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UFR de Mathématiques, Informatique et Mécanique
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Abstract. In this article we study the hyperbolic problem

utt − ∆u + F (x, t, u,∇u) = 0 in Ω × R+,

u = 0 on Γ0, u +

∫ t

0

g(t − s)
∂u

∂ν
(s)ds = 0 on Γ1 × R+,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

where Ω is a bounded region in Rn whose boundary is partitioned into
disjoint sets Γ0, Γ1. We prove that the dissipation given by the memory
term is strong enough to assure stability of our system. The general
decay estimates we obtain depend on the relaxation function. In partic-
ular, if the relaxation function decays exponentially (or polynomially),
then the solution also decays exponentially (or polynomially) and with
the same decay rate. Indeed, the main result of this paper is to give
general relations between the decay of the solution and the decay of
the relaxation function, under weaker hypotheses on the resolvent ker-
nel function (defined in Section 2),and the potential functions φ(x) and
ϕ(t), which represent (in some sense) the linear and the nonlinear part of
F with respect to ∇u, respectively. We assume only that ϕ is bounded
and small enough at ∞ which means that, in fact, ϕ has no real influence
on the stability of our system. In the case where the relaxation function
decays exponentially or polynomially, we obtain the same decay for the
solution, and then the results of [3,4] become just a particular case of
ours. We also distinguish the case where the first data u0 vanishes on Γ1
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and prove that, in this case, we have exponential or polynomial decay
of solution, even if the relaxation function does not converge to 0 at ∞.

1. Introduction

In this work we study the existence of global solutions and the asymptotic
behavior of the energy related to the following nonlinear wave equation with
a boundary condition of memory type

utt − ∆u + F (x, t, u,∇u) = 0 in Ω × R+, (1.1)

u = 0 on Γ0 × R+, (1.2)

u +
∫ t

0
g(t − s)

∂u

∂ν
(s)ds = 0 on Γ1 × R+, (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (1.4)
where Ω is a bounded domain in Rn, n ≥ 1, with smooth boundary Γ =
Γ0 ∪ Γ1. Here, Γ0 and Γ1 are closed and disjoint, Γ0 �= ∅, and ν is the
unit normal vector pointing towards the exterior of Ω. Equation (1.3) is a
nonlocal boundary condition responsible for the memory effect. Considering
the history condition, we must add to conditions (1.2)-(1.3) the one given
by

u = 0 on Γ0 × R−.

We observe that in problem (1.1)-(1.4), u represents the transverse displace-
ment, and the relaxation function g is a positive nonincreasing function
belonging to W 2,1(R+). Furthermore, let γ be a constant such that γ ≥ 0
for n = 1, 2, and 0 ≤ γ ≤ 2/(n− 2) for n ≥ 3, and suppose that the function
F : Ω × R+ × Rn+1 → R is of class C1 and satisfies

|F (x, t, ξ, ζ)| ≤ C0(1 + |ξ|γ+1 + |ζ|) (1.5)

where C0 is a positive constant, and ζ = (ζ1, ..., ζn).
Assume that there is a nonnegative function ϕ(t) in the space L∞(R+)

and a function φ(x) in the space W 1,∞(Ω) and a nonnegative constant D
such that

(F (x, t, ξ, ζ) + ∇φ(x) · ζ)η ≥ D|ξ|γξη − ϕ(t)(1 + |η|‖ζ|), ∀η ∈ R, (1.6)

and, particularly,

(F (x, t, ξ, ζ) +∇φ(x) · ζ)(m · ζ) ≥ D|ξ|γξ(m · ζ)−ϕ(t)(1 + |ζ||m · ζ|). (1.7)

Additionally, there exist positive constants C0, . . . , Cn such that

|Ft(x, t, ξ, ζ)| ≤ C0

(
1 + |ξ|γ+1 + |ζ|

)
, (1.8)

|Fξ(x, t, ξ, ζ)| ≤ C0(1 + |ξ|γ), (1.9)



General decay rates of solutions to a nonlinear wave equation 585

|Fζi
(x, t, ξ, ζ)| ≤ Ci for i = 1, 2, . . . , n. (1.10)

We also assume that there exist positive constants D1, D2, such that for all
ξ, ξ̂, η, η̂ ∈ R and for all ζ, ζ̂ ∈ Rn,

(F (x, t, ξ, ζ) − F (x, t, ξ̂, ζ̂))(η − η̂)

≥ −D1(|ξ|γ + |ξ̂|γ)|ξ − ξ̂‖η − η̂| − D2|η − η̂‖ζ − ζ̂|. (1.11)
Defining

F (x, t, u,∇u) = |u|γu + ϕ(t)
n∑

i=1

sin
( ∂u

∂xi

)
−∇φ(x) · ∇u,

where ϕ and φ are sufficiently regular functions, we obtain an example of a
function F which verifies the above hypotheses.
Remark 1.1. In fact assumption (1.6) implies that

(F (x, t, ξ, ζ) + ∇φ · ζ)η ≥ D|ξ|γξη − ϕ(t)|η||ζ|, ∀η ∈ R. (1.12)

Indeed, (1.6) implies that

(F (x, t, ξ, ζ) + ∇φ · ζ − D|ξ|γξ + ϕ(t)|ζ|)η ≥ −ϕ(t), ∀η ∈ R+

and

(F (x, t, ξ, ζ) + ∇φ · ζ − D|ξ|γξ − ϕ(t)|ζ|)η ≥ −ϕ(t), ∀η ∈ R−,

hence
F (x, t, ξ, ζ) + ∇φ · ζ − D|ξ|γξ + ϕ(t)|ζ| ≥ 0,

F (x, t, ξ, ζ) + ∇φ · ζ − D|ξ|γξ − ϕ(t)|ζ| ≤ 0.

Then we conclude (1.12). So we will assume (1.12) instead of (1.6).

The integral equation (1.3) describes the memory effect which can be
caused, for example, by the interaction with another viscoelastic element.
Indeed, from the physical point of view, condition (1.3) means that Ω is com-
posed of a material which is clamped in a rigid body in Γ0 and is clamped in
a body with viscoelastic properties in the complementary part of its bound-
ary named Γ1. So, it is expected that the decay of solutions depends on the
decay of the kernel of the memory. In particular, if the kernel of the memory
decays (exponentially or polynomially) the same occurs with the solutions
of problem (1.1)-(1.4).

In what follows we are going to assume that there exists x0 ∈ Rn such
that Γ0 = {x ∈ Γ : ν(x) · (x − x0) ≤ 0}, Γ1 = {x ∈ Γ : ν(x) · (x − x0) > 0}.

Defining m(x) = x − x0, the compactness of Γ1 implies that there exists
a positive constant δ0 such that

0 < δ0 ≤ m(x) · ν(x), ∀x ∈ Γ1. (1.13)



586 M.M. Cavalcanti and A. Guesmia

For examples of a set Ω satisfying those properties, see [9].
There is not much in the literature regarding the existence and asymp-

totic behavior of evolution equations subject to memory conditions acting
on the boundary. It is worth mentioning some papers in connection with
viscoelastic effects on the boundary. In this direction we can cite the work
by Aassila, Cavalcanti, and Soriano [1] who considered the linear wave equa-
tion subject to nonlinear feedback and viscoelastic effects on the boundary,
and proved uniform (exponential and algebraic) decay rates. Also, we can
cite the article of Andrade and Munõz Rivera [2] where there was consid-
ered a one-dimensional nonlinear wave equation subject to a nonlocal and
nonlinear boundary memory effect. In this work the authors showed that
the dissipation occasioned by the memory term was strong enough to guar-
antee global estimates and, consequently, allowed them to prove existence of
a global smooth solution for small data and to obtain exponential (or poly-
nomial) decay provided the kernel decays exponentially (or polynomially).
In the same context we can mention the work of Santos [15], where decay
rates were proved concerning the wave equation with coefficients depending
on time and subject to a memory condition on the boundary.

A natural question that arises in this context concerns the nonexistence
results for the wave equation in the presence of viscoelastic effects acting on
the boundary. Related to this subject we can mention the work of Kirane
and Tartar [11] who obtained nonexistence results and Qin [17] who proved a
blow up result for the nonlinear one-dimensional wave equation with memory
boundary condition.

In connection with the above discussion, regarding viscoelastic problems,
it is important to cite the works of Ciarletta [5], Fabrizio and Morro [8] and
Qin [16].

The most recent results in this direction were obtained by Cavalcanti,
Domingos, and Santos [4] where the authors considered the same system
under the same hypotheses with φ = constant and both ϕ and the relaxation
function converging exponentially or polynomially to 0 at ∞, and proved that
the solution has the same decay. The fact that ϕ converges exponentially or
polynomially to 0 at ∞ is a strong hypothesis which is not satisfied if, for
example, the function F does not depend on time t.

The main goal of the present paper is to complement and improve the
above mentioned works. The main result of this paper is to give general
relations between the decay of solutions and the decay of the relaxation
function, under weaker hypotheses on the resolvent kernel function (defined
in Section 2), and the potential functions φ(x) and ϕ(t) which represent (in
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some sense) the linear and the nonlinear part of F with respect of ∇u, re-
spectively. We assume only that ϕ is bounded and small enough at ∞ which
means that, in fact, ϕ has no real influence on the stability of our system. In
the case where the relaxation function decays exponentially or polynomially,
we obtain the same decay for the solution, and then the results of [4] become
just a particular case of ours. We also distinguish the case where the initial
data u0 vanishes on Γ1 and prove that, in this case, we have exponential
or polynomial decay of solutions, even if the relaxation function does not
converge to 0 at ∞. In order to prove these results, we use a direct approach
introduced by the second author in [9] and [10]. This approach is based on
generalized integral inequalities for positive nondecreasing functions and the
introduction of an equivalent energy which depends on φ.

On the other hand, the majority of the existing results are obtained in a
one-dimensional domain while our paper deals with an n-dimensional prob-
lem bringing up some additional difficulties, mainly relating to the geometric
conditions. In addition, as we have a nonlinear problem whose nonlinearity
F = F (x, t, u,∇u) depends on the gradient, we do not have any information
about the influence of the integral

∫
Ω F (x, t, u,∇u)ut dx on the equivalent

energy E(t) or about the sign of the derivative E′(t). In other words, we
cannot guarantee that E′(t) ≤ 0, which plays an essential role in establishing
the desired decay rates.

Note that condition (1.2) implies that the solution of system (1.1)-(1.4)
must belong to the following space V := {v ∈ H1(Ω) : v = 0 on Γ0}. The
notations we use in this paper are standard and can be found in Lion’s book
[12]. In the sequel, C (sometimes C0, C1, . . . ) is going to denote various posi-
tive constants which do not depend on t, and depend on ‖(u0, u1)‖H1(Ω)×L2(Ω)

in a continuous way. This paper is organized as follows. In Section 2 we es-
tablish the existence and uniqueness for regular and weak solutions to the
system(1.1)-(1.4). In Sections 3 and 4 we prove the general decay estimates.
In Section 5 we discuss some applications.

2. Notation and main results

In this section we present some notation and we study the existence of
regular and weak solutions to the system (1.1)-(1.4). First, we will use
equation (1.3) to estimate the term ∂u

∂ν .
Defining the convolution product operator by

(g ∗ ϕ)(t) =
∫ t

0
g(t − s)ϕ(s)ds
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and differentiating equation (1.3), we get
∂u

∂ν
+

1
g(0)

(
g′ ∗ ∂u

∂ν

)
= − 1

g(0)
ut on Γ1 × (0, +∞).

Applying Volterra’s inverse operator, we get
∂u

∂ν
= − 1

g(0)
(ut + k ∗ ut) on Γ1 × (0, +∞)

where the resolvent kernel satisfies

k +
1

g(0)
g′ ∗ k = − 1

g(0)
g′.

Defining η = 1
g(0) , we get

∂u

∂ν
= −η

(
ut + k(0)u − k(t)u0 + k′ ∗ u

)
on Γ1 × (0, +∞). (2.1)

Reciprocally, considering that the initial data satisfies u0 = 0 on Γ1, (2.1)
implies (1.3). Since we are interested here in relaxation functions of expo-
nential or polynomial type and identity (2.1) involves the resolvent kernel k,
we want to investigate if k has the same properties. The following lemma
answers this question.

Let h be
k(t) − k ∗ h(t) = h(t). (2.2)

Lemma 2.1. If h is a positive continuous function, then k is also a positive
continuous function. Moreover,

1. If there exist positive constants c0 and γ with c0 < γ such that h(t) ≤
c0e

−γt, we conclude that the function k satisfies k(t) ≤ c0(γ−ε)
γ−ε−c0

e−εt, for all
0 < ε < γ − c0.

2. Let us consider p > 1 and define by

cp := sup
t≥0

∫ t

0
(1 + t)p(1 + t − s)−p(1 + s)−p ds.

Provided there exists a positive constant c0 with c0cp < 1 such that h(t) ≤
c0(1 + t)−p, the function k satisfies k(t) ≤ c0

1−c0cp
(1 + t)−p.

Proof. See [4].
Remark 2.1. In Racke [13, Lemma 7.4], it is assured that cp is a finite
positive constant. Also, according to this lemma, in what follows, we are
going to use (2.1) instead of (1.3).

In order to prove the following lemma, let us define

(g�ϕ)(t) :=
∫ t

0
g(t − s)|ϕ(t) − ϕ(s)|2ds.
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Lemma 2.2. For real functions g, ϕ ∈ C1(R+) we have

(g ∗ ϕ)ϕt = −1
2
g(t)|ϕ(t)|2 +

1
2
g′�ϕ − 1

2
d

dt

[
g�ϕ − (

∫ t

0
g(s)ds)|ϕ|2

]
.

Proof. The proof of this lemma follows by differentiating the term g�ϕ.
The first order equivalent energy of system (1.1)-(1.4) is defined by

E(t) :=
1
2

∫
Ω

eφ(x)
(
|ut(x, t)|2 + |∇u(x, t)|2

)
dx +

D

γ + 2

∫
Ω

eφ(x)|u(x, t)|γ+2dx

−η

2

∫
Γ1

eφ(x)(k′�u)(t)dΓ +
η

2
k(t)

∫
Γ1

eφ(x)|u(x, t)|2dΓ.

The well-posedness of system (1.1)-(1.4) as well as the decay rates expected
are presented in the following theorem.
Theorem 2.1. Let k ∈ W 2,1(R+), assume that assumptions (1.5)-(1.11)
hold, and suppose that (u0, u1) ∈

(
V ∩ H2(Ω)

)2
, satisfying the compatibility

condition
∂u0

∂ν
+ ηu1 = 0 on Γ1. (2.3)

Then, problem (1-1)-(1.4) possesses a unique solution u such that

u ∈ L∞(R+, V ∩ H2(Ω)), u′ ∈ L∞(R+, V ), u′′ ∈ L∞(R+, V ). (2.4)

In addition, assuming that there exist 0 ≤ q < 1
2 , b > 0 and t0 ≥ 0 such that

k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ b(−k′(t))1+q, (2.5)

‖∇φ‖∞‖m‖∞ < min{1,
γn

γ + 4
}, (2.6)

sup
t∈[t0,∞[

ϕ(t) and sup
t∈[t0,∞[

k(t) are small enough (2.7)

and, moreover, that hypothesis (1.13) holds, we obtain that the equivalent
energy E(t) associated to problem (1.1)-(1.4) decays with the following rates
of decay:

Case 1. q = 0:

E(t) ≤ Ce−αt
(
1 +

∫ t

0
k2(s)eαsds

)
, (2.8)

E(t) ≤ Ce−αt if u0 = 0 on Γ1, (2.9)
where C and α are positive constants.

Case 2. 0 < q < 1
2 :

E(t) ≤ C(t + 1)−λ
(
1 +

∫ t

0
k2(s)(s + 1)λds

)
, (2.10)
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where λ = 1
q if

∫ t
0 k2(s)(s + 1)λ0ds is bounded for some 1 < λ0 < 1

q − 1, and
1 < λ < 1

q − 1; if not,

E(t) ≤ C(t + 1)−
1
q if u0 = 0 on Γ1. (2.11)

Theorem 2.2. Let k ∈ W 2,1(R+), suppose that (u0, u1) ∈ V × L2(Ω), and
the assumptions (1.5)-(1.11) and (2.5)-(2.7) hold. Then, problem (1.1)-(1.4)
has a unique weak solution u in the space C0(R+; V )∩C1(R+; L2(Ω)). Fur-
thermore, the decay rates presented in (2.8)-(2.11) hold for the weak solution
u.
Remark 2.2. We can take t0 = 0 in (2.7) without lost of generality.
Remark 2.3. Thanks to (2.5), the assumption on γ, and the fact that φ is
bounded, the equivalent energy E satisfies, for a positive constant d,

E(t) ≥ d‖(u, ut)‖H1(Ω)×L2(Ω). (2.12)

Remark 2.4. Thanks to Lemma 2.1 we have, if the relaxation function
decays exponentially or polynomially to 0 at ∞, then the resolvent kernel k
has the same properties. Then, in these cases, estimates (2.8) and (2.10) give
the same decay for the solutions of system (1.1)-(1.4), respectively. That is,
if k2(t) ≤ Ce−βt or k2(t) ≤ C(1 + t)−2p with constants β > 0 and p > 1

2 ,
then, from (2.8) and (2.10), we have E(t) ≤ Ce−min{α,β}t (E(t) ≤ Ce−(α−ε)t

for any ε > 0 if α = β) or E(t) ≤ C(1 + t)−min{λ,2p−1}, respectively. These
particular cases give the results of [4].
Proof. The proof of existence and uniqueness for regular and weak solutions
can be obtained following exactly identical procedure as in the work [3] of the
authors Cavalcanti, Domingos Cavalcanti, and Soriano. On the other hand,
by using the usual density arguments, we can prove estimates (2.8)-(2.11)
for weak solutions. Consequently, these two points will be omitted.

3. General decay: the case q = 0

In this section we shall study the asymptotic behavior of the solutions of
system (1.1)-(1.4) when the resolvent kernel satisfies, for b > 0, the condi-
tions

k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ −bk′(t). (3.1)

These assumptions imply that k′ converges exponentially to 0; that is, 0 ≤
−k′(t) ≤ Ce−bt. In [4] it was assumed the same property also for k.

Our point of departure will be to establish some inequalities for the solu-
tion of system (1.1)-(1.4).
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Lemma 3.1. Any regular solution u of the system (1.1)–(1.4) satisfies

d

dt
E(t) ≤ −η

2

∫
Γ1

eφ(x)|ut|2dΓ +
η

2
k2(t)

∫
Γ1

eφ(x)|u0|2dΓ

−η

2

∫
Γ1

eφ(x)(k′′�u)dΓ + ϕ(t)
∫

Ω
eφ(x)|ut||∇u|dx.

Proof. Multiplying the equation (1.1) by eφ(x)ut and integrating by parts
over Ω we get

1
2

d

dt

∫
Ω

eφ(x)(|ut|2 + |∇u|2)dx

= −
∫

Ω
eφ(x)(F (x, t, u,∇u) + ∇φ · ∇u)utdx +

∫
Γ1

eφ(x) ∂u

∂ν
utdΓ.

Taking (1.12), (2.1), and (3.1) into account and using Lemma 2.2 our con-
clusion follows.

Let us consider the following binary operator

(k � ϕ)(t) :=
∫ t

0
k(t − s)(ϕ(t) − ϕ(s))ds.

Then employing Hölder’s inequality for 0 ≤ µ ≤ 1 we have

|(k � ϕ)(t)|2 ≤
[ ∫ t

0
|k(s)|2(1−µ)ds

]
(|k|2µ�ϕ)(t). (3.2)

Let us define the functionals

N (t) :=
∫

Ω
eφ(x)(|ut|2 + |∇u|2 + |u|γ+2)dx,

ψ(t) = 2
∫

Ω
eφ(x)(m · ∇u)ut + θ

∫
Ω

eφ(x)uutdx, (3.3)

where

max{n + ‖m‖∞‖∇φ‖∞ − 2,
2(n + ‖m‖∞‖∇φ‖∞)

γ + 2
} < θ < n − ‖m‖∞‖∇φ‖∞

(thanks to (2.6) the constant θ exists). The following lemma plays an im-
portant role for the construction of the Lyapunov functional.
Lemma 3.2. For any regular solution of the system (1.1)-(1.4) we get

d

dt
ψ(t) ≤

∫
Γ1

eφ(x)(m · ν)|ut|2dΓ +
∫

Ω
(θ − n − m · ∇φ)eφ(x)|ut|2dx

+
∫

Ω
(n + m · ∇φ − 2 − θ)eφ(x)|∇u|2dx +

∫
Γ1

eφ(x) ∂u

∂ν
(2m · ∇u + θu)dΓ
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−
∫

Γ1

eφ(x)(m · ν)|∇u|2dΓ +
∫

Ω
(
2(n + m · ∇φ)

γ + 2
− θ)Deφ(x)|u|γ+2dx

+θϕ(t)
∫

Ω
eφ(x)|u||∇u|dx + 2ϕ(t)

∫
Ω

eφ(x)|∇u||m · ∇u|dx.

Proof. Differentiating the equation (3.3) with respect to t and substituting
the equation (1.1) in the expression obtained we deduce

d

dt
ψ(t) =

∫
Γ1

eφ(x)(m · ν)|ut|2dΓ +
∫

Ω
(θ − n − m · ∇φ)eφ(x)|ut|2dx

+
∫

Γ1

eφ(x) ∂u

∂ν
(2m · ∇u + θu)dΓ +

∫
Γ0

eφ(x)(m · ν)|∇u|2dΓ

−
∫

Γ1

eφ(x)(m · ν)|∇u|2dΓ +
∫

Ω
(n + m · ∇φ − 2 − θ)eφ(x)|∇u|2dx

−2
∫

Ω
eφ(x)(F (x, t, u,∇u) + ∇φ(x) · ∇u)(m · ∇u)dx

−θ

∫
Ω

eφ(x)(F (x, t, u,∇u) + ∇φ(x) · ∇u)udx. (3.4)

From the inequality (1.12) we obtain

−θ

∫
Ω

eφ(x)(F (x, t, u,∇u) + ∇φ(x) · ∇u)udx

≤ −θD

∫
Ω

eφ(x)|u|γ+2dx + θϕ(t)
∫

Ω
eφ(x)|u||∇u|dx, (3.5)

−2
∫

Ω
eφ(x)(F (x, t, u,∇u) + ∇φ(x) · ∇u)(m · ∇u)dx

≤ −2D

∫
Ω

eφ(x)|u|γu(m · ∇u)dx + 2ϕ(t)
∫

Ω
eφ(x)|∇u||m · ∇u|dx. (3.6)

Substituting the inequalities (3.5)-(3.6) into (3.4) and noting that

− 2D

γ + 2

∫
Γ1

(m · ν)|u|γ+2dΓ ≤ 0 and
∫

Γ0

eφ(x)(m · ν)|∇u|2dΓ ≤ 0,

our conclusion follows.
Finally, we shall show that the equivalent energy E satisfies some integral

inequalities. Using hypothesis (3.1) and Young’s inequality in Lemma 3.1
we get

d

dt
E(t) ≤ −η

2

∫
Γ1

eφ(x)(|ut|2 − bk′�u − k2(t)|u0|2)dΓ

+
1
2
ϕ(t)

∫
Ω

eφ(x)(|ut|2 + |∇u|2)dx. (3.7)



General decay rates of solutions to a nonlinear wave equation 593

Applying Young and Poincaré’s inequalities in Lemma 3.2 and using (1.13)
we obtain

d

dt
ψ(t) ≤

∫
Γ1

eφ(x)(m · ν)|ut|2dΓ + (θ − n + ‖m‖∞‖∇φ‖∞)
∫

Ω
eφ(x)|ut|2dx

−(θ − (n + ‖m‖∞‖∇φ‖∞ − 2))
∫

Ω
eφ(x)|∇u|2dx

−(θ − 2(n + ‖m‖∞‖∇φ‖∞)
γ + 2

)D
∫

Ω
eφ(x)|u|γ+2dx

+C
(
ε

∫
Γ1

eφ(x)(|∇u|2 + u2)dΓ + ϕ(t)N (t)
)

+ Cε

∫
Γ1

eφ(x)|∂u

∂ν
|2dΓ

−δ0

∫
Γ1

eφ(x)|∇u|2dΓ

where ε is an arbitrary positive constant.
Noting that the boundary condition (2.1) can be written as

∂u

∂ν
= −η(ut + k(t)u − k′ � u − k(t)u0),

we arrive at
d

dt
ψ(t) ≤ (θ − n + ‖m‖∞‖∇φ‖∞)

∫
Ω

eφ(x)|ut|2dx

−(θ − (n + ‖m‖∞‖∇φ‖∞ − 2))
∫

Ω
eφ(x)|∇u|2dx

−(θ − 2(n + ‖m‖∞‖∇φ‖∞)
γ + 2

)D
∫

Ω
eφ(x)|u|γ+2dx

−δ0

∫
Γ1

eφ(x)|∇u|2dΓ + C
(
ε

∫
Γ1

eφ(x)(|∇u|2 + u2)dΓ + ϕ(t)N (t)
)

+Cε

∫
Γ1

eφ(x)(|ut|2 + k2(t)|u|2 + |k′ � u|2 + k2(t)|u0|2)dΓ. (3.8)

On the other hand, applying the inequality (3.2) for k′ with µ = 1
2 and the

trace theorem in inequality (3.8) with ε small enough we obtain

d

dt
ψ(t) ≤ (θ − n + ‖m‖∞‖∇φ‖∞)

∫
Ω

eφ(x)|ut|2dx

−(θ − (n + ‖m‖∞‖∇φ‖∞ − 2))
∫

Ω
eφ(x)|∇u|2dx

−(θ − 2(n + ‖m‖∞‖∇φ‖∞)
γ + 2

)D
∫

Ω
eφ(x)|u|γ+2dx
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+C(ϕ(t)+ε)N (t)+Cε

∫
Γ1

eφ(x)(|ut|2+k2(t)|u|2−k′�u+k2(t)|u0|2)dΓ. (3.9)

Let us introduce the Lyapunov functional

L(t) := NE(t) + ψ(t), (3.10)

with N > 0. Taking N large and ε small enough, using (2.7) for ϕ and
(2.12), the previous inequalities (3.7) and (3.9) imply that, for some positive
constants C1 and C2,

d

dt
L(t) ≤ −C2E(t) + C1‖u0‖2

L2(Γ1)k
2(t) + Ck2(t)

∫
Γ1

eφ(x)|u|2dΓ,

hence, using (2.7) for k, (2.12) and the trace theorem,

d

dt
L(t) ≤ −C0E(t) + C1‖u0‖2

L2(Γ1)k
2(t)

for some positive constant C0. Moreover, using Young’s inequality and tak-
ing N sufficiently large we find that

q0E(t) ≤ L(t) ≤ q1E(t), (3.11)

for some positive constants q0 and q1. From the last two inequalities we
conclude that

d

dt
L(t) ≤ −αL(t) + C1‖u0‖2

L2(Γ1)k
2(t), (3.12)

for some positive constants α. Now we distinguish two cases.
Case 1. If u0 = 0 on Γ1, then ‖u0‖2

L2(Γ1) = 0 and (3.12) implies that

d

dt
L(t) ≤ −αL(t),

hence L(t) ≤ Ce−αt. Then, using (3.11), we deduce the second estimate
(2.9) of Theorem 2.1.

Case 2. If u0 �= 0 on Γ1, we rewrite (3.12) as follows

d

dt
L(t) ≤ −αL(t) + C2k

2(t) (3.13)

where C2 = C1‖u0‖2
L2(Γ1). To show (2.8), we introduce the function

f(t) = L(t) − C2e
−αt

∫ t

0
k2(s)eαsds.

Using (3.13) we easily see that f ′(t) ≤ −αf(t) which implies that f(t) ≤
Ce−αt. Hence, using the definition of f and (3.11), we obtain (2.8). This
completes the proof.
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Remark 3.5. In [4, Lemma 3.3], the authors considered the inequality
(3.13) with k2(t) = Ce−βt, for a positive constant β, and proved that L
decays exponentially to 0. Our proof extends this lemma to any function
k2(t).

4. General Decay: the case 0 < q < 1
2

Here our attention will be focused on the decay estimates (2.10) and (2.11)
when the resolvent kernel k satisfies

k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ b(−k′(t))1+q (4.1)

for some 0 < q < 1
2 and some positive constant b. This assumption implies

that k′ (and not necessarily k as was assumed in [4]) decays polynomially to
0; that is,

0 ≤ −k′(t) ≤ C(1 + t)−
1
q .

Let p = 1
q − 1 > 1. The lemma below will play an important role in the

sequel.
Lemma 4.1. Let u, be a solution of system (1.1)–(1.4). Then, for p > 1,
0 < r < 1 and t ≥ 0, we have( ∫

Γ1

eφ(x)|k′|�udΓ
)1+ 1

(1−r)(p+1)

≤ C
(
‖u‖2

L∞(0,t;L2(Γ1))

∫ t

0
|k′(s)|rds

) 1
(1−r)(p+1)

∫
Γ1

eφ(x)|k′|1+
1

p+1 �udΓ

while for r = 0 we get ( ∫
Γ1

eφ(x)|k′|�udΓ
)1+ 1

p+1

≤ C
( ∫ t

0
‖u(s, .)‖2

L2(Γ1)ds + t‖u(t, .)‖2
L2(Γ1)

)p+1
∫

Γ1

eφ(x)|k′|1+
1

p+1 �udΓ.

Proof. Because φ is bounded, we conclude these two inequalities from [4,
Lemma 4.1] (see also [14]).

Finally, we shall prove the inequalities (2.10) and (2.11). Using hypothesis
(4.1) in Lemma 3.1 yields

d

dt
E(t) ≤ −η

2

∫
Γ1

(|ut|2 + b(−k′)1+
1

p+1 �u − k2(t)|u0|2)dΓ

+
1
2
ϕ(t)

∫
Ω

eφ(x)(|ut|2 + |∇u|2)dx.
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Considering inequality (3.2) for k′ with µ = p+2
2(p+1) and taking hypothesis

(4.1) into account we obtain the estimate

|k′ � u|2 ≤ C(−k′)1+
1

p+1 �u.

Using the above inequalities and (1.13) in Lemma 3.2 yields
d

dt
ψ(t) ≤ (θ − n + ‖m‖∞‖∇φ‖∞)

∫
Ω

eφ(x)|ut|2dx

−(θ − (n + ‖m‖∞‖∇φ‖∞ − 2))
∫

Ω
eφ(x)|∇u|2dx

−(θ − 2(n + ‖m‖∞‖∇φ‖∞)
γ + 2

)D
∫

Ω
eφ(x)|u|γ+2dx

−δ0

∫
Γ1

eφ(x)|∇u|2dΓ + C
(
ε

∫
Γ1

eφ(x)|∇u|2dΓ + (ϕ(t) + ε)N (t)
)

+C

∫
Γ1

eφ(x)(|ut|2 + k2(t)|u|2 + (−k′)1+
1

p+1 �u + k2(t)|u0|2)dΓ

where ε is an arbitrary positive constant and N is defined in Section 3.
On the other hand, using hypothesis (2.5) for 0 < q < 1

2 and Young’s
inequality in Lemma 3.1 we get

d

dt
E(t) ≤ −η

2

∫
Γ1

eφ(x)(|ut|2 − b(−k′)1+
1

p+1 �u − k2(t)|u0|2)dΓ

+
1
2
ϕ(t)

∫
Ω

eφ(x)(|ut|2 + |∇u|2)dx.

In these conditions, taking N sufficiently large, ε small enough, and using
(2.7) for ϕ, the Lyapunov functional defined in (3.10) satisfies, for some
positive constants Ci, i = 0, 1, · · · ,

d

dt
L(t) ≤ −C2N (t) + C1‖u0‖2

L2(Ω)k
2(t) − C3

∫
Γ1

(−k′)1+
1

p+1 �udΓ

+C4k
2(t)

∫
Γ1

eφ(x)|u|2dΓ,

hence, using (2.7) for k and the trace formula,
d

dt
L(t) ≤ −C0

(
N (t) +

∫
Γ1

(−k′)1+
1

p+1 �udΓ
)

+ C1‖u0‖2
L2(Γ1)k

2(t). (4.2)

Now let us fix 0 < r < 1 such that 1
p+1 < r < p

p+1 . From (4.1) we have that∫ ∞

0
|k′(t)|rdt ≤ C

∫ ∞

0
(1 + t)−r(p+1)dt < ∞.
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Using this estimate in Lemma 4.1 we get∫
Γ1

eφ(x)(−k′)1+
1

p+1 �udΓ ≥ C
( ∫

Γ1

eφ(x)(−k′)�udΓ
)1+ 1

(1−r)(p+1)
. (4.3)

On the other hand, thanks to the regularity (2.4), N is bounded. Then we
deduce that

N (t) +
( ∫

Γ1

eφ(x)(−k′)�udΓ
)1+ 1

(1−r)(p+1)

≥ C
(
N (t) +

∫
Γ1

eφ(x)(−k′)�udΓ
)1+ 1

(1−r)(p+1) ≥ CE(t)1+
1

(1−r)(p+1) . (4.4)

Substituting (4.3)-(4.4) into (4.2) we obtain
d

dt
L(t) ≤ −CE(t)1+

1
(1−r)(p+1) + C1‖u0‖2

L2(Γ1)k
2(t).

Taking into account the inequalities (3.11) we conclude that
d

dt
L(t) ≤ −CL(t)1+

1
(1−r)(p+1) + C1‖u0‖2

L2(Γ1)k
2(t). (4.5)

Now we distinguish two cases.
Case 1. If u0 = 0 on Γ1, then ‖u0‖2

L2(Γ1) = 0 and (4.5) implies that

d

dt
L(t) ≤ −CL(t)1+

1
(1−r)(p+1) ,

which implies, by integration,

L(t) ≤ C(1 + t)−(1−r)(p+1). (4.6)

Case 2. If u0 �= 0 on Γ1, we rewrite (4.5) as follows
d

dt
L(t) ≤ −CL(t)1+

1
(1−r)(p+1) + C2k

2(t) (4.7)

where C2 = C1‖u0‖2
L2(Γ1). We introduce the functions

f(t) = L(t) − g(t), g(t) = C2(t + 1)−(1−r)(p+1)

∫ t

0
k2(s)(s + 1)(1−r)(p+1)ds.

Using (4.1) we easily see that

g′(t) + Cg(t)1+
1

(1−r)(p+1) ≥ C2k
2(t).

Then, using (4.7),

f ′(t) ≤ −CL(t)1+
1

(1−r)(p+1) + C2k
2(t) − g′(t)

≤ −C
(
(f(t) + g(t))1+

1
(1−r)(p+1) +

1
C

g′(t) − C2

C
k2(t)

)
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≤ −C
(
f(t)1+

1
(1−r)(p+1) + g(t)1+

1
(1−r)(p+1) +

1
C

g′(t) − C2

C
k2(t)

)
≤ −Cf(t)1+

1
(1−r)(p+1) ,

which implies that

f(t) ≤ C(1 + t)−(1−r)(p+1).

Hence, using the definition of f and g, we obtain that

L(t) ≤ C(1 + t)−(1−r)(p+1)
(
1 +

∫ t

0
k2(s)(s + 1)(1−r)(p+1)ds

)
. (4.8)

Then, using (3.11), we deduce (2.10) with λ = (1 − r)(p + 1).
If in addition

∫ t
0 k2(s)(s+1)(1−r)(p+1)ds is bounded or u0 = 0 on Γ1, then,

using (2.12) and (3.11), we get, from (4.6) and (4.8), the following bounds
(note that (1 − r)(p + 1) > 1)

t‖u‖2
L2(Γ1) ≤ CtL(t) < ∞,

∫ t

0
‖u‖2

L2(Γ1)ds ≤ C

∫ t

0
L(s)ds < ∞.

Considering the above estimates in Lemma 4.1 with r = 0 it holds that∫
Γ1

eφ(x)(−k′)1+
1

p+1 �udΓ ≥ C
( ∫

Γ1

eφ(x)(−k′)�udΓ
)1+ 1

p+1
.

Using the last inequality instead of (4.3) and reasoning in the same way as
above we conclude that

d

dt
L(t) ≤ −CL(t)1+

1
p+1 + C1‖u0‖2

L2(Γ1)k
2(t)

which is an inequality similar to (4.5). Then by the same arguments as above
we deduce that L(t) ≤ C(1 + t)−(p+1) if u0 = 0 on Γ1, and

L(t) ≤ C(1 + t)−(p+1)
(
1 +

∫ t

0
k2(s)(s + 1)p+1ds

)
if u0 �= 0 on Γ1. Finally, from (3.11) we conclude the estimates (2.10) and
(2.11), which completes the proof.

Remark 4.1. In [4, Lemma 4.2], the authors considered the inequality (4.7)
with k2(t) = C(t+1)−β, for a positive constant β, and proved that L decays
polynomially to 0. Our proof extends this lemma to any function k2(t).



General decay rates of solutions to a nonlinear wave equation 599

5. Further Remarks

In this section we would like to present other models where our technique
can be applied. For instance, one can consider the degenerate coupled system
(ρ1, ρ2 ≥ 0) subject to memory conditions on the boundary given by

ρ1(x)utt − ∆u + F (x, t, u,∇u) + α(u − v) = 0 in Ω × R+,

ρ2(x)vtt − ∆v + G(x, t, v,∇v) − α(u − v) = 0 in Ω × R+,

u = 0 on Γ0, u +
∫ t

0
g1(t − s)

∂u

∂ν
(s)ds = 0 on Γ1 × R+,

v = 0 on Γ0, v +
∫ t

0
g2(t − s)

∂v

∂ν
(s)ds = 0 on Γ1 × R+,

(u(0), v(0)) = (u0, v0), (
√

ρ1ut(0),
√

ρ2vt(0)) = (
√

ρ1u
1,
√

ρ2v
1) in Ω,

where α is a positive constant,

∇ρi · m ≥ 0 in Ω for i = 1, 2

and m(x) = x − x0, x0 ∈ Rn.
According to the physical point of view, if ρ ≥ 0 is the mass density of

the material which is modelled in order to have the shape of Ω, the above
hypothesis informs us that the mass distribution is concentrated in such a
way that the mass density grows as far as the points of Ω are distant from
x0.

Another interesting situation arises when one considers the models in
connection with the nonlinear plate equation with boundary conditions of
memory type, namely

utt + ∆2u + F (x, t, u,∆u) = 0 in Ω × R+,

u =
∂u

∂ν
= 0 on Γ0 × R+,

∂u

∂ν
+

∫ t

0
g1(t − s)

(
∆u(s) + ρ1

∂u

∂ν
(s)

)
ds = 0 on Γ1 × R+,

u −
∫ t

0
g2(t − s)

(∂(∆u)
∂ν

(s) − ρ2u(s)
)
ds = 0, on Γ1 × R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.

Here, ρ1 and ρ2 are positive constants which come from the physical model.
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