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Abstract. We construct aK-rough path (along the terminology of [3, De�nition 2.3]) above either
a space-time or a spatial fractional Brownian motion, in any space dimension d. This allows us to
provide an interpretation and a unique solution for the corresponding parabolic Anderson model,
understood in the renormalized sense. We also consider the case of a spatial fractional noise.

1. Introduction

The main objective of the analysis in this paper is to provide a wellposedness statement for the
following parabolic Anderson model:{

∂tut(x) = 1
2∆ut(x) + ut(x) Ẇt(x), t ∈ R+, x ∈ Rd,

u0 = Ψ
(1.1)

in situations where Ẇ corresponds to a space-time fractional noise of low regularity.

Formally, the covariance function of such a noise Ẇ can be written as

E
[
Ẇt(x) Ẇs(y)

]
= γ0(t− s) γ(x− y), (1.2)

with γ0 and γ the distributions, given in Fourier modes by

γ0(t) = cH0

∫
R
eıλt|λ|1−2H0dλ and γ(x) = cH

∫
Rd
eıξ·x

d∏
j=1

|ξj |1−2Hjdξ, (1.3)

where H denotes the vector (H1, . . . ,Hd) and where cH0 , cH are the positive constants explicitly
given by

cH0 =

(∫
R
dξ
|eıξ − 1|2

|ξ|2Hi+1

)−1/2

, cH =

( d∏
i=1

∫
R
dξ
|eıξ − 1|2

|ξ|2Hi+1

)−1/2

. (1.4)

At this point, it should already be noted that a Skorohod interpretation and treatment of the
model in the rough environment (1.2) has recently been carried out by one of the authors in [1],
using a delicate analysis of intersection local times. We have then extended these considerations
in [2], and therein provided sharp moment estimates on the Skorohod solution.

In contrast with the latter investigations, we here would like to study equation (1.1) along a
Stratonovich (or pathwise) interpretation. The basic idea behind this approach can be roughly
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expressed in terms of approximation procedures. Namely, we �rst introduce a sequence {Ẇn;n ≥ 1}
of smooth approximations of Ẇ , which can for instance be given by a molly�ng procedure

Ẇn := ∂t∂x1 · · · ∂xdW
n, where Wn := ρn ∗W and ρn(s, x) := 2n(d+2)ρ(22ns, 2nx), (1.5)

for some molli�er ρ : Rd+1 → R+ satisfying standard regularity assumptions. Then consider the
sequence {un;n ≥ 1} of classical solutions associated with Ẇn, that is un is the solution of

∂tu
n
t (x) =

1

2
∆unt (x) + unt (x) Ẇn

t (x), t ∈ R+, x ∈ Rd,

understood in the classical Lebesgue sense. From here, we would like to de�ne the Stratonovich
solution of (1.1) as the limit of un as n→∞. The whole question behind this de�nition is of course
to determine under which conditions such a convergence can indeed be guaranteed.

As long as Ẇ is not too irregular, this pathwise-type strategy can be successfully implemented
through the so-called Young framework (see e.g. [7, Section 5]). If one then wants to extend
the above considerations to more irregular noises, some sophisticated procedures based on higher-
order expansions and renormalization tricks must be involved. The so-called theory of regularity
structures, introduced by Hairer in [5], provides us with both a convenient setting and powerful
tools to address this extension issue. In the sequel, we will thus rely on Hairer's ideas to properly
formulate and analyze the questions raised by equation (1.1) in a rough environment.

This approach was already used in a similar fractional setting by one of the authors (see [3, 4]),
so as to handle the one-dimensional non-linear heat model

∂tut(x) =
1

2
∆ut(x) + σ(x, ut(x)) Ẇt(x), t ∈ [0, T ], x ∈ R, (1.6)

where σ : R×R→ R is a smooth bounded function with compact support in its �rst variable, and T
is a small enough time. The latter assumptions clearly do not cover the model under consideration
(i.e., equation (1.1)), and accordingly further work is required here.

An important novelty to tackle in this situation is the �non-compactness� of the perturbation
term u Ẇ , as opposed to σ(., u) Ẇ in (1.6) or to the torus framework that prevails in [5]. A natural
idea to cope with this additional di�culty consists in the involvement of weighted topologies in the
analysis. In the Young setting, such a weighted treatment of the model can be found in [7, Section
5]. The basis of the corresponding analysis for the rough situation have been laid by Hairer and
Labbé in [6], with stochastic applications focusing on the white noise situation.

Through the subsequent investigations, we propose to extend the application of the formalism
of [6] to the fractional situation, and thus provide a Stratonovich counterpart of the considerations
of [1] regarding the Skorohod setting. In turn, the constructions below will be used as the starting
point of the comparison procedure performed in [2, Section 4], and ultimately leading to new moment
estimates for the solution of (1.1).

Let us now specify the range of Hurst indexes H0, H1, . . . ,Hd, i.e. (morally) the range of regular-

ities for Ẇ , covered by the analysis in this paper. We recall �rst that the above-mentioned Young
treatment of the model can be considered as long as 2H0 +H1 + · · ·+Hd > d+ 1 (see [7, Section
5] or [3, Section 5]). We here intend to focus on the next stage of the regularity-structure approach
to the problem, which precisely corresponds to the condition

d+
2

3
< 2H0 +H ≤ d+ 1, where H :=

d∑
i=1

Hi . (1.7)
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The reason behind the restriction 2H0 + H > d + 2
3 will become clear through the developments

of Sections 2 and 3 (see also Remark 3.6 about possible extensions of the covering). Moreover, as
we will observe it in the sequel, a drastic change of regime is to occur during the transition from
the Young case to the �rough� case (1.7), with the involvement of a central second-order process
above the fractional noise, the so-called K-Lévy area (see De�nition 2.7). To some extent, and as
suggested by our terminology, this change-of-regime phenomenon can be compared with the insight
o�ered by the rough paths theory for the standard fractional di�erential equation

dYt = σ(Yt)dWt , (1.8)

where W is a (standard) fractional Brownian motion of Hurst index H ∈ (0, 1). Indeed, it is a
well-known fact that, when studying (1.8), the transition from the Young case H > 1

2 to the (�rst)

rough case 1
3 < H ≤ 1

2 also involves the consideration of an additional (and crucial) Lévy-area term.

Note that in order to avoid a long presentation of the numerous objects at the core of the original
theory of regularity structures (model spaces, structure groups, regularity structures,...), we will
rely in the sequel on the more direct K-rough paths terminology introduced in [3].

The rest of the paper is organized as follows. In Section 2, we introduce the framework of the
analysis, and then rephrase the general well-posedness criterion of [6] using the K-rough paths
terminology (Theorem 2.11). Our main result, namely the existence of such a K-rough path above
the fractional noise, is presented in Section 3, �rst in the space-time-noise situation (Section 3.1),
then in the spatial-noise case (Section 3.2). These statements will lead us to the desired Stratonovich
solution of equation (1.1) (De�nitions 3.4 and 3.11). The details of the construction of the fractional
K-rough path in the space-time situation, resp. the spatial situation, will be provided in Section 4,
resp. Section 5. Finally, the appendix section contains the proofs of two useful technical results.

Acknowledgements. We are grateful to an anonymous reviewer for his/her careful reading of
the paper and his/her comments about it. In particular, we would like to thank him/her for drawing
our attention to the other possible approach to the renormalization issue evoked in Remark 3.7.

2. Framework of the analysis

2.1. General notation. For the sake of clarity, let us start by specifying a few pieces of notation
that will be used throughout the study.

First, note that two di�erent kinds of Fourier transforms on Rd+1 will be involved in the sequel.
Namely for a function f(t, x) on Rd+1, the Fourier transform on the full space-time domain Rd+1 is
de�ned with the normalization

Ff(η, ξ) =

∫
Rd+1

e−ı (tη+ξ·x)f(t, x)dtdx, (2.1)

The analysis will also rely, at some point, on the spatial Fourier transform Fs given by

Fsf(t, ξ) =

∫
Rd
e−ı ξ·xf(t, x)dx. (2.2)
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Regarding the stochastic setting, we denote by (Ω,F ,P) the probability space related to W , with
E for the related expected value. The heat kernel on Rd is denoted by pt(x), and recall that

pt(x) =
1

(2πt)d/2
exp

(
−|x|

2

2t

)
. (2.3)

Also notice that the inner product of a, b ∈ Rd is written as a · b throughout the paper.

As mentioned in the introduction, we writeH for the vector of space Hurst parameters (H1, . . . ,Hd),
and denote the sum of these parameters as

H =
d∑
j=1

Hj . (2.4)

Following the convention in [5], the below considerations on the theory of regularity structures will
occasionally appeal to the parabolic distance, de�ned for all (s, x), (t, y) ∈ Rd+1 as

ds((s, x), (t, y)) = ‖(t, y)− (s, x)‖s := max
(√
|t− s|, |y1 − x1|, . . . , |yd − xd|

)
. (2.5)

Finally, we write a . b to indicate that there exists an irrelevant constant c such that a ≤ cb.

2.2. Weighted Besov topologies and K-rough paths. Our purpose in this section is to give
an as-compact-as-possible presentation of the regularity structures framework. As we mentioned
above, the formalism is presented here in its weighted version (following [6]). Of course, we will
only focus on its application to the dynamics under consideration, that is to the model{

∂tu = 1
2∆u+ uχ , t ∈ [0, T ] , x ∈ Rd ,

u0(x) = ψ(x) ,
(2.6)

with χ a distribution of order α < 0 to be speci�ed (at this point, the equation is only formal
anyway). This customization of the theory will lead us to the introduction of a fundamental object
at the core of the machinery: the K-rough path (see De�nition 2.7 below).

The weights considered in the sequel have to satisfy a growth assumption which is summarized
in the following de�nition.

De�nition 2.1. A function w : Rd → [1,∞) is a weight on Rd if for every M > 0, there exist
c1,M , c2,M > 0 such that for every x, y ∈ Rd with |x− y| ≤M , one has

c1,M ≤
w(x)

w(y)
≤ c2,M .

Given a weight w ∈ Rd, we will henceforth denote by L∞w (Rd+1) the space of functions de�ned by

L∞w (Rd+1) =
{
f : Rd+1 → R; for all T > 0, sup

(s,x)∈[−T,T ]×Rd

|fs(x)|
w(x)

<∞
}
. (2.7)

We also write C0
w(Rd+1) for the set of continuous functions in L∞w (Rd+1).

Let us now turn to the de�nition of the (weighted) Besov-type spaces of distributions involved in
Hairer's theory. Consider �rst the case of a positive order λ ∈ (0, 1):

De�nition 2.2. Let w be a weight on Rd. For every λ ∈ (0, 1), we will say that a function
θ : Rd+1 → R belongs to Cλw(Rd+1) if for every T > 0,

‖θ‖λ;T,w := sup
(s,x)∈[−T,T ]×Rd

|θ(s, x)|
w(x)

+ sup
((s,x),(t,y))∈DT,2

|θ(s, x)− θ(t, y)|
w(y)‖(s, x)− (t, y)‖λs

< ∞ ,



A K-ROUGH PATH ABOVE THE SPACE-TIME FRACTIONAL BROWNIAN MOTION 5

where we recall that the distance ‖ · ‖s is de�ned in (2.5) and where the domain DT,2 is de�ned by

DT,2 :=
{

((s, x), (t, y)) ∈ Rd+1 ×Rd+1; s, t ∈ [−T, T ], (s, x) 6= (t, y) and ‖(s, x)− (t, y)‖s ≤ 2
}
.

(2.8)

In order to de�ne spaces of negative orders, we �rst need to recall the following notation for a
scaling operator. Namely for all δ > 0, (s, x), (t, y) ∈ Rd+1 and ψ : Rd+1 → R, denote

(Sδs,xψ)(t, y) := δ−(d+2)ϕ
(
δ−2(t− s), δ−1(y − x)

)
. (2.9)

Also, for every ` ≥ 0, we will need to consider a speci�c set of compactly supported functions:

B`s = {ψ ∈ C`(Rd+1); Supp(ψ) ⊂ Bs(0, 1) and ‖ψ‖C` ≤ 1}, (2.10)

where C`(Rd+1) refers to the space of `-times di�erentiable functions on Rd+1,

‖ψ‖C` := sup
{
‖∂xi1 · · · ∂xikψ‖∞, 0 ≤ k ≤ `, i1, . . . , ik ∈ {1, . . . , d+ 1}

}
,

and Bs(0, 1) stands for the unit ball in Rd+1 associated with the parabolic distance (2.5). Finally, we
denote by C`∞(Rd+1) the space of `-times di�erentiable functions (on Rd+1) with bounded derivatives,
and de�ne D′`(Rd+1) as the dual space of C`∞(Rd+1). With those additional notions in hand, we now
give the de�nition of distributions with negative Hölder type continuity which is used in the sequel.

De�nition 2.3. Let w be a weight on Rd as given in De�nition 2.1. For every α < 0, we will say
that a distribution χ ∈ D′(Rd+1) belongs to Cαw(Rd+1) if it belongs to D′2(d+1)(R

d+1) and if for every

T > 0,

‖χ‖α;T,w := sup
(s,x)∈[−T,T ]×Rd

sup
ϕ∈B2(d+1)

s

sup
δ∈(0,1]

|〈χ,Sδs,xϕ〉|
δαw(x)

< ∞ . (2.11)

Remark 2.4. As can be seen from (2.11) we are considering topologies that are �localized� in time,
and global, but �weighted�, in space. Besides, note that the choice of the regularity 2(d+ 1) in the
condition χ ∈ D′2(d+1) is somewhat arbitrary. In fact, for the deterministic part of the analysis,

we could replace this condition with χ ∈ D′r(Rd+1) for any �nite r ≥ 1, as explained in [5]. The
2(d+1)-regularity will only prove useful in the stochastic constructions of Section 4 (see for instance
Lemma 4.3).

The following topological spaces, which somehow correspond to �lifted versions� of Cαw(Rd+1), will
later accommodate the central K-rough paths:

De�nition 2.5. Let w be a weight on Rd. For every α < 0, we say that a map ζ : Rd+1 → D′(Rd+1)
belongs to CCCαw(Rd+1) if for every (s, x) ∈ Rd+1, ζs,x belongs to D′2(d+1)(R

d+1) and if, for every T > 0,

‖ζ‖α;T,w := sup
(s,x)∈[−T,T ]×Rd

sup
ϕ∈B2(d+1)

s

sup
δ∈(0,1]

|〈ζs,x,Sδs,xϕ〉|
δαw(x)

< ∞ ,

where the sets Bls are given by (2.10).

We still need one last technical ingredient in the procedure: the de�nition of a localized heat
kernel, which essentially transcribes the singular behavior of the (global) heat kernel around (0, 0).

De�nition 2.6. We call a localized heat kernel any function K : Rd+1\{0} → R satisfying the
following conditions:

(i) It holds that ps(x) = K(s, x) + R(s, x), for some �remainder� R ∈ C∞(Rd+1), where we recall
that the heat kernel p is de�ned by (2.3).
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(ii) K(s, x) = 0 as soon as s ≤ 0.

(iii) There exists a smooth function K0 : Rd+1 → R with support in [−1, 1]d+1 such that for every
non-zero (s, x) ∈ Rd+1, one has

K(s, x) =
∑
`≥0

2−2`(S2−`
0,0 K0)(s, x) and R(s, x) =

∑
`<0

2−2`(S2−`
0,0 K0)(s, x) . (2.12)

We are �nally in a position to introduce the key object of the machinery, namely a distribution
in the second chaos of the noise χ which plays the role of the Lévy area in our context.

De�nition 2.7. Let w be a weight on Rd (see De�nition 2.1), let K be a localized heat kernel (see
De�nition 2.6) and consider α < 0. Also, �x χ ∈ Cαw(Rd+1). We call an (α,K)-Lévy area above χ
( for the weight w) any map A : Rd+1 → D′(Rd+1) satisfying the two following conditions.

(i) K-Chen relation: For all (s, x), (t, y) ∈ Rd+1,

As,x −At,y = [(K ∗ χ)(t, y)− (K ∗ χ)(s, x)] · χ ,

where the notation ∗ refers to the space-time convolution.

(ii) Besov regularity: A belongs to CCC2α+2
w (Rd+1), where the space CCC2α+2

w is introduced in De�ni-
tion 2.5.

We call (α,K)-rough path above χ (for the weight w) any pair χχχ = (χ, χ2) where χ ∈ Cαw(Rd+1)
and χ2 is an (α,K)-Lévy area above χ (for the weight w). We denote by EKα;w the set of such

(α,K)-rough paths (for the weight w). If χχχ = (χ, χ2), ζζζ = (ζ, ζ2) ∈ EKα;w, we set

‖χχχ,ζζζ‖α;T,w := ‖χ− ζ‖α;T,w + ‖χ2 − ζ2‖2α+2;T,w .

A global distance on EKα;w is then given by

dα;w(χχχ,ζζζ) =
∑
k≥1

2−k
‖χχχ,ζζζ‖α;k,w

1 + ‖χχχ,ζζζ‖α;k,w
. (2.13)

By mimicking the arguments of the proof of [3, Proposition 3.1], we immediately deduce the
following completeness property:

Lemma 2.8. For every weight w on Rd, every localized heat kernel K and every α < 0, (EKα;w, dα;w)
is a complete metric space.

Let us complete De�nition 2.7 with two fundamental remarks, that often turn out to be essential
in the application of the theory.

Remark 2.9. Recall that the space L∞w (Rd+1) is de�ned by (2.7). In the �regular� situation where
χ ∈ L∞w (Rd+1), there exists a straightforward canonical K-Lévy area above χ (for the weight w2)
given by the formula

χ2
s,x(t, y) := [(K ∗ χ)(t, y)− (K ∗ χ)(s, x)] · χ(t, y) , (2.14)

where we recall that ∗ refers to space-time convolution in this setting. The resulting canonical K-
rough path will be our standard reference in approximation (or continuity) results. The situation can
here be compared with Lyons' rough paths theory, where (classical) rough paths are often obtained
as the limit of the canonical rough path given by the set of iterated integrals.

Remark 2.10. Starting from a K-Lévy area χ2, any constant c gives rise to another K-Lévy area by
setting χ̂2

s,x(t, y) := χ2
s,x(t, y)− c, which paves the way toward renormalization tricks. In the sequel,

we will use the notation

Renorm((χ, χ2), c) := (χ, χ2 − c) (2.15)
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for such elementary renormalization.

2.3. A general solution map. With the above setting and notation in hand, the following �black
box� statement about equation (2.6) can now be derived from a slight adaptation of the considera-
tions and results of [6]:

Theorem 2.11. [Solution map] Fix an arbitrary time horizon T > 0 and a parameter α ∈ (−4
3 ,−1).

Then there exist a localized heat kernel K, two weights w1, w2 on Rd (that depend on T ), and a
�solution� map

Φ = ΦK,T
α,w1,w2

: EKα;w1
× L∞(Rd) −→ L∞([0, T ];L∞w2

(Rd)), (2.16)

where EKα;w1
is introduced in De�nition 2.7 and L∞w is given by (2.7). The map Φ is such that the

following properties are satis�ed:

(i) Weights. One has w1(x) = (1 + |x|)κ1 and w2(x) = eκ2(1+|x|), for some κ1, κ2 > 0.

(ii) Consistency. Assume χ ∈ L∞
w

1/2
1

(Rd+1) and χχχ ∈ EKα;w1
is the canonical K-rough path above χ

with Lévy-area term de�ned along (2.14). Then for any ψ ∈ L∞(Rd) one has Φ(χχχ, ψ) = u, where u
is the classical solution on [0, T ] of equation (2.6).

(iii) Renormalization. As in item (ii), consider χ ∈ L∞
w

1/2
1

(Rd+1) and its canonical K-rough path χχχ.

For an initial condition ψ ∈ L∞(Rd) and c ∈ R, set û = Φ(Renorm(χχχ, c), ψ), where Renorm(χχχ, c)
is de�ned by (2.15). Then û is the classical solution on [0, T ] of the equation{

∂tû = 1
2∆û+ û χ− c û , t ∈ [0, T ], x ∈ Rd ,

u0(x) = ψ(x) .

(iv) Continuity. Let (χχχ, ψ) ∈ EKα,w1
×L∞(Rd) and let (χχχn, ψn) ∈ EKα;w1

×L∞(Rd) be a sequence such
that

dα,w1(χχχn,χχχ)→ 0 and ‖ψn − ψ‖L∞(R) → 0 ,

where dα,w1 is the distance introduced in (2.13). Then Φ(χχχn, ψn) converges to Φ(χχχ, ψ) in the space

L∞([0, T ];L∞w2
(Rd)).

Remark 2.12. We are aware that the corresponding results in [6] are actually expressed in terms
of (weighted) models and structure group, following the general terminology of [5]. However, the
transition from our (lighter) notion of an (α,K)-rough path to a regularity structure (that is, a
model together with a structure group) is a matter of elementary considerations, as detailed in [3,
Proposition 2.5]. The only technical point requiring some attention is the control of K ∗ χ, as an
element of Cα+2

w1
(Rd+1), in terms of χ ∈ Cαw1

(Rd+1), for α ∈ (−4
3 ,−1). In fact, following the lines of

the proof of [3, Lemma 2.2], one can easily check that for every weight w on Rd, every α ∈ (−2,−1),
every χ ∈ Cαw(Rd+1) and every time T > 0, one has

‖K ∗ χ‖α+2;T,w . ‖χ‖α;T,w , (2.17)

which precisely corresponds to the control we need in order to justify this transition.

3. Main results

We now go back to the stochastic setting and to the consideration of a fractional noise χ := Ẇ
in equation (2.6). In other words, we go back here to the analysis of (1.1). With the result of
Theorem 2.11 in mind, the strategy toward the desired Stratonovich solution is clear: we need
to construct a K-rough path above Ẇ in the almost sure sense, preferably as the limit of some
(renormalized) canonical K-rough path (for the continuity property (iv) in Theorem 2.11 to hold).
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First, we will proceed to the detailed presentation of our existence result in the situation where Ẇ
is the space-time fractional noise de�ned by (1.2) (for (H0,H) satisfying (1.7)). Then we will review

the main steps of the construction in the (easier) situation where Ẇ is only a spatial fractional noise.

3.1. Application to a space-time fractional noise. Let Ẇ be the noise de�ned by (1.2), for
some Hurst index H0 ∈ (0, 1) in time and H = (H1, . . . ,Hd) ∈ (0, 1)d in space. Let us recall

that Ẇ can also be seen as the derivative of a space-time fractional Brownian motion W , that is
Ẇ = ∂t∂x1 · · · ∂xdW . As a consequence, one can easily de�ne a smooth approximation Ẇn of Ẇ by
using a standard mollifying procedure.

To be more speci�c, we de�ne the approximated noise Ẇn by Ẇ 0 := 0 and for n ≥ 1,

Ẇn := ∂t∂x1 · · · ∂xdW
n, where Wn := ρn ∗W and ρn(s, x) := 2n(d+2)ρ(22ns, 2nx), (3.1)

for some molli�er ρ : Rd+1 → R+ satisfying the following (natural) assumptions:

Assumption (ρ). We consider a smooth, even, and L1(Rd+1) function ρ : Rd+1 → R+. In addition
we suppose that ρ satis�es

(i)
∫
Rd+1 ρ(s, x) dsdx = 1.

(ii) The Fourier transform Fρ is Lipschitz.

(iii) For every (τ0, τ1, . . . , τd) ∈ [0, 1]d+1, the following upper bound holds true for every (λ, ξ) ∈
Rd+1,

|Fρ(λ, ξ)| ≤ cτ |λ|−τ0
d∏
i=1

|ξi|−τi . (3.2)

Remark 3.1. Assumption (ρ) is trivially satis�ed by any smooth, even and compactly-supported
function ρ : Rd+1 → R+ such that

∫
Rd+1 ρ(s, x) dsdx = 1. These conditions also cover the mollifying

function considered in [7, Section 3.2] or in [8, Section 5], that is ρ(s, x) := ϕ(s)p1(x), where
ϕ := 1[0,1] and p1 refers to the Gaussian density (2.3) at time 1. Last but not least, Assumption (ρ)
is satis�ed by the molli�er considered in the Skorohod analysis of [2, Section 3], that is ρ(s, x) :=
p1(s)p1(x). The latter choice will become our standard reference in the subsequent De�nition 3.4.

Once endowed with the approximation Ẇn, let us consider the canonical K-rough path WWWn :=
(Ẇn,W2,n), de�ned along Remark 2.9. Namely we set

W2,n
s,x (t, y) := Ins,x(t, y) · Ẇn(t, y) , (3.3)

where
Ins,x(t, y) := (K ∗ Ẇn)(t, y)− (K ∗ Ẇn)(s, x) . (3.4)

With this setting in hand, our main statement will consist in a convergence property for the
(suitably renormalized) sequence WWWn := (Ẇn,W2,n). The statement will appeal, among other
things, to the following technical result (the proof of which is postponed to Section 6.1).

Lemma 3.2. Let ρ be a molli�er satisfying Assumption (ρ), and let H0 ∈ (0, 1),H = (H1, . . . ,Hd) ∈
(0, 1)d be such that

2H0 +H ≤ d+ 1 , (3.5)

where the notation H has been introduced in (2.4). Recall that the heat kernel p is de�ned by (2.3).
Let us set from now on

NH0,H(λ, ξ) :=
1

|λ|2H0−1

d∏
i=1

1

|ξi|2Hi−1
, (3.6)



A K-ROUGH PATH ABOVE THE SPACE-TIME FRACTIONAL BROWNIAN MOTION 9

namely c0cHNH0,H is the Fourier transform of the mesure γ0 ⊗ γ introduced in (1.3). Then, for
every �xed c > 0, the integral∫

|λ|+|ξ|2≥c
|Fρ(λ, ξ)|2Fp(λ, ξ)NH0,H(λ, ξ) dλdξ (3.7)

is �nite, and when 2H0 +H < d+ 1, it even holds that

Jρ,H0,H :=

∫
Rd+1

|Fρ(λ, ξ)|2Fp(λ, ξ)NH0,H(λ, ξ) dλdξ < ∞ . (3.8)

For simplicity, let us set from now on cH0,H := cH0cH, where cH0 , cH are the constants de�ned
in (1.4). We are now ready to state the result about the existence of a K-rough path above our
noise.

Theorem 3.3. Let ρ be a molli�er satisfying Assumption (ρ). Consider Hurst parameters H0 ∈
(0, 1) and H = (H1, . . . ,Hd) ∈ (0, 1)d. We strengthen condition (3.5) in the following way:

d+
1

2
< 2H0 +H ≤ d+ 1, (3.9)

where we recall that H is given by (2.4). In this setting, �x α ∈ R such that

α < −(d+ 2) + 2H0 +H. (3.10)

For n ≥ 1, de�ne Ẇn as in (3.1) and set

ŴWW
n

:= Renorm(WWWn, c
(n)
ρ,H0,H

), (3.11)

with

c
(n)
ρ,H0,H

:=


c2
H0,H

22n(d+1−(2H0+H))Jρ,H0,H if 2H0 +H < d+ 1

c2
H0,H

∫
|λ|+|ξ|2≥2−2n |Fρ(λ, ξ)|2Fp(λ, ξ)NH0,H(λ, ξ) dλdξ if 2H0 +H = d+ 1

(3.12)

where the operator Renorm is introduced in (2.15) and the quantity Jρ,H0,H is de�ned in (3.8).

Then for any weight w(x) := (1 + |x|)κ with κ > 0 and for the distance dα,w given by (2.13),

there exists an (α,K)-rough path ŴWW such that almost surely

lim
n→∞

dα,w(ŴWW
n
, ŴWW ) = 0. (3.13)

For the sake of clarity, we have postponed the (long technical) proof of Theorem 3.3 to Section 4.

Now, by combining the deterministic result of Theorem 2.11 with the stochastic construction of
Theorem 3.3, we derive the desired Stratonovich interpretation of equation (1.1):

De�nition 3.4. Let ρ be the weight given by ρ(s, x) := p1(s)p1(x) as considered in Remark 3.1.
Let (H0,H) ∈ (0, 1)d+1 be a vector of Hurst parameters such that

d+
2

3
< 2H0 +H ≤ d+ 1. (3.14)

Besides, �x α ∈ R such that

−4

3
< α < −(d+ 2) + 2H0 +H ,

as well as an arbitrary time horizon T > 0 and an initial condition ψ ∈ L∞(Rd). Then, using

the notations of Theorem 2.11 and Theorem 3.3, we call u := ΦK,T
α,w1,w2(ŴWW,ψ) the renormalized
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Stratonovich solution of equation (1.1), with initial condition ψ. In particular, u is the (almost
sure) limit, in L∞([0, T ]× Rd), of the sequence (un)n≥1 of classical solutions of the equation{

∂tu
n = 1

2∆un + un Ẇn − c
(n)
ρ,H0,H

un , t ∈ [0, T ], x ∈ Rd ,
un0 (x) = ψ(x) .

(3.15)

Let us complete the above De�nition 3.4 with three comments.

Remark 3.5. Observe that the assumptions on H0,H in (3.14) are more restrictive than those in
Theorem 3.3. This stronger restriction actually stems from Theorem 2.11, which requires α to be
strictly larger than −4

3 .

Remark 3.6. As the reader might expect it, the extension of the result of Theorem 2.11 to any
α > −3

2 (and not only α > −4
3) is in fact possible, at the price of an additional �third-order�

elements (on top of χ and χ2) in the de�nition of a K-rough path (see [4, De�nition 2.7] for
details when d = 1). Therefore, applying this extension to our stochastic model would require us
to construct additional �third-order� processes above the fractional noise. This strategy has been
implemented in [4] for d = 1, and when working with the �compact-in-space� topologies derived
from the analysis of (1.6). We �rmly believe that the constructions of [4] could be extended to the
current setting, that is to any dimension d ≥ 1 and to the whole space Rd, at the price of highly
sophisticated computations.

Remark 3.7. We have here chosen to study the renormalization procedure using the framework
of regularity structures, which in particular allows us to directly apply the strategy at the level
of the solution u of (1.1), and also to rely on previous general existence results (e.g. Theorem
2.11). Another possibility to visualize the need for renormalization in this setting is to consider the
Cole-Hopf-type transformation v := ue−Y , where Y stands for the solution of the linear problem{

∂tY = 1
2∆Y + Ẇ , t ∈ R+, x ∈ Rd,

Y0 = 0.

At a formal level, one can check that if u is solution to (1.1), then v becomes solution to the problem{
∂tv = 1

2∆v +∇v · ∇Y + 1
2v |∇Y |

2, t ∈ R+, x ∈ Rd,
v0 = Ψ.

(3.16)

Now remember that in the situation covered by De�nition 3.4, Ẇ is assumed to be of regularity
α ∈ (−4

3 ,−1). As a consequence, one gets (formally) that Y ∈ Cα+2,∇Y ∈ Cα+1, |∇Y |2 ∈ C2(α+1),

and, through a quick analysis of (3.16), we can then expect v to be a function in C2α+4 (with
2α+ 4 > 1), which paves the way toward a well-de�ned �xed-point argument for the equation.

The whole problem of this analysis naturally lies in the de�nition of the product |∇Y |2 for
∇Y ∈ Cα+1 (due to α + 1 < 0). In fact, such a de�nition can only be achieved by means of a
renormalization trick, and the task is thus essentially the same as the one we will implement for the
second-order process W2,n (de�ned by (3.3)).

Let us �nally conclude the section with the exhibition of an asymptotic equivalence for the

constant c
(n)
ρ,H0,H

in (3.11), in the limit case 2H0 + H = d + 1 (the proof of this statement can be

found in Section 6.2).

Proposition 3.8. In the setting of Theorem 3.3, assume that 2H0 +H = d+ 1. Then, as n tends
to in�nity, it holds that

c
(n)
ρ,H0,H

= n · CH0,H +O(1), (3.17)
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for some constant CH0,H independent of ρ.

Thus, when compared to the behavior of c
(n)
ρ,H0,H

as 2H0 + H < d + 1 (see (3.12)), the expan-

sion (3.17) clearly emphasizes the speci�city of the border case 2H0 +H = d+ 1 in the analysis of
the problem.

3.2. Application to a spatial fractional noise.

We now would like to specialize the previous results to a spatial fractional noise. In other words,
we consider here {WH(x), x ∈ Rd} a spatial fractional Brownian motion of Hurst index H ∈ (0, 1)d

and set

Ẇ := ∂x1 · · · ∂xdW
H. (3.18)

In many situations, it is known that, at least at a formal level, the transition from a space-time
fractional noise to a spatial fractional noise essentially reduces to �taking H0 = 1�. Our aim in the
sequel to fully justify this phenomenon in the situation we are interested in, that is the study of
equation (1.1). To this end, we propose to review the successive steps of the analysis provided in
Section 3.1 and examine the corresponding results in the spatial situation.

Thus, as a �rst step, we introduce a smooth approximation Ẇn of Ẇ obtained through a general
mollifying procedure. That is, we de�ne the approximated noise Ẇn by Ẇ 0 := 0 and for n ≥ 1,

Ẇn(s, x) = Ẇn(x) :=
(
∂x1 · · · ∂xdW

n
)
(x), Wn := ρn ∗WH, ρn(x) := 2dnρ(2nx), (3.19)

for some molli�er ρ : Rd → R+ satisfying the following assumptions (remember that the notation
Fs refers to the spatial Fourier transform, along (2.2)):

Assumption (ρ). We consider a smooth, even, and L1(Rd) function ρ : Rd → R+. In addition we
suppose that ρ satis�es

(i)
∫
Rd ρ(x) dx = 1.

(ii) The Fourier transform Fsρ is Lipschitz.

(iii) For every (τ1, . . . , τd) ∈ [0, 1]d, the following upper bound holds true for every ξ ∈ Rd,

|Fsρ(ξ)| ≤ cτ
d∏
i=1

|ξi|−τi . (3.20)

The canonical K-rough path (WWWn)n≥1 := (Ẇn,W2,n)n≥1 above Ẇn can here be written as

W2,n
s,x (t, y) = W2,n

x (y) := Inx (y) · Ẇn(y) , (3.21)

where

Inx (y) := (K̃ ∗ Ẇn)(y)− (K̃ ∗ Ẇn)(x) , (3.22)

with

K̃(x) :=

∫ ∞
0

dsK(s, x) . (3.23)

It is worth noting that, owing to the very de�nition of K (see De�nition 2.6), the latter integral is

indeed �nite (for every �xed x ∈ Rd), and also that K̃ ∈ L1(Rd).

The spatial counterpart of the preliminary Lemma 3.2 now reads as follows (the proof of this
property can be shown with similar estimates to the ones in Section 6.1).
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Lemma 3.9. Let ρ : Rd → R be a molli�er satisfying Assumption (ρ), and let H = (H1, . . . ,Hd) ∈
(0, 1)d be such that

H < d− 1 , (3.24)

where the notation H has been introduced in (2.4). Let us set from now on

NH(ξ) :=
d∏
i=1

1

|ξi|2Hi−1
, (3.25)

namely cHNH is the Fourier transform of the measure γH introduced in (1.3). Besides, recall that
the heat kernel p is de�ned by (2.3). Then the following integral is �nite:

Jρ,H :=

∫
Rd
|Fsρ(ξ)|2NH(ξ)

(∫ ∞
0

dsFsps(ξ)

)
dξ. (3.26)

We are now in a position to present the (expected) counterpart of Theorem 3.3 for the spatial
situation.

Theorem 3.10. Let ρ : Rd → R be a molli�er satisfying Assumption (ρ), and �x d ≥ 2. Let
H = (H1, . . . ,Hd) ∈ (0, 1)d be a vector of Hurst parameters such that

d− 3

2
< H ≤ d− 1, (3.27)

where we recall that H is given by (2.4). In this setting, �x α < H − d.

For n ≥ 1, de�ne Ẇn as in (3.1) and set ŴWW
n

:= Renorm(WWWn, c
(n)
ρ,H), with

c
(n)
ρ,H :=


22n(d−H−1)c2

HJρ,H if H < d− 1

c2
H

∫
|ξ|≥2−n |F

sρ(ξ)|2NH(ξ)

(∫∞
0 dsFsps(ξ)

)
dξ if H = d− 1

(3.28)

where the constant cH is de�ned in (1.4) and the quantity Jρ,H in (3.26).

Then for any weight w(x) := (1 + |x|)κ with κ > 0 and for the distance dα,w given by (2.13),

there exists an (α,K)-rough path ŴWW such that almost surely

lim
n→∞

dα,w(ŴWW
n
, ŴWW ) = 0. (3.29)

Proof. See Section 5 for a survey of the adaptations to be made with respect to the arguments used
in the proof of Theorem 3.3. �

By injecting the K-rough path constructed in Theorem 3.10 into the general wellposedness state-
ment of Theorem 2.11, we immediately derive the following spatial equivalent of De�nition 3.4.

De�nition 3.11. Let ρ be the weight given by ρ(x) := p1(x). Let H ∈ (0, 1)d be a vector of Hurst
parameters such that

d− 4

3
< H ≤ d− 1 . (3.30)

Besides, �x α < 0 such that −4
3 < α < H − d, as well as an arbitrary time horizon T > 0 and

an initial condition ψ ∈ L∞(Rd). Then, using the notations of Theorem 2.11 and Theorem 3.10,

we call u := ΦK,T
α,w1,w2(ŴWW,ψ) the renormalized Stratonovich solution of equation (1.1), with initial
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condition ψ. In particular, u is the (almost sure) limit, in L∞([0, T ]×Rd), of the sequence (un)n≥1

of classical solutions of the equation{
∂tu

n = 1
2∆un + un Ẇn − c

(n)
ρ,H un , t ∈ [0, T ], x ∈ Rd ,

un0 (x) = ψ(x) .
(3.31)

In a similar way to Proposition 3.8 (and using similar proof arguments), we can �nally show that

the constant c
(n)
ρ,H in (3.28) adopts a speci�c behaviour when H = d− 1.

Proposition 3.12. In the setting of Theorem 3.10, assume that H = d − 1. Then, as n tends to
in�nity, it holds that

c
(n)
ρ,H = n · CH +O(1), (3.32)

for some constant CH independent of ρ and K.

Remark 3.13. Observe that the assumptions in Theorem 3.10 (or De�nition 3.11) and in Proposi-
tion 3.12 cover the case where d = 2 and H1 = H2 = 1

2 . In other words, these results encompass

the situation where Ẇ is a spatial white noise on R2.

4. Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3, that is to the construction of the (α,K)-rough

path ŴWW at the basis of the Stratonovich interpretation of the model (along De�nition 3.4).

Therefore, from now on and for the rest of the section, we �x a molli�er ρ, some Hurst indexes
H0,H, and a parameter α such that the assumptions in Theorem 3.3 are all met.

We recall that the convenient notation NH0,H has been introduced in (3.6), and that we have
set cH0,H := cH0cH, where cH0 and cH are de�ned by (1.4). For further reference, let us label the
following covariance formulas, which immediately generalize (1.3) in the regularized setting.

Lemma 4.1. Let Ẇn be the smoothed noise de�ned by (3.1) and recall that the kernel K is de�ned

by (2.12). For every �xed n ≥ 1, the families {Ẇn(t, y); (t, y) ∈ Rd+1} and {K ∗ Ẇn(t, y); (t, y) ∈
Rd+1} are centered Gaussian processes with respective covariance functions given by the formulas

E
[
Ẇn(t, y)Ẇn(t̃, ỹ)

]
= c2

H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2NH0,H(λ, ξ)eı(λ(t−t̃)+ξ·(y−ỹ)) , (4.1)

and

E
[
(K ∗ Ẇn)(t, y)(K ∗ Ẇn)(t̃, ỹ)

]
= c2

H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2|FK(λ, ξ)|2NH0,H(λ, ξ)eı(λ(t−t̃)+ξ·(y−ỹ)) . (4.2)

Just as in [3, Corollary 3.5], the proof of Theorem 3.3 essentially relies on suitable moments
estimates (see Proposition 4.4 and Proposition 4.8 below). The transition from these estimates to the
desired convergence property will then go through the following multiparametric and distributional
version of the Garsia-Rodemich-Rumsey Lemma. Observe that this kind of property is one of the
key technical ingredients in the theory of regularity structures.

Lemma 4.2 (Multiparametric G-R-R lemma). Fix a regularity parameter β sitting in (−(d+1), 0),

as well as a weight w on Rd. Then there exists a �nite set Ψ of functions in C2(d+1)(Rd+1) with sup-
port in Bs(0, 1) such that the following property holds true: assume that ζ : Rd+1 → D′2(d+1)(R

d+1)
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is a map with increments of the form

ζs,x − ζt,y =

r∑
i=1

[θi(s, x)− θi(t, y)] · ζ],it,y,

for some θi ∈ Cµw(Rd+1) with µ ∈ [0,min(1,−β)), and some distributions ζ],i ∈ CCCβw(Rd+1), where we

recall that the spaces Cβw are introduced in De�nition 2.3. Then for every T > 0, one has

‖ζ‖β+µ;T,w2

. sup
ψ∈Ψ

sup
n≥0

sup
(s,x)∈Λns ∩([−(T+2),T+2]×Rd)

2n(β+µ)
|〈ζs,x, ψns,x〉|
w(x)2

+
∑

i=1,...,r

‖θi‖µ;T+2,w‖ζ],i‖β;T+2,w , (4.3)

where the discrete set Λns is de�ned by Λns := {(2−2nk0, 2
−nk1, . . . , 2

−nkd); k0, k1, . . . , kd ∈ Z}, and
where norms for θi and ζ],i are respectively given in De�nition 2.2 and 2.5. For the sake of clarity,

we have also used the standard notation ψns,x := S2−n
s,x ψ in the right-hand side of (4.3).

Proof. It is a mere �weighted� adaptation of the arguments of the proof of [3, Lemma 3.2] (which
was itself an adaptation of the arguments in [5, Section 3]). For the sake of conciseness, we leave
the details behind this slight adaptation as an exercise to the reader. �

As a last preliminary step, we also label the following elementary property for further use:

Lemma 4.3. Recall that the sets Bls are given by (2.10). Let ψ be a generic element of B2(d+1)
s and

for all H0 ∈ (0, 1), H ∈ (0, 1)d, consider the function NH0,H introduced in (3.6). Then it holds that∫
Rd+1

dλdξNH0,H(λ, ξ)
∣∣Fψ(λ, ξ)

∣∣ < ∞ . (4.4)

In the above lemma, note that our choice of ψ ∈ B2(d+1)
s guarantees strong integrability properties

for Fψ, which are the keys to show that the integral in (4.4) is indeed �nite.

4.1. Moment estimate for the �rst component. In this section we will bound the covariance
of Ẇn considered as an element of a space of the form Cα, where α satis�es (3.10).

Proposition 4.4. For all ` ≥ 0, n ≥ m ≥ 0, ψ ∈ B2(d+1)
s and (s, x) ∈ Rd+1, it holds that

E
[
|〈Ẇn − Ẇm, ψ`s,x〉|2

]
. 22`(d+2−(2H0+H)+ε)2−mε , (4.5)

where the proportional constant in . does not depend on n,m, `, s, x and where we recall that we

have set ψ`s,x := S2−`
s,x ψ.

Proof. We have by de�nition

E
[
〈Ẇn, ψ`s,x〉2

]
=

∫
Rd+1×Rd+1

dtdydt̃dỹ ψ`s,x(t, y)ψ`s,x(t̃, ỹ)E
[
Ẇn(t, y)Ẇn(t̃, ỹ)

]
.

Therefore using the covariance formula (4.1) together with the de�nition (2.1) of Fourier transform,
we get

E
[
〈Ẇn, ψ`s,x〉2

]
= c2

H0,H

∫
Rd+1×Rd+1

dtdydt̃dỹ ψ`s,x(t, y)ψ`s,x(t̃, ỹ)

×
∫
Rd+1

dλdξ |Fρn(λ, ξ)|2NH0,H(λ, ξ)eı(λ(t−t̃)+ξ·(y−ỹ))

= c2
H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2
∣∣Fψ`s,x(λ, ξ)

∣∣2NH0,H(λ, ξ). (4.6)
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We now recall that ρn is a rescaled version of the molli�er given by (3.1), and we have also set

ψns,x = S2−n
s,x ψ in the right-hand side of (4.3). Hence we obtain

E
[
〈Ẇn, ψ`s,x〉2

]
= c2

H0,H

∫
Rd+1

dλdξ |Fρ(2−2nλ, 2−nξ)|2
∣∣Fψ(2−2`λ, 2−`ξ)

∣∣2NH0,H(λ, ξ). (4.7)

We now perform the elementary change of variables λ := 2−2`λ and ξ := 2−`ξ, which yields

E
[
〈Ẇn, ψ`s,x〉2

]
= c2

H0,H22`(d+2−(2H0+H))

∫
Rd+1

dλdξ |Fρ(2−2(n−`)λ, 2−(n−`)ξ)|2
∣∣Fψ(λ, ξ)

∣∣2NH0,H(λ, ξ). (4.8)

Thanks to (3.2), applied with τ0 = · · · = τd = 0, the Fourier transform of ρ is uniformly bounded.
Hence we end up with

E
[
〈Ẇn, ψ`s,x〉2

]
. 22`(d+2−(2H0+H))

∫
Rd+1

dλdξ
∣∣Fψ(λ, ξ)

∣∣2NH0,H(λ, ξ) . (4.9)

According to Lemma 4.3 the latter integral is �nite, which gives our claim (4.5) for m = 0. The
general case m ≥ 0 can then be derived along similar estimates, invoking the fact that Fρ is a
Lipschitz function (see Assumption (ρ)). �

4.2. Moment estimate for the second component. Let us start with two useful estimates on
the Fourier transforms of the (�xed) components (K,R) in the decomposition of the heat kernel
(see relation (2.11)).

Lemma 4.5. Let K be the localized heat kernel of De�nition 2.6. For all �xed a0, a1, . . . , ad ∈ [0, 1]

such that
∑d

i=0 ai < 1, one has, for every (λ, ξ) ∈ Rd+1,

|FK(λ, ξ)| . |λ|−a0
d∏
i=1

|ξi|−2ai .

Proof. Using the expansion of K in (2.12) and recalling the de�nition (2.9) of Sδs,x, we can �rst
write

FK(λ, ξ) =
∑
`≥0

2−2`FK0(2−2`λ, 2−`ξ) . (4.10)

Then, since K0 is a smooth compactly-supported function, one has |FK0(λ, ξ)| . |λ|−τ0 and
|FK0(λ, ξ)| . |ξi|−τi for all τ0, τ1, . . . , τd ≥ 0 and (λ, ξ) ∈ Rd+1. Plugging this information

into (4.10), and using the fact that
∑d

i=0 ai < 1, we get∣∣FK(λ, ξ)
∣∣ ≤∑

`≥0

2−2`
∣∣FK0(2−2`λ, 2−`ξ)

∣∣a0 · · · ∣∣FK0(2−2`λ, 2−`ξ)
∣∣ad

. |λ|−a0
d∏
i=1

|ξi|−2ai
∑
`≥0

2−2`(1−(a0+a1+···+ad)) . |λ|−a0
d∏
i=1

|ξi|−2ai ,

which �nishes our proof. �

We now turn to a bound concerning the function R involved in the decomposition (2.12).
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Lemma 4.6. Let R be the remainder term associated with the localized heat kernel K (along Def-

inition 2.6). Then, for all �xed a0, a1, . . . , ad ≥ 0 such that
∑d

i=0 ai > 1, one has, for every

(λ, ξ) ∈ Rd+1,

|FR(λ, ξ)| . |λ|−a0
d∏
i=1

|ξi|−2ai . (4.11)

As a consequence, if H0 ∈ (0, 1),H = (H1, . . . ,Hd) ∈ (0, 1)d are such that 2H0 + H < d + 1, the
following relation holds true for the function NH0,H de�ned by (3.6):∫

Rd+1

dλdξNH0,H(λ, ξ)
∣∣FR(λ, ξ)

∣∣ <∞. (4.12)

Proof. Using the expansion of R in (2.12) and relation (2.9) for Sδs,x, we can �rst write

FR(λ, ξ) =
∑
`>0

22`FK0(22`λ, 2`ξ) .

Then, similarly to what we did in the proof of Lemma 4.5, we invoke the bound |FK0(λ, ξ)| . |λ|−τ0
and |FK0(λ, ξ)| . |ξi|−τi for all τ0, τ1, . . . , τd ≥ 0 and (λ, ξ) ∈ Rd+1. We deduce that for any

a0, . . . , ad ≥ 0 such that
∑d

i=0 ai > 1 we have∣∣FR(λ, ξ)
∣∣ ≤∑

`>0

22`
∣∣FK0(22`λ, 2`ξ)

∣∣1/(d+1) · · ·
∣∣FK0(22`λ, 2`ξ)

∣∣1/(d+1)

. |λ|−a0
d∏
i=1

|ξi|−2ai
∑
`>0

22`(1−(a0+a1+···+ad)) . |λ|−a0
d∏
i=1

|ξi|−2ai .

This proves the assertion (4.11).

We now turn to a bound on the integral introduced in (4.12). To this aim, we split the integral
according to the region Ds de�ned below by (6.3) and we recall that R = p−K, which yields∫

Rd+1

dλdξNH0,H(λ, ξ)
∣∣FR(λ, ξ)

∣∣ . [ ∫
Ds

dλdξNH0,H(λ, ξ)
∣∣Fp(λ, ξ)∣∣

+

∫
Ds

dλdξNH0,H(λ, ξ)
∣∣FK(λ, ξ)

∣∣]+

∫
Rd+1\Ds

dλdξNH0,H(λ, ξ)
∣∣FR(λ, ξ)

∣∣ . (4.13)

Next, taking into account expression (6.1) for the Fourier transform of p, the integral∫
Ds

dλdξNH0,H(λ, ξ)|Fp(λ, ξ)|

in (4.13) is (essentially) the same as in the right-hand side of (3.8). We have already shown that
this integral is �nite in the proof of Lemma 3.2 (see (6.8) and (6.9)). In addition, one can bound
|FK(λ, ξ)| by a constant thanks to Lemma 4.5, in order to get∫

Ds

NH0,H(λ, ξ)
∣∣FK(λ, ξ)

∣∣ dλdξ . ∫
Ds

dλdξNH0,H(λ, ξ) <∞.

Eventually, the �niteness of
∫
Rd+1\Ds

dλdξNH0,H(λ, ξ)|FR(λ, ξ)| can be easily derived from rela-

tion (4.11). Plugging the information above into (4.13), this completes the proof of our claim (4.12).
�

As we will see in the sequel, the renormalization procedure for W2,n is based on the following
decomposition.



A K-ROUGH PATH ABOVE THE SPACE-TIME FRACTIONAL BROWNIAN MOTION 17

Lemma 4.7. Let W2,n be the increment given by (3.3), and recall that the renormalization constant

c
(n)
ρ,H0,H

is de�ned by (3.12). Then for all (s, x), (t, y) ∈ Rd+1 and n ≥ 1, one has the decomposition

E
[
W2,n

s,x (t, y)
]

= c
(n)
ρ,H0,H

+ Ens,x(t, y) , (4.14)

for some function Ens,x such that, for every ε ∈ (0, 1), ` ≥ 0 and ψ ∈ B`s we have∣∣〈Ens,x, ψ`s,x〉∣∣ . 22`(1+d−(2H0+H)+ε) . (4.15)

Moreover, in relation (4.15) the proportional constant does not depend on n, `, s, x.

Proof. With the de�nition (3.3) of W2,n in mind, we can obviously write

E
[
W2,n

s,x (t, y)
]

= c
(n)
ρ,H0,H

+ Ens,x(t, y),

as stated in (4.14), where we have simply set

Ens,x(t, y) :=
{
E
[
(K ∗ Ẇn)(t, y)Ẇn(t, y)

]
− c

(n)
ρ,H0,H

}
− E

[
(K ∗ Ẇn)(s, x)Ẇn(t, y)

]
. (4.16)

We now analyze the terms

Qn(s, x; t, y) = E
[
(K ∗ Ẇn)(s, x)Ẇn(t, y)

]
(4.17)

in the right-hand side of (4.16). To this aim, we resort to a slight variation on (4.1) and (4.2), which
enables to write that for all (s, x), (t, y) ∈ Rd+1

Qn(s, x; t, y) = c2
H0,H

∫
Rd+1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FK(λ, ξ)eı(λ(t−s)+ξ·(y−x)) dλdξ .

Based on this expression, and along the same lines as for (4.6), one gets on the one hand∫
Rd+1

dtdy Qn(s, x; t, y)ψ`s,x(t, y)

= c2
H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2NH0,H(λ, ξ)FK(λ, ξ)Fψ`0,0(λ, ξ).

Hence owing to the fact that ψ`0,0 = S2−`
0,0 ψ and performing the change of variable λ := 2−2`λ, ξ =

2−`ξ, we get∣∣∣∣ ∫
Rd+1

dtdy Qn(s, x; t, y)ψ`s,x(t, y)

∣∣∣∣
= c2

H0,H 22`(d+2−(2H0+H))

∣∣∣∣ ∫
Rd+1

dλdξ |Fρn(22`λ, 2`ξ)|2NH0,H(λ, ξ)FK(22`λ, 2`ξ)Fψ(λ, ξ)

∣∣∣∣ .
At this point, observe that due to the assumption 2H0 + H ≤ d + 1, we can pick a0, a1, . . . , ad in

[0, 1] such that
∑d

i=0 ai = 1− ε, 2H0 + a0 − 1 < 1 and 2Hi + 2ai − 1 < 1 for i = 1, . . . , d. We can
now apply Lemma 4.5 with this set of parameters to deduce that∣∣∣∣ ∫

Rd+1

dtdy Qn(s, x; t, y)ψ`s,x(t, y)

∣∣∣∣
. 22`(d+1−(2H0+H)+ε)

∫
Rd+1

dλdξ
1

|λ|2H0+a0−1

d∏
i=1

1

|ξi|2Hi+2ai−1

∣∣Fψ(λ, ξ)
∣∣ . (4.18)

Since 2H0 +a0 < 2 and 2Hi + 2ai < 2 for i = 1, . . . , d, we can �nally appeal to Lemma 4.3 to assert
that the latter integral is �nite, which gives the desired bound for the second term in the right-hand
side of (4.16).
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Then, for the treatment of the di�erence into brackets in (4.16), let us separate the two cases
2H0 +H < d+ 1 and 2H0 +H = d+ 1.

First case: 2H0 +H < d+ 1. In this situation, going back to the de�nition (3.8) of Jρ,H0,H, observe
that the renormalization constant can also be expressed as

c
(n)
ρ,H0,H

= c2
H0,H

∫
Rd+1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)Fp(λ, ξ) dλdξ ,

and accordingly

Qn(t, y; t, y)− c
(n)
ρ,H0,H

= −c2
H0,H

∫
Rd+1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FR(λ, ξ) dλdξ ,

where R stands for the remainder term in the decomposition of De�nition 2.6, item (i). Invoking
the inequality |Fρn(λ, ξ)| . 1 and the result of (4.12), we get∣∣∣Qn(t, y; t, y)− c

(n)
ρ,H0,H

∣∣∣ . 1 ≤ 22`(1+d−(2H0+H)+ε) , (4.19)

where the last inequality naturally stems from the fact that 2H0 +H < d+ 1.

Second case: 2H0 +H = d+ 1. Let us recall that in this situation,

c
(n)
ρ,H0,H

= c2
H0,H

∫
|λ|+|ξ|2≥2−2n

|Fρ(λ, ξ)|2Fp(λ, ξ)NH0,H(λ, ξ) dλdξ .

In fact, using the relation 2H0 + H = d + 1, it is not hard to check that we can recast the above
quantity as

c
(n)
ρ,H0,H

= c2
H0,H

∫
|λ|+|ξ|2≥1

|Fρn(λ, ξ)|2Fp(λ, ξ)NH0,H(λ, ξ) dλdξ ,

and accordingly

Qn(t, y; t, y)− c
(n)
ρ,H0,H

= c2
H0,H

∫
|λ|+|ξ|2≤1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FK(λ, ξ) dλdξ

− c2
H0,H

∫
|λ|+|ξ|2≥1

|Fρn(λ, ξ)|2NH0,H(λ, ξ)FR(λ, ξ) dλdξ .

Using the results of Lemma 4.5 and Lemma 4.6, as well as the uniform estimate |Fρn(λ, ξ)| . 1,
we thus get∣∣∣Qn(t, y; t, y)− c

(n)
ρ,H0,H

∣∣∣
.
∫
|λ|+|ξ|2≤1

NH0,H(λ, ξ) dλdξ +

∫
|λ|+|ξ|2≥1

NH0,H(λ, ξ)|FR(λ, ξ)| dλdξ . 1 ≤ 22`ε , (4.20)

which corresponds to the desired bound in this case.

We can now conclude our proof: combining (4.18), (4.19) and (4.20) with (4.16), we immediately
obtain (4.15).

�

We turn to a bound on the variance of the renormalized K-rough path Ŵn.

Proposition 4.8. Let Ŵn be the renormalized K-rough path de�ned by (3.11), where we recall that

WWWn := (Ẇn,W2,n) and W2,n is introduced in (3.3). Then for all ` ≥ 0, n ≥ m ≥ 0, ψ ∈ B2(d+1)
s ,

(s, x) ∈ Rd+1 and ε ∈ (0, 1), it holds that

E
[
|〈Ŵ2,n

s,x − Ŵ2,m
s,x , ψ

`
s,x〉|2

]
. 24`(1+d−(2H0+H)+ε)2−mε , (4.21)
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where the proportional constant in (4.21) does not depend on n,m, `, s, x.

Proof. For the sake of conciseness, we will only focus on the case m = 0, i.e. we will show the
uniform estimate

E
[
|〈Ŵ2,n

s,x , ψ
`
s,x〉|2

]
. 24`(1+d−(2H0+H)+ε) .

The proof in the general case m ≥ 0 could in fact be obtained through elementary adaptations of
the subsequent estimates, using the fact that Fρ is Lipschitz (see e.g. the arguments in the proof
of [3, Proposition 3.3] for more details on the transition from m = 0 to m ≥ 0).

Observe �rst that due to Wick's formula for products of Gaussian random variables (and using
the notation of (3.3)), we can write

E
[
|〈W2,n

s,x , ψ
`
s,x〉|2

]
=

∫∫
Rd+1×Rd+1

dtdydt̃dỹ ψ`s,x(t, y)ψ`s,x(t̃, ỹ)E
[
Ins,x(t, y)Ẇn(t, y)Ins,x(t̃, ỹ)Ẇn(t̃, ỹ)

]
=
(〈
E
[
W2,n

s,x

]
, ψ`s,x

〉)2
+ U `,ns,x + V`,ns,x ,

where we have set

U `,ns,x :=

∫∫
Rd+1×Rd+1

dtdydt̃dỹ ψ`s,x(t, y)ψ`s,x(t̃, ỹ)E
[
Ins,x(t, y)Ins,x(t̃, ỹ)

]
E
[
Ẇn(t, y)Ẇn(t̃, ỹ)

]
and

V`,ns,x :=

∫∫
Rd+1×Rd+1

dtdydt̃dỹ ψ`s,x(t, y)ψ`s,x(t̃, ỹ)E
[
Ins,x(t, y)Ẇn(t̃, ỹ)

]
E
[
Ẇn(t, y)Ins,x(t̃, ỹ)

]
.

Based on this decomposition, we get that

E
[
|〈Ŵ2,n

s,x , ψ
`
s,x〉|2

]
= E

[
|〈W2,n

s,x − c
(n)
ρ,H0,H

, ψ`s,x〉|2
]

=
(〈
E
[
W2,n

s,x

]
, ψ`s,x

〉)2
+ U `,ns,x + V`,ns,x − 2〈E

[
W2,n

s,x

]
, ψ`s,x

〉
〈c(n)
ρ,H0,H

, ψ`s,x〉+ 〈c(n)
ρ,H0,H

, ψ`s,x〉2

=
(〈
E
[
W2,n

s,x

]
− c

(n)
ρ,H0,H

, ψ`s,x
〉)2

+ U `,ns,x + V`,ns,x
=
(〈
Ens,x, ψ`s,x

〉)2
+ U `,ns,x + V`,ns,x ,

where we have used Lemma 4.7 (and the notation therein) to derive the last identity. Owing
to (4.15), our claim (4.21) is thus reduced to check that∣∣U `,ns,x ∣∣ . 24`(1+d−(2H0+H)+ε) and

∣∣V`,ns,x ∣∣ . 24`(1+d−(2H0+H)+ε). (4.22)

The remainder of the proof is devoted to prove (4.22).

To this end, recall that Ins,x is de�ned by (3.4), which, together with relation (4.2), yields

E
[
Ins,x(t, y)Ins,x(t̃, ỹ)

]
= c2

H0,H

∫
Rd+1

dλdξ |Fρn(λ, ξ)|2|FK(λ, ξ)|2NH0,H(λ, ξ)[
eı(λ(t−t̃)+ξ·(y−ỹ)) − eı(λ(t−s)+ξ·(y−x)) − eı(λ(s−t̃)+ξ·(x−ỹ)) + 1

]
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Combining this expression with formula (4.1) for E
[
Ẇn(t, y)Ẇn(t̃, ỹ)

]
, we easily deduce that

U `,ns,x = c4
H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃)|2|FK(λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)[∣∣Fψ`s,x(λ+ λ̃, ξ + ξ̃)
∣∣2 −Fψ`s,x(λ+ λ̃, ξ + ξ̃)Fψ`s,x(λ̃, ξ̃)e−ı(λs+ξ·x)

−Fψ`s,x(λ+ λ̃, ξ + ξ̃)Fψ`s,x(λ̃, ξ̃)eı(λs+ξ·x) +
∣∣Fψ`s,x(λ, ξ)

∣∣2]
= c4

H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃)|2|FK(λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)[∣∣Fψ`0,0(λ+ λ̃, ξ + ξ̃)
∣∣2 −Fψ`0,0(λ+ λ̃, ξ + ξ̃)Fψ`0,0(λ̃, ξ̃)

−Fψ`0,0(λ+ λ̃, ξ + ξ̃)Fψ`0,0(λ̃, ξ̃) +
∣∣Fψ`0,0(λ, ξ)

∣∣2]
= c4

H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃)|2|FK(λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)∣∣Fψ`0,0(λ+ λ̃, ξ + ξ̃)−Fψ`0,0(λ̃, ξ̃)
∣∣2 . (4.23)

Along similar arguments, we obtain �rst

V`,ns,x = c4
H0,H∫∫

Rd+1×Rd+1

dλdξdλ̃dξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃)|2FK(λ, ξ)FK(λ̃, ξ̃)NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)[
Fψ`0,0(λ+ λ̃, ξ + ξ̃)−Fψ`0,0(λ, ξ)

][
Fψ`0,0(λ+ λ̃, ξ + ξ̃)−Fψ`0,0(λ̃, ξ̃)

]
,

and we can now apply Cauchy-Schwarz inequality to derive the estimate∣∣V`,ns,x ∣∣ ≤ c4
H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |Fρn(λ, ξ)|2|Fρn(λ̃, ξ̃)|2|FK(λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)∣∣Fψ`0,0(λ+ λ̃, ξ + ξ̃)−Fψ`0,0(λ̃, ξ̃)
∣∣2 . (4.24)

Combining (4.23)-(4.24) with the uniform bound |Fρn(λ, ξ)| . 1, we have thus shown that uniformly
in (s, x) ∈ Rd+1 and n ≥ 1 the following holds true:

|U `,ns,x |+ |V`,ns,x | . S`, (4.25)

where the quantity S` is given by

S` := c4
H0,H

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |FK(λ, ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)

×
∣∣Fψ`0,0(λ+ λ̃, ξ + ξ̃)−Fψ`0,0(λ̃, ξ̃)

∣∣2.
Moreover, an easy scaling argument performed on ψ`0,0 = S2`

0,0ψ shows that

S` = c4
H0,H 24`(d+2−(2H0+H))S̃`,

where

S̃` =

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |FK(22`λ, 2`ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)

×
∣∣Fψ(λ+ λ̃, ξ + ξ̃)−Fψ(λ̃, ξ̃)

∣∣2 . (4.26)
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Plugging this information into (4.25) and then (4.22) we are now reduced to show that for any
ε ∈ (0, 1) we have

S̃` . 2−4`(1−ε). (4.27)

We shall prove assertion (4.27) in the next subsection. �

4.3. Proof of (4.27). Let us start by highlighting a few inequalities satis�ed by (H0,H), that will
serve us later in the proof. First, observe that due to (3.9) and H ≤ d, one has d+ 1

2 < 2H0 +H <
2H0 + d, and so one has necessarily

H0 >
1

4
. (4.28)

Likewise, it holds that d+ 1
2 < 2H0 +H < 2H0 +H1 + (d− 1), and so

2H0 +H1 >
3

2
, (4.29)

while for d ≥ 2, one has d+ 1
2 < 2H0 +H1 +H2 + (d− 2), and so

2H0 +H1 +H2 >
5

2
. (4.30)

Besides, for obvious symmetry reasons in both expression (4.26) of S̃` and condition (3.9) on H, we
can and will assume in the sequel that H1 ≤ H2 ≤ . . . ≤ Hd. As a consequence of this assumption,
we get that for d ≥ 3 and i ≥ 3, d+ 1

2 < 2H0 +H < 2H0 +H1 +H2 +H3 +(d−3) < 2+3Hi+(d−3),
and therefore

Hi >
1

2
for any i ≥ 3 . (4.31)

With these conditions in hand, let us go back to our main purpose, that is proving the esti-
mate (4.27). With (4.26) in mind, our bound on S̃` relies on a proper control of the di�erence∣∣Fψ(λ+ λ̃, ξ + ξ̃)−Fψ(λ̃, ξ̃)

∣∣.
To this aim, let us introduce some additional notation. Namely for λ, λ̃ ∈ R we set

T (0)(λ) :=

(∫
Rd+1

dtdy |(∂d+1
tx1···xdψ)(t, y)|

∣∣∣∣ ∫ t

0
du e−ıλu

∣∣∣∣d+1)1/(d+1)

, (4.32)

Q(0)(λ, λ̃) :=

(∫
Rd+1

dtdy |(∂d+1
tx1···xdψ)(t, y)|

∣∣∣∣ ∫ t

0
du

∫ u

0
dv e−ıλ̃ue−ıλv

∣∣∣∣d+1)1/(d+1)

, (4.33)

and for i = 1, . . . , d,

T (i)(λ) :=

(∫
Rd+1

dtdy |(∂d+1
tx1···xdψ)(t, y)|

∣∣∣∣ ∫ yi

0
dzi e

−ıλzi
∣∣∣∣d+1)1/(d+1)

, (4.34)

Q(i)(λ, λ̃) :=

(∫
Rd+1

dtdy |(∂d+1
tx1···xdψ)(t, y)|

∣∣∣∣ ∫ yi

0
dzi

∫ zi

0
dwi e

−ıλ̃zie−ıλwi
∣∣∣∣d+1)1/(d+1)

, (4.35)

where the shortcut ∂d+1
tx1···xdψ refers to ∂t∂x1 · · · ∂xdψ. Using this notation, some elementary algebraic

manipulations reveal that for all λ, λ̃ ∈ R and ξ, ξ̃ in Rd, we have

∣∣Fψ(λ+ λ̃, ξ + ξ̃)−Fψ(λ̃, ξ + ξ̃)
∣∣ . |λ| Q(0)(λ, λ̃)

d∏
i=1

T (i)(ξi + ξ̃i). (4.36)
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Along the same lines, for i = 1, . . . , d we also get∣∣Fψ(λ̃, ξ̃1, . . . , ξ̃i−1, ξi + ξ̃i, ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d)

−Fψ(λ̃, ξ̃1, . . . , ξ̃i−1, ξ̃i, ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d)
∣∣

. T (0)(λ̃)

( i−1∏
j=1

T (j)(ξ̃j)

) (
|ξi| · Q(i)(ξi, ξ̃i)

) ( d∏
j=i+1

T (j)(ξj + ξ̃j)

)
. (4.37)

We now point out a lemma on the functions T (i) and Q(i) which will be crucial in the sequel.

Lemma 4.9. Fix ψ ∈ Cd+1(Rd+1;R) with compact support, i ∈ {0, 1, . . . , d}, and let T (i),Q(i) be
the functions de�ned by (4.32)-(4.35).

(1) For all β1, β2 ∈ (0, 2) such that β1 + β2 > 1, it holds that∫
R2

dx1dx2
|Q(i)(x1, x2)|2

|x1|β1−1|x2|β2−1
< ∞ .

(2) For all λ1, λ2 ∈ (0, 2) it holds that∫
|x1|≤1

dx1

∫
R
dx2
|T (i)(x1 + x2)|2

|x1|λ1−1|x2|λ2−1
< ∞ .

(3) For all λ1 > 0 and λ2 ∈ (0, 2) such that λ1 + λ2 > 3, it holds that∫
|x1|≥1

dx1

∫
R
dx2
|T (i)(x1 + x2)|2

|x1|λ1−1|x2|λ2−1
< ∞ .

Proof. The result of item (1) is borrowed from [3, Lemma 3.11].

As for the proofs of items (2) and (3), they both rely on the readily-checked bound

|T (i)(x)|2 . 1

1 + |x|2
.

For (2), we have∫
|x1|≤1

dx1

∫
R
dx2
|T (i)(x1 + x2)|2

|x1|λ1−1|x2|λ2−1
.
∫
|x1|≤1

dx1

∫
R
dx2

1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

.
∫
|x1|≤1

dx1

|x1|λ1−1

∫
|x2|≤2

dx2

|x2|λ2−1
+

∫
|x1|≤1

dx1

|x1|λ1−1

∫
|x2|≥2

dx2

|x2|λ2+1
< ∞ .

As for (3), we can �rst write∫
|x1|≥1

dx1

∫
R
dx2
|T (i)(x1 + x2)|2

|x1|λ1−1|x2|λ2−1

.
∫
|x1|≥1

dx1

∫
|x2|≤ 1

2

dx2
1

|x1|λ1+1|x2|λ2−1
+

∫
|x1|≥1

dx1

∫
|x2|≥ 1

2

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2
.
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The �rst integral is clearly �nite. Then decompose the second integral as∫
|x1|≥1

dx1

∫
|x2|≥ 1

2

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

=

∫
|x1|≥1

dx1

∫
{ 1
2
≤|x2|≤ 1

2
|x1|}∪{|x2|≥ 3

2
|x1|}

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

+

∫
|x1|≥1

dx1

∫
1
2
|x1|≤|x2|≤ 3

2
|x1|

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2
(4.38)

Now, on the one hand, note that if 1
2 ≤ |x2| ≤ 1

2 |x1| or |x2| ≥ 3
2 |x1|, then |x1+x2| ≥ max 1

3

(
|x1|, |x2|

)
,

and so, for any β ∈ [0, 1]∫
|x1|≥1

dx1

∫
{ 1
2
≤|x2|≤ 1

2
|x1|}∪{|x2|≥ 3

2
|x1|}

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

.
∫
|x1|≥1

dx1

|x1|λ1+2β−1

∫
|x2|≥ 1

2

dx2

|x2|λ2+2(1−β)−1
(4.39)

Due to the assumption λ1 + λ2 > 3, we can obviously write λ1 + λ2 > 2 + ε for any small ε > 0,
and from here we can pick β := λ2

2 −
ε
2 ∈ [0, 1], so that λ2 + 2(1 − β) − 1 = 1 + ε > 1 and

λ1 + 2β − 1 = λ1 + λ2 − ε− 1 > 1. For such a value of β, both integrals in (4.39) are thus �nite.

On the other hand, we can write∫
|x1|≥1

dx1

∫
1
2
|x1|≤|x2|≤ 3

2
|x1|

dx2
1

|x1|λ1−1|x2|λ2−1

1

1 + |x1 + x2|2

=

∫
|x1|≥1

dx1 x1

∫
1
2
≤|r|≤ 3

2

dr
1

|x1|λ1+λ2−2|r|λ2−1

1

1 + |x1|2(1 + r)2

.
∫
|x1|≥1

dx1

|x1|λ1+λ2−2−ε

∫
1
2
≤|r|≤ 3

2

dr

(1 + r)1−ε .

Using the assumption λ1 + λ2 > 3, we can pick ε > 0 small enough such that λ1 + λ2 − 2− ε > 1,
which shows that the above quantity is �nite. Going back to (4.38), this achieves the proof of
item (3).

�

With those notations and preliminary results in hand, let us go back to (4.26). Invoking (4.36)
and (4.37), our claim (4.27) amounts to show that

J 0,` :=

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |FK(22`λ, 2`ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)

×
(
|λ|2Q(0)(λ, λ̃)2

) d∏
i=1

(
T (i)(ξi + ξ̃i)

)2
. 2−4`(1−ε), (4.40)

and that for every �xed i = 1, . . . , d, we have

J i,` :=

∫∫
Rd+1×Rd+1

dλdξdλ̃dξ̃ |FK(22`λ, 2`ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)
(
T (0)(λ̃)

)2

×
i−1∏
j=1

(
T (j)(ξ̃j)

)2 (
|ξi|2Q(i)(ξi, ξ̃i)

2
) d∏
j=i+1

(
T (j)(ξj + ξ̃j)

)2
. 2−4`(1−ε) . (4.41)
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To establish these bounds, we will split the integration domain for the variables λ, ξ along

D− := {λ ∈ R : |λ| ≤ 1} and D+ := {λ ∈ R : |λ| ≥ 1} ,

that is we set, for every s ∈ {−,+}d+1, Ds :=
∏d
k=0Dsk , and then consider

J 0,`
s :=

∫∫
Ds×Rd+1

dλdξdλ̃dξ̃ |FK(22`λ, 2`ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)

×
(
|λ|2Q(0)(λ, λ̃)2

) d∏
i=1

(
T (i)(ξi + ξ̃i)

)2
. (4.42)

For every �xed i = 1, . . . , d, we also set

J i,`s :=

∫∫
Ds×Rd+1

dλdξdλ̃dξ̃ |FK(22`λ, 2`ξ)|2NH0,H(λ, ξ)NH0,H(λ̃, ξ̃)
(
T (0)(λ̃)

)2

×
i−1∏
j=1

(
T (j)(ξ̃j)

)2 (
|ξi|2Q(i)(ξi, ξ̃i)

2
) d∏
j=i+1

(
T (j)(ξj + ξ̃j)

)2
. (4.43)

It is clear that (4.40) and (4.41) will hold true if we can show that for every s ∈ {−,+}d+1,

J 0,`
s . 2−4`(1−ε) and J i,`s . 2−4`(1−ε) . (4.44)

We will now treat the two integrals (4.42) and (4.43) separately.

Bound on (4.42). Let s ∈ {−,+}d+1 be �xed. We can apply Lemma 4.5 and recall the de�ni-

tion (3.6) of NH0,H in order to assert that for all a0, a1, . . . , ad ∈ [0, 1] such that a0+a1+. . .+ad < 1,
the integral in (4.42) is bounded (up to a constant) by

2−4`(a0+a1+...+ad)

(∫
Ds0×R

dλdλ̃
Q(0)(λ, λ̃)2

|λ|(2a0+2H0−2)−1|λ̃|2H0−1

)

×
d∏
i=1

(∫
Dsi×R

dξidξ̃i
T (i)(ξi + ξ̃i)

2

|ξi|4ai+2Hi−1|ξ̃i|2Hi−1

)
. (4.45)

The whole point now is that we can �nd parameters a0, a1, . . . , ad ∈ [0, 1] such that a0+a1+. . .+ad =
1− ε and such that the integrals involved in the above expression are all �nite. In order to justify
this claim, we can refer to Lemma 4.9. According to this property, the �rst integral in (4.45) is
�nite whenever 2a0 + 2H0 > 3 − 2H0 and 2a0 + 2H0 < 4. Moreover, since 0 < a0 < 1, we have
2H0 < 2a0 + 2H0 < 2 + 2H0 < 4. Summarizing those elementary considerations and similar ones
for the second integral in (4.45), we get that (4.45) is a �nite expression as long as max(2H0, 3− 2H0) < 2a0 + 2H0 < 2 + 2H0

2Hi < 4ai + 2Hi < 2 for i ∈ {i ∈ {1, . . . , d} : si = −}
3− 2Hi < 4ai + 2Hi < 4 + 2Hi for i ∈ {i ∈ {1, . . . , d} : si = +}.

(4.46)

Provided (4.46) is met and a0 + a1 + . . .+ ad = 1− ε, we thus have that the expression (4.45) is

bounded, up to a constant, by 2−4`(1−ε). This proves (4.40).

We now show that the above-reported conditions can indeed be ful�lled under our standing
assumptions. In fact,

(i) Since H0 >
1
4 (see (4.28)), the �rst condition in (4.46) is easily shown to be satis�ed for some

values of a0 ∈ (0, 1).
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(ii) The conditions (4.46) can also be made consistent with the desired assumption
∑d

i=0 ai = 1− ε
for ε > 0. In order to verify this assertion, sum the constraints in (4.46). This yields

A0
s < 2(2a0 + 2H0) +

d∑
i=1

(4ai + 2Hi) < B0
s , (4.47)

with two parameters As, Bs de�ned by

A0
s := 2 max(2H0, 3− 2H0) + 2

∑
i=1,...,d
si=−

Hi +
∑

i=1,...,d
si=+

(3− 2Hi) (4.48)

B0
s = 2(2 + 2H0) + 2

∣∣{i ∈ {1, . . . , d} : si = −}
∣∣+

∑
i=1,...,d
si=+

(4 + 2Hi) .

We now resort to the assumption
∑d

i=0 ai = 1− ε. Recalling our notation H =
∑d

i=1Hi, we end up
with the condition

A0
s < 4(1− ε) + 2(2H0 +H) < B0

s . (4.49)

In order to see that these two inequalities are indeed satis�ed (at least for ε > 0 small enough),
observe �rst that

B0
s = 2(2 + 2H0) + 2d+ 2

∑
i=1,...,d
si=+

(1 +Hi) ≥ 4 + 2(2H0 + d) > 4 + 2(2H0 +H) ,

where the last inequality immediately follows from the trivial bound H < d.

As for the �rst inequality in (4.49), note that

A0
s ≤ 2 max(2H0, 3− 2H0) + 2

∑
i=1,...,d
si=−

Hi +
∑

i=1,...,d
si=+

(3− 2Hi)

≤ 2 max(2H0, 3− 2H0) +
d∑
i=1

max(2Hi, 3− 2Hi)

≤ 2 max(2, 3− 2H0) + max(2, 3− 2H1) + max(2, 3− 2H2)1d≥2 + 2(d− 2)1d≥2 , (4.50)

where we have used the observation (4.31) to derive the last inequality. The following table collects
the possible values of the bound in (4.50), depending on H0, H1, H2 (remember that H1 ≤ H2):

H0 H1 H2 A0
s for d = 1 A0

s for d ≥ 2

(0, 1
2 ] (0, 1

2 ] (0, 1
2 ] ≤ 9− 2(2H0 +H1) ≤ 2d+ 8− 2(2H0 +H1 +H2)

(0, 1
2 ] (0, 1

2 ] (1
2 , 1) ≤ 9− 2(2H0 +H1) ≤ 2d+ 7− 2(2H0 +H1)

(0, 1
2 ] (1

2 , 1) (1
2 , 1) ≤ 8− 4H0 ≤ 2d+ 6− 4H0

(1
2 , 1) (0, 1

2 ] (0, 1
2 ] ≤ 7− 2H1 ≤ 2d+ 6− 2(H1 +H2)

(1
2 , 1) (0, 1

2 ] (1
2 , 1) ≤ 7− 2H1 ≤ 2d+ 5− 2H1

(1
2 , 1) (1

2 , 1) (1
2 , 1) ≤ 6 ≤ 2d+ 4

Based on these values, and using the three conditions (4.28)-(4.29)-(4.30), we can easily conclude
that

A0
s < 2d+ 5 < 4 + 2(2H0 +H) ,

where the last bound is derived from the assumption 2H0 +H > d+ 1
2 .

We have thus checked that (4.49) holds true, and this completes the proof of the desired estimate

J 0,`
s . 2−4`(1−ε) . (4.51)
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Bound on (4.43). Let us �x s ∈ {−,+}d+1 and i ∈ {1, . . . , d}. In order to bound J i,`s , we proceed

similarly to (4.45). Namely we apply Lemma 4.5 to assert that for all a0, a1, . . . , ad ∈ [0, 1] such
that a0 + a1 + . . .+ ad < 1,

J i,`s . 2−4`(a0+a1+...+ad)

(∫
Ds0

dλ

|λ|2a0+2H0−1

)(∫
R
dλ̃
T (0)(λ̃)2

|λ̃|2H0−1

) i−1∏
r=1

(∫
R
dξ̃r
T (r)(ξ̃r)

2

|ξ̃r|2Hr−1

)

×
i−1∏
k=1

(∫
Dsk

dξk
|ξk|4ak+2Hk−1

)

×
(∫

Dsi×R
dξidξ̃i

Q(i)(ξi, ξ̃i)
2

|ξi|(4ai+2Hi−2)−1|ξ̃i|2Hi−1

) d∏
p=i+1

(∫
Dsp×R

dξpdξ̃p
T (p)(ξp + ξ̃p)

2

|ξp|4ap+2Hp−1|ξ̃p|2Hp−1

)
,

(4.52)

where we recall that D− := [−1, 1] and D+ := R\[−1, 1].

Based on the criteria of Lemma 4.9, we get the following conditions on the parameters a0, a1, . . . , ad
(so as to ensure that the integrals in (4.52) are all �nite, and also that each ai belongs to (0, 1)):

2H0 < 2a0 + 2H0 < 2 if s0 = −
2 < 2a0 + 2H0 < 2 + 2H0 if s0 = +
2Hk < 4ak + 2Hk < 2 for k ∈ {k ∈ {1, . . . , i− 1} : sk = −}
2 < 4ak + 2Hk < 4 + 2Hk for k ∈ {k ∈ {1, . . . , i− 1} : sk = +}
max(2Hi, 3− 2Hi) < 4ai + 2Hi < 4
2Hp < 4ap + 2Hp < 2 for p ∈ {p ∈ {i+ 1, . . . , d} : sp = −}
3− 2Hp < 4ap + 2Hp < 4 + 2Hp for p ∈ {p ∈ {i+ 1, . . . , d} : sp = +}.

(4.53)

As in the proof of (4.40), we still have to verify that the parameters a0, . . . , ad can be chosen so

that
∑d

k=0 ak = 1− ε. To this aim, we use the same strategy as for (4.46). Namely we sum all the
constraints in (4.53), which yields the following condition:

Ais < 4(1− ε) + 2(2H0 +H) < Bi
s , (4.54)

with two parameters Ais, B
i
s de�ned by

Ais := 4{H0 1s0=− + 1s0=+}+ 2
∑

k=1,...,i−1
sk=−

Hk + 2
∣∣{k ∈ {1, . . . , i− 1} : sk = +}

∣∣
+ max(2Hi, 3− 2Hi) + 2

∑
p=i+1,...,d

sp=−

Hp +
∑

p=i+1,...,d
sp=+

(3− 2Hp), (4.55)

Bi
s := 4{1s0=− + (1 +H0)1s0=+}+ 2

∣∣{k ∈ {1, . . . , i− 1} : sk = −}
∣∣+

∑
k=1,...,i−1

sk=+

(4 + 2Hk)

+ 4 + 2
∣∣{p ∈ {i+ 1, . . . , d} : sp = −}

∣∣+
∑

p=i+1,...,d
sp=+

(4 + 2Hp) .
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In order to see that Ais < 4 + 2(2H0 +H), observe �rst that

Ais < 4 + 2(i− 1) +
d∑
q=i

max(2Hq, 3− 2Hq) . (4.56)

Let us recall that, by (4.31), one has Hq >
1
2 for q ≥ 3, and so the above bound yields, for i ≥ 3,

Ais < 4 + 2(i− 1) + 2(d− i+ 1) = 4 + 2d < 3 + 2(2H0 +H),

where we have used the assumption d+ 1
2 < 2H0 +H to derive the last inequality.

Then, using again (4.56), we have

A2
s < 6 + max(2H2, 3− 2H2) + 2(d− 2) = 2 + 2d+ max(2H2, 3− 2H2)

< 5 + 2d < 4 + 2(2H0 +H) ,

where we have again used the assumption d+ 1
2 < 2H0 +H to derive the last inequality.

As for A1
s, we get by (4.56) that

A1
s < 4 + max(2H1, 3− 2H1) + max(2H2, 3− 2H2) + 2(d− 2)

< 2d+ max(2, 3− 2H1) + max(2, 3− 2H2)

≤ 2d+ max(4, 5− 2H1, 5− 2H2, 6− 2(H1 +H2))

< 5 + 2d < 4 + 2(2H0 +H) ,

where we have used (4.30) to get the fourth inequality.

This completes the proof of the �rst inequality in (4.54).

For the second inequality (i.e., 4(1− ε) + 2(2H0 +H) < Bi
s), let us write B

i
s as

Bi
s = 4{1s0=− + (1 +H0)1s0=+}+ 2(i− 1) + 2

∑
k=1,...,i−1

sk=+

(1 +Hk)

+ 4 + 2(d− i) + 2
∑

p=i+1,...,d
sp=+

(1 +Hp)

= 2d+ 2 + 4{1s0=− + (1 +H0)1s0=+}+ 2
∑

k=1,...,i−1
sk=+

(1 +Hk) + 2
∑

p=i+1,...,d
sp=+

(1 +Hp) ,

and from here it is clear that

Bi
s > 6 + 2d ≥ 4 + 2(2H0 +H),

where the last inequality stems from the assumption 2H0 +H ≤ d+ 1.

We have thus checked that (4.54) holds true, and this completes the proof of the desired estimate:
for every i = 1, . . . , d,

J i,`s . 2−4`(1−ε) . (4.57)

The combination of (4.51) and (4.57) precisely corresponds to (4.44), and accordingly the proof
of (4.27) is achieved.
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4.4. Conclusion: proof of Theorem 3.3. Let us now see how we can use the moments estimates
of Propositions 4.4 and 4.8 in order to prove the desired convergence (3.13).

First, by applying Lemma 4.2 to a constant distribution ζs,x := Ẇn − Ẇm (which means that

θi = ζ],i = 0 in Lemma 4.2), we get that for every k, p ≥ 1 ,

E
[∥∥Ẇn − Ẇm

∥∥2p

α;k,w

]
. E

[
sup
ψ∈Ψ

sup
`≥0

sup
(s,x)∈Λ`s∩([−(k+2),k+2]×Rd)

22`pα
|〈Ẇn − Ẇm,S2−`

s,x ψ〉|2p

w(x)2p

]
.
∑
ψ∈Ψ

∑
`≥0

∑
(s,x)∈Λ`s∩([−(k+2),k+2]×Rd)

22`pα
E
[
|〈Ẇn − Ẇm,S2−`

s,x ψ〉|2p
]

w(x)2p
,

Furthermore, Ẇn − Ẇm is a Gaussian process. Therefore we have

E
[∥∥Ẇn − Ẇm

∥∥2p

α;k,w

]
.
∑
ψ∈Ψ

∑
`≥0

∑
(s,x)∈Λ`s∩([−(k+2),k+2]×Rd)

22`pα
E
[
|〈Ẇn − Ẇm,S2−`

s,x ψ〉|2
]p

w(x)2p

. 2−mεp
∑
`≥0

22`p(α+d+2−(2H0+H)+ε)
∑

(s,x)∈Λ`s∩([−(k+2),k+2]×Rd)

w(x)−2p , (4.58)

where the last inequality follows from Proposition 4.4 and the fact that Ψ is a �nite set.

At this point, observe that∑
(s,x)∈Λ`s∩([−(k+2),k+2]×Rd)

w(x)−2p =

(∑
q0∈Z

1{−(k+2)≤q02−2`≤k+2}

)( ∑
q∈Zd

(
1 + 2−`|q|

)−2κp
)

. 22`k

{
1 + 22κ`p

∑
q∈Zd\{0}

|q|−2κp

}
.

Owing to our assumption α < −(d + 2) + (2H0 + H), we can pick ε > 0 small enough such that
β := −α − (d + 2) + (2H0 + H) − ε > 0. Going back to (4.58), we have obtained that for every
k, p ≥ 1,

E
[∥∥Ẇn − Ẇm

∥∥2p

α;k,w

]
. k 2−mεp

∑
`≥0

{
2−2`(βp−1) + 2−2`((β−κ)p−1)

∑
q∈Zd\{0}

|q|−2κp

}
. (4.59)

Without loss of generality, we can here assume that 0 < κ < β. Then we can pick p ≥ 1 large
enough so that (β − κ)p − 1 > 0 and 2κp > d, which ensures that the sum in (4.59) is �nite, and
so, for every k ≥ 1 and any such large p ≥ 1,

E
[∥∥Ẇn − Ẇm

∥∥2p

α;k,w

]
. k 2−mεp . (4.60)

Using similar arguments (starting from Lemma 4.2, and also leaning on (2.17)), we can then turn
the estimate of Proposition 4.8 into the bound

E
[∥∥Ŵ2,n − Ŵ2,m

∥∥2p

2α+2;k,w

]
. k 2−mεp , (4.61)

for every k ≥ 1, every ε > 0 small enough and every p ≥ 1 large enough.

Combining (4.60) and (4.61), we get that for all ε > 0 small enough and p ≥ 1 large enough

E
[
dα,w(ŴWW

n
, ŴWW

m
)2p
]
. 2−mεp ,



A K-ROUGH PATH ABOVE THE SPACE-TIME FRACTIONAL BROWNIAN MOTION 29

for all n ≥ m ≥ 1, and accordingly (ŴWW
n
)n≥1 is a Cauchy sequence in Lp(Ω; (EKα;w, dα;w)). By

Lemma 2.8, we can assert that there exists an element ŴWW ∈ EKα;w satisfying

E
[
dα,w(ŴWW,ŴWW

m
)2p
]
. 2−mεp ,

for every p ≥ 1 large enough. The desired conclusion, that is the almost sure convergence of ŴWW
n
to

ŴWW in (EKα;w, dα;w), immediately follows from Borel-Cantelli lemma.

5. Proof of Theorem 3.10

As we announced it earlier, the proof of Theorem 3.10 will in fact reduce to a review of the few
adaptations to be made with respect to the proof of Theorem 3.3. Observe �rst that in this setting,
identities (4.1) and (4.2) immediately give way to the following covariance formulas:

Lemma 5.1. Let Ẇn be the smoothed noise de�ned by (3.19) and recall that the kernel K̃ is de�ned

by (2.12). For every �xed n ≥ 1, the families {Ẇn(y); y ∈ Rd} and {K̃ ∗ Ẇn(y); y ∈ Rd} are
centered Gaussian processes with respective covariance functions given by the formulas

E
[
Ẇn(y)Ẇn(ỹ)

]
= c2

H

∫
Rd
dξ |Fsρn(ξ)|2NH(ξ)eıξ·(y−ỹ) , (5.1)

and

E
[
(K̃ ∗ Ẇn)(y)(K̃ ∗ Ẇn)(ỹ)

]
= c2

H

∫
Rd
dξ |Fsρn(ξ)|2|FsK̃(ξ)|2NH(ξ)eıξ·(y−ỹ) , (5.2)

where the notation NH has been introduced in (3.25) and the constant cH is the one given in (1.4).

5.1. Moment estimate for the �rst component. Morally, we need to check that the result of
Proposition 4.4 still holds for H0 = 1. In a more rigorous way, one has here:

Proposition 5.2. For all ` ≥ 0, n ≥ m ≥ 0, ψ ∈ B2(d+1)
s and x ∈ Rd, it holds that

E
[
|〈Ẇn − Ẇm, ψ̃`x〉|2

]
. 22`(d−H+ε)2−mε , (5.3)

where ψ̃(x) :=
∫
R dsψ(s, x), ψ̃`x(y) := 2`dψ̃(2`(y − x)), and the proportional constant in . does not

depend on n,m, `, s, x.

Proof. It su�ces to follow the arguments of the proof of Proposition 4.4, and therein replace iden-
tity (4.1) with the covariance formula (5.1). �

5.2. Moment estimate for the second component. The preliminary estimates on FK and FR
(i.e., Lemmas 4.5 and 4.6) become estimates on FsK̃ and

∫∞
0 dsFsR(s, .) in the spatial setting. Just

as their space-time counterparts, these bounds follow from the analysis of the expansions contained
in (2.12).

Lemma 5.3. Let K be the localized heat kernel of De�nition 2.6, and de�ne K̃ along (3.23). For

all �xed a1, . . . , ad ∈ [0, 1] such that
∑d

i=1 ai < 1, one has, for every ξ ∈ Rd,

|FsK̃(ξ)| .
d∏
i=1

|ξi|−2ai .



30 X. CHEN, A. DEYA, C. OUYANG, AND S. TINDEL

Lemma 5.4. Let R be the remainder term associated with the localized heat kernel K (along De�-

nition 2.6). Then, for all �xed a1, . . . , ad ≥ 0 such that
∑d

i=1 ai > 1, one has, for every ξ ∈ Rd+1,∣∣∣∣ ∫ ∞
0

dsFsR(s, .)(ξ)

∣∣∣∣ . d∏
i=1

|ξ|−2ai . (5.4)

As a consequence, if H = (H1, . . . ,Hd) ∈ (0, 1)d is such that H < d− 1, it holds that∫
Rd
dξNH(ξ)

∣∣∣∣ ∫ ∞
0

dsFsR(s, .)(ξ)

∣∣∣∣ <∞. (5.5)

A similar decomposition to (4.14) can also be exhibited in this time-independent situation.

Lemma 5.5. Let W2,n be the increment given by (3.21), and recall that the renormalization constant

c
(n)
ρ,H is de�ned by (3.28). Then for all x, y ∈ Rd and n ≥ 1, one has the decomposition

E
[
W2,n

x (y)
]

= c
(n)
ρ,H + Enx (y) , (5.6)

for some function Enx such that for all ε ∈ (0, 1), ` ≥ 0 and ψ ∈ B`s, we have∣∣〈Enx , ψ̃`x〉∣∣ . 22`(d−H−1+ε) . (5.7)

Moreover, in relation (5.7) the proportional constant does not depend on n, `, x.

Proof. We mimic the proof of Lemma 4.7. First, one can of course write

E
[
W2,n

x (y)
]

= c
(n)
ρ,H + Enx (y),

with

Enx (y) :=
{
Q̃n(y; y)− c

(n)
ρ,H

}
− Q̃n(x; y) and Q̃n(x; y) := E

[
(K̃ ∗ Ẇn)(x)Ẇn(y)

]
. (5.8)

On the one hand, using (5.1)-(5.2), and along the same lines as for (4.18), we get∣∣∣∣ ∫
Rd
dy Q̃n(x; y)ψ̃`x(y)

∣∣∣∣ = c2
H 22`(d−H)

∣∣∣∣ ∫
Rd
dξ |Fsρn(2`ξ)|2NH(ξ)FsK̃(2`ξ)Fsψ̃(ξ)

∣∣∣∣ .
Since H ≤ d− 1, we can pick a1, . . . , ad in [0, 1] such that

∑d
i=1 ai = 1− ε and 2Hi + 2ai− 1 < 1 for

i = 1, . . . , d. Applying Lemma 5.3 with these parameters and invoking the inequality |Fsρn(ξ)| . 1,
we deduce∣∣∣∣ ∫

Rd
dy Q̃n(x; y)ψ̃`x(y)

∣∣∣∣ . 22`(d−H−1+ε)

∫
Rd
dξ

d∏
i=1

1

|ξi|2Hi+2ai−1

∣∣Fsψ̃(ξ)
∣∣ . 22`(d−H−1+ε) .

Then, to bound the di�erence Q̃n(y; y)− c
(n)
ρ,H in (5.8), consider the two possible situations for H.

First case: H < d− 1. In this case, going back to the de�nition (3.26) of Jρ,H, we can write

c
(n)
ρ,H = 22n(d−H−1)c2

HJρ,H = c2
H0

∫
Rd
|Fsρn(ξ)|2NH(ξ)

(∫ ∞
0

dsFsps(ξ)

)
dξ . (5.9)

Besides, using (2.12), it holds that

FsK̃(ξ) =

∫ ∞
0

dsFsK(s, .)(ξ) =

∫ ∞
0

dsFsps(ξ)−
∫ ∞

0
dsFsR(s, .)(ξ), (5.10)
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and so, in light of (5.9),

Q̃n(y; y)− c
(n)
ρ,H = −c2

H

∫
Rd
|Fsρn(ξ)|2NH(ξ)

(∫ ∞
0

dsFsR(s, .)(ξ)

)
dξ .

Thus, thanks to (5.5) and to the uniform estimate |Fsρn(ξ)| . 1, we obtain∣∣Q̃n(y; y)− c
(n)
ρ,H

∣∣ . 1 ≤ 22`(d−H−1+ε) .

Second case: H = d− 1. Due to the latter relation, it can be checked that

c
(n)
ρ,H = c2

H

∫
|ξ|≥1

|Fsρn(ξ)|2NH(ξ)

(∫ ∞
0

dsFsps(ξ)

)
dξ ,

and accordingly, by (5.10),

Q̃n(y; y)− c
(n)
ρ,H

= c2
H

[ ∫
|ξ|≤1

|Fsρn(ξ)|2NH(ξ)FsK̃(ξ) dξ −
∫
|ξ|≥1

|Fsρn(ξ)|2NH(ξ)

(∫ ∞
0

dsFsR(s, .)(ξ)

)
dξ

]
.

Using the results of Lemma 5.3 and Lemma 5.4, we easily conclude that∣∣Q̃n(y; y)− c
(n)
ρ,H

∣∣ . ∫
|ξ|≤1

NH(ξ) dξ +

∫
|ξ|≥1

NH(ξ)

∣∣∣∣ ∫ ∞
0

dsFsR(s, .)(ξ)

∣∣∣∣ dξ . 1 ≤ 22`ε ,

which corresponds to the desired bound in this case. �

The spatial counterpart of the central Proposition 4.8 now takes the following (expected) shape.

Proposition 5.6. Let Ŵn be the renormalized K-rough path de�ned in the statement of Theorem

3.10. Then for all ` ≥ 0, n ≥ m ≥ 0, ψ ∈ B2(d+1)
s , x ∈ Rd and ε ∈ (0, 1), it holds that

E
[
|〈Ŵ2,n

x − Ŵ2,m
x , ψ̃`x〉|2

]
. 24`(d−H−1+ε)2−mε , (5.11)

where the proportional constant in (5.11) does not depend on n,m, `, x.

Proof. Just as in the proof of Proposition 4.8, we only focus on the proof of (5.11) for m = 0.

Using the decomposition exhibited in Lemma 5.5, we get �rst

E
[
|〈Ŵ2,n

x , ψ̃`x〉|2
]

= E
[
|〈W2,n

x − c
(n)
ρ,H, ψ̃

`
x〉|2
]

=
(〈
Enx , ψ`x

〉)2
+ U `,nx + V`,nx ,

where

U `,nx :=

∫∫
Rd×Rd

dydỹ ψ̃`x(y)ψ̃`x(ỹ)E
[
Inx (y)Inx (ỹ)

]
E
[
Ẇn(y)Ẇn(ỹ)

]
and

V`,nx :=

∫∫
Rd×Rd

dydỹ ψ̃`x(y)ψ̃`x(ỹ)E
[
Inx (y)Ẇn(ỹ)

]
E
[
Ẇn(y)Inx (ỹ)

]
.

From here, and due to (5.7), the proof of (5.11) consists in checking that |U `,nx |+|V`,nx | . 24`(d−H−1+ε).
In fact, we can follow line by line the arguments leading to (4.25) (replacing of course (4.1)-(4.2)

with (5.1)-(5.2)) to obtain that |U `,nx |+ |V`,nx | . 24`(d−H)S̃`, where

S̃` =

∫∫
Rd×Rd

dξdξ̃ |FK̃(2`ξ)|2NH(ξ)NH(ξ̃)
∣∣F ψ̃(ξ + ξ̃)−F ψ̃(ξ̃)

∣∣2 . (5.12)

Therefore, in view of (5.11), it remains us to check that for any ε ∈ (0, 1) we have

S̃` . 2−4`(1−ε). (5.13)
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To this end, we can bound the di�erence |F ψ̃(ξ + ξ̃)−F ψ̃(ξ̃)| in S̃` using the inequalities∣∣Fψ(ξ̃1, . . . , ξ̃i−1, ξi + ξ̃i, ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d)

−Fψ(ξ̃1, . . . , ξ̃i−1, ξ̃i, ξi+1 + ξ̃i+1, . . . , ξd + ξ̃d)
∣∣

.
i−1∏
j=1

T (j)(ξ̃j)
(
|ξi| · Q(i)(ξi, ξ̃i)

) d∏
j=i+1

T (j)(ξj + ξ̃j) , i = 1, . . . , d,

where, for λ, λ̃ ∈ R, the quantities T (i)(λ) and Q(i)(λ, λ̃) are here de�ned by

T (i)(λ) :=

(∫
Rd
dy |(∂x1 · · · ∂xdψ̃)(y)|

∣∣∣∣ ∫ yi

0
dzi e

−ıλzi
∣∣∣∣d)1/d

, (5.14)

Q(i)(λ, λ̃) :=

(∫
Rd
dy |(∂x1 · · · ∂xdψ)(y)|

∣∣∣∣ ∫ yi

0
dzi

∫ zi

0
dwi e

−ıλ̃zie−ıλwi
∣∣∣∣d)1/d

. (5.15)

With those notations, the claim (5.13) reduces to showing that for every �xed i = 1, . . . , d, we have

J i,` :=

∫∫
Rd×Rd

dξdξ̃ |FK̃(2`ξ)|2NH(ξ)NH(ξ̃)

×
i−1∏
j=1

(
T (j)(ξ̃j)

)2 (
|ξi|2Q(i)(ξi, ξ̃i)

2
) d∏
j=i+1

(
T (j)(ξj + ξ̃j)

)2
. 2−4`(1−ε) . (5.16)

Let us again follow the pattern of the proof of Proposition 4.8 and split the integration domain for
the variables ξ1, . . . , ξd along D− := {λ ∈ R : |λ| ≤ 1} and D+ := {λ ∈ R : |λ| ≥ 1}. In other

words, we set, for every s ∈ {−,+}d, Ds :=
∏d
k=1Dsk , and then consider, for every i = 1, . . . , d,

J i,`s :=

∫∫
Ds×Rd

dξdξ̃ |FK̃(2`ξ)|2NH(ξ)NH(ξ̃)

×
i−1∏
j=1

(
T (j)(ξ̃j)

)2 (
|ξi|2Q(i)(ξi, ξ̃i)

2
) d∏
j=i+1

(
T (j)(ξj + ξ̃j)

)2
.

By applying Lemma 5.3, we can assert that for all a1, . . . , ad ∈ [0, 1] such that a1 + . . .+ ad < 1,

J i,`s . 2−4`(a1+...+ad)
i−1∏
r=1

(∫
R
dξ̃r
T (r)(ξ̃r)

2

|ξ̃r|2Hr−1

)
×

i−1∏
k=1

(∫
Dsk

dξk
|ξk|4ak+2Hk−1

)

×
(∫

Dsi×R
dξidξ̃i

Q(i)(ξi, ξ̃i)
2

|ξi|(4ai+2Hi−2)−1|ξ̃i|2Hi−1

) d∏
p=i+1

(∫
Dsp×R

dξpdξ̃p
T (p)(ξp + ξ̃p)

2

|ξp|4ap+2Hp−1|ξ̃p|2Hp−1

)
.

Based on the criteria of Lemma 4.9 (which clearly remain true for T (i) and Q(i) de�ned by (5.14)-
(5.15)), we deduce the following conditions on a1, . . . , ad (to ensure �niteness of the above integrals):

2Hk < 4ak + 2Hk < 2 for k ∈ {k ∈ {1, . . . , i− 1} : sk = −}
2 < 4ak + 2Hk < 4 + 2Hk for k ∈ {k ∈ {1, . . . , i− 1} : sk = +}
max(2Hi, 3− 2Hi) < 4ai + 2Hi < 4
2Hp < 4ap + 2Hp < 2 for p ∈ {p ∈ {i+ 1, . . . , d} : sp = −}
3− 2Hp < 4ap + 2Hp < 4 + 2Hp for p ∈ {p ∈ {i+ 1, . . . , d} : sp = +}.

(5.17)



A K-ROUGH PATH ABOVE THE SPACE-TIME FRACTIONAL BROWNIAN MOTION 33

With (5.16) in mind, we need these inequalities to be also consistent with the relation
∑d

k=1 ak =
1− ε. The combination of these two constraints thus leads us to the condition

Ais < 4(1− ε) + 2H < Bi
s , (5.18)

with two parameters Ais, B
i
s de�ned by

Ais := 2
∑

k=1,...,i−1
sk=−

Hk + 2
∣∣{k ∈ {1, . . . , i− 1} : sk = +}

∣∣+ max(2Hi, 3− 2Hi)

+ 2
∑

p=i+1,...,d
sp=−

Hp +
∑

p=i+1,...,d
sp=+

(3− 2Hp) , (5.19)

Bi
s := 2

∣∣{k ∈ {1, . . . , i− 1} : sk = −}
∣∣+

∑
k=1,...,i−1

sk=+

(4 + 2Hk)

+ 4 + 2
∣∣{p ∈ {i+ 1, . . . , d} : sp = −}

∣∣+
∑

p=i+1,...,d
sp=+

(4 + 2Hp) .

Before checking (5.18), observe that due to condition (3.27), it holds that d− 3
2 < H < H1 +H2 +

(d− 2) (recall that d ≥ 2), and so

H1 +H2 >
1

2
. (5.20)

Besides, for symmetry reasons, we can assume (from the beginning) that H1 ≤ H2 ≤ . . . ≤ Hd, and
consequently, for d ≥ 3 and i ≥ 3, d− 3

2 < H < H1 +H2 +H3 + (d− 3) ≤ 3Hi + (d− 3), so that

Hi >
1

2
for any i ≥ 3 . (5.21)

Let us now back to the veri�cation of (5.18). In order to see that Ais < 4 + 2H, observe �rst that

Ais < 2(i− 1) +
d∑
q=i

max(2Hq, 3− 2Hq) . (5.22)

By (5.21), we immmediately deduce that for i ≥ 3, Ais < 2(i−1)+2(d− i+1) = 2d < 4+2H, where
the last inequality stems from the assumption d− 3

2 < H. Then, using again (5.22) and (5.21),

A2
s < 2d− 2 + max(2H2, 3− 2H2) < 2d+ 1 < 4 + 2H .

Finally, for A1
s, we get by (5.22) and (5.21) that

A1
s < max(2H1, 3− 2H1) + max(2H2, 3− 2H2) + 2(d− 2)

< 2d− 4 + max(2, 3− 2H1) + max(2, 3− 2H2)

≤ 2d− 4 + max(4, 5− 2H1, 5− 2H2, 6− 2(H1 +H2)) < 2d+ 1 < 4 + 2H ,

where we have used (5.20) to get the fourth inequality.

For the second inequality in (5.18), let us write Bi
s as

Bi
s = 2(i− 1) + 2

∑
k=1,...,i−1

sk=+

(1 +Hk) + 4 + 2(d− i) + 2
∑

p=i+1,...,d
sp=+

(1 +Hp)

= 2d+ 2 + 2
∑

k=1,...,i−1
sk=+

(1 +Hk) + 2
∑

p=i+1,...,d
sp=+

(1 +Hp) ,
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and now it becomes clear that Bi
s > 2 + 2d ≥ 4 + 2H, since H ≤ d− 1.

This completes the proof of (5.18), and accordingly the proof of (5.16) and (5.11).

�

5.3. Conclusion: proof of Theorem 3.10. With Propositions 5.2 and 5.6 in hand, we are exactly
in the same position as in Section 4.4, and accordingly we can reproduce the exact same reasoning
in order to conclude.

6. Appendix

6.1. Proof of Lemma 3.2. We only focus on the treatment of Jρ,H0,H (de�ned in (3.8)) when
2H0 + H < d + 1. It should however be clear to the reader that the subsequent arguments could
also be used to prove the �niteness of the integral in (3.7) when 2H0 +H = d+ 1.

According to the de�nition (2.3) of the heat kernel p and recalling that F stands for the space-time
Fourier transform, it is readily checked that for (λ, ξ) ∈ Rd+1 we have

Fp(λ, ξ) =

(
|ξ|2

2
+ ıλ

)−1

. (6.1)

Therefore, the integral under consideration can be bounded as

Jρ,H0,H ≤ J∞ + J0, (6.2)

where we consider a compact region Ds of Rd+1 de�ned by

Ds := {(λ, ξ) ∈ Rd+1 : λ2 + ξ4
1 + · · ·+ ξ4

d ≤ 1}, (6.3)

and where the quantities J∞,J0 are respectively de�ned by

J∞ :=

∫
Rd+1\Ds

dλdξ

(λ2 + ξ4
1 + · · ·+ ξ4

d)1/2
|Fρ(λ, ξ)|2NH0,H(λ, ξ)

J0 :=

∫
Ds

dλdξ

(λ2 + ξ4
1 + · · ·+ ξ4

d)1/2
|Fρ(λ, ξ)|2NH0,H(λ, ξ) . (6.4)

We now proceed to the evaluation of those two terms.

In order to estimate J∞, note that (Rd+1\Ds) ⊂ ∪di=0Λi, where the regions Λi are de�ned by

Λ0 :=

{
(λ, ξ1, . . . , ξd) : λ2 ≥ 1

d+ 1

}
and Λi :=

{
(λ, ξ1, . . . , ξd) : ξ4

i ≥
1

d+ 1

}
.

According to this decomposition we write

J∞ ≤
d∑
i=0

J∞,i, (6.5)

where the terms J∞,i can be written as

J∞,i :=

∫
Λi

dλdξ

(λ2 + ξ4
1 + · · ·+ ξ4

d)1/2
|Fρ(λ, ξ)|2NH0,H(λ, ξ) . (6.6)

Let us now show how to bound J∞,0 above. To this aim we invoke our bound (3.2) in two di�erent
ways. Namely we take τ0 = 1, and τi = 0 if |ξi| ≤ 1, while τi = 1 if |ξi| ≥ 1. Together with the
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trivial inequality λ2 +
∑d

i=1 ξ
4
i ≥ λ2, the term J∞,0 given in (6.6) can be bounded as follows

J∞,0 .
(∫

λ2≥ 1
d+1

dλ

|λ|2H0+2

) d∏
i=1

{∫
|ξi|≤1

dξi
|ξi|2Hi−1

+

∫
|ξi|≥1

dξi
|ξi|2Hi+1

}
< ∞ , (6.7)

where the last inequality is immediate. The terms J∞,i for i = 1, . . . , d in (6.6) are handled similarly,
and we omit the details for the sake of conciseness. Taking into account the upper bound (6.5), we
end up with the relation J∞ <∞.

We now turn to a bound on J0 de�ned by (6.4), for which we invoke (3.2) with τi = 0, for all
i = 0, . . . , d. We get

J0 .
∫
Ds∩Rd+1

+

dλdξ

(λ2 + ξ4
1 + · · ·+ ξ4

d)1/2
NH0,H(λ, ξ) . (6.8)

To see that the latter integral is indeed �nite, let us set ξ̃i := ξ2
i , so that (λ, ξ1, . . . , ξd) ∈ Ds ∩Rd+1

+

if and only if (λ, ξ̃1, . . . , ξ̃d) ∈ B(0, 1) ∩ Rd+1
+ , where B(0, 1) stands for the standard Euclidean unit

ball. This yields

J0 .
∫
B(0,1)∩Rd+1

+

dλdξ̃

(λ2 + ξ̃2
1 + · · ·+ ξ̃2

d)1/2

1

|λ|2H0−1

( d∏
i=1

1

|ξ̃i|1/2

)
NH0,H

(
λ, ξ̃

1/2
1 , . . . , ξ̃

1/2
d

)
.
∫
B(0,1)∩Rd+1

+

dλdξ̃

(λ2 + ξ̃2
1 + · · ·+ ξ̃2

d)1/2

1

|λ|2H0−1

d∏
i=1

1

|ξ̃i|Hi
.
∫ 1

0

dr

r2H0+H−d , (6.9)

where we have used spherical coordinates to derive the last inequality. The �niteness of J0 now
follows from the assumption 2H0 +H < d+ 1.

Summarizing our computations, we have seen that J0 < ∞ and J∞ < ∞. Recalling relation
(6.2), this proves our claim Jρ,H0,H <∞.

6.2. Proof of Proposition 3.8. Let us decompose the integral under consideration as

∫
|λ|+|ξ|2≥2−2n

|Fρ(λ, ξ)|2Fp(λ, ξ)NH0,H(λ, ξ) dλdξ =

∫
2−2n≤|λ|+|ξ|2≤1

Fp(λ, ξ)NH0,H(λ, ξ) dλdξ

+

∫
2−2n≤|λ|+|ξ|2≤1

{
|Fρ(λ, ξ)|2 − 1

}
Fp(λ, ξ)NH0,H(λ, ξ) dλdξ +O(1). (6.10)
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Using a series of elementary changes of variable, we get, for some constant CH0,H that may change
from line to line,∫

2−2n≤|λ|+|ξ|2≤1
Fp(λ, ξ)NH0,H(λ, ξ) dλdξ =

∫
2−2n≤|λ|+|ξ|2≤1

dλdξ
|ξ|2
2 + ıλ

1

|λ|2H0−1

d∏
i=1

1

|ξi|2Hi−1

= CH0,H

∫ ∞
0

dr

∫
2−2n≤|λ|+r2≤1

dλ
r2

2 + ıλ

r2d−2H−1

|λ|2H0−1

= CH0,H

∫ ∞
0

dr

∫ ∞
0

dλ12−2n≤λ+r2≤1

[
1

r2

2 + ıλ
+

1
r2

2 − ıλ

]
r2d−2H−1

|λ|2H0−1

= CH0,H

∫ ∞
0

dr

∫ ∞
0

dλ12−2n≤λ+r2≤1

(
r2

r4

4 + λ2

)
r2d−2H−1

|λ|2H0−1

= CH0,H

∫ ∞
0

dr

∫ ∞
0

dλ̃12−2n≤λ̃2+r2≤1

λ̃
r4

4 + λ̃4

r2d−2H+1

|λ̃|4H0−2

= CH0,H

(∫ ∞
0

dρ
12−2n≤ρ2≤1

ρ2(2H0+H)−2d−1

)(∫ π
2

0

dθ
cos4 θ

4 + sin4 θ

(cos θ)2d−2H+1

(sin θ)4H0−3

)
and so, recalling that 2H0 +H = d+ 1, we end up with∫

2−2n≤|λ|+|ξ|2≤1
Fp(λ, ξ)NH0,H(λ, ξ) dλdξ = CH0,H

(∫ 1

2−n

dρ

ρ

)
= CH0,H · n . (6.11)

On the other hand, thanks to Assumption (ρ)-(i)-(ii), we have∫
2−2n≤|λ|+|ξ|2≤1

∣∣|Fρ(λ, ξ)|2 − 1
∣∣∣∣Fp(λ, ξ)∣∣NH0,H(λ, ξ) dλdξ

=

∫
2−2n≤|λ|+|ξ|2≤1

∣∣|Fρ(λ, ξ)|2 − |Fρ(0, 0)|2
∣∣∣∣Fp(λ, ξ)∣∣NH0,H(λ, ξ) dλdξ

.
∫

0≤|λ|+|ξ|2≤1

{
|λ|+ |ξ|

}∣∣Fp(λ, ξ)∣∣NH0,H(λ, ξ) dλdξ

.
∫ ∞

0
dr

∫ ∞
0

dλ10≤λ+r2≤1

{
λ+ r

}r2d−2H−1

r2 + λ

1

λ2H0−1

.
∫ ∞

0
dr

∫ ∞
0

dλ10≤λ2+r2≤1 λ
{
λ2 + r

}r2d−2H−1

r2 + λ2

1

λ4H0−2

.
∫

0≤ρ2≤1
dρ ρ3 ρ

2d−2H−1

ρ2

1

ρ4H0−2
.
∫

0≤ρ2≤1

dρ

ρ2(2H0+H)−2d−2
. 1 ,

where the last inequality is immediately derived from the assumption 2H0 +H = d+ 1. Thus,

sup
n≥1

∣∣∣∣ ∫
2−2n≤|λ|+|ξ|2≤1

{
|Fρ(λ, ξ)|2 − 1

}
Fp(λ, ξ)NH0,H(λ, ξ) dλdξ

∣∣∣∣ < ∞ . (6.12)

Finally, injecting (6.11) and (6.12) into (6.10), we deduce the desired decomposition (3.17).
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