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Abstract

The diffusive coagulation equation models the evolution of the local concentra-
tion n(t, x, z) of particles having position x ∈ R

p and size z at time t, for a system
in which a coagulation phenomenon occurs. The aim of this paper is to introduce
a probabilistic approach and a numerical scheme for this equation. We first delo-
calise the interaction, by considering a “mollified” model. This mollified model is
naturally related to a R

p × R+-valued nonlinear stochastic differential equation, in
a certain sense. We get rid of the non linearity of this S.D.E. by approximating
it with an interacting stochastic particle system, which is (exactly) simulable. By
using propagation of chaos techniques, we show that the empirical measure of the
system converges to the mollified diffusive equation.
Then we use the smoothing properties of the heat kernel to obtain the convergence
of the mollified solution to the true one. Numerical results are presented at the end
of the paper.

Key words : Non spatially homogeneous coagulation equations, nonlinear stochastic dif-
ferential equations, interacting stochastic particle systems.
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1 Introduction

Coagulation models govern the dynamic of clusters growth and illustrate the mechanism
by which clusters can coalesce to form bigger ones. This model applies in many physical
context, in medicine or population dynamics.
Mostly, in the literature on this subject, the clusters are assumed to be entirely determined
by their size which is a real positive number. We consider here the coagulation equation
with diffusion, which is a more natural model that takes into account the position of
the clusters. This equation deals with infinite systems of particles which move according
to Brownian motions, the diffusion coefficient depends on their size, and in which a
coagulation phenomenon occurs. We accept in this model only coalescence in pairs.
Let us first consider the discrete case, that is the particle’s size is an positive integer
number. We denote by n(t, x, k) the local concentration of particles of size k ∈ N

∗
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situated at x ∈ R
p (p ∈ N

∗ denotes the space dimension) at time t ≥ 0. Then n is clearly
a R+-valued function, and satisfies the following discrete diffusive coagulation equation:































∂tn(t, x, k) = d(k)∆xn(t, x, k) +
1

2

k−1
∑

j=1

K(j, k − j)n(t, x, j)n(t, x, k − j)

−n(t, x, k)

∞
∑

j=1

K(j, k)n(t, x, j), (t, x, k) ∈ (0,∞) × R
p × N

∗

n(0, x, k) = n0(x, k), (t, x) ∈ R
p × N

∗.
(DS)

The coagulation kernel K : N
∗ × N

∗ 7→ R+ is positive and symmetric. The diffusion
part d depends only on the size of the cluster and is a map from N

∗ into R+. The initial
condition n0 is a positive map from R

p × N
∗ into R+.

The interpretation of this equation is: every particle moves according to a Brownian mo-
tion, with a diffusion coefficient which depends on its size. This explains the first term.
If two particles of sizes j and k − j are at the same place x ∈ R

p, at the same time t,
they may coagulate and produce a new particle of size k, at position x. The frequency of
this phenomenon is proportional to n(t, x, j)n(t, x, k− j), and also to the proportionality
constant K(j, k − j). This is expressed in the second term. Finally, the last term shows
that sometimes, at x, a particle of size k disappears because it has coagulated with an-
other particle (whose position was also x).
Uniqueness for equation (DS) is an open problem, and the better existence result seems
to be the one of Laurençot-Mischler [LM01a] who considered a more general diffusive
coagulation-fragmentation equation in a bounded domain. Reduced to the coagulation
situation their existence result holds under the assumptions:

∑

k≥1 k
∫

n0(x, k)dx < ∞,
and for all i ≥ 1, limj→∞K(i, j)/j = 0 and d(i) > 0.
Similarly when the particles have their sizes in the whole space R+, we obtain the con-
tinuous model which describes the local average number per unit of volume, n(t, x, z) of
particles having position x and size z at time t. It writes



















∂tn(t, x, z) = d(z)∆xn(t, x, z) +
1

2

∫ z

0

K(z′, z − z′)n(t, x, z′)n(t, x, z − z′)dz′

−n(t, x, z)

∫ ∞

0

K(z, z′)n(t, x, z′)dz′, (t, x, z) ∈ [0,∞) × R
p × N

∗

n(0, x, z) = n0(x, z), (x, z) ∈ R
p × N

∗.
(CS)

In this case, the coagulation kernel K is a map from R+ × R+ into R+, the diffu-
sion part d is a map from R+ into R+ and the initial condition goes from R

p × R+

into R+. Once again, no uniqueness is known, and the better existence result was
obtained by Laurençot-Mischler [LM01b] for a more general model of coagulation and
fragmentation in an open bounded and smooth domain Ω. Their result applies in the
coagulation situation under the hypothesis : d + 1/d ∈ L∞

loc((0,∞)), K ∈ L∞
loc([0,∞)2),

limz′→∞ supz∈(0,R)K(z, z′)/(1+z′) = 0, for all R <∞, n0(x, z) ∈ L1(Ω×R+, (1+z)dxdz)
and K(z′, z − z′) ≤ K(z′, z), for all z′ ≥ z ≥ 0.
Spatially homogeneous versions of (DS) and (CS) have been much investigated, since
the discrete model has been introduced by Smoluchowski in 1916. Let us mention the
review of Aldous [Ald99], the probabilistic interpretations of Jéon [Jeo98] and Norris
[Nor99, Nor00], see also Deaconu-Fournier-Tanré [DFTab] for another point of view con-
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taining both discrete and continuous cases.
In particular, the use of stochastic particle systems was proved to be very efficient to solve
numerically homogeneous coagulation equations: the famous Marcus-Lushnikov model
(Marcus [Mar68], Lushnikov [Lus78]) is now in competition with a new particle system
in which the number of particles is constant in time, first introduced by Eibeck-Wagner
[EW00], and also studied in Deaconu-Fournier-Tanré [DFT01], or Jourdain [Jou01]. The
literature on deterministic numerical schemes is quite poor.
Due to its difficulty, the non homogeneous case is of course much less treated. Our prob-
abilistic interpretation and numerical scheme is essentially inspired from works of Tanaka
[Tan78] and Graham-Méléard [GM97], concerning Boltzmann equations, and is an exten-
sion of the non homogeneous case of the previous papers of Eibeck-Wagner [EW00] and
Deaconu-Fournier-Tanré [DFTab, DFT01].
Let us now describe the present work. We use the a priori conservation of mass to rewrite
equations (DS) and (CS) in terms of probability measures. After, we introduce a mol-
lified equation, which delocalises the coagulation phenomena: instead of allowing only
coagulation of particles which have the same position, we allow coagulation of particles
between which the distance is smaller than some ε. Then, we relate the mollified equa-
tion to a nonlinear jumping stochastic differential equation, whose solution (Xt, Zt)t≥0 is
related to (DS) or (CS). More precisely its law is solution, in a certain sense, to the
mollified diffusive coagulation equation. The Markov process (Xt, Zt)t≥0, with values in
R
p ×R+, can be seen as the evolution of the couple of characteristics (position, size) of a

sort of typical particle.
In order to prove an existence result for the nonlinear S.D.E., and to obtain a numeri-
cal scheme for our equations, we “linearise” the S.D.E. by using an (exactly simulable)
stochastic particle system. We prove for this system, a propagation of chaos result. Fi-
nally, we obtain the convergence of the mollified solution, up to extraction, to the true
solution. This is proved under quite stringent assumptions, by using some ideas of a
forthcoming paper by Norris [Nor01].
The paper is organised as follows: in Section 2, we introduce successively the notations
and equations: weak form, mollified equation, nonlinear S.D.E. and particle system. Sec-
tion 3 is devoted to the statements of our main assumptions and results. The proofs are
given in Section 4. Finally, we present numerical results in Section 5.

2 Framework

In this section, we write in an unified equation the discrete and the continuous models.
After this we introduce a “mollified” form of the equation, which allows us to present a
probabilistic approach and to construct the corresponding particle system.

2.1 A mollified approximation

An a priori assumption for equations (DS) and (CS) is the conservation of mass, which
writes in the discrete case

∑

k≥1

∫

Rp kn(t, x, k)dx =
∑

k≥1

∫

Rp kn0(x, k)dx = 1 for all t ≥ 0,

while in the continuous case,
∫

Rp×R+
zn(t, x, z)dxdz =

∫

Rp×R+
zn0(x, z)dxdz = 1. It is well-

known that even in the spatially homogeneous context, the conservation of mass is far
from holding in any case, for example it is classical that for K(x, y) = xy, there exists
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a first instant Tgel < ∞ after which the mass decreases strictly. In this paper we are
not dealing with such a phenomenon (called gelation). We assume that the total mass is
preserved over time.
This conservation of mass allows us to adopt the following point of view. In the discrete
case, for each t, Qt(dx, dz) =

∑

k≥1 kn(t, x, k)δk(dz)dx is a probability measure on R
p×N

∗,
while in the continuous case, Qt(dx, dz) = zn(t, x, z)dxdz is a probability measure on
R
p × R+ for each t. In both cases, the space part of Qt has a density for each t, so

that we can disintegrate Qt as Qt(dx, dz) = γt(x, dz)dx. Writing (DS) or (CS) in terms
of Qt leads to the same equation, and we unify the study of these equations. We have
thus to consider initial distributions of the form Q0(dx, dz) which belong to P(Rp ×R+),
and which have to be thought in the discrete (respectively continuous) case, of the form
Q0(dx, dz) =

∑

k≥1 kn0(x, k)δk(dz)dx (respectively Q0(dx, dz) = zn0(x, z)dxdz). We first
need the following definition.

Definition 2.1 Let Q0(dx, dz) be a probability measure on R
p × R+. We denote by

Qz
0 the “size” marginal of Q0: for A ⊂ R+, Qz

0(A) = Q0(R
p ×A). Then we define

HQ0 =

{

n
∑

i=1

zi ; n ∈ N
∗, zi ∈ Supp Qz

0

}R+

. (2.1)

The space HQ0 represents the space in which the particles have their sizes. Essentially, HQ0

will be equal to N
∗ in the discrete case and to R+ in the continuous situation. Rewriting

(DS) and (CS) in terms of probability measures leads to the following equation:

Definition 2.2 Let Q0 be in P(Rp × R+). {Qt(dx, dz)}t≥0 is a solution to (WS) if:

1. For each t > 0, Qt(dx, dz) is a probability measure on R
p × HQ0 which can be

disintegrated as Qt(dx, dz) = γt(x, dz)dx.

2. For each T > 0,

sup
t∈[0,T ]

[
∫

Rp×R+

d(z)Qt(dx, dz) +

∫

Rp×R+

Qt(dx, dz)

∫

R+

K(z, z′)γt(x, dz
′)

]

<∞.

3. For all φ ∈ C2
c (R

p × (0,∞)) and all t ≥ 0
∫

Rp×R+

φ(x, z)Qt(dx, dz)=

∫

Rp×R+

φ(x, z)Q0(dx, dz)+

∫ t

0

∫

Rp×R+

∆xφ(x, z)d(z)Qs(dx, dz)ds

+

∫ t

0

∫

Rp×R+

∫

R+

[φ(x, z + z′) − φ(x, z)]
K(z, z′)

z′
γs(x, dz

′)Qs(dx, dz)ds.

(WS)

Let us now write precisely the connections between (DS), (CS) and (WS).

Remark 2.3 Consider a solution {Qt}t≥0 to (WS) with initial condition Q0, admit-
ting, for all t > 0, the disintegration Qt(dx, dz) = γt(x, dz)dx.

1. Assume that Q0 has its support contained in R
p×N

∗. Then clearly HQ0 is included in
N

∗, and hence γt can be written, for any t > 0, as γt(x, dz) =
∑

k≥1 γt(x, {k})δk(dz).
Then n(t, x, k) = γt(x, {k})/k is a solution (in a weak sense) to (DS) with initial
condition n0(x, k)dx = Q0(dx, {k})/k.
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2. If now Q0(dx, dz) has a density, i.e. if it can be written as Q0(dx, dz) = µ0(x, z)dzdx,
and if for all t ≥ 0, Qt(dx, dz) = µ(t, x, z)dxdz, then n(t, x, z) = µ(t, x, z)/z is a
solution to (CS) (in a weak sense) with initial condition n0(x, z) = µ0(x, z)/z.

These remarks can be proved exactly as in the homogeneous case, and rely on very simple
computations. We refer to Deaconu-Fournier-Tanré [DFTab].
We now introduce a mollified version of the equation (WS). It simply means that we
want to delocalise the interactions. Similar approximations are often used for the non
homogeneous Boltzmann equation, see e.g. Graham-Méléard [GM97]. This leads us to
define a last equation.

Definition 2.4 Let Q0 be a probability measure on R
p × R+, and let ε > 0 be fixed.

We say that {Qε
t (dx, dz)}t≥0 is a solution to (WS(ε)) if for each t > 0, Qε

t (dx, dz) is a
probability measure on R

p ×HQ0, and if
1. For all T > 0,

sup
t∈[0,T ]

[
∫

Rp×R+

d(z)Qε
t (dx, dz) +

∫

Rp×R+

Qε
t (dx, dz)

∫

Rp×R+

Qε
t (dx

′, dz′)K(z, z′)

]

<∞,

2. For all φ ∈ C2
c (R

p × (0,∞)), and all t ≥ 0,

∫

Rp×R+

φ(x, z)Qε
t (dx, dz)=

∫

Rp×R+

φ(x, z)Q0(dx, dz)+

∫ t

0

∫

Rp×R+

∆xφ(x,z)d(z)Qε
s(dx,dz)ds

+

∫ t

0

∫

Rp×R+

∫

Rp×R+

[φ(x, z + z′)−φ(x, z)]
K(z, z′)

z′
11{|x−x′|≤ε}
vpεp

Qε
s(dx

′, dz′)Qε
s(dx, dz)ds

(WS(ε))

where vp := πp/2

Γ(1+p/2)
denotes the volume of the unit ball in R

p.

2.2 Probabilistic approach

Our aim is now to present a stochastic differential equation which is “equivalent”, in
a certain sense, to (WS(ε)). In other words, we want to construct a stochastic process
(Xε

t , Z
ε
t )t≥0, with values in R

p×R+, whose time marginals {Qε
t (dx, dz)}t≥0 = {L(Xε

t , Z
ε
t )}t≥0

is solution to (WS(ε)). The process (Xε, Zε) can be seen as the evolution of the charac-
teristics (position, size) of a typical particle. Naturally, the process (Xε, Zε) has to be a
Markov process (non time-homogeneous), who belongs a.s. to the following path space:

Definition 2.5 We denote by P2(R
p × R+) the set of probability measures Q0 on

R
p × R+ admitting a second order moment:

∫

(|x|2 + z2)Q0(dx, dz) < ∞. For Q0 in
P2(R

p ×R+), we denote by TQ0 the space of functions from [0,∞) into R
p ×HQ0 defined

by
TQ0 = C([0,∞),Rp) × D

↑([0,∞),HQ0) (2.4)

where D
↑([0,∞),HQ0) is the space of HQ0-valued increasing càdlàg functions on [0,∞).

We also denote by P2(TQ0) the set of probability measures Q on TQ0 admitting a moment
of order 2 in the strong sense, that is for any T <∞,

∫

TQ0

sup
[0,T ]

(

|x(t)|2 + [z(t)]2
)

dQ(x, z) <∞. (2.5)
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Then, we restrict the problem (WS(ε)) to these spaces. We introduce now the martingale
problem naturally associated to (WS(ε)).

Definition 2.6 Let ε > 0 and Q0 ∈ P2(R
p × R+) be fixed. Consider the canonical

process (Xt, Zt)t≥0 on TQ0. Consider a probability measure Qε ∈ P2(TQ0) and denote by
Qε
t the law of (Xt, Zt) under Qε. We say that Qε satisfies the martingale problem (MP (ε))

if the law of (X0, Z0) under Qε is Q0 and if
1. For all T > 0,

sup
t∈[0,T ]

[
∫

Rp×R+

d(z)Qε
t (dx, dz) +

∫

Rp×R+

Qε
t (dx, dz)

∫

Rp×R+

Qε
t (dx

′, dz′)K(z, z′)

]

<∞.

2. For any φ ∈ C2
b (R

p × R+), the process

φ(Xt, Zt) − φ(X0, Z0) −
∫ t

0

∆xφ(Xs, Zs)d(Zs)ds

−
∫ t

0

∫

Rp×R+

[φ(Xs, Zs + z′) − φ(Xs, Zs)]
K(Zs, z

′)

z′
11{|Xs−x′|≤ε}

vpεp
Qε
s(dx

′, dz′)ds
(2.6)

is a square integrable Qε-martingale.

By taking expectations in (2.6), we find the natural connection between (MP (ε)) and
(WS(ε)). We express it in the following remark.

Remark 2.7 Let ε > 0 and Q0 ∈ P2(R
p × R+) be fixed. Assume that Qε ∈ P2(TQ0)

satisfies the martingale problem (MP (ε)). Then the flow of the time-marginals (Qε
t )t≥0

of Qε satisfies (WS(ε)).

We may also give a pathwise representation of this martingale problem. To this aim, we
need to introduce some more notations.

Definition 2.8 We consider two probability spaces: (Ω,F ,P) is an abstract space and
([0, 1],B[0, 1], dα) is an auxiliary space (here dα denotes the Lebesgue measure). In order
to avoid confusion, the elements on this second space will be called α−elements.

Definition 2.9 Let ε > 0 and Q0 ∈ P2(R
p × R+) be fixed. We say that

((X0, Z0), (X
ε, Zε), (X̃ε, Z̃ε), N ε, B) is a solution to (SDE(ε)) if the following conditions

hold.

1. (X0, Z0) is a random variable with values in R
p × R+, of law Q0. (Bt)t≥0 is a R

p-
valued Brownian motion. The random measure N ε(ds, dα, du) is a Poisson measure
on [0,∞) × [0, 1] × [0,∞) with intensity measure (1/vpε

p)dsdαdu. These random
elements are independent.

2. (Xε
t (ω), Z

ε
t (ω))t≥0 is a process belonging a.s. to TQ0 and its law belongs to P2(TQ0).

(X̃ε
t (α), Z̃

ε
t (α))t≥0 is an α-process such that L(Xε, Zε)=Lα(X̃ε, Z̃ε).

3. For all T > 0 sup
t∈[0,T ]

(

E[d(Zε
t )] + EEα[K(Zε

t , Z̃
ε
t (α)]

)

<∞.
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4. The following system of S.D.E.s is satisfied:


















Xε
t = X0+

∫ t

0

√

2d(Zε
s)dBs

Zε
t = Z0+

∫ t

0

∫ 1

0

∫ ∞

0

Z̃ε
s−(α)11



u≤
K(Zε

s−
,Z̃ε

s−
(α))

Z̃ε
s−(α)

ff11{|Xε
s−−X̃ε

s−(α)|≤ε}N
ε(ds, dα, du).

(SDE(ε))

Let us now clarify the connection between (MP (ε)) and (SDE(ε)). Roughly speaking a
solution Qε to (MP (ε)) is the law of a solution (Xε, Zε) to (SDE(ε)).

Remark 2.10 Let ε > 0 and Q0 ∈ P2(R
p × R+) be fixed.

1. Assume that ((X0, Z0), (X
ε, Zε), (X̃ε, Z̃ε), N ε, B) is a solution to (SDE(ε)). Then

the law Qε = L(Xε, Zε) is a solution to the martingale problem (MP (ε)).

2. Assume now that Qε ∈ P2(TQ0) satisfies (MP (ε)). Let (X̃ε, Z̃ε) be any TQ0-valued
α-process of law Qε. Denote by (X,Z) the canonical TQ0-valued process. Then
there exists, on an enlarged probability space (from the canonical one), a Poisson
measure N ε(ds, dα, du), a Brownian motion (Bt)t≥0, and a R

p × R-valued random
variable (X0, Z0) of law Q0 such that ((X0, Z0), (X,Z), (X̃ε, Z̃ε), N ε, B) is a solution
to (SDE(ε)).

Once again we do not prove this remark, because it is completely standard. To prove 1,
it suffices to apply Itô formula to φ(Xt, Zt). The proof of 2 is more difficult, but it relies
on now well-known representation theorems for jump processes. We refer to Deaconu-
Fournier-Tanré [DFTab] for rigorous proofs of similar results (in the homogeneous case).

2.3 The interacting particle system

We now would like to introduce a numerical approximation scheme to approach the solu-
tion of (SDE(ε)). To this aim, we introduce an interacting particle system, which allows
to linearize the nonlinear equation (SDE(ε)).

Definition 2.11 Let ε > 0 and Q0 ∈ P2(R
p × R+) be fixed. The number n ≥ 1 of

particles is also fixed. For i ∈ {1, ..., n}, consider a family (Bi,n
t )t≥0 of i.i.d. R

p-valued
Brownian motions, and a family (X i,n

0 , Z i,n
0 ) of i.i.d. R

p×R+-valued random variables of
law Q0. Finally, denote by (N i,n,ε(ds, dj, du)), for i ∈ {1, ..., n}, a family of i.i.d. Poisson
measures on [0,∞) × {1, ..., n} × [0,∞), with intensity measures

1

vpεp
ds

(

1

n

n
∑

k=1

δk(dj)

)

du. (2.8)

All these random elements are supposed to be independent. A process
{(X1,n,ε

t , Z1,n,ε
t ), ..., (Xn,n,ε

t , Zn,n,ε
t )}t≥0 ∈ (TQ0)

n is said to solve the interacting particle
system (PS(ε, n)) if for any t ≥ 0 and any i ∈ {1, ..., n}



















X i,n,ε
t = X i,n

0 +

∫ t

0

√

2d(Z i,n,ε
s )dBi,n

s

Z i,n,ε
t = Z i,n

0 +

∫ t

0

∫

j

∫ ∞

0

Zj,n,ε
s− 11(

u≤
K(Z

i,n,ε
s−

,Z
j,n,ε
s−

)

Z
j,n,ε
s−

)11{|Xi,n,ε
s− −Xj,n,ε

s− |≤ε}N
i,n,ε(ds, dj, du).

(PS(ε, n))
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For {(X1,n,ε
t , Z1,n,ε

t ), ..., (Xn,n,ε
t , Zn,n,ε

t )}t≥0 ∈ (TQ0)
n a solution to (PS(ε, n)), we denote by

µn,ε = 1
n

∑n
i=1 δ(Xi,n,ε,Zi,n,ε) the corresponding empirical measure, which is a P(TQ0)-valued

random variable.

Naturally we expect that for every fixed k, {(X i1,n,ε, Z i1,n,ε), . . . , (X ik,n,ε, Z ik,n,ε)} become
independent as n tends to infinity, and thus that for any i0, (X i0,n,ε, Z i0,n,ε) converges, in
a certain sense, to a solution (Xε, Zε) of (SDE(ε)) as n tends to infinity.

3 Main results

We collect in this section the results (and main steps of the proofs) of the paper.

3.1 Existence for the particle system (PS(n, ε))

We first give an existence result for (PS(n, ε)), which requires the following very weak
assumption on the initial condition, the coagulation kernel K and the diffusion term d.

Assumption (H1):

1. The initial condition Q0 belongs to P2(R
p × R+), and Q0(R

p × (0,∞)) = 1.

2. The coagulation kernel K : HQ0 ×HQ0 7→ R+ is measurable, symmetric, and there
exists a constant CK such that

K(z, z′) ≤ CK(1 + z + z′), ∀z, z′ ∈ HQ0 .

3. The diffusion d : HQ0 7→ R+ is measurable, and there exists a constant Cd such that

√

2d(z) ≤ Cd(1 + z), ∀z ∈ HQ0 .

Proposition 3.1 Let ε > 0 and n ≥ 1 be fixed. Assume (H1). Then there exists a
unique solution {(X1,n,ε

t , Z1,n,ε
t ), ..., (Xn,n,ε

t , Zn,n,ε
t )}t≥0 ∈ (TQ0)

n to (PS(n, ε)).
Assume furthermore that for some q ≥ 1, the initial condition Q0 has a moment of order
q. Then for any T <∞, there exists a constant C(T, ε) such that

sup
n≥1

sup
i∈{1,...,n}

E

[

sup
[0,T ]

(

|X i,n,ε
t |q + |Z i,n,ε

t |q
)

]

≤ C(T, ε). (3.1)

3.2 Convergence of (PS(n, ε)) to (SDE(ε))

For ε fixed we can obtain a compactness result for the particle system (PS(n, ε)), under
the assumption (H1) and a stronger hypothesis on Q0:

Assumption (H2): There exists q0 > 2 such that the initial condition Q0 admits a
moment of order q0.
Let us first of all precise the topologies we use.

Notation 3.2 1. C([0,∞),Rp) is endowed with the topology of the uniform con-
vergence on every compact subset of [0,∞), while D

↑([0,∞),HQ0) is endowed with
its Skorohod topology. TQ0 is endowed with the corresponding product topology.
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2. P(TQ0) and P(P(TQ0)) are endowed with the corresponding weak topologies.

We have the following compactness result.

Proposition 3.3 Let ε > 0 be fixed, and assume (H1) and (H2).

1. Then {L(X1,n,ε, Z1,n,ε)}n is tight in the set P (TQ0) of probability measures on TQ0.

2. Consider the empirical measure µn,ε associated with (PS(n, ε)). Then {L(µn,ε)}n is
tight in P(P (TQ0) ).

We show also that a propagation of chaos result holds for the particle system. This means
that the particles become asymptotically independent as their number n goes to infinity.
This allows us to obtain that any limiting point of {µn,ε}n is deterministic. To prove this
result, we need to add some stronger hypotheses.

Assumption (H3): There exists a minimum size, i.e. there exists c0 > 0 such that
Q0 (Rp × [c0,∞)) = 1.
This assumption is quite stringent in the continuous case, but it always holds in the
discrete case, with c0 = 1.

Proposition 3.4 Let ε > 0 be fixed and assume (H1) and (H3). Then there is
propagation of chaos in (local) variation norm for the particle system. This simply means
that for any T > 0 and any k ≥ 1 fixed

∣

∣

∣
L[(X1,n,ε, Z1,n,ε), ..., (Xk,n,ε, Zk,n,ε)] − [L(X1,n,ε, Z1,n,ε)]⊗k

∣

∣

∣

T
−→
n→∞

0 (3.2)

where | . |T is the variation norm on the set of measures on [C([0, T ],Rp)×D
↑([0, T ],HQ0)]

k.

Then we deduce the following consequence.

Corollary 3.5 Let ε > 0 be fixed and assume (H1) to (H3). Consider any limiting
point µε of {µn,ε}n, say that µε is the limit (in law) of {µnk,ε}k. Then µε is a deterministic
probability measure on TQ0. This implies that the convergence of µnk,ε to µε holds also
in probability. Furthermore, the TQ0-valued random variable (X1,nk,ε, Z1,nk,ε) converges in
law to a TQ0-valued random variable of law µε.

The next step is to prove that on the “boundary” of the indicator function 11{|x−x′|≤ε},
there is no problem.

Assumption (H4): The diffusion part d is continuous and strictly positive on HQ0 .
The coagulation kernel K is continuous on HQ0 ×HQ0.

Proposition 3.6 Let ε > 0 be fixed and assume (H1) to (H4). Consider any limiting
point µε of {µn,ε}n, say that µε is the limit of {µnk,ε}k. Then µε is the law of a TQ0-valued
random variable (Xε, Zε). For any t > 0, the law of Xε

t has a density with respect to the
Lebesgue measure on R

p.

We will finally be able to conclude the convergence of (PS(n, ε)) to (SDE(ε)).

Theorem 3.7 Let ε > 0 be fixed and assume (H1) to (H4). Then any limiting point
µε ∈ P(TQ0) of {µn,ε}n is a solution to the martingale problem (MP (ε)).

The following corollary is obvious from the previous theorem.

Corollary 3.8 Let ε > 0 be fixed and assume (H1) to (H4). Then there is existence
for (MP (ε)), for (SDE(ε)) and for (WS(ε)).
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3.3 Convergence of (WS(ε)) to (WS)

Our aim is now to prove that the family of solutions to (WS(ε)) converges, up to extrac-
tion, to a solution of (WS). Some of the ideas below have been communicated to us by
James R. Norris, and we refer to his forthcoming paper [Nor01]. We begin with a lemma,
which allows to rewrite (WS(ε)) in terms of semi-group.

Lemma 3.9 Assume (H1) to (H4). Consider a family of solutions
{((X0, Z0), (X

ε, Zε), (X̃, Z̃), N ε, B)}ε>0 to (SDE(ε)), and denote by Qε
t (dx, dz) the law of

(Xε
t , Z

ε
t ). Consider also the p-dimensional heat kernel

q(t, x, y) =
1

(2πt)p/2
e−

|x−y|2

2t . (3.3)

Then for all ϕ in Cc(R
p × (0,∞)), for all t ≥ 0 and all ε > 0,

∫

Rp×R+

ϕ(x, z)Qε
t (dx, dz) =

∫

Rp×R+

Q0(dx, dz)

∫

Rp

dyq(td(z), x, y)ϕ(y, z)

+

∫ t

0

ds

∫

Rp×R+

Qε
s(dx, dz)

∫

Rp×R+

Qε
s(dx

′, dz′)
K(z, z′)

z′
11{|x−x′|≤ε}
vpεp

∫

Rp

dy
{

q((t− s)d(z + z′), x, y)ϕ(y, z + z′) − q((t− s)d(z), x, y)ϕ(y, z)
}

.

(3.4)

To obtain the compactness result in ε, we add the following assumption.
Assumption (H5):

1. The diffusion coefficient d is decreasing, and there exist some constants 0 < d < d
such that for all z ∈ HQ0, d ≤ d(z) ≤ d.

2. There exists a constant C0 and a probability measure ν0 on (0,∞) such that
Q0(dx, dz) ≤ C0dxν0(dz).

Notice that the assumption “d is decreasing” is physically natural, since it says that larger
a particle is, slower it moves. We carry on with a second lemma.

Lemma 3.10 Assume (H1) to (H5). Consider a family of solutions
{((X0, Z0), (X

ε, Zε), (X̃, Z̃), N ε, B)}ε>0 to (SDE(ε)). Then for each ε > 0 and each
t ≥ 0, the law of Xε

t has a density δε(t, .) with respect to the Lebesgue measure on R
p, and

this density is uniformly bounded: for all x ∈ R
p, δε(t, x) ≤ C0

(

d
d

)p/2

, where C0, d and d

are defined in (H5).

This lemma allows us to obtain a compactness result.

Proposition 3.11 Assume (H1) to (H5). Consider a family of solutions
{((X0, Z0), (X

ε, Zε), (X̃, Z̃), N ε, B)}ε>0 to (SDE(ε)). Denote by Qε the law of (Xε, Zε).
Then the family {Qε}ε>0 is tight in P(TQ0).

To prove that the limit points are solutions to (WS), we have to obtain a sort of “space-
equicontinuity” of the family Qε

t (dx, dz) = L(Xε
t , Z

ε
t ), for t > 0 fixed. This will be

expressed in the next lemma.
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Lemma 3.12 Assume (H1) to (H5). Consider a family of solutions
{((X0, Z0), (X

ε, Zε), (X̃, Z̃), N ε, B)}ε>0 to (SDE(ε)). Denote by Qε
t (dx, dz) the law of

(Xε
t , Z

ε
t ). From Lemma (3.10) we know that we may write Qε

t (dx, dz) = γεt (x, dz)dx.
Consider a function α ∈ Cc((0,∞)) and set f εt (x) =

∫

R+
α(z)γεt (x, dz). Then f εt is dif-

ferentiable on R
p for any t > 0 and ε > 0. Furthermore, for any T > 0, there exists a

constant AT (depending on the function α) such that for all 0 < t ≤ T , all x ∈ R
p and

all ε > 0, |∇xf
ε
t (x)| ≤ AT√

t
.

We are finally able to obtain convergence as ε goes to 0.

Theorem 3.13 Assume (H1) to (H5). Consider a family of solutions
{((X0, Z0), (X

ε, Zε), (X̃, Z̃), N ε, B)}ε>0 to (SDE(ε)). Consider a sequence Qεk = L(Xεk , Zεk)
converging weakly to some Q in P(TQ0). Denote by Qt ∈ P(Rp × R+) the time marginal
of Q. Then
(i) For all t ≥ 0, we may write Qt(dx, dz) = γt(x, dz)dx.
(ii) {Qt}t≥0 is a solution to (WS).
(iii) {Qt}t≥0 is spatially regular, in the sense that for all α ∈ Cc((0,∞)), the map
x 7→

∫

α(z)γt(x, dz) has a bounded derivative.

First of all let us mention that our aim in this work is to construct a probabilistic ap-
proach and a numerical approximation scheme for the solution of the diffusive coagulation
equation. We are not searching for new existence results. Keeping this in mind, let us now
compare our existence results with those of Laurençot-Mishler, [LM01a], [LM01b]. Their
results are clearly globally better than ours. In the discrete case, we obtain the same type
of weak solution than [LM01a]. In the continuous case, we obtain “measure-solutions”,
while “function-solutions” are built in [LM01b]. We assume more conditions about the
diffusion coefficient d and the initial condition. However, we allow the standard kernel
K(z, z′) = z+ z′, which is not the case in [LM01a], [LM01b], who assume that K(z, z′)/z′

tends to 0 when z′ tends to infinity, for each z. Notice finally that in the continuous case,
a monotonicity condition about the kernel K is assumed in [LM01b].

4 Proofs

In this section, we give the proofs of the previously announced results.

4.1 Existence for the particle system (PS(n, ε))

We begin with the existence result for the particle system.
Proof of Proposition 3.1 We will only sketch the proof, since it is rather standard. Let
us consider ε > 0 and n ≥ 1 to be fixed. We consider also, as in Definition 2.11, a set of
random objects (Bi,n

t )t≥0, (X i,n
0 , Z i,n

0 ), and N i,n,ε(ds, dj, du), for i ∈ {1, ..., n}.
First we can easily obtain existence and uniqueness for a particle system with cutoff
(PS(n, ε)(M)). We define for M > 0 fixed, KM(z, z′) = K(z ∧M, z′ ∧M). KM is clearly
bounded. We also set Z i,n,M

0 = Z i,n
0 ∨ (1/M), for each i in {1, ..., n}, in order to avoid

problems for masses near 0.
We denote by (PS(ε, n)(M)) the particle system defined as (PS(ε, n)) after replacing the
kernel K by KM and Z i,n

0 by Z i,n,M
0 for each i. Then it is clear that one may replace, in

(PS(n, ε)(M)), the Poisson measures N i,n,ε by their restrictions N i,n,ε|[0,∞)×{1,...,n}×[0,CM ],
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where CM = MCK(1 + 2M). Existence and uniqueness are completely standard for
(PS(n, ε)(M)), see e.g. Ikeda-Watanabe, [IW89]. Furthermore, it is quite clear that the
unique solution
((X1,n,ε,M, Z1,n,ε,M), ..., (Xn,n,ε,M, Zn,n,ε,M)) to (PS(n, ε)(M)) belongs a.s. to (TQ0)

n.
We can easily check that for any T < ∞, there exists a constant C(T, ε) depending only
on T and ε such that for any M ≥ 1,

sup
i∈{1,...,n}

E

[

sup
[0,T ]

Z i,n,ε,M
s

]

≤ C(T, ε). (4.1)

Consider now, for each M , the stopping time τM = inf{t > 0, supi∈{1,...,n} |Z1,n,ε,M
t | > M}.

By (4.1) we deduce easily that : τM → ∞ a.s . as M → ∞.
Consider also the subset ΩM of Ω defined by ΩM =

{

ω; infi∈{1,...,n}Z
i,n
0 ≥ 1/M

}

. Then we
know from (H1) − 1 that P(ΩM) tends to 1 as M increases to infinity.
The way to build a solution to (PS(n, ε)) is now clear. For ω ∈ Ω fixed and T < ∞ we
choose M large enough, in order to obtain ω ∈ ΩM and τM(ω) ≥ T , and set X i,n,ε

t (ω) =
X i,n,ε,M
t (ω) and Z i,n,ε

t (ω) = Z i,n,ε,M
t (ω) for all i ∈ {1, ..., n} and all t ∈ [0, T ]. Classical

arguments show that this defines a unique solution to (PS(n, ε)).
We finally check (3.1). Assume thus that for some q ≥ 1, E(Zq

0 + |X0|q) < ∞. Since
the particle system is symmetric, and since Z1,n,ε is nondecreasing, we first notice that
supi∈{1,...,n} E

[

sup[0,T ] {|Z i,n,ε
s |q + |X i,n,ε

s |q}
]

≤ E
[

|Z1,n,ε
T |q + sup[0,T ] |X1,n,ε

s |q
]

.
Then, a simple computation using (H1), the Hölder inequality and the symmetry of the
system shows that

E
[

|Z1,n,ε
t |q

]

≤ E(Zq
0) +

∫ t

0

1

n

n
∑

j=1

E

[

{

|Z1,n,ε
s + Zj,n,ε

s |q − |Z1,n,ε
s |q

} K(Z1,n,ε
s , Zj,n,ε

s )

Zj,n,ε
s

]

ds

vpεp

≤ E(Zq
0) + Cq,ε

∫ t

0

1

n

n
∑

j=1

E
[{

|Z1,n,ε
s |q−1 + |Zj,n,ε

s |q−1
}{

1 + Z1,n,ε
s + Zj,n,ε

s

}]

ds

≤ E(Zq
0) + Cq,ε

∫ t

0

[

1 + E
[

|Z1,n,ε
s |q

]]

ds (4.2)

where the constant Cq,ε depends only on q and ε. The Gronwall Lemma allows to conclude
that E

[

|Z1,n,ε
T |q

]

≤ Cq,ε,T .
Next, using the Burkholder-Davis-Gundy and Hölder inequalities and (H1), we obtain

E
[

sup[0,T ] |X1,n,ε
s |q

]

≤ CqE(|X0|q) + CqE

[

(
∫ T

0

2d(Z1,n,ε
s )ds

)q/2
]

≤ Cq + Cq

∫ T

0

E
(

1 + |Z1,n,ε
s |q

)

ds ≤ Cq,ε,T

(4.3)

thanks to the previous estimate. This ends the proof. �

4.2 Convergence of (PS(n, ε)) to (SDE(ε))

We now check the tightness result in n.
Proof of Proposition 3.3 We notice first that 1 is equivalent to 2, due to Méléard
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[Mél96], Lemma 4.5. It is thus sufficient to prove 1.
Let us also remark that proving 1 is equivalent to prove that (L(X1,n,ε))n≥1 is tight in
C([0,∞),Rp) and (L(Z1,n,ε))n≥1 is tight in D([0,∞),Rp).

The tightness result of (L(X1,n,ε
t ))n is a classical consequence of the fact that

supn sups≤T E[
√

(d(Z1,n,ε
s ))q0 ] ≤ CT,ε with q0 > 2, which follows from hypothesis (H1)−3,

(H2) and from (3.1).
Consider now the size component Z i,n,ε. We will apply the Aldous criterion (see Jacod-
Shiryaev [JS87]). Consider the set A(T, δ) of couples (S, S ′) of stopping times satisfying
a.s. S ≤ S ′ ≤ (S + δ) ∧ T . We have to check that the conditions below are satisfied.

(i)

(

L
(

sup
[0,T ]

|Z1,n,ε
t |

))

n≥1

is tight in P(R+).

(ii) For any T > 0 and any η > 0

lim
δ→0

sup
n

sup
(S,S′)∈A(T,δ)

P
[

|Z1,n,ε
S′ − Z1,n,ε

S | > η
]

= 0. (4.4)

Let us notice that (i) is clearly satisfied thanks to (3.1) with q = 1. In order to prove (ii)
we use (H1) − 2 and (3.1) with q = 1. We obtain, using symmetry arguments, that

P
[

|Z1,n,ε
S′ − Z1,n,ε

S | > η
]

≤ 1

η
E
[

|Z1,n,ε
S′ − Z1,n,ε

S |
]

≤ 1

η
E

[

∫ S′

S

∫

j

∫ ∞

0

Zj,n,ε
s− 11(

u≤
K(Z

1,n,ε
s−

,Z
j,n,ε
s−

)

Z
j,n,ε
s−

)11{|X1,n,ε
s− −Xj,n,ε

s− |≤ε}N
1,n,ε(ds, dj, du)

]

≤ 1

η
E

[

∫ (S+δ)∧T

S

CK(1 + 2Z1,n,ε
s )

ds

vpεp

]

≤ A(ε)
δ

η
E

[

sup
[0,T ]

(1 + Z1,n,ε
s )

]

≤ A(T, ε)

η
δ

(4.5)
where A(T, ε) depends only on T and ε. This justifies (ii), and concludes the proof. �

The next proof concerns the propagation of chaos result, for the particle system, as
the number n of particles grows to infinity, for ε fixed.
Proof of Proposition 3.4 Graham-Méléard proved in [GM97] a similar result for the
case of a particle system associated with a non homogeneous Boltzmann equation. Al-
though we can not apply their result, one can follow their proof line by line in the case
where the total rate of jump per particle is finite. We thus first consider a case with cutoff
in Step 1. Step 2 is devoted the convergence (in total variation) of the particle system
with cutoff to the one without cutoff. Finally, we conclude in Step 3.
We consider the particle system ((X1,n,ε, Z1,n,ε), ..., (Xn,n,ε, Zn,n,ε)) associated with the
initial conditions ((X1,n

0 , Z1,n
0 ),...,(Xn,n

0 , Zn,n
0 )), with Poisson measures N1,n,ε, ..., Nn,n,ε

and with Brownian Motions B1,n, ..., Bn,n.
Step 1 For any M <∞, we denote by KM the truncated coagulation kernel KM(z, z′) =
K(z ∧M, z′). Then we denote by {(X i,n,ε,M , Z i,n,ε,M)}i∈{1,...,n} the particle system asso-
ciated with the kernel KM and with the same initial conditions, Poisson measures, and
Brownian motions as {(X i,n,ε, Z i,n,ε)}i∈{1,...,n}.
Then it is clear that the maximum rate of jump of each Z i,n,ε,M is bounded from above
by

ΛM,ε =
1

vpεp
sup

z,z′∈HQ0

K(z ∧M, z′)

z′
≤ 1

vpεp
CK

(

1 +
1 +M

c0

)

(4.6)
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where CK and c0 are defined respectively in (H1) and (H3).
Then we can prove, by following line by line the proof of Graham-Méléard [GM97], that
for any n and any k ≤ n,

|L[(X1,n,ε,M , Z1,n,ε,M), ..., (Xk,n,ε,M , Zk,n,ε,M)] − L(X1,n,ε,M , Z1,n,ε,M)⊗k|T

≤ k(k − 1)
ΛM,εT + (ΛM,εT )2

n− 1
.

(4.7)

Step 2 Consider now, for M > 0, i ∈ {1, ..., n} the stopping time
T n,ε,Mi = inf {t ≥ 0 ; Z i,n,ε

t ≥M}. An uniqueness argument shows that for any i and M ,

(X i,n,ε
t , Z i,n,ε

t ) = (X i,n,ε,M
t , Z i,n,ε,M

t ), for all t ∈ [0, T n,ε,Mi ). (4.8)

Indeed, assume that for some t, (X i,n,ε
t , Z i,n,ε

t ) 6= (X i,n,ε,M
t , Z i,n,ε,M

t ). Then
- either Z i,n,ε

t > M , and hence t ≥ T n,ε,Mi ,
- or there was a particle j whose size was greater than M which has coagulated, before

t, on the particle i. But then, we obviously deduce that Z i,n,ε
t > M , and hence t ≥ T n,ε,Mi ,

- or there was a particle j1, whose size was greater than M , which has coagulated on
a particle of j2, which then has coagulated on i, all of this happened on [0, t]. Once again
in this case, it is clear that Z i,n,ε

t > M , and so t ≥ T n,ε,Mi ,
- etc...

Hence (4.8) holds. We deduce that for any l ∈ {1, ..., n}, using only the definition of the
total variation norm,

∣

∣

∣
L[(X1,n,ε,M , Z1,n,ε,M), . . . , (X l,n,ε,M, Z l,n,ε,M)]−L[(X1,n,ε, Z1,n,ε), . . . , (X l,n,ε, Z l,n,ε)]

∣

∣

∣

T

≤ 2P (T n,ε,M1 ∧ ... ∧ T n,ε,Ml ≤ T ) ≤ 2lP(T n,ε,M1 ≤ T )
(4.9)

where the last inequality is obtained by using a symmetry argument. One easily checks,
by applying (3.1) with q = 1, that

P (T n,ε,M1 ≤ T ) ≤ P
(

sup
[0,T ]

|Z1,n,ε
t | ≥M

)

≤ C(T, ε)

M
, (4.10)

the constant C(T, ε) being independent of n and M .
Step 3 Let finally k be fixed. Combining (4.7), (4.9) with l = k and after with l = 1 and
(4.10), we obtain that for any M > 1,

∣

∣

∣
L[(X1,n,ε, Z1,n,ε), ..., (Xk,n,ε, Zk,n,ε)] − L(X1,n,ε, Z1,n,ε)⊗k

∣

∣

∣

T

≤ k(k − 1)

n− 1
(ΛM,εT + (ΛM,εT )2) + C(T, ε)

4k

M
.

(4.11)

For a suitable choice of M with respect to n, we conclude that the propagation of chaos
result (3.2) holds. �

We carry on with the easy consequence that all limiting point of µn,ε is deterministic.
Proof of Corollary 3.5 Let ε be fixed, and let {µnk,ε}k be a subsequence of {µn,ε}n
converging in law to some µε. We have to prove that µε is deterministic. For T > 0,
denote by TQ0(T ) the set of functions in TQ0 restricted to the time interval [0, T ]. It
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suffices to prove that for any continuous bounded function φ : TQ0(T ) 7→ R, the variable
∫

φdµε is deterministic. We obtain this by showing that

Var

∫

φdµε = lim
k

E

[

(
∫

φdµnk,ε

)2
]

− lim
k

E

[
∫

φdµnk,ε

]2

= 0, (4.12)

which is classically a consequence of the propagation of chaos result.
We now check the second assertion of the corollary, that is L(X1,nk,ε, Z1,nk,ε) goes to µε

as k goes to infinity. We have to prove that for any continuous bounded φ from TQ0

into R, limk E [φ(X1,nk,ε, Z1,nk,ε)] =
∫

φdµε. This is obvious, since E [φ(X1,nk,ε, Z1,nk,ε)] =
E
[∫

φdµnk,ε
]

, also the map µ 7→
∫

φdµ is continuous and bounded on P(TQ0), and since
E
[∫

φdµε
]

=
∫

φdµε. The proof is now complete. �

We carry on with the result on the regularity of the space marginals of µε.
Proof of Proposition 3.6 Let ε be fixed, and denote by µε the limit in law of a convergent
subsequence {µnk,ε}k≥1 of {µn,ε}n≥1. We know from Corollary 3.5 that µε ∈ P(TQ0) is
deterministic, and that (X1,nk,ε, Z1,nk,ε) goes in law to some (Xε, Zε) of law µε. We have
to prove that the law of Xε

t has a density for all t > 0. This will be done in several steps.
First of all, we define the natural filtration Ft = σ(Xε

s , Z
ε
s , s ≤ t). In the first step, we

will express Xε as a stochastic integral w.r.t. a Brownian motion. In the second step,
we will prove that the corresponding integrand is piecewise constant, which will allow to
conclude in step 3.
Step 1 We first prove that there exists a {Ft}t-Brownian Motion B, independent of X0,
such that

Xε
t = X0 +

∫ t

0

√

2d(Zε
s)dBs. (4.13)

Using standard representation theorems, it suffices to show that for any φ ∈ C2
c (R

p), the
process

Mφ
t = φ(Xε

t ) − φ(Xε
0) −

∫ t

0

d(Zε
s)∆φ(Xε

s)ds (4.14)

is an {Ft}t-martingale. We have thus to prove that for any k ∈ N
∗, any g1, ..., gk in

Cb(R
p × R+) and any 0 ≤ s1 < ... < sk < s < t,

E

[

g1(X
ε
s1
, Zε

s1
) . . . gk(X

ε
sk
, Zε

sk
){φ(Xε

t ) − φ(Xε
s ) −

∫ t

s

d(Zε
u)∆φ(Xε

u)du}
]

= 0. (4.15)

Using the explicit expression of (PS(n, ε)), it is clear that this equality holds by replacing
everywhere Xε and Zε by X1,nk,ε and Z1,nk,ε. We can make k go to infinity by using
classical arguments (see the proof of the Theorem 3.7 bellow for a similar problem). This
concludes Step 1.
Step 2 We now check that the càdlàg process Zε is a.s. constant between its jumps, with
an a.s. finite number of jumps on each finite time interval.
It is clear that for each k, Z1,nk,ε belongs a.s. to the following set:

S =
{

z ∈ D
↑([0,∞),HQ0)/∃ 0 < t1 < ... < tk < ..., limk tk = ∞,

∃ α1, ..., αk, ... ∈ [c0,∞), z(t) = α0 +
∑∞

i=1 αi11{t≥ti}

}

, (4.16)
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where c0 is defined in (H3). This set is closed in D
↑([0,∞),HQ0) for the Skorohod topol-

ogy. Hence Zε belongs a.s. to S. This ends the proof of Step 2.
Step 3 We are finally able to conclude. First denote by 0 = T0 < T1 < ... the successive
times of jumps of Zε. These are of course {Ft}t-stopping times. Then we notice that due
to (4.13) and since Zε is constant between its jumps, we have, for t > 0,

Xε
t =

∑

i≥0

11[Ti,Ti+1)(t)
[

Xε
Ti

+
√

2d(Zε
Ti

)(Bt − BTi
)
]

. (4.17)

Since Zε is quasi-càg (thanks to the Aldous criterion), we can replace 11[Ti,Ti+1) by 11(Ti,Ti+1).
The conclusion follows easily. �

We are finally able to prove that µε satisfies (MP (ε)).
Proof of Theorem 3.7 Denote by µε ∈ P(TQ0) the deterministic limit in law of a con-
vergent sub-sequence {µnk,ε}k≥1 of {µn,ε}n≥1. We have to check that µε satisfies (MP (ε)).
Consider 0 ≤ s1 < . . . < sl < s < t, g1, . . . , gl ∈ Cb(R

p × R+) and φ ∈ C2
b (R

p × R+).
Consider also F : TQ0 × TQ0 7→ R, defined by

F ((x, z), (x′, z′)) = g1(x(s1), z(s1)) × . . .× gl(x(sl), z(sl))

×
{

φ(x(t), z(t)) − φ(x(s), z(s)) −
∫ t

s

∆xφ(x(u), z(u))d(z(u))du

−
∫ t

s

[φ(x(u), z(u) + z′(u))−φ(x(u), z(u))]
K(z(u), z′(u))

z′(u)
11{|x(u)−x′(u)|<ε}

1

vpεp
du

}

.

(4.18)
In order to obtain that µε satisfies (MP (ε)) it is sufficient to prove that for all F of the
form given in (4.18),

< µε ⊗ µε, F >= 0. (4.19)

The proof is divided in several steps. We will first prove in Step 1 below that for any
k ≥ 1,

E [< µnk,ε ⊗ µnk,ε, F >] = 0. (4.20)

Secondly, in Step 2 we will check that for any positive constant M ,

lim
k→∞

E [< µnk,ε ⊗ µnk,ε, F ∧M ∨ (−M) >] =< µε ⊗ µε, F ∧M ∨ (−M) > . (4.21)

We finally will obtain in Step 3 that

lim
M→∞

sup
k

E
[

< µnk,ε ⊗ µnk,ε, |F |11{|F |>M} >
]

= 0. (4.22)

Gathering together (4.20), (4.21) and (4.22) leads to (4.19).
Step 1 A simple computation, using the explicit expressions of F and µnk,ε leads to

<µnk,ε ⊗ µnk,ε, F >=
1

nk

nk
∑

i=1

g1(X
i,nk,ε
s1

, Z i,nk,ε
s1

) . . . gl(X
i,nk,ε
sl

, Z i,nk,ε
sl

)[M i,nk,ε
t (φ) −M i,nk,ε

s (φ)]

(4.23)
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where

M i,nk,ε
t (φ) = φ(X i,nk,ε

t , Z i,nk,ε
t ) − φ(X i,nk,ε

0 , Z i,nk,ε
0 ) −

∫ t

0

∆xφ(X i,nk,ε
u , Z i,nk,ε

u )d(Z i,nk,ε
u )du

−
∫ t

0

∫ ∞

0

1

nk

nk
∑

j=1

[

φ(X i,nk,ε
u , Z i,nk,ε

u + Zj,nk,ε
u ) − φ(X i,nk,ε

u , Z i,nk,ε
u )

]

11

z≤K(Z
i,nk,ε
u ,Z

j,nk,ε
u )

Z
j,nk,ε
u

ff11{|Xi,nk,ε
u −Xj,nk,ε

u |<ε}
1

vpεp
dzdu.

(4.24)
By applying Itô formula to (PS(nk, ε)) in order to express φ(X i,nk,ε

t , Z i,nk,ε
t ), we obtain

that M i,nk,ε(φ) is a martingale starting from 0, for every i. It is then clear from (4.23)
that E(< µnk,ε ⊗ µnk,ε, F >) = 0 for any k.
Step 2 We now have to check (4.21). We know that µnk,ε goes in law to µε, and that µε

is deterministic. This implies that for any bounded function ψ from P(TQ0) into R, which
is continuous at µε, there is convergence of E[ψ(µnk,ε)] to ψ(µε). We thus first check that
the map ψ(µ) =< µ⊗ µ, F > is continuous at µε. Using the explicit expression of F , we
see that the map ψ is continuous at any point of the subset C = C1 ∩ C2 of P(TQ0), where

C1 =
{

Q ∈ P(TQ0)
/

∀u∈ (0,∞),
∫

TQ0
211{|x(u)−x′(u)|<ε}Q(dx, dz)Q(dx′, dz′)=0

}

,

C2 =
{

Q ∈ P(TQ0)
/

Q ({∆z(s1) = . . . = ∆z(sl) = ∆z(s) = ∆z(t) = 0}) = 1
}

.
(4.25)

We shall prove that µε belongs to both sets C1 and C2. Proposition 3.6 allows to obtain
that µε belongs to C1. On the other hand, we know from Corollary 3.5 that µε is the
weak limit of {L(X1,nk,ε, Z1,nk,ε)}k, and we checked in the proof of Proposition 3.3 that
the sequence {L(Z1,nk,ε)}k satisfies the Aldous criterion. This shows that its limit (i.e.
the “size” marginal of µε) is the law of a quasi-càg process, which implies directly that µε

belongs to C2. Now it is clear that for any constant M > 0, ψ ∧M ∨ (−M) is bounded
and continuous at µε. We get (4.21).
Step 3 We are now interested in (4.22). First notice, by using (4.18), (H1) and the
fact that φ belongs to C2

b , that there exists a constant A(ε) such that for any (x, z),
(x′, z′) ∈ TQ0

|F ((x, z), (x′, z′))| ≤ A(ε) [1 + z(t) + z′(t)] . (4.26)

Then, computing explicitly E
[

< µnk,ε ⊗ µnk,ε, |F |11{|F |>M} >
]

and applying (3.1) with q =
2 allow to conclude that (4.22) holds. This ends the proof. �

4.3 Convergence of (WS(ε)) to (WS)

The idea of this convergence is to use the formulation of the problem in terms of semi-
group and take benefit on the properties of the heat kernel. We omit the proof of Lemma
3.9, because it is completely standard.
Proof of Lemma 3.10 Applying (3.4) with the test function ϕ(x, z) = h(x)dp/2(z), for
some nonnegative h ∈ Cc(R

p), we obtain that

∫

Rp×R+

h(x)d
p
2 (z)Qε

t (dx, dz) ≤
∫

Rp×R+

Q0(dx, dz)

∫

Rp

dyq(td(z), x, y)h(y)d
p
2 (z). (4.27)
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Indeed, the last term in (3.4) becomes negative with such a test function: since d is
decreasing and h is nonnegative, we can easily check, using the explicit expression of the
p-dimensional heat kernel, that for any s, t, x, y, z, z′

h(y){dp/2(z + z′)q((t− s)d(z + z′), x, y) − dp/2(z)q((t− s)d(z), x, y)} ≤ 0. (4.28)

Using finally (H5) and the fact that
∫

q(s, x, y)dx = 1, we deduce from (4.27) that for
any nonnegative h ∈ Cc(R

p),

∫

Rp×R+

h(x)Qε
t (dx, dz)≤

1

dp/2

∫

Rp×R+

h(x)dp/2(z)Qε
t (dx, dz)≤C0

(

d

d

)p/2∫

Rp

h(y)dy. (4.29)

This concludes the proof. �

This key lemma allows us to prove the compactness in ε.
Proof of Proposition 3.11 First {L(Xε)}ε>0 is tight in C([0,∞),Rp) because d is
bounded. Thus, we have only to check that {L(Zε)}ε>0 is tight in D([0,∞),R+), by using
the Aldous criterion (see Jacod-Shiryaev, [JS87]). We have to show (i) and (ii) below.
(i) For any T > 0, supε>0 E[sup[0,T ] |Zε

t |] <∞.
(ii) For any η > 0 and any T < T0

lim
δ→0

sup
ε>0

sup
(S,S′)∈A(δ,T )

P [|Zε
S′ − Zε

S| > η] = 0, (4.30)

where A(δ, T ) is the set of the couples (S, S ′) of stopping times satisfying a.s. 0 ≤ S ≤
S ′ ≤ (S + δ) ∧ T .
We begin with (i). First, we have a.s. sup[0,T ] |Zε

t | = Zε
T . Using the expression of Zε and

(H1), we obtain

E[Zε
t ] = E[Z0] +

∫ t

0

EEα

[

K(Zε
s , Z̃

ε
s(α))11{|Xε

s−X̃ε
s (α)|<ε}

] ds

vpεp

≤ E[Z0] + CK

∫ t

0

EEα

[(

1 + Zε
s + Z̃ε

s (α)
)

11{|Xε
s−X̃ε

s (α)|<ε}

] ds

vpεp
.

(4.31)

For symmetrical reasons, we get

E[Zε
t ] ≤ E[Z0] + 2CK

∫ t

0

E

[

(1 + Zε
s) sup

x∈Rp

Pα

(

|X̃ε
s (α) − x| < ε

)

]

ds

vpεp
. (4.32)

Thanks to Lemma 3.10, it is clear that for all s ≥ 0,

sup
x∈Rp

1

vpεp
Pα

(

|X̃ε
s (α) − x| < ε

)

≤ C0

(

d

d

)p/2

. (4.33)

Hence, there exists a constant D such that

E[Zε
t ] ≤ E[Z0] +D

∫ t

0

(1 + E[Zε
s ]) ds. (4.34)

Gronwall’s Lemma allows to conclude the proof of (i).
We still have to check (ii). We denote by Jεt the number of jumps of Zε on [0, t]:

Jεt =

∫ t

0

∫ 1

0

∫ ∞

0

11

z≤
K(Zε

s−,Z̃ε
s−(α))

Z̃ε
s−(α)

ff11{|Xε
s−−X̃ε

s−(α)|≤ε}N
ε(ds, dα, dz). (4.35)
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Since Zε is constant between is jumps, one obtains that for any ε > 0, η > 0, δ > 0,
T <∞ and for any (S, S ′) ∈ A(δ, T ),

P [|Zε
S′ − Zε

S| > η] ≤ P [|JεS′ − JεS| ≥ 1] ≤ E [|JεS′ − JεS|]

≤ E

[

∫

(S,S′]

Eα

(

K(Zε
u, Z̃

ε
u(α))

Z̃ε
u(α)

11{|Xε
u−X̃ε

u(α)|≤ε}

)

ds

vpεp

]

.
(4.36)

Thanks to (H3), we also know that Z0 ≥ c0 a.s., which implies that HQ0 ⊂ [c0,∞).
Using (H1), we deduce that there exists a constant D such that for any z, z′ in HQ0 ,
K(z, z′)/z′ ≤ D(1 + z). We thus obtain, using successively (4.33) and (i) that

P [|Zε
S′ − Zε

S| > η] ≤ E

[
∫ S+δ

S

D(1 + Zε
s) sup

x∈Rp

Pα

(
∣

∣

∣
X̃ε
s − x

∣

∣

∣
≤ ε
) ds

vpεp

]

≤ D′
E

[
∫ S+δ

S

(1 + Zε
s )ds

]

≤ A(T ) δ

(4.37)

the constant A(T ) being independent of δ ∈ [0, 1], η > 0, ε > 0 and (S, S ′) ∈ A(δ, T ).
Hence (ii) follows easily. This concludes the present proof. �

We now prove the technical Lemma concerning the regularity in x of Qε
t (dx, dz).

Proof of Lemma 3.12 Let ε > 0, T > 0 and t ∈ (0, T ] be fixed. Applying (3.4) for
test functions of the form ϕ(x, z) = h(x)α(z), gives an integral expression for f εt that we
differentiate by using the Lebesgue theorem:

∇yf
ε
t (y) =

∫

Rp×R+

Q0(dx, dz)∇yq(td(z), x, y)α(z)

+

∫ t

0

ds

∫

Rp×R+

Qε
s(dx, dz)

∫

Rp×R+

Qε
s(dx

′, dz′)
K(z, z′)

z′
11{|x−x′|≤ε}
vpεp

{

∇yq((t− s)d(z + z′), x, y)α(z + z′) −∇yq((t− s)d(z), x, y)α(z)
}

.

(4.38)

Thanks to (H5), for any z ∈ HQ0 , any x, y ∈ R
p and any u > 0

|∇yq(ud(z), x, y)| ≤ |∇yq(ud, x, y)|
(

d

d

)1+p/2

. (4.39)

Since furthermore α is bounded and has a compact support in (0,∞), one easily obtains,
using (H5), the existence of a constant D such that

|∇yf
ε
t (y)| ≤ D

∫

Rp

|∇yq(td, x, y)|dx

+D

∫ t

0

ds

∫

Rp×R+

Qε
s(dx, dz)

∫

Rp×R+

Qε
s(dx

′, dz′)
11{|x−x′|≤ε}
vpεp

|∇yq((t− s)d, x, y)|.

(4.40)
By Lemma 3.10 it is clear that for any x ∈ R

p and any s ≥ 0

∫

Rp×R+

11{|x−x′|≤ε}
vpεp

Qε
s(dx

′, dz′) ≤ C0

(

d

d

)p/2

(4.41)
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and that, in an obvious sense,
∫

R+
Qε
s(dx, dz) ≤ C0

(

d
d

)p/2

dx. We obtain thus the exis-

tence of a constant D such that

|∇yf
ε
t (y)| ≤ D

∫

Rp

|∇yq(td, x, y)|dx+D

∫ t

0

ds

∫

Rp

|∇yq((t− s)d, x, y)|dx. (4.42)

To conclude, we notice that for any u > 0 and any y ∈ R
p,
∫

Rp |∇yq(u, x, y)|dx ≤
√

p
u
.

Hence, |∇yf
ε
t (y)| ≤ D

(√
t+ 1√

t

)

, the constant D not depending on y, t, nor ε. This

concludes the proof. �

We finally check that the limiting points of (WS(ε)) satisfy (WS).
Proof of Theorem 3.13 First of all we deduce from the fact that {L(Zε

t )}ε>0 satisfies
the Aldous criterion that for each t ≥ 0, Qεk

t goes weakly to Qt in P(Rp × R+): this is not
a priori obvious, since the projections z 7→ z(t) are not continuous from D([0,∞),HQ0),
but the Aldous criterion says that any limit point is quasi-càg, which suffices.
Then we notice that points (i) and (iii) follows immediately from lemmas 3.10 and 3.12.
Let us prove (ii). We know that for each k, {Qεk

t }t≥0 is a solution to (WS(εk)), see
Definition 2.4. We have to make k go to infinity. Let us consider φ ∈ C2

c (R
p × (0,∞))

and t ≥ 0 to be fixed. It is obvious from the definition of the weak convergence that
∫

Rp×R+

φ(x, z)Qεk
t (dx, dz) −→

k→∞

∫

Rp×R+

φ(x, z)Qt(dx, dz). (4.43)

Furthermore, since d is continuous, for each s ≥ 0, we have
∫

Rp×R+

d(z)∆xφ(x, z)Qεk
s (dx, dz) −→

k→∞

∫

Rp×R+

d(z)∆xφ(x, z)Qs(dx, dz) (4.44)

which implies, thanks to the Lebesgue Theorem, that

lim
k→∞

∫ t

0

ds

∫

Rp×R+

d(z)∆xφ(x, z)Qεk
s (dx, dz) =

∫ t

0

ds

∫

Rp×R+

d(z)∆xφ(x, z)Qs(dx, dz). (4.45)

We finally have to check that
∫ t

0

ds

∫

(Rp×R+)2
Qεk
s (dx, dz)Qεk

s (dx′, dz′)
K(z, z′)

z′
11{|x−x′|≤εk}

vpε
p
k

[ψ(x, z+z′)−ψ(x, z)]

−→
k→∞

∫ t

0

ds

∫

Rp×R+

Qs(dx, dz)

∫

R+

γs(x, dz
′)
K(z, z′)

z′
[ψ(x, z + z′) − ψ(x, z)] .

(4.46)
Using again Lebesgue Theorem (for the measure ds), (H1) and the fact that φ belongs
to C2

c (R
p × (0,∞)), it clearly suffices to prove that for any ψ ∈ C2

c (R
p), any α and β in

C2
c ((0,∞)) and any s > 0, lim

k→∞
Ik = I, with the notations

Ik =

∫

Rp

ψ(x)f εk(x)T εkgεk(x)dx, I =

∫

Rp

ψ(x)f(x)g(x)dx (4.47)

and

f εk(x) =

∫

R+

α(z)γεk
s (x, dz), f(x) =

∫

R+

α(z)γs(x, dz)

gεk(x) =

∫

R+

β(z)γεk
s (x, dz), g(x) =

∫

R+

β(z)γs(x, dz)
(4.48)
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where γ is defined by (i) (see the statement of the Theorem) and where the mollifier
operator T ε is defined, for any function h on R

p, as T εh(x) = 1
vpεp

∫

Rp 11{|x−x′|≤ε}h(x
′)dx′.

Since Qεk
t goes weakly to Qt we deduce that f εk(x)dx goes weakly to f(x)dx. By using

Lemma 3.12, it is easily checked that f εk(x) converges to f(x) for every x, and of course,
gεk(x) converges also to g(x) for every x. We finally obtain using Lemmas 3.10 and 3.12,
and the fact that T εk is symmetric that there exists a constant D such that:

|Ik − I| ≤
∫

Rp

|ψ(x)||f εk(x) − f(x)| |T εkgεk(x)|dx

+

∣

∣

∣

∣

∫

Rp

ψ(x)f(x)T εk(g−gεk)(x)dx

∣

∣

∣

∣

+

∫

Rp

|ψ(x)f(x)||T εkg(x) − g(x)|dx

≤ D

∫

Rp

|ψ(x)| |f εk(x) − f(x)|dx+

∫

Rp

|T εk(ψf)(x)| |gεk(x) − g(x)|dx

+D

∫

Rp

|ψ(x)| ||∇g||∞εkdx

≤ D

∫

supp ψ

{|f εk(x) − f(x)| + |gεk(x) − g(x)| + εk}dx
(4.49)

which goes to 0, thanks to the Lebesgue Theorem. Hence (4.46) holds, and {Qs}s≥0

satisfies (WS). This ends the proof. �

5 Numerical study

We present in this part the numerical approximation naturally connected with the proba-
bilistic approach for the diffusive coagulation equation. First, we describe the simulation
algorithm for our particle system. After we present some numerical results.

5.1 The simulation algorithm

Let the dimension p ∈ N
∗, the number of particles n ∈ N

∗, the initial distribution Q0 ∈
P(Rp × R+) and the delocalisation parameter ε > 0 be fixed. Recall that vp is given in
Definition 2.4. The aim of this section is to simulate the solution
{(X1,n,ε

t , Z1,n,ε
t ), ..., (Xn,n,ε

t , Zn,n,ε
t )}t≥0 of (PS(n, ε)), under (H1). The algorithm writes:

Step 0 Simulate (X1,n,ε
0 , Z1,n,ε

0 ), ..., (Xn,n,ε
0 , Zn,n,ε

0 ) independent and of law Q0.

Step 1 Compute m1 = supi,j
K(Zi,n,ε

0 ,Zj,n,ε
0 )

Zj,n,ε
0

. Then simulate S1 of exponential law with

parameter n ×m1/(vpε
p), and set T1 = S1. Simulate B1

1 , ..., Bn
1 independent R

p-valued
Brownian motions on [0, S1], and set for each l

{

X l,n,ε
t = X l,n,ε

0 +
√

2d(Z l,n,ε
0 )Bl

1(t) ∀ t ∈ [0, T1]

Z l,n,ε
t = Z l,n,ε

0 ∀ t ∈ [0, T1).
(5.1)

After, choose (i1, j1) uniformly among {1, ..., n}2, and simulate U1 according to a uniform
law over [0, m1].
If |X i1,n,ε

T1
−Xj1,n,ε

T1
| ≤ ε and U1 ≤ K(Z i1,n,ε

0 , Zj1,n,ε
0 )/Zj1,n,ε

0 , then set

{

Z i1,n,ε
T1

= Z i1,n,ε
0 + Zj1,n,ε

0 , and

Z l,n,ε
T1

= Z l,n,ε
0 for all l 6= i1.

(5.2)
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The first line express the coagulation of the j1th particle to the i1th particle. Else, simply
set Z l,n,ε

T1
= Z l,n,ε

0 for all l. The computation continues this way.

Remark 5.1 Assume that one needs to simulate only a finite number of values µn,εt1 ,
..., µn,εtk of {µn,εt }t≥0, as is always the case in practise. Then one may use a trick based on
the following remark: at each “fictive or effective coagulation”, there is no need to move
the locations of all the particles, but only those that have to be tested. Hence, instead
of moving the location of all the particles at each fictive and effective change of state,
it suffices to move the location of only two particles at each fictive coagulation, and the
location of all the particles when the coagulation is effective. Since the proportion of
effective coagulations is very small, the use of this remark reduces strongly the calculating
time of the algorithm.

5.2 How to choose n and ε ?

We would now like to have an idea about how to choose n and ε. To this aim, we consider
a very simple and poor test case, which is unfortunately the only explicit computation
we are able to handle. We consider the three dimensional case p = 3, a constant diffusion
coefficient d(z) = 1/2, the coagulation kernel K(z, z′) = 1 and the initial condition Q0 of
the form

Q0(dx, dz) =
1

σ32π
√

2π
e−|x|2/2σ2

dx⊗ δ1(dz). (5.3)

Denote, in this case, by n(t, x, k) the solution to (SC). We are able to prove that

at :=

∫

R3

∑

k≥1

k2n(t, x, k)dx = 1 +
(

1/σ − 1/
√
σ2 + t

)

/4π
√
π. (5.4)

We would like to compare at with Z̄n,ε
t =

∫

TQ0
z(t)µn,ε(dx, dz) = 1

n

∑n
i=1 Z

i,n,ε
t .

Figure 1 deals with σ2 very small (σ2 = 0.2), thus the particles are initially quite con-
centrated at 0. In Figure 1a, we compare the true value at, for t ∈ [0, 10], with Z̄n,ε

t , for
n = 5000 and different values of ε. Figure 1b treats the case n = 50000.

a.

epsilon=0.5

epsilon=0.8

epsilon=0.3

True value
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1.1

1.12

0 2 4 6 8 10 12

1.04

1.02

1

0.98 b.

epsilon=0.1

epsilon=0.3
True value

.........

epsilon=0.5
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0 2 4 6 8 10 12
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1.04

1.02

1

0.98

Figure 1: a. σ2 = 0.2, n = 5000 and b. σ2 = 0.2, n = 50000.

Figure 2 deals with larger σ2 (σ2 = 5), thus the particles are initially quite well-
distributed. On Figure 2a, we compare the true value at, for t ∈ [0, 10], with Z̄n,ε

t , for
n = 50000, and different values of ε. Figure 2b treats the case n = 250000.

First notice that choosing ε as small as possible is never judicious. For each n fixed,
there is an “optimal” ε, which tends to 0 when n increases to infinity, but which is never
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a.

epsilon=1
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Figure 2: a. σ2 = 5, n = 50000 and b. σ2 = 5, n = 250000.

0. This can be easily explained: in the present paper, we first make n tend to infinity in
(PS(n, ε)), and after we let ε go to 0. It is clear that making first ε tend to 0 in (PS(n, ε))
and after n tend to infinity would not lead to the coagulation diffusive equation (WS).
Let us also mention that the simulation is faster in the case where σ2 = 0.5 than σ2 = 0.2
(with the same ε and n). Indeed, this comes from the fact that we use Remark 5.1: there
are less effective coagulations when the initial system is well-distributed (σ2 = 5) than
when it is concentrated (σ2 = 0.2).
To give an idea of the calculating time, simulating the particle system on t ∈ [0, 10] with
σ2 = 0.2, n = 5000, and ε = 0.5 takes the same time as σ2 = 5, n = 12500, ε = 0.5, a few
seconds in each case.
Notice that for n fixed, the curves are more regular when σ2 = 0.2 than when σ2 = 5.
This might imply that they are more precise (more “deterministic”). This is also natural:
when σ2 is small, there are more effective coagulations, which allows the “Law of Large
Numbers” act strongly: comparing Figures 1b and 2a, which concern both n = 50000
particles, we see that when σ2 = 0.2, the curves are much more regular.
Conversely, the best ε seems to be smaller, at n fixed, when σ2 = 0.2 than when σ2 = 5.
This may also be explained: the variations of the space density are bigger when σ2 = 0.2
than when σ2 = 5, hence the mollification is a better approximation when σ2 = 5.
Finally, Figure 3 shows Z̄n,ε

t − at, for t ∈ [0, 10], in the case where σ2 = 5, n = 250000,
and ε = 0.5. We can observe the Brownian behaviour of the stochastic process Z̄n,ε

t − at
which might illustrate a central limit theorem, see [DFT01] for a similar result in the
homogeneous case.

−0.00025

−0.0002

−0.00015

−0.0001

−5e−05

0

5e−05

0.0001

0 2 4 6 8 10 12

Figure 3: σ2 = 5, n = 250000, ε = 0.5.
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