
Discrete Mathematics and Theoretical Computer Science DMTCS vol. (subm.), by the authors, 1–1

Computation of L⊕ for several cubic Pisot
numbers

Bernat Julien

Institut de Mathématiques de Luminy
UMR 6206
Campus de Luminy, Case 907
13288 MARSEILLE Cedex 9
FRANCE
email: bernat@iml.univ-mrs.fr

In this article, we are dealing with β-numeration, which is a generalization of numeration in a non-integer base. We
consider the class of simple Parry numbers such that dβ(1) = 0.kd−1

1
kd with d ∈ N, d ≥ 2 and k1 ≥ kd ≥ 1. We

prove that these elements define Rauzy fractals that are stable under a central symmetry. We use this result to compute,
for several cases of cubic Pisot units, the maximal length among the lengths of the finite β-fractional parts of sums of
two β-integers, denoted by L⊕. In particular, we prove that L⊕ = 5 in the Tribonacci case.
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Introduction
This article deals with β-numeration, which is a generalization of numeration in a non-integer base. The
β-numeration is born in the late 50’s [35, 31]. It has known a major realization with the arrival of quasicrys-
tals during the 80’s [38], since the β-numeration allows a modelling of quasicrystals [13, 10]. The number
systems defined by the β-numeration are closely related to canonical number systems [6, 36], number sys-
tems generated by iterated function systems [39] or by substitutive systems of Pisot type [15]. A common
feature between these fields is the property of self-similarity, which yields results in number theory [7],
geometry [24], topology [8, 14], dynamical systems [40, 33, 34] and theoretical computer science [9].
Nowadays, the interactions between these domains still set up the core of the research on β-numeration.
We focus with this article on applications in computer arithmetics.
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Let β > 1 be an algebraic integer, with β /∈ N. In the same way as in the case of integral bases, it is
possible to expand x ∈ [0, 1] as x =

∑
k∈N∗

εkβ−k, where the sequence (εk)k∈N∗ , called expansion of x in

base β, is defined on the alphabet Aβ = {0, . . . , [β]}. Among the expansions of 1 in base β, the greatest
for the lexicographic order is called β-expansion of 1, and denoted by dβ(1). This expansion is constructed
by the greedy algorithm, that is, dβ(x) = 0.ε1 . . . εn . . ., with for all k ∈ N∗, εk = [βT k−1

β (x)], where
Tβ : [0, 1] −→ [0, 1[, x 7−→ {βx}. The notion of β-expansion was historically introduced by Rényi [35].
Parry produced in [31] many interesting results concerning the β-numeration, creating and studying among
others a dynamical system associated to this numeration.

Let us observe that a natural expansion of 1 in base β is 1. However, defining dβ(1) as the greatest se-
quence for the lexicographic order among expansions of 1 in base β provides useful algebraic informations
on β. This is why dβ(1) is not defined as 1. Another interesting expansion of 1 in base β is the greatest
sequence for the lexicographical order among those which do not end by 0’s. This expansion, denoted by
d∗β(1), is an improper expansion of 1 in base β. At the opposite of the case of numerations in integer bases,
d∗β(1) is worthwhile since it enables to define the Parry condition, defined below, which plays a key role in
the construction and the study of the associated arithmetical language Lβ . Notably, Parry showed that for
any x ∈ [0, 1[, dβ(x) is the only expansion of x in base β which satisfies the following condition called the
Parry condition [31]:

for all n ∈ N, Sn((εk)k∈N∗) <lex d∗β(1),

where S is the shift map: AN
∗

β → AN
∗

β defined by S((εk)k∈N∗) = (εk+1)k∈N∗ . The factors of a sequence

in AN
∗

β that fulfills the Parry condition are said to be admissible, and they form the arithmetical language
Lβ .

In the same way as for elements of [0, 1], any positive real number x > 1 can be uniquely expanded

as x =
n∑

i=0

ε−iβ
i +

∑
i∈N∗

εiβ
−i, where (εi)i≥−n satisfies the Parry condition. The part with non-negative

powers of β is then called the β-integer part of x, denoted by [x]β ; the part with negative powers of β is
called the β-fractional part of x, denoted by {x}β = x − [x]β . This allows a natural generalization for the
definition of integers in base β.

Definition 0.1. The set of β-integers, denoted by Zβ , is the set of real numbers x for which there exists

n ∈ N such that x = ±
n∑

k=0

vkβk, where vn . . . v0 is an admissible word.

The following set, Fin(β), is introduced in [20]. It allows to generalize the framework of numeration to
the case of a non-integral base, since the elements of Fin(β) play the role of decimal numbers in base β.

Definition 0.2. The set of real numbers having a finite β-fractional part is

Fin(β) =
⋃

k∈N

β−kZβ .

Remark 1. For a given algebraic number β > 1, the relation Fin(β) = Z[β−1] is known as the finiteness
property, denoted by (F). Whereas not yet fully characterized, the class of numbers satisfying the finite-
ness property has been extensively studied, and relations with ergodic and combinatorial properties of the
associated dynamical system have been highlighted. Moreover, the finiteness property provides topologic
and geometric properties for the geometrical realization of the associated dynamical system known as the
Rauzy fractal, defined in Section 1.4. For instance, due to Akiyama [2], the finiteness property implies that
0 is an inner point of the Rauzy fractal T under the additional condition that β is a unit. Also, Theorem
3 of the same article provides a characterization of numbers such that T is arcwise connected. One may
refer to [1, 4, 20] for additional informations.

The sets Zβ and Fin(β) are not stable under usual operations like addition and multiplication. For

example, when β is the golden ratio 1+
√

5
2 , which is called the Fibonacci case, one checks that β−1+β−2 =

1. Then dβ(1) = 0.11, and the set of admissible words consists of words defined on the alphabet {0, 1}
which do not contain two consecutive occurences of 1. The Fibonacci case is the most studied one, since
1+

√
5

2 is the only Pisot number of degree two which belongs to ]1, 2[. This means that it defines from an
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algebraic point of view the simplest case of numeration in a non-integer base. See for instance [26] for
several properties of this numeration. It is clear that 1 ∈ Zβ , since 1 ∈ Aβ holds for any β > 1. Since
1 + 1 = 2 = β + β−2, one has dβ(2) = 10.01, hence Zβ is not stable under addition.

Likewise, let β be the positive root of the polynomial X4 − 2X3 − X − 1. Then dβ(1) = 0.2011,
with 1, 2 ∈ Zβ and dβ(3) = 10.111(00012)∞, hence the sum of two β-integers can have an infinite
β-expansion.

In order to perform arithmetics on β-integers, say, for instance, to compute the addition of two β-integers,
one must be able to renormalize expansions in base β of real numbers obtained after adding β-integers.
The renormalization step is performed by transducers, see for instance [18]. Another method consists in
applying the greedy algorithm to the real number obtained after adding or multiplying β-integers, which
produces its β-expansion. However, if the β-expansion of the sum of two β-integers is neither finite nor
ultimately periodic, the required β-expansion will not be produced after a finite number of steps.

The following notations, L⊕ and L�, are introduced in [22]. They represent the maximal possible
finite length of the β-fractional parts which may appear when one adds or multiplies two β-integers. The
computation of these values gives an indication on the difficulty of performing arithmetics on Zβ .

Definition 0.3. The bound L⊕ is defined as min{n ∈ N|∀x, y ∈ Zβ , x + y ∈ Fin(β) ⇒ βn(x + y) ∈ Zβ}
when this set is not empty, +∞ otherwise.

The bound L� is defined as min{n ∈ N|∀x, y ∈ Zβ , xy ∈ Fin(β) ⇒ βnxy ∈ Zβ} when this set is not
empty, +∞ otherwise.

Let us explain now why we are interested in the case where L⊕ and L� are finite. Indeed, if the sum
or the product of two β-integer belongs to Fin(β), then the length of the β-fractional part of this sum or
product is bounded by a constant which only depends on β. In this case, one can decide whether a given
improper expansion can be renormalized into a finite or an ultimately periodic expansion, in the sense
that, if during the renormalization process one gets a β-fractional part of length greater than L⊕, then the
improper expansion corresponds to a real number that does not belong to Fin(β). Conversely, if the set of
lengths of sums of two β-integers is unbounded, then performing arithmetics in Zβ will be very difficult if
not impossible, since one cannot compute in a finite time any operation on β-integers.

It has been proven that L⊕ and L� are finite when β is a Pisot number, respectively in [20] and [22].
The computation of these values is however not so easy, especially for L�. The case of quadratic Pisot
numbers has been studied in [13] when β is a unit, and in [23] otherwise. However, when β is of higher
degree, it is a difficult problem to compute the exact value of L⊕ or L�, and even to compute upper and
lower bounds for these two constants. Several examples are studied in [9], where a method is described in
order to compute upper bounds for L⊕ and L� for Pisot numbers satisfying additional algebraic properties.
We prove in a forthcoming article [11] that the bounds L⊕ and L� are finite for the more general case of
Perron numbers.

Let us detail now connections between arithmetics in base β and the study of some mathematical struc-
tures, namely, model sets and Meyer sets, which allow a modelling of quasicrystals. For any β > 1, Zβ is
a discrete subset of R. The question of finding an algebraic characterization of numbers β such that Zβ is
uniformly discrete is still open; however it is know that Zβ is uniformly discrete when β is a Parry number.
Since Zβ is relatively dense in R for all β > 1, Zβ is a Delone set [25] as soon as Zβ is uniformly discrete.
If moreover there exists F , a finite set, such that Zβ + Zβ ⊂ Zβ + F , Zβ is said to be a Meyer set [29].
Such sets satisfy a strong property of regularity. A particular subset of Meyer sets is the class of model
sets, which are produced by a cut-and-project scheme. Roughly speaking, these sets are obtained as the
intersection of the lattice Zd with a window, that is, a compact set of a space called internal space, that is
pushed up along a half-line of another space called physical space. In the particular case of β-numeration,
the window is the Rauzy fractal T defined in Section 1.4. See also [28, 30] for additional details.

When Zβ is a Meyer set, a method which enables the computation of a minimal finite set F satisfying
Zβ + Zβ ⊂ Zβ + F is defined in [5] and studied in [21], where the problem of recognizing the language
which consists of sums of β-integers is studied as well. This question is related to the determination of
L⊕, since one can choose the sets of β-fractional parts of length less than L⊕ for F when the finiteness
property (F) holds. Note however that the set of β-fractional parts of length less than L⊕ is not optimal,
since they may exist another set F0 which contains less elements such that Zβ + Zβ ⊂ Zβ + F0. Let us
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remind that Zβ is a Meyer set when β is a Pisot number [13], and that Zβ is a Meyer set implies that β is
either a Pisot or a Salem number [29].

The aim of this paper is, first to study a geometrical property for a particular subclass of Parry numbers,
then to apply these results in order to improve the computation of an upper bound for L⊕. This allows
us to determine the exact value of L⊕ for several cases of cubic Pisot numbers. This article is structured
in the following way. Section 1 gathers definitions and notations that are introduced in the framework of
β-numeration. Section 2 is devoted to the class of β which satisfy the following relation:

there exist d ≥ 2, k1, kd ∈ N, k1 ≥ kd such that dβ(1) = 0.kd−1
1 kd. (1)

Such numbers define confluent numeration systems, introduced and studied by Frougny [17]. This is
why we will refer to confluent Parry numbers for any Parry number satisfying (1) from now on. We find
the following geometric interpretation for confluent Parry numbers.

Proposition 2.5. Let β be a confluent Parry number. There exists
−→
C ∈ Rd−1 such that the Rauzy fractal

T is stable under the central symmetry S−→
C

: Rd−1 → Rd−1,
−→
X 7−→ 2

−→
C −−→

X .

For a given Pisot number β, we introduce and study a symmetric centered set T ′, which contains the
Rauzy fractal T . The equality T ′ = T holds exactly when β is a confluent Parry number. The study of
T ′ in Section 3.1 provides inequalities satisfied by any Galois conjugate of β (Propositions 3.4, 3.5). This
allows us to improve a method detailed in [9], which enables the computation of upper and lower bounds
for L⊕ under an algebraic condition on β. In particular, we determine the exact value of L⊕ for several
cases of cubic Pisot units in Section 3.2. Finally, we focus in Section 3.3 on the Tribonacci case, that is,
when β is the positive root of the polynomial X3 − X2 − X − 1. We improve by the following theorem
the result 5 ≤ L⊕ ≤ 6 [9].

Theorem 3.9. When dβ(1) = 0.111, we have L⊕ = 5.

1 Definitions and notation
We refer mainly for the notation introduced here to [32] and [26].

1.1 Substitutions
Let A be a finite set that is called alphabet. Endowed with the concatenation, A generates a monoid called
set of finite words, denoted by A∗. Let ε denote the empty word. When A is a totally ordered set, the sets
AZ, AN and A∗ are endowed with the lexicographic order <lex.

Let v = v1 . . . vn ∈ A∗. The number of letters of v, called length of v, is denoted by |v|; the number of
occurrences of a ∈ A in v is denoted by |v|a. A word w is called factor of v if there exists p, s ∈ A∗ such
that v = pws. The mirror image of v = v1 . . . vn is defined as ṽ = vn . . . v1, and the mirror image map as
the map A∗ → A∗, u 7−→ ũ. A word v ∈ A∗ is said to be a palindrome when ṽ = v. When v ∈ AN, we
set |v| = +∞; a word w is said to be a factor of v if there exists v′, a prefix of v, such that w is a factor of
v′.

Let A = {a1, . . . , ad}. Let (~ej)j∈[[1,...,d]] be the canonical basis of Zd. The morphism f : A∗ → Zd that
fulfills f(aj) = ~ej for all j ∈ [[1, . . . , d]] is called the abelianization homomorphism.

Any map σ : A → A∗, extended to a morphism on A∗ by concatenation, is called substitution. The
substitution σ is said non-erasing if for every a ∈ A, σ(a) 6= ε. Let σ be a substitution defined on the
alphabet A. The incidence matrix of σ is defined as the square matrix Mσ ∈ Md(N) such that, for every
(i, j) ∈ [[1, . . . , d]]2, Mσ[i, j] = |σ(aj)|ai

. The substitution is primitive if there exists n ∈ N such that for
every (i, j) ∈ [[1, . . . , d]]2, Mn

σ [i, j] ≥ 1. The substitution is said to be unimodular if |det Mσ| = 1. The
substitution is said to be of Pisot type if the eigenvalues of the incidence matrix Mσ satisfy the following:
there exists a dominant eigenvalue β > 1 such that for every other eigenvalue α, one has 0 < |α| < 1.
Note that the characteristic polynomial of Mσ is irreducible when σ is of Pisot type. Let us remind that
a Pisot number is an algebraic integer whose any Galois conjugate α 6= β satisfies |α| < 1, and that the
dominant eigenvalue of Mσ is a Pisot numbers when σ is of Pisot type.
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Let σ be a substitution. If there exists k ∈ N∗ such that σk(ω) = ω, we say that ω is a periodic point of
σ. In particular, when σ(ω) = ω, ω is said to be a fixed point of σ. When σ is primitive, we denote by Lσ

the language generated by the substitution, that is, Lσ =
⋃

k∈N

{factors of σk(a)}, where a ∈ A. Note that,

since we assume that σ is primitive, the definition of Lσ does not depend on the choice of a.

1.2 Introduction to β-numeration
Let β > 1 be an algebraic integer. The set N∩[0, β[ is called β-alphabet and denoted by Aβ . Let x ∈ [0, 1].
Any sequence (εk)k∈N∗ ∈ AN

∗

β satisfying x =
∑

k∈N∗

εkβ−k is called expansion of x in base β. The notion

of expansion of x in base β is extended on R+ by considering sequences of AZ

β . Among the expansions of
x in base β, the greatest for the lexicographical order is called β-expansion of x. This expansion, denoted
by dβ(x) = 0.ε1 . . ., is constructed by the greedy algorithm, that is, εk = [βT k−1

β (x)] for all k ∈ N∗,

where Tβ : [0, 1[→ [0, 1[, y 7−→ {βy}. Let dβ denote the map: [0, 1] → AN
∗

β , x 7−→ (εi)i∈N∗ . We recall

that the map dβ is increasing if AN
∗

β is endowed with the lexicographic order.
Parry showed in [31] that, for any x ∈ [0, 1[, dβ(x) is the unique expansion of x in base β which satisfy

the following relation called Parry condition:

for all n ∈ N, Sn(v) <lex d∗β(1). (2)

Any word or sequence v ∈ A∗
β ∪ AN

β which satisfy (2) is said to be admissible. Let Lβ denote the
set of admissible words. The set of non-negative β-integers, denoted by Z+

β , is defined as the set of

non-negative real numbers x satisfying x =
n∑

k=0

viβ
i, where vn . . . v0 ∈ Lβ . The set of β-integers is

defined as Zβ = ±Z+
β . Since Z+

β is a discrete set, one may define for x ∈ R+ the β-integer part of x as
[x]β = max

p∈Z
+

β

{p ≤ x}, and the β-fractional part of x as {x}β = x − [x]β . For x > 1, we set dβ(x) = v.w,

where v and w respectively are the unique expansions of [x]β and {x}β in base β which satisfy the Parry
condition.

For x ∈ R+, let li(x) denote the length of the β-integer part of x, that is, li(x) = N + 1, where N ∈ N

satisfies βN ≤ x < βN+1 when x ≥ 1, 0 otherwise. If there exists M ∈ N such that εM 6= 0 and εn = 0
for all n > M , we say that the β-expansion of x is finite. In this case, the ending consecutive occurences of
the letter 0 are omitted; dβ(x) = εN . . . ε0.ε−1 . . . ε−M , and we set lf (x) = M , which denotes the length
of the β-fractional part of x. The set of non-negative real numbers having a finite β-expansion is denoted
by Fin(β)+, and we set Fin(β) = ±Fin(β)+.

When dβ(1) is either finite or ultimately periodic, β is said to be a Parry number. More precisely, β is
said to be a sofic Parry number when dβ(1) is ultimately periodic, and a simple Parry number when dβ(1)
is finite. The notion of Parry number was historically introduced by Parry [31] as β-number. Bertrand [12]
and Schmidt [37] have independently proven that Pisot numbers are Parry numbers. When β is a simple
Parry number, we denote by m the length of dβ(1). In the sofic Parry case, we respectively denote by n
and p the lengths of the preperiod and of the period of dβ(1), and we set m = n+p for convenience. More
details about Parry numbers can be found in [26].

Remark 2. One easily checks that m ≥ d, where d is the algebraic degree of β. There exist Parry numbers
such that m > d; for instance, the smallest Parry number is the positive root of the polynomial X 3−X−1,
for which one has dβ(1) = 0.10001.

Let β be an algebraic integer such that there exists a Galois conjugate α of β which satisfies |α| < 1.
Let z ∈ C. We call α-expansion of z any admissible sequence (εk)k∈Z such that z =

∑
k∈Z

εkα−k.

Remark 3. There exist complex numbers having multiple α-expansions. For instance, consider the Fi-
bonacci case, for which the Galois conjugate of β is α = 1−

√
5

2 . Let the admissible sequences (εk)k∈Z

and (δk)k∈Z be defined by εj = 1 when j ∈ 2N + 1, εj = 0 otherwise; δj = 1 when j ∈ {−1} ∪ 2N∗,
δj = 0 otherwise. Then −1 =

∑
k∈Z

εkβ−k =
∑
k∈Z

δkβ−k. Hence the real number −1 admits both (εk)k∈Z

and (δk)k∈Z as α-expansions.
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1.3 Notion of β-substitution
For any Parry number β, it is possible to define a substitution which is associated to β in a canoni-
cal way. Let β be a simple (resp. sofic) Parry number, with dβ(1) = 0.k1 . . . km (resp. dβ(1) =
0.k1 . . . kn(kn+1 . . . kn+p)

∞). We remind that the elements of (kj)j∈[[1,...,m]] are non-negative integers,
and that for all n ∈ N∗, Sn(dβ(1)) <lex dβ(1). The substitution σβ is defined on {a1, . . . , am} by:

1. for all j ∈ [[1 . . . m − 1]], σβ(aj) = a
kj

1 aj+1,

2. σβ(am) = akm

1 in the simple Parry case, σβ(am) = akm

1 an+1 otherwise.

The substitution associated in this way to a simple (sofic) Parry number β is called a simple (sofic) β-
substitution, and is denoted by σβ . Note that a β-substitution is primitive, admits a unique fixed point ωβ

and is defined on an alphabet containing at least two letters. In particular, the set of the factors of ωβ defines
a language denoted by Lσ . See [16, 41], where these substitutions are introduced, for more details.

When β is a simple (sofic) Parry number, the incidence matrix Mσ of σ is



k1 . . . . . . . . . . . . km

1 0 . . . . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 0 1 0




(simple case) or




k1 . . . . . . . . . . . . kn+p

1 0 . . . . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . . 1

...
. . .

. . .
. . .

...
0 . . . . . . 0 1 0




(sofic case).

Remark 4. Let us recall that, if σβ is of Pisot type, then β is a Pisot number, but the converse is false. For
example, the positive root β of the polynomial X3−X−1 is a Pisot number, whereas σβ is not of Pisot type,
since the characteristic polynomial of the incidence matrix is X5−X4−1 = (X3−X−1)(X2−X +1),
which admits two roots of modulus 1.

1.4 Rauzy fractals
Rauzy fractals were first introduced by Rauzy in [33, 34], then by Thurston in [41]. They provide a geo-
metrical representation of the dynamical system defined by the associated β-substitution. In the framework
of numeration, they are called central tiles by Akiyama [2, 3, 4].

Let β be a Pisot number of degree d, and {αj}j∈[[1,...,r+s]] be the set of the Galois conjugates which

differ from β and which have a non-negative imaginary part. Let µβ(X) = Xd −
d∑

j=1

bjX
d−j denote the

minimal polynomial of β on Z, which admits r + 1 real roots and 2s complex roots, hence d− 1 = r + 2s.
For convenience, we set J = [[1, . . . , r + s]].

Let Mβ be the companion matrix of µβ , defined as follows:

Mβ =




b1 . . . . . . . . . bd

1 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1 0




.

For all j ∈ J , let Hj denote the eigenspace associated to the eigenvalue αj , and let D denote the eigenspace
associated to the dominant eigenvalue β. Note that Hj ' R when αj ∈ R, Hj ' C otherwise. It is possible
to describe Rd as D ⊕H, where H denotes the direct sum of the stable sub-spaces {Hj}j∈J . Moreover,
there exists −→w ∈ D and a base of H = ⊕

j∈J
Hj constituted by r+2s complex eigenvectors (−→vj )j∈[[1,...,r+2s]],

which can be chosen such that the following equalities hold:

−→e1 =
∑

j∈J

−→vj + −→w ,
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∀j ∈ [[1, . . . , s]], ∀i ∈ [[1, . . . , d]], vr+j [i] = vr+s+j [i],

where vk[i] denotes the i-th coordinate of vk ∈ Rr × Cd−r and z 7−→ z the standard conjugacy on C.
These relations allow us to define−→pD and, for all j ∈ J , −−→pHj

, which are the projections on each associated
subspace along the direct sum of the others. We then set pD and, for all j ∈ J , pHj

as the coordinate maps

in the base (−→w ,−→v1 , . . . ,
−−−→vr+2s) of the associated projection maps, that is, one gets for all

−→
X ∈ Rd:

−−→pHj
(
−→
X ) = pHj

(
−→
X ) −→vj , for all j ∈ [[1, . . . , r]],

−−→pHj
(
−→
X ) = pHj

(
−→
X ) Re(−→vj ), for all j ∈ [[r + 1, . . . , r + s]].

For all j ∈ J , we define τj as the field morphism: Q(β) → Q(αj), β 7−→ αj . We denote by τ the map:

τ : Q(β) → Rr × Cs ' Rd−1, x 7−→ (τ1(x), . . . , τr+s(x)).

Definition 1.1. The set {τ(x), x ∈ Z+
β } is called Rauzy fractal or central tile, denoted by T .

Note that a Rauzy fractal is a compact set by definition, since it is a bounded set.

Fig. 1: Rauzy fractal T defined by dβ(1) = 0.111

Example 1. Figure 1 shows the Rauzy fractal associated to the Tribonacci case, defined by dβ(1) = 0.111.

2 Rauzy fractals and symmetric sets
In this section, we introduce a geometric representation set T ′ for the numeration defined by β, a given
algebraic number. The set T ′, which admits a symmetric property that we explain later, contains the Rauzy
fractal T . Then, following [9], the study of T ′ provides inequalities satisfied by the images under τj of the
finite β-fractional parts of sums of two β-integers. This allows us to define an algorithm which improves
the determination of an upper bound and of a lower bound for L⊕.

2.1 Set of β-integers and admissibility
The set of non-negative β-integers is defined as

Z+
β =

⋃

n∈N

{
n∑

k=0

vkβk , vn . . . v0 ∈ Lβ}.

When one performs arithmetics on β-integers, the computation of the admissibility condition is not so
easy, and the renormalization process significantly slows down any algorithmic process. If we remove the
admissibility condition, we obtain a set that contains Z+

β , which is

Σ+
β =

⋃

n∈N

{
n∑

k=0

vkβk, vn . . . v0 ∈ An+1
β }.

Note that, for any x ∈ Z+
β , there exists a unique admissible word vn . . . v0 ∈ Lβ such that x =

n∑
k=0

vkβk,

whereas there may exist x ∈ Σβ , n ∈ N and two distincts words v, w ∈ A∗
β such that x =

n∑
k=0

vkβk =
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n∑
k=0

wkβk. As an example, the words 100 and 011 represent the same real number in Fibonacci base, since

β2 = β + 1. The word 011 is defined on A∗
β , but it does not belong to Lβ . Hence, if β is such that

Z+
β = Σ+

β , we can omit the admissibility condition in order to generate the set of β-integers.

The set of Parry numbers for which Z+
β = Σ+

β is exactly the set of numbers which define confluent
numeration systems, which were introduced and studied by Frougny [17]. Confluent numeration systems
characterize numeration systems for which any finite expansion on the alphabet Aβ can be renormalized as
an admissible word which represent a β-integer. Therefore confluent Parry numbers, that is, Parry numbers
which define a confluent numeration system, are the numbers for which there is no carry propagating to the
right. We will use later the following proposition, which gathers different results from [19] and [17].

Proposition 2.1. [19, 17] Let β be a Parry number. The following assertions are equivalent.

1. One has dβ(1) = 0.kd−1
1 kd, with k1, kd ∈ N and k1 ≥ kd,

2. the language Lσ is stable under mirror image,

3. there exist infinitely many prefixes of ω, the fixed point of σβ , that are palindromes,

4. one has Z+
β = Σ+

β .

When any of these assertions holds, β is said to be a confluent Parry number.

It is proved in [20] that confluent Parry numbers are Pisot numbers such that Fin(β) = Z[β−1], that
is, the finiteness property holds true. Moreover, the class of confluent Parry numbers defines a class of
β-substitutions whose associated dynamical system has purely discrete spectrum [40], and the complexity
of their substitutive language is affine [19].

2.2 The symmetric property for confluent Parry numbers
We focus on a geometric property for the Rauzy fractal T defined by a Pisot number β, indeed, we see
in this section that τ(Σ+

β ) is stable under a central symmetry map defined below. Note that, since Z+
β ⊂

Σ+
β , we get T ⊂ τ(Σ+

β ). Moreover, according to Proposition 2.1, the set of confluent Parry number

characterizes the Parry numbers for which T = τ(Σ+
β ).

We will see in Section 3.1 that the relations developed here enable a covering of T with balls having
arbitrarily small positive radius, in a more accurate way than in [9]. In particular, this covering is accurate
enough to allow the computation, in several cases of cubic Pisot numbers, of the maximal length of the
finite β-fractional parts for the sums of two β-integers.

Definition 2.2. Let d ∈ N∗, and let E be a bounded set of Rr×Cs ' Rd−1. The set E is said to be centrally
symmetric if there exists

−→
C ∈ Rr×Cs such that E is stable under the symmetry S−→

C
: Rr×Cs → Rr×Cs,

−→
X 7−→ 2

−→
C −−→

X . In this case,
−→
C is called center of the set E .

Lemma 2.3. Let β be a Pisot number. Then τ(Σ+
β ) is a centrally symmetric set, whose center

−→
C satisfies

pHj
(
−→
C ) = [β]

2(1−αj)
, for all j ∈ J .

Proof. First, note that τ(Σj
β) is a bounded set of Rr × Cs ' Rd−1, and that pHj

(τ(Σ+
β )) = τj(Σ

+
β ). Let

−→
X ∈ τ(Σ+

β ). There exists a sequence (εn)n∈N ∈ AN

β such that pHj
(
−→
X ) =

∑
n∈N

εnαn
j for all j ∈ J . Let

(δn)n∈N ∈ AN

β be defined by δn = [β]−εn for all n ∈ N. We define
−→
Y ∈ Rr×Cs by pHj

(
−→
Y ) =

∑
n∈N

δnαn
j

for all j ∈ J . Then pHj
(
−→
Y ) = [β]

1−αj
− pHj

(
−→
X ) for all j ∈ J . Moreover,

−→
Y can be described as the limit

of a sequence (
−→
Yn)n∈N ∈ τ(Σj

β), whose elements are defined by pHj
(
−→
Yn) =

n∑
k=0

δkαk
j for all j ∈ J . Since

τ(Σj
β) is a compact set, we deduce that

−→
Y ∈ T . Hence, if we define

−→
C ∈ Rr ×Cs by pHj

(
−→
C ) = [β]

2(1−αj)

for all j ∈ J , we obtain that τ(Σ+
β ) is stable under the symmetry of center

−→
C , which ends the proof.
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Definition 2.4. The symmetrized tile is defined as T ′ = τ(Σ+
β ).

One directly deduces from Proposition 2.1 and Lemma 2.3 the following:

Proposition 2.5. Let β be a confluent Parry number. Then T is a centrally symmetric set.

Remark 5. When β is the sofic Parry number defined by the polynomial X2 − (k1 + 1)X + k1 − k2 with

k1 > k2 > 0, one has dβ(1) = 0.k1k
∞
2 , T = [0, k1β2

β2−k2
2

] and T ′ = [0, k1β
β−k2

]. Hence T is a centrally

symmetric set with T ( T ′. We do not know whether there exist others Parry numbers for which T is
centrally symmetric with T ( T ′.

The following proposition characterizes centrally symmetrical Rauzy fractals that contain their center−→
C . Since there exist Rauzy fractals that are not connected, it is not clear whether

−→
C ∈ T for any confluent

Parry number.

Proposition 2.6. Let β be a confluent Parry number. If either k1 or k1 − kd is even, then
−→
C ∈ T .

Proof. Let β be a confluent Parry number. We consider the two cases k1 even and k1 odd. When k1 is even,
k1

2 ∈ Aβ and (
n∑

i=0

k1

2 βi)n∈N is a sequence of β-integers. For any j ∈ J , the image under τj of the elements

of this sequence is (
n∑

i=0

k1

2 αi
j)n∈N, which tends to k1

2
1

1−αj
. Since k1 = [β], we get k1

2
1

1−αj
= pHj

(
−→
C )

according to Lemma 2.3. Since T is closed, we deduce that
−→
C ∈ T .

Suppose now that k1 is odd, with β root of Xd − k1

d−1∑
i=1

X i − kd. If k1 − kd is even, we have
d−1∑
i=0

k1

2 βi =

1
2βd + k1−kd

2 . One has
∑
i∈N

k1

2 αi
j =

∑
l∈N

(
d∑

i=0

k1

2 α
i+l(d+1)
j ) =

∑
l∈N

(k1+1
2 αd

j + k1−kd

2 )α
l(d+1)
j . Let (

−→
Cn)n∈N ∈

(Rd−1)N be defined by pHj
(
−→
Cn) =

n∑
l=0

(k1+1
2 αd

j + k1−kd

2 )α
l(d+1)
j for all j ∈ J and for all n ∈ N.

Since k1 − kd and k1 + 1 are even, with k1 ≥ kd ≥ 1, k1+1
2 and k1−kd

2 ∈ Aβ . Additionally, the word
(k1+1

2 0d−1 k1−kd

2 )n is admissible for all n ∈ N. This means that the sequence of β-integers (pn)n∈N,

defined by pn =
n∑

l=0

(k1+1
2 βd + k1−kd

2 )βl(d+1), satisfies τ(pn) =
−→
Cn for all n ∈ N, hence

−→
Cn ∈ T for all

n ∈ N. Using again Lemma 2.3 and the compactness of T , we deduce that
−→
C ∈ T .

Remark 6. Since pHj
(
−→
C ) = [β]

2(1−αj)
for any j ∈ J ,

−→
C 6= −→

0 .

By the way, let us give a geometric interpretation of Proposition 2.5. Assume that β is a confluent
Parry number, with dβ(1) = 0.kd−1

1 kd. According to Proposition 2.1, the associated substitutive language
Lσ defined by the substitution σβ is stable under the mirror image map. Moreover, there exist infinitely
many palindromic prefixes for ω, the fixed point of σβ . Indeed, let (ωvn

)n∈N be the sequence defined by
ωvn

= hn(a1) for all n ∈ N, where the map h is defined by

h : Lσ −→ Lσ , v 7−→ σβ(v)ak1

1 .

One checks that h preserves the set of palindromes of Lσ , which implies that (ωvn
)n∈N is a sequence of

palindromic prefixes of ω. Let v ∈ A and x = pD(f(v)), where f denotes the abelianization map. We
remind that, by definition of the map pD defined in Section 1.4, one has pD(f(a1)) = 1 and pD(σ(w)) =
β.pD(f(w)) for all w ∈ Lσ . Thus, one has pD(f(h(v))) = βx+k1, hence for all n ∈ N, pD(f(hn(a1))) =
gn(1), where g : R → R is the affine map defined by g(x) = βx + k1.

Since ωvn
is a palindrome, the set En = {f(ωk), k ∈ [[0, . . . , vn]]} is a centrally symmetrical set of Zd.

Hence pD(En) and pH(En) respectively are centrally symmetrical sets of R and Rd−1. Let
−→
Cn denote the

center of pH(En). Then for all j ∈ J , pHj
(
−→
Cn) =

g
vn
j

(1)

2 , where gj is the affine map: x 7−→ αjx + k1.
Let cj be the fixed point of gj for all j ∈ J . Since β is a Pisot number, gj is a contracting map for all

j ∈ J , hence the sequence (pHj
(
−→
Cn))n∈N tends to cj

2 . Let
−→
C be the limit of the sequence (

−→
Cn)n∈N.
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Since pHj
(
−→
C ) =

cj

2 , and since k1 = [β], the center of T satisfies pHj
(
−→
C ) = [β]

2(1−αj)
for all j ∈ J .

We retrieve the result of Lemma 2.3, since T = T ′. Note that, rather than the foregoing construction
of T as the limit of centrally symmetric sets, constructed by considering prefixes of the fixed point ω of
σβ , it is also possible to describe T as the image of the closure of pH(f(ω̃′.ω′)) under a translation map,
where ω̃′.ω′ is a two-sided palindrome whose factors belong to Lσ . This construction, and the previous
one, cannot be completed when β is a Parry number which is not confluent, since Lσ contains only finitely
many palindromes in this case.

There is no reason for the tile T to be a centrally symmetric set when β is a Parry number which is not
confluent. See for instance Figure 2 and Figure 3, which respectively represent, for the numeration system
defined by dβ(1) = 0.101, first, the Rauzy fractal T , then the sets T ∪ S−→

C
(T ) and T ′ with different levels

of shading.

Fig. 2: T defined by dβ(1) = 0.101 Fig. 3: T ′ defined by dβ(1) = 0.101

3 Computation of L⊕ in several cases of cubic Pisot numbers
In this section, we are interested in computing L⊕, or at least computing a better upper bound for L⊕ than
those determined in [9]. First, we focus in 3.1 on several algebraic inequalities, provided by Propositions
3.4 and 3.5, that are satisfied by the image under τ of the finite β-fractional parts that are obtained as the
β-fractional parts of the sum of two β-integers. Whereas these relations do not allow us to compute directly
the set of these finite β-fractional parts, we can discard, thanks to an algorithm defined in Section 3.2, the
β-fractional parts which do not satisfy these inequalities. In particular, this allows us to compute L⊕ for
several cases of Pisot units, since, among the remaining β-fractional parts that were not discarded by the
algorithm A, we find an element of Fin(β), whose β-fractional part is of length L⊕, which is the sum of
two β-integers.

3.1 Fractional parts of sums or differences of β-integers

Let β be a Pisot number, and let (wi)i∈N ∈ AN

β . Let (vi)i∈N be defined for all i ∈ N by vi = [β] − wi.

Since (vi)i∈N ∈ AN

β , T ′ = τ(Σ+
β ) contains both T and S−→

C
(T ) =

⋃
−→
X∈T

{2−→C −−→
X}, where

−→
C is the center

of T ′. We deduce from T ⊂ T ′ that inequalities satisfied by elements of T′ are satisfied by elements of T
as well. Note that there is no reason that T ⋃

S−→
C

(T ) = T ′, see Figure 3.
First, let us recall some results of [9], where a method is described in order to compute upper bounds for

L⊕ and L�. Let αj denote a Galois conjugate of β such that |αj | < 1. We define for all n ∈ N∗ the real
numbers

Mn(j) = max
x∈Z

+

β

{|τj(x)|, x < βn}, Hn(j) =
Mn(j)

1 − |αj |n
and H(j) = sup

x∈Z
+

β

|τj(x)|.

Let us give a geometric interpretation for Hn(j). Indeed, Hn(j) is the upper bound of the modulus of
complex numbers z ∈ T such that, for all j ∈ J , pHj

(z) admits a periodic αj-expansion of period n.
Hence, for all j ∈ J , Hl(j) ≥ Hk(j) for all k, l ∈ N such that l|k, and Hk(j) ≥ H(j) for all k ∈ N∗.

The following inequality, used for instance in the proof of Proposition 3.2, holds.
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Proposition 3.1. For all x ∈ Zβ and n ∈ N∗, |τj(x)| < Hn(j).

Proposition 3.1 allows us to obtain the following result, which provides upper bounds for L⊕ and L�.

Proposition 3.2. [9] Let β > 1 be an algebraic integer. If there exists a Galois conjugate αj of β such
that K(j) = inf

z∈Z
+

β
rβZ

+

β

|τj(z)| > 0, then

L⊕ <
ln 2 + ln H(j) − ln K(j)

− ln |αj |
and L� <

2 lnH(j) − ln K(j)

− ln |αj |
.

In particular, assume that dβ(1) = 0.k1k2k3, and that β has two complex Galois conjugates. Then β is
a Pisot cubic number; the finiteness property holds [3], which implies due to [2] that 0 is an inner point of
T . Hence K(j) > 0, and the required conditions of Proposition 3.2 are satisfied.

Proposition 3.2 is a consequence of Proposition 3.1. Indeed, let x and y ∈ Zβ with x + y ∈ Fin(β).
Since lf (x + y) ≤ L⊕, one gets |τj(x)| + |τj(y)| < 2H(j) and |τj(x + y)| > |αj |L⊕K(j). Hence the
upper bound for L⊕, and the case of multiplication is performed in a similar way. We focus now on the
search of better inequalities satisfied by elements of Fin(β), since this will allow us to deduce better upper
bounds for L⊕ and L�. Inequalities improving Proposition 3.1 are detailed below in Propositions 3.4 and
3.5.

Since Z+
β ⊂ Σ+

β , any inequality satisfied by elements of τ(Σ+
β ) is satisfied by τ(Z+

β ) as well. Hence

the study of τ(Σ+
β ) will provide additional inequalities satisfied by elements of T . First, we define for all

n ∈ N∗ the real numbers

M ′
n(j) = max

x∈Σ+

β

{|τj(x)|, x < βn}, H ′
n(j) =

M ′
n(j)

1 − |αj |n
and H ′(j) = sup

x∈Σ+

β

|τj(x)|.

Similarly as in [9], we obtain using the triangle inequality the following property.

Lemma 3.3. For all x ∈ Zβ , |τj(x)| < H ′
n(j) and |τj(x) − 2pHj

(
−→
C )| < H ′

n(j).

Proof. The first assertion is deduced from Proposition 3.1, whereas the second assertion is a consequence
of S−→

C
(T ) ⊂ T ′.

Note that, since H ′(j) ≥ H(j), the first inequality of Lemma 3.3 is a weaker condition than the inequal-
ity of Proposition 3.1. However, it is more convenient to compute H ′(j), since the definitions of H′

n(j)
and H ′(j) do not use the admissibility condition on words.

We obtain additional algebraic inequalities, satisfied by finite β-fractional parts of the sums of two β-
integers, thanks to the following proposition.

Proposition 3.4. Let x, y ∈ Z+
β with x ≥ y. If x + y ∈ Fin(β), then:

1. |τj({x + y}β) − 2pHj
(
−→
C )| < 3H ′(j);

2. |τj({x + y}β)| < (2 + |αj |)H(j).

If x − y ∈ Fin(β), then:

1. |τj({x − y}β) + 2pHj
(
−→
C )| < 3H ′(j);

2. |τj({x − y}β)| < (2 + |αj |)H(j).

Proof. First, let us consider the case of addition of positive β-integers. Let x, y ∈ Z+
β such that x + y ∈

Fin(β). The first assertion is a consequence of Lemma 3.3, using the fact that, since x, y and [x+y]β are β-

integers, we get |τj(x)−2pHj
(
−→
C )| < H ′(j), |τj(y)−2pHj

(
−→
C )| < H ′(j) and |τj([x+y]β)−2pHj

(
−→
C )| <

H ′(j). Let us prove the second assertion.
If 0 is a suffix of the expansion of either x, y, or [x+y]β , then one of these three β-integers, say x, satisfies

|τj(x)| < |αj |H(j), which improves the inequality of the first assertion. On the other hand, suppose that
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none of the β-expansions of x, y and [x+y]β admits 0 as a suffix. Denote respectively by x0, y0 and z0 the
suffixes of x, y and [x + y]β. Then, one of the following non-negative β-integers x′ = x − min{x0, y0},
y′ = y − min{x0, y0} or z′ = y − min{x0, y0} admits 0 as a suffix, and both x′ + y = z′ + {x + y}β

and x + y′ = z′ + {x + y}β hold. Among the β-integers x, x′, y, y′, one of them belongs to βZ+
β . This

proves that there exist x′, y′ ∈ Z+
β , with either x′ or y′ ∈ βZ+

β , such that {x + y}β = {x′ + y′}β, hence
|τj({x + y}β)| < (2 + |αj |)H(j).

The case of the subtraction of two positive β-integers is handled in the same way.

These relations improve those found in [9]. We obtain Proposition 3.5 in a similar way, which enables
the computation of L⊕ in Section 3.2 for several cases of cubic Pisot units.

Remark 7. Proposition 3.4 means that 3H ′(j) and (2 + |αj |)H(j) are both upper bounds for |τj({x +
y}β)| when x and y are β-integers such that [x + y]β ∈ Fin(β). When β is a confluent Parry number,
H(j) = H ′(j), which means that (2 + |αj |)H(j) provides a better upper bound for |τj({x + y}β)| than
3H ′(j). However, when β is the positive root of the polynomial X3−X2−1, we check by pure computation
that 3H ′(j) < (2 + |αj |)H(j). Hence, in the general case of Pisot numbers, we do not know which of the
two upper bounds 3H ′(j) and (2 + |αj |)H(j) for |τj({x + y}β)| is better than the other one.

The following proposition is an improvement of Proposition 3.4, in the sense that it sums up the in-
equalities concerning the elements of T . In particular, we obtain as a result an accurate covering of T by
balls having arbitrarily small positive radius. As a consequence, we construct the algorithm A described in
Section 3.2, which computes a set of admissible words whose β-fractional parts are of a bounded length.
This set contains the finite β-fractional parts of sums of two positive β-integers.

Proposition 3.5. Let x, y ∈ Z+
β with x > y, x =

∑
k∈N

εkβk and y =
∑
k∈N

δkβk . Suppose that x+y ∈ Fin(β).

Let (νk)k∈Z be the β-expansion of x + y. Then, for all N ∈ N∗:

|
∑

k<0

νkαk
j +

N−1∑

k=0

(νk − εk − δk)αk
j − αN

j pHj
(
−→
C )| <

3H ′(j)(1 + |αj |)
2

|αj |N .

Proof. First, we know due to Lemma 2.3 that
−→
C is the center of the centrally symmetric set T ′, with

pHj
(
−→
C ) = [β]

2(1−αj)
=

∑
k≥0

[β]
2 αk

j for all j ∈ J .

Let x, y ∈ Z+
β such that {x + y}β ∈ Fin(β). Let (εk)k∈Z, (δk)k∈Z and (νk)k∈Z respectively be the

β-expansion of x, y and x + y. We remind that, by hypothesis, εk = δk = 0 for all k < 0, and that
(εk−δk−νk)k∈Z consists of only finitely many non-zeros elements. Since {x+y}β +[x+y]β−x−y = 0,
one gets for all N ∈ N∗:

∑

k<0

νkαk
j +

N−1∑

k=0

(νk − εk − δk)αk
j = −

∑

k≥N

(νk − εk − δk)αk
j

= −αN
j

∑

k∈N

(νk+N − εk+N − δk+N )αk
j .

Since for all j ∈ J , one has pHj
(
−→
C ) =

∑
k∈N

[β]
2 αk

j = [β]
2(1−αj)

, we obtain:

∑

k≥N

(νk − εk − δk)αk
j = αN

j

(∑

k∈N

(νk+N − εk+N − δk+N +
[β]

2
)αk

j − pHj
(
−→
C )

)
.

Moreover, νk+N − εk+N − δk+N + [β]
2 ∈ [−3 [β]

2 , 3 [β]
2 ] for all k ∈ N. Hence

|
∑

k<0

νkαk
j +

N−1∑

k=0

(νk − εk − δk)αk
j − αN

j pHj
(
−→
C )| <

3

2
|αj |NR,
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where R = sup{| ∑
k∈N

vkαk
j |, (vk)k∈N ∈ [−[β], [β]]N}.

Since {∑
k∈N

vkαk
j , (vk)k∈N ∈ [−[β], [β]]N} is a convex set, and using a similar argument as in the proof

of Proposition 3.4, we get:

R = max
x′,y′∈Σ+

β

|τj(x
′ − y′)| ≤ (1 + |αj |)H ′(j).

Note that we do not use the admissibility in the proof of Propositions 3.4 and 3.5. This means that,
whereas we are looking for inequalities concerning elements which belong to T , these inequalities hold in
fact for elements of T ′.

The relation given by Proposition 3.5 produces a good approximation of T ′, in the sense that it enables an
accurate covering of T ′ with balls having arbitrarily small positive radius. More precisely, the coordinates

on Hj of the centers of these balls are
N−1∑
k=0

(νk − εk − δk)αk
j − pHj

(
−→
C ) when ν, ε and δ describe the set

of admissible words of length N , and their radii are 3
2 |αj |NR.

It could be possible that the set T is only a “small” subset of T ′. In this case, the inequality satisfied by
elements of T in Proposition 3.5 is not accurate enough, and we need to improve the relation satisfied by
elements of T in order to compute the exact value of L⊕, or at least a better upper bound for L⊕ than those
given by Proposition 3.2. Note that the class of confluent Parry numbers is in some sense optimal, since
T = T ′ corresponds to the case where a good approximation of T ′ is a good approximation of T as well.

3.2 Algorithmic computation of L⊕ in several cubic Pisot cases

In this section, we are interested in the set of finite β-fractional parts that are obtained when one sums two
positive β-integers. We introduce L+

⊕ as the maximal length of the finite β-fractional parts of the sum of
two positive β-integers. Note that L⊕, the maximal length of the finite β-fractional parts of the sum of two
β-integers, can also be defined as the maximal length of the finite β-fractional parts that we obtain after
adding or subtracting two positive β-integers. Hence, if one can both compute L+

⊕ and the maximal length
of the finite β-fractional parts of the difference of two positive β-integers, we deduce the value of L⊕.

Let L′
β be the set which consists of words (νk − εk − δk)k∈[[1,...,n]], where the words (νk)k∈[[1,...,n]],

(εk)k∈[[1,...,n]] and (δk)k∈[[1,...,n]] belong to Lβ . Note that the words of L′
β are defined on the alphabet

[[−2[β], . . . , [β]]]. Let x, y ∈ Z+
β . Then the expansion in base β of x + y − [x + y]β constructed digit by

digit belongs to L′
β , and it represents an element of [0, 1[.

In order to obtain a better upper bound for L⊕ than those computed in [9], we define the following
algorithm A.

1. We set for B an upper bound for L⊕, for instance the upper bound computed in Proposition 3.2, and
we set N = 1.

2. We check whether there exists words v = vB . . . v1 ∈ Lβ and w = w0 . . . wN−1 in L′
β such that the

inequality given by Proposition 3.5 holds, that is, if we have for all j ∈ J

|
B∑

k=1

vkα−k
j +

N−1∑

k=0

wkαk
j − αN

j pj(
−→
C )| <

3H ′(j)(1 + |αj |)
2

|α|N . (3)

3. When (3) is satisfied for no v ∈ Lβ and no w ∈ L′
β , we decrease by 1 the value of B, we set N = 1

and we return to point 2.

4. When there exists v ∈ Lβ and w ∈ L′
β such that (3) holds, we increase by 1 the value of N and we

return to point 2.
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Since B ∈ N, there eventually exists an admissible word v such that (3) is satisfied for any w ∈ L′β .
This algorithm lowers the value of B, that is, it provides a better upper bound for L+

⊕. However, we cannot
check if this algorithm computes the value of L+

⊕. Additionally, even if the algorithm computes the exact
value of L+

⊕ after finitely many steps, we do not known when the exact value of L+
⊕ is reached. In this case,

it suffices then to find two β-integers x and y such that dβ(x+y) has a fractional part of the required length
to deduce the exact value of L+

⊕. We finally perform the same computations for the case of the difference
of two positive β-integers in order to obtain L⊕.

Let us focus now on the case of cubic Pisot numbers. Let β be the positive root of the polynomial
P (X) = X3 − k1X

2 − k2X − 1, where k1, k2 ∈ N2 satisfy k1 ≥ max{1, k2}. Suppose moreover that
P has two complex conjugate roots, that we denote by α and α. For k2 large enough, this condition is
satisfied when k2 ≤ 2

√
k1, and is not satisfied otherwise.

Due to [3], we know that the finiteness property (F) holds in this case. It is also proved in this article that,
when β is a Pisot unit which satisfies (F), then 0 is an inner point of T . Hence K = min

z∈Z
+

β
rβZ

+

β

|τ(z)| >

0, and the required conditions of Proposition 3.2 hold for the class of Parry numbers we consider. We
respectively denote by L⊕(k1, k2) and L+

⊕(k1, k2) the value of L⊕ and L+
⊕ for the associated numeration

system, defined by dβ(1) = 0.k1k21.

Proposition 3.6. The algorithm A computes L⊕(k1, k2) when k1 ≤ 3. We get:

1. L⊕(1, 0) = 11 and L+
⊕(1, 0) = 10,

2. L⊕(1, 1) ≤ 6,

3. L⊕(2, 0) = L+
⊕(2, 0) = 7,

4. L⊕(2, 1) = 5 and L+
⊕(2, 1) = 4,

5. L⊕(2, 2) = L+
⊕(2, 2) = 5.

6. L⊕(3, 0) = L+
⊕(3, 0) = 4,

7. L⊕(3, 1) = L+
⊕(3, 1) = 4,

8. L⊕(3, 2) = 4 and L+
⊕(3, 2) = 3,

9. L⊕(3, 3) = L+
⊕(3, 3) = 5.

Note that the inequality L⊕(1, 1) ≤ 6 was already known, see [9].

Example 2. When dβ(1) = 0.101, one has β13 + β9 + β6 + β3 + 1 − (β11 + β8 + β4 + β) = β11 +
β8 + β4 + β + β−3 + β−6 + β−11 and (β4 + 1) + (β3 + 1) = β5 + β2 + β−1 + β−5 + β−10. When
dβ(1) = 0.201, one has (β5 +β4 +β +2)+ (β5 +β +2) = β6 +β3 +2β2 +β−1 +2β−2 +β−5 +β−7.

From a practical point of view, we noticed that, except in the Tribonacci case, the algorithm A computes
L⊕(k1, k2) in a finite number of steps for any example of a pair (k1, k2) among those that satisfy the
needed conditions, that is, for which β is the positive root of the polynomial X 3 − k1X

2 − k2X − 1 and
admits two complex Galois conjugates.

3.3 The particular case of Tribonacci
We end our study by the Tribonacci case, that is, β is the real root of the polynomial X 3 − X2 − X − 1.
Since β admits two complex Galois conjugates, we set from now on α = α1 and τ = τ1. Note that this
definition of τ coincides with the previous definition of τ given in Section 1.4. The previous method does
not allow us to determine the exact value of L⊕(1, 1), since the admissible word 100011, which represents
the β-fractional part β−1 + β−5 + β−6 is not discarded by the algorithm described in Section 3.2. Hence
we do not know whether there exist two β-integers x and y such that {x + y}β = β−1 + β−5 + β−6. This
explains why the particular case of Tribonacci needs additional computations.

We prove in this section that L⊕(1, 1) = 5, thanks to the following lemma.



Computation of L⊕ for several cubic Pisot numbers 15

Lemma 3.7. Let β be the Tribonacci number, that is, dβ(1) = 0.111. Suppose that there exist x, y ∈ Z+
β

such that lf (x + y) = 6. Then, we have:

1. {x + y}β = β−1 + β−5 + β−6,

2. the real numbers x−1
β3 , y−1

β3 and [x+y]β−β2−β

β3 are β-integers.

Proof. The first assertion is a consequence of Proposition 3.6, since we prove by pure computation that
the relation (3) only holds for v an admissible word of length 6, namely when v = 100011. Additionally,
we obtain only one possibility for the suffix of length 3 of w ∈ L′β , which is (−1)(−1)2. This suffix
corresponds to the suffix of length 3 of the expansion in base β of x + y − [x + y]β constructed digit by
digit. This implies that the β-expansions of the β-integers x, y and [x + y]β must respectively admit 001,
001 and 110 as suffixes, which proves the second assertion.

Proposition 3.8. When dβ(1) = 0.111, then L+
⊕ = 5.

Proof. Suppose that there exist x0 and y0 ∈ Z+
β such that {x0 + y0}β = β−1 + β−5 + β−6. This means

that the set S6 = {(x, y, z) ∈ (Z+
β )3, x + y = z + β−1 + β−5 + β−6} is not empty. Let z0 = [x0 + y0]β .

Let (x0, y0, z0) ∈ S6 such that li(z0), the length of the β-fractional part of z0, is minimal. Due to Lemma
3.7, there exists (x1, y1, z1) ∈ (Z+

β )3 such that x0 = 1 + β3x1, y0 = 1 + β3y1 and z0 = β + β2 + β3z1.
Thus, we get:

β3(x1 + y1) = x0 + y0 − 2

= z0 + β−1 + β−5 + β−6 − 2

= β3z1 + β−1 + β−5 + β−6 + β + β2 − 2

= β3z1 + β2 + β−2 + β−3.

We deduce that x1 + y1 = z1 + β−1 + β−5 + β−6, hence the 3-uple (x1, y1, z1) belongs to S6. However,
li(z1) ≤ li(z0) − 3, which contradicts the minimality of li(z0). Hence S6 is empty, and L+

⊕ < 6.

Theorem 3.9. When dβ(1) = 0.111, then L⊕ = 5.

Proof. Proposition 3.8 proves that L+
⊕ = 5. In order to obtain the result on Zβ instead of Z+

β , it suffices to

note that, since Zβ = ±Z+
β , we can suppose that x + y > 0, thus [x + y]β ∈ Z+

β without loss of generality.
Moreover, if x + y > 0, then x or y is positive, and the case where they are both positive is exactly the
case previously studied. Thus, we only have to check whether there exist x,−y ∈ Z+

β , x− y > 0 such that
lf (x − y) = 6. However, we check by an exhaustive computation that there exists N ∈ N for which the
inequality (3) used in the algorithm A does not hold for any admissible word v of length 6. Since L⊕ ≥ 5,
this proves that L⊕ = L+

⊕ = 5.

Remark 8. Let us explain why the algorithm A described in Section 3.2 does not improve the relation
5 ≤ L⊕ ≤ 6 given by [9] in the Tribonacci case. This is due to the fact that the inequality provided
by Proposition 3.5, a priori satisfied by images under τj of β-integers, also extends to elements of T . For
instance, the complex number 1

1−α3 belong to T , since it is the limit of the sequence (
∑n

k=0 α3k)n∈N, which
consists of images of β-integers under τ . Hence 1

1−α3 + 1
1−α3 = 2

1−α3 is the sum of two elements which
belong to T . Moreover, 2

1−α3 is the limit of the sequence ((
∑n

k=0 α3k+1+α3k+2)+α−1+α−5+α−6)n∈N,
which consists of images of elements of Fin(β), having β−1 + β−5 + β−6 as β-fractional part, under τ .
This means that, whereas there do not exist x, y ∈ Zβ such that {x+y}β = β−1 +β−5 +β−6, there exists
a complex number, namely 2

1−α3 , which is the sum of two elements of T and admits an α-expansion whose
fractional part is of length 6.

For any x ∈ Fin(β)
⋂

[0, 1[, let dβ(x) = 0.v and T.v = τ({y ∈ Fin(β), {y}β = x}). Due to Messaoudi
[27], the fact that the complex numbers 2

1−α3 and 1
1−α3 both have three α-expansions means that they

belong to the fractal boundary of three different tiles T.x. By computation, one gets { 2
1−α3 } ⊂ T.100011 ∩

T.001∩T.011 and { 1
1−α3 } ⊂ T ∩T.001∩T.011. Figure 4 gives a geometrical representation of these relations.
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Fig. 4: Tiles T , T.011 , T.001 and T.100011

It would be interesting to compute the value of L� for the Tribonacci case. Due to [9], we know that
4 ≤ L� ≤ 5. Similarly as in the case of addition, one checks by pure computation that there exists only
one real number x such that lf (x) = 5, namely x = β−1 + β−3 + β−5, which could be the β-fractional
part of the product of two β-integers. We do not know whether there exist two β-integers x and y such that
{xy}β = β−1 +β−3 +β−5; nevertheless we find that the complex numbers 1+α

1−α3 , 1
1−α3 and α2

1−α3 belong

to T with 1+α
1−α3 . 1

1−α3 = α2

1−α3 + α−1 + α−3 + α−5. Hence there exists an α-expansion of 1+α
1−α3 . 1

1−α3 ,
the product of two elements which belong to T , which admits an α-fractional part whose fractional part
is α−1 + α−3 + α−5. However, these informations are not sufficient to determine whether there exist
x, y ∈ Zβ such that {xy}β = β−1 + β−3 + β−5.
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