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Abstract. — We prove the equivalence between the smoothing effect for a
Schrödinger operator and the decay of the associate spectral projectors. We
give two applications to the Schrödinger operator in dimension one.

Résumé. — On donne une caractérisation de l’effet régularisant pour un
opérateur de Schrödinger par la décroissance de ses projecteurs spectraux. On
en déduit deux applications à l’opérateur de Schrödinger en dimension un.

1. Introduction

Let d ≥ 1, and consider the linear Schrödinger equation

(1.1)

{
i∂tu = Hu, (t, x) ∈ R× Rd,

u(0, x) = f(x) ∈ L2(Rd),

where H is a self-adjoint operator on L2(Rd).

By the Hille-Yoshida theorem, the equation (1.1) admits a unique solution
u(t) = e−itHf ∈ C

(
R;L2(Rd)

)
. Under suitable conditions on H, this solution

enjoys a local gain of regularity (in the space variable) : For all T > 0 there
exists C > 0 so that(∫ T

0
‖Ψ(x) 〈H〉

γ
2 e−itHf‖2L2(Rd)d t

) 1
2 ≤ C‖f‖L2(Rd),

for some weight Ψ and exponent γ > 0.
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This phenomenon has been discovered by T. Kato [7] in the context of KdV
equations. For the Schrödinger equation in the case H = −∆, it has been
proved by P. Constantin- J.-C. Saut [2], P. Sjölin [11], L. Vega [12] and
K. Yajima [13]. The variable coefficients case has been obtained by S. Döı
[3, 4, 5, 6].
The more general results are due to L. Robbiano-C. Zuily [9, 10] for equations
with obstacles and potentials.

Let H be a self adjoint operator on L2(Rd). It can be represented thanks to
the spectral measure by

H =
∫
λdEλ.

In the sequel we moreover assume that H ≥ 0. For N ≥ 0, we can then define
the spectral projector PN associated to H by

(1.2) PN = 1[N,N+1[(H) =
∫

1[N,N+1[(λ)dEλ.

Our main result is a characterisation of the smoothing effect by the decay of
the spectral projectors. Denote by 〈H〉 = (1 +H2)

1
2 .

Theorem 1.1 (Smoothing effect vs. decay). —
Let γ > 0 and Ψ ∈ C(Rd,R). Then the following conditions are equivalent
(i) There exists C1 > 0 so that for all f ∈ L2(Rd)

(1.3)
(∫ 2π

0
‖Ψ(x) 〈H〉

γ
2 e−itHf‖2L2(Rd)d t

) 1
2 ≤ C1‖f‖L2(Rd).

(ii) There exists C2 > 0 so that for all N ≥ 1 and f ∈ L2(Rd)

(1.4) ‖ΨPNf‖L2(Rd) ≤ C2N
− γ

2 ‖PNf‖L2(Rd).

The interesting point is that we can take the same function Ψ and exponent
γ > 0 in both statements (1.3) and (1.4).

By the works cited in the introduction, in the case H = −∆ on Rd, (1.3) is
known to hold with γ = 1

2 and Ψ(x) = 〈x〉−
1
2
−ν , for any ν > 0.

There is also a class of operators H on L2(Rd) for which (1.3) is well under-
stood. Let V ∈ C∞(R,R+), and assume that for |x| large enough V (x) ≥
C〈x〉k and that for any j ∈ Nd, there exists Cj > 0 so that |∂jxV (x)| ≤
Cj〈x〉k−|j|. Then L. Robbiano and C. Zuily [9] show that the smoothing effect
(1.3) holds for the operator H = −∆+V (x), with γ = 1

k and Ψ(x) = 〈x〉−
1
2
−ν ,

for any ν > 0.
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We now turn to the case of dimension d = 1, and consider the operator
H = −∆ + V (x). We make the following assumption on V

Assumption 1. — We suppose that V ∈ C∞(R,R+), and that there exist
2 < m ≤ k so that for |x| large enough

(i) There exists C > 1 so that
1
C
〈x〉k ≤ V (x) ≤ C〈x〉k.

(ii) V ′′(x) > 0 and xV ′(x) ≥ mV (x) > 0
(iii) For any j ∈ N, there exists Cj > 0 so that |∂jxV (x)| ≤ Cj〈x〉k−|j|.

For instance V (x) = 〈x〉k with k > 2 satisfies Assumption 1.

It is well known that under Assumption 1, the operator H has a self-adjoint
extension on L2(R) (still denoted by H) and has eigenfunctions

(
en
)
n≥1

which
form an Hilbertian basis of L2(R) and satisfy

Hen = λ2
nen, n ≥ 1,

with λn −→ +∞, when n −→ +∞.

For N ∈ N the spectral projector PN defined in (1.2) can be written in the
following way. Let f =

∑
n≥1

αnen ∈ L2(R), then

PNf =
∑

N≤λ2
n<N+1

αnen.

Observe that we then have f =
∑
N≥0

PNf.

For such a potential, we can remove the spectral projectors in (1.4) and deduce
from Theorem 1.1

Corollary 1.2. —
Let γ > 0 and Ψ ∈ C(R,R). Let H = ∆ + V (x) so that V (x) = x2 or V (x)
satisfies Assumption 1. Then the following conditions are equivalent
(i) There exists C1 > 0 so that for all f ∈ L2(R)

(1.5)
(∫ 2π

0
‖Ψ(x) 〈H〉

γ
2 e−itHf‖2L2(R)d t

) 1
2 ≤ C1‖f‖L2(R).

(ii) There exists C2 > 0 so that for all n ≥ 1

(1.6) ‖Ψ en‖L2(R) ≤ C2λ
−γ
n , ∀n ≥ 1.

The statements (1.5) and (1.6) were obtained by K. Yajima & G. Zhang in
[16] when Ψ is the indicator of a compact K ⊂ R and with γ = 1

k .



4 LAURENT THOMANN

The statement (1.5) holds for Ψ(x) = 〈x〉−
1
2
−ν , by [9], but as far as we know,

the bound (1.6) with this Ψ was unknown.

With Theorem 1.1 we are also able to prove the following smoothing effect
for the usual Laplacian ∆ on R.

Proposition 1.3. — Let Ψ ∈ L2(R). Then there exists C > 0 so that for all
f ∈ L2(R)(∫ 2π

0
‖Ψ(x) 〈∆〉

1
4 e−it∆f‖2L2(R)d t

) 1
2 ≤ C‖Ψ‖L2(R)‖f‖L2(R).

From the works cited in the introduction, we have(∫
R
‖Ψ(x) 〈∆〉

1
4 e−it∆f‖2L2(R)d t

) 1
2 ≤ C‖f‖L2(R),

for Ψ(x) = 〈x〉−
1
2
−ν , for any ν > 0. Hence Proposition 1.3 shows that we can

extend the class of the weights, but we are only able to prove local integrability
in time.

Notation. — We use the notation a . b if there exists a universal constant
C > 0 so that a ≤ Cb.

2. Proof of the results

We define the self adjoint operator A = [H] (entire part of H) by

A =
∫

[λ]dEλ.

Notice that we immediately have that A−H is bounded on L2(Rd).
The first step in the proof of Theorem 1.1 is to show that we can replace e−itH

by e−itA in (1.3)

Lemma 2.1. — Let γ > 0 and Ψ ∈ C(Rd,R). Then the following conditions
are equivalent
(i) There exists C1 > 0 so that for all f ∈ L2(Rd)

(2.1)
(∫ 2π

0
‖Ψ(x) 〈H〉

γ
2 e−itAf‖2L2(Rd)d t

) 1
2 ≤ C1‖f‖L2(Rd).

(ii) There exists C2 > 0 so that for all f ∈ L2(Rd)

(2.2)
(∫ 2π

0
‖Ψ(x) 〈H〉

γ
2 e−itHf‖2L2(Rd)d t

) 1
2 ≤ C2‖f‖L2(Rd).
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Proof. — We assume (2.1) and we prove (2.2). Let f ∈ L2(Rd) and Define
v = e−itHf . This function solves the problem

(i∂t −A)v = (H −A)v, v(0, x) = f(x).

Then by the Duhamel formula

e−itHf = v = e−itAf − i
∫ t

0
e−i(t−s)A(H −A)v ds

= e−itAf − i
∫ 2π

0
1{s<t}e

−i(t−s)A(H −A)v ds.

Therefore by (2.1) and Minkowski

‖Ψ 〈H〉
γ
2 e−itHv‖L2

2πL
2 . ‖Ψ 〈H〉

γ
2 e−itAv‖L2

2πL
2

+
∫ 2π

0
‖Ψ 〈H〉

γ
2 1{s<t}e

−i(t−s)A(H −A)v‖L2
tL

2
x

ds

. ‖f‖L2 +
∫ 2π

0
‖(H −A)v‖L2 ds.(2.3)

Now use that the operator (H − A) : L2(Rd) → L2(Rd) is bounded, and by
(2.3) we obtain

‖Ψ 〈H〉
γ
2 e−itHv‖L2

2πL
2 . ‖f‖L2 ,

which is (2.2).
The proof of the converse implication is similar.

Proof of Theorem 1.1. — The proof is based on Fourier analysis in time. This
idea comes from [8] and has also been used in [16], but this proof was inspired
by [1].

(i) =⇒ (ii) : To prove this implication, we use the characterisation (2.1).
From (1.2) and the definition of A, e−itAPNf = e−itNPNf . Hence it suffices
to replace f with PNf in (1.3) and (1.4) follows.

(ii) =⇒ (i) : Again we will use Lemma 2.1. We assume (2.2) and we first
prove that

(2.4) ‖Ψ 〈A〉
γ
2 e−itAf‖L2(0,2π;L2(Rd)) . ‖f‖L2(Rd).

Write f =
∑

N≥0 PNf , then

Ψ 〈A〉
γ
2 e−itAf =

∑
N≥0

e−iNt〈N〉
γ
2 Ψ PNf.
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Now by Parseval in time

‖Ψ 〈A〉
γ
2 e−itAf‖2L2(0,2π) .

∑
N≥0

〈N〉γ |Ψ PNf |2,

and by integration in the space variable and (1.4)

‖Ψ 〈A〉
γ
2 e−itAf‖2L2(0,2π;L2(Rd)) .

∑
N≥0

〈N〉γ‖Ψ PNf‖2L2(Rd)

.
∑
N≥0

‖PNf‖2L2(Rd) = ‖f‖2L2(Rd),

which yields (2.4).
Now since the operator 〈A〉−γ/2〈H〉γ/2 is bounded on L2 and commutes with
e−itA, we have by (2.4)

‖Ψ 〈H〉
γ
2 e−itAf‖L2(0,2π;L2(Rd)) =

= ‖Ψ 〈A〉
γ
2 e−itA(〈A〉−

γ
2 〈H〉

γ
2 f)‖L2(0,2π;L2(Rd))

. ‖〈A〉−
γ
2 〈H〉

γ
2 f‖L2(Rd)

. ‖f‖L2(Rd),

which is (2.1).

Proof of Corollary 1.2. — Let V satisfy Assumption 1. Then by [14, Lemma
3.3] there exists C > 0 such that

|λ2
n+1 − λ2

n| ≥ Cλ
1− 2

m
n ,

for n large enough. This implies that [λ2
n] < [λ2

n+1] for n large enough, because
m > 2 and λn −→ +∞. As a consequence

PNf = αnen, with n so that N ≤ λ2
n < N + 1,

and this yields the result.
We now consider V (x) = x2. In this case, the eigenvalues are the integers
λ2
n = 2n+ 1, and the claim follows.

Remark 2.2. — With this time Fourier analysis, we can prove the following
smoothing estimate for H which satisfies Assumption 1

‖〈H〉
θ(q,k)

2 e−itHf‖Lp(R;L2(0,T )) . ‖f‖L2(R),
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where θ is defined by

θ(q, k) =



2
k (1

2 −
1
q ) if 2 ≤ q < 4,

1
2k − η for any η > 0 if q = 4,
1
2 −

2
3(1− 1

q )(1− 1
k ) if 4 < q <∞,

4−k
6k if q =∞.

This was done in [16] with a slightly different formulation.

Proof of Proposition 1.3. — By Theorem 1.1, we have to prove that the op-
erator T defined by

Tf(x) = N
1
4 Ψ(x)1[N,N+1[(−∆)f(x),

is continuous from L2(R) to L2(R) with norm independent of N ≥ 1. By the
usual TT ∗ argument, it is enough to show the result for TT ∗.
The kernel of T is K(x, y) = N

1
4 Ψ(x)FN (x− y) where

(2.5) FN (u) =
1

2π

∫
eiuξ1[

√
N,
√
N+1[(|ξ|)dξ = 4 cos(DNu)

sin(CNu)
u

,

with CN = (
√
N + 1−

√
N)/2 and DN = (

√
N + 1 +

√
N)/2.

The kernel of TT ∗ is given by

Λ(x, z) =
∫
K(x, y)K(z, y)dy,

and by Parseval and (2.5)

Λ(x, z) = N
1
2 Ψ(x)Ψ(z)

∫
FN (x− y)FN (z − y)dy

=
1
4
N

1
2 Ψ(x)Ψ(z)

∫
ei(x−z)ξ1[

√
N,
√
N+1[(|ξ|)dξ

= πN
1
2 Ψ(x)Ψ(z) cos(DN (x− z))sin(CN (x− z))

x− z
.

Now, since CN . 1/
√
N and | sin(x)| ≤ |x|, we deduce that |Λ(x, z)| ≤

C|Ψ(x)||Ψ(z)| (independent of N ≥ 1), and TT ∗ is continuous for Ψ ∈ L2(R).
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