sigma} = \lambda_{\sigma}\psi_{\sigma}$, such that

$$\left\|\psi_{\sigma}-\psi+\sigma(\mathcal{H}-\lambda-i\mathbf{0})^{-1}\bar{\mathcal{P}}V\psi\right\|_{D(\mathcal{A})^{*}}\leq\epsilon|\sigma|$$

> Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

Second order expansion of eigenvalues (general case)

If Hypothesis (*) on the regularity of bound states and the perturbation is replaced by the following two assumptions:

- $\operatorname{Ran}(P) \subseteq D(A^2)$
- $V \in C^2(\mathcal{A}_\mathcal{G};\mathcal{A}_{\mathcal{G}^*})$ and V, $[V,i\mathcal{A}]^0$ are H-bounded

then the following theorem holds:

Theorem ([FMS '10])

Let $J \subseteq I$ be a compact interval such that $\sigma_{pp}(H) \cap J = \{\lambda\}$. Let $P = \mathbb{1}_{\{\lambda\}}(H)$ and $\overline{P} = I - P$. There exist $C \ge 0$ and $\sigma_0 > 0$ such that if $|\sigma| \le \sigma_0$ and $\lambda_{\sigma} \in J$ is an eigenvalue of $H_{\sigma} = H + \sigma V$, then there exists $\psi \in \text{Ran}(P)$, $||\psi|| = 1$, such that

$$\left|\lambda_{\sigma} - \lambda - \sigma \langle \psi, V\psi \rangle + \sigma^{2} \langle V\psi, (H - \lambda - i\mathbf{0})^{-1} \bar{P} V\psi \rangle\right| \leq C |\sigma|^{\frac{5}{2}}$$

References

Second order perturbation theory

Jérémy Faupin

Regular Mourre theory

Nelson model

Singular Mourre theory

References

[AHS '89] S. Agmon, I. Herbst, E. Skibsted, Perturbation of embedded eigenvalues in the generalized N-body problem, Comm. Math. Phys., 122, (1989), 411-438. [ABG '96] W. Amrein, A. Boutet de Monvel, V. Georgescu, Co-groups, commutator methods and spectral theory of N-body Hamiltonians, Basel-Boston-Berlin, Birkhäuser, 1996. [BFS '98] V. Bach, J. Fröhlich, I.M. Sigal, Quantum electrodynamics of confined non-relativistic particles, Adv. Math., 137, (1998), 299-395. [BFSS '99] V. Bach, J. Fröhlich, I.M. Sigal, A. Soffer, Positive commutators and the spectrum of Pauli-Fierz Hamiltonian of atoms and molecules, Comm. Math. Phys., 207, (1999), 557-587. [Ca '05] L. Cattaneo, Mourre's inequality and embedded boundstates, Bull. Sci. Math., 129, (2005), 591-614. ICGH '06] L. Cattaneo, G.M. Graf, W. Hunziker, A general resonance theory based on Mourre's inequality. Ann. Henri Poincaré 7. (2006), 583-601. [DJ '01] J. Dereziński, V. Jakšić, Spectral theory of Pauli-Fierz operators, J. Funct. Anal., 180, (2001), 243–327. [FMS '10] J. Faupin, J.S. Møller, E. Skibsted, Regularity of embedded bound states, (2010), Preprint, [FMS '10] J. Faupin, J.S. Møller, E. Skibsted, Second order perturbation theory for embedded eigenvalues, (2010), Preprint. [FGS '08] J. Fröhlich, M. Griesemer, I.M. Sigal, Spectral Theory for the Standard Model of Non-Relativistic QED, Comm. Math. Phys., 283. (2008). 613-646. [GG '99] V. Georgescu, C. Gérard, On the virial theorem in quantum mechanics, Comm. Math. Phys., 208, (1999), 275-281. [GGM '04] V. Georgescu, C. Gérard, J.S. Møller, Commutators, Co-semigroups and resolvent estimates, J. Funct, Anal., 216, (2004). 303-361. [GGM '04] V. Georgescu, C. Gérard, J.S. Møller, Spectral theory of massless Pauli-Fierz models, Comm. Math. Phys., 249, (2004). 29-78. [Ge] C. Gérard, A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal., 254, (2008), 2707–2724. [Go '09] S. Golénia, Positive commutators, Fermi Golden Rule and the spectrum of 0 temperature Pauli-Fierz Hamiltonians, J. Funct, Anal., 256, (2009), 2587-2620, [HuSi '00] W. Hunziker and I.M. Sigal. The quantum N-body problem. J. Math. Phys. 41, (2000), 3448-3510. [HüSp '95] M. Hübner, H. Spohn, Spectral properties of the spin-boson Hamiltonian, Ann. Inst. Henri Poincaré, 62, (1995), 289-323. [Mo '81] É. Mourre. Absence of singular continuous spectrum for certain selfadioint operators. Comm. Math. Phys., 78, (1981). 391-408. [MS '04] J.S. Møller, E. Skibsted, Spectral theory of time-periodic many-body systems, Advances in Math., 188, (2004), 137–221.

[Sk '98] E. Skibsted, Spectral analysis of N-body systems coupled to a bosonic field, Rev. Math. Phys., 10, (1998), 989–1026.