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ABSTRACT. In this paper, we discuss the stability of the mathematical model of a linear one-
dimensional thermoelastic Bresse system, where the coupling is given through the first component of
the Bresse model with the heat conduction of second sound type. We state the well-posedness and show
the polynomial stability of the system, where the decay rate depends on the smoothness of initial data.
Moreover, we prove the non exponential and the exponential decay depending on a new conditions on
the parameters of the system. The proof is based on a combination of the energy method and the
frequency domain approach.
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1. INTRODUCTION

In this paper, we consider the following mathematical model consisting of a linear Bresse
system coupled with heat equation via the first equation:

prpw —k(pz + 0 +1lw), — lko (wy —lp) + 06, =0 in (0,1) x (0,00),
prtt_b¢ww+k(<pw+¢+lw):O in (O,I)X(0,00),
(1.1) prwe — ko (wz — 1), + 1k (pz +19p +1w) =0 in (0,1) x (0,00),
P30t + qu + 0pp =0 in (0,1) x (0,00),
T+ Bq+ 0, =0 in (0,1) x (0,00)
along with the initial and boundary conditions of the form
Qp(x70) = %o (1‘), Pt ('T7O) =¥ (1’) in (07 l)a
¥ (2,0) =10 (), ¥ (2,0) =11 (2) in (0,1),
(12) w (.’E, 0) = Wo (.’K) y W (.’t, 0) = wy (:L') %1’1 (07 1) )
0(2,0) =06y (x), q(z,0)=qo(x) in (0,1),
¢ (0,t) = 1, (0,t) = w, (0,t) = ¢(0,£) =0 in (0,00),

v (L) =v(1,t) = w(l,t) =0(1,t) =0 in (0,00),

where p1, p2, p3, b, k, ko, 7, B, 6 and [ are positive constants, the initial data g, 1, g, Y1, wg, w1, Oy
and go belong to a suitable Hilbert space, and the unknowns of (1.1)-(1.2) are the following variables:

(¢, 1,w,0,q) : (0,1) x (0,00) — R.

* Corresponding author.



2 MOUNIR AFILAL, AISSA GUESMIA & ABDELAZIZ SOUFYANE

Many researchers studied the well-posedness and stability of Bresse systems as well as the thermoelastic
Bresse systems. Under different types of feedbacks, many stability results in the literature have been
obtained depending on the following wave speeds parameters:

k b ko

=—, S§=— and s3=—,
P1 P2 P1

for this purpose, we refer the reader to [1, 3, 4, 5, 7, 9] and the references therein.

S1

In [7], the authors considered the following coupled system:

prpw — k(0o + ¢ +1lw), — lko (wy —lp) =0
(1.3) prwy — ko (wy — ), + 1k (pz +1p +1w) =0

P30t + Gz + 6ar =0

Tq + g+ 0, =0

They proved that (1.3) is exponentially stable if
k 52
$1 = 83, (% - %2) (1 - Tpf?’) TT and [ is small,
and (1.3) is not exponentially stable if

p1 - p2 Tkps 76°
Pr_ P2y (- o
s1 # s3 or (k' )( p1)7é ;
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Moreover, when

k 52
51 = S3, (&f@) 177—/)3 #T— and [ is small,
k b P1 b

the polynomial stability for (1.3) was proved in [7] with the decay rate ¢~ 2.
Recently, in [1], the authors considered the following system:
prow — k(0o + ¥ +1w), — ko (wa — 1) =0
(1.4) prwg — ko (wy — 1), + 1k (s +Y+1lw)+60, =0 i
p39t + g + 6wwt =0
Tqt+Bq+0; =0

under the restriction
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(1.5) l;égﬂm, Vp e N.
They proved that the solution is not exponentially stable if (1.6) or (1.7) does not hold, where
(1.6) (k — ko) (p3 Tk) 82 = bpy — kpy =0,
and
bp1 + kop2 (T 2 p1k
1.7 2 PLTROP2 (T, T ez
(.7 # kop2 (2 pﬂ) p2(k + ko P

Also, they proved that the solution is exponentially stable if (1.6) and (1.7) hold. Moreover, the poly-

nomial stability for (1.4) with the decay rate t—% was proved in [1] when (1.7) holds and (1.6) does not
hold.

The heat conduction in (1.1), (1.3) and (1.4) is of second sound type; known also as Cattaneo’s law
(for more details, see [7]). On the other hand, in (1.3) and (1.4), the Bresse system is indirectly stabilized
via only its second or third equation, while in our case, the first hyperbolic equation in (1.1) is indirectly
damped through the coupling with the last two ones in (1.1) (which describe the heat conduction of
Cattaneo’s law).

The stability of Bresse system via only its first equation was treated in [3, 4, 5] by the second author
of the present paper using a linear frictional damping or an infinite memory or a heat conduction of type
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I (known as Fourier’s law) or type III. More precisely, it was proved in [3, 4, 5] that, independently of
the values of the coefficients, the Bresse system

p1ow — k(9o + ¥ +1w), —lko (wy —lp) + F =0 in (0,1) x (0,00),
p?ﬂ’tt*bwmz‘i’k(@z‘i’d}‘i’lw) =0, in (071) X (0,00),
prwy — ko (wy — 1), + 1k (s + +1lw) =0 in (0,1) x (0,00),

is not exponentially stable but it is at least polynomially stable with a decay rate depending on the
smoothness of the initial data, where F' = y¢; and ~ is a positive constant (a linear frictional damping;
see [5]), or

F:/ 9(8)pzx(w,t — 5)ds,
0

and g : RT — RT is a differentiable function converging exponentially to zero at infinity (an infinite
memory; see [3]) or F = §0, or F = én,: (heat conduction of type I or type III, respectively; see [4]),
where
pSet - /BGJ,.L + 59%7: =0 in (Oa 1) X (0’ OO)
and
P3Nt — Blze — Vaat + 0z = 0 in (0,1) x (0,00).

Our objective in this paper is to check from mathematical viewpoint whether the indirect
damping via the coupling with the heat equation is enough to stabilize the full system,
we establish some stability results for the solutions: non exponential stability, polynomial stability and
exponential stability. Contrary to the cases considered in [3, 4, 5], we prove that, under new relationships
between the coefficients of (1.1), the heat conduction of Cattaneo’s law is strong enough to stabilize
(1.1)-(1.2) exponentially. When these relationships are not satisfied, we show that (1.1)-(1.2) is not
exponentially stable and it is polynomially stable with a decay rate depending on the smoothness of the
initial data. The stability results are proved using the energy method combining with the frequency
domain approach.

Our paper is organized as follows. In section 2, we state the well-posedness of (1.1)-(1.2). In sections 3
and 4, we prove the lack of exponential stability as well as the polynomial decay of solutions for (1.1)-(1.2),
respectively. Section 5 is devoted to the proof of the exponential decay of the solutions for (1.1)-(1.2).
We give some concluding remarks in the last section.

2. WELL-POSEDNESS

In this section, we state an existence, uniqueness and smoothness result for problem (1.1)-(1.2) using
the semigroup theory and following the same procedure as in [1]. Introducing the vector functions
¢ = (§07u7¢7v7wa2797Q)T and ¢O = ((,00,@1,¢0,¢1,’U)0,U}1,90,QO)T
where u = ¢, v = 1)y and z = wy, system (1.1)-(1.2) can be written as
‘I)t - A(I), \V/t > 0,
21 {5025,

where the operator A is linear and defined by

)

u

k lko 5

e+ lw), 4+ =2 (wy — L) — 0,

o (pz + ¥ )z pl( ®) o
v

b k
(2.2) Ad = .

k lk

= (wy = 1), — — (o + ¥+ 1 w)
P1 P1
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We consider the following spaces:

Hy(0,1)={f€H"(0,1): f(0) =0}, H, (0,1)={f € H"(0,1): f (1) =0},
H2(0,1) = H (0,1)  H (0,1), H2(0,1) = H2 (0,1) N H2(0,1)
and - ~
H = H!(0,1) x L*(0,1) x H!(0,1) x L*(0,1) x H} (0,1) x (L*(0,1))",
equipped with the inner product
(@1,P2)y, = k(p1,0+ U1 +1lwr, 020+ P2 +1wa) + ko (w1 — lp1, w20 — lpa)
+b (1,2, P2,2) + p1 (U1, uz) + p2 (v1,v2) + p1 (21, 22) + p3 (01, 02) + 7 (q1,G2) ,

where (-, -) denotes the classical inner product of L?(0,1). The corresponding energy norm will be defined
as follow:

@15, = Ellw + 9 + Lwll + ko Jwe = Lo + b l19al® + pu [[ull® + p2 [[o]* + pr 1217 + pa 101 + 7 [lall*
where ||-|| is the standard norm of L2(0,1). Then A, formally given in (2.2), has the domain

v,2,0 € H(0,1), ¢, (1) = w, (0) =9, (0) =0

Using the same arguments and steps as in [1], we prove that, under the condition (1.5), the space
(H,(,-)5) is a Hilbert space, the norm ||-|,, is equivalent to the one of

H'(0,1) x L2 (0,1) x H' (0,1) x L2 (0,1) x H (0,1) x (L?(0,1))°,

0 € p(A) and the operator A is a maximal monotone operator and its domain is dense in H. Therefore,
from Lummer-Phillip’s theorem, we have that A is the infinitesimal generator of a linear contraction
Co-semigroup in H. So, the following well-posedness result holds (see [10]):

Theorem 2.1. Assume that (1.5) holds. Then, for any m € N and &9 € D (A™), system (2.1) admits
a unique solution _ _
® e N ,C™ (R, D (A7),

where D (A7) is endowed by the graph norm [l pasy = i:o A4 -

Remark 1. 1. In the particular case m = 0; that is, &y € D (.AO) = H, ® is a weak solution.
For m € N*, @ is at least a classical solution.

2. The operator A~! is bounded and it is a bijection between H and the domain D(A). So
A has a nonempty resolvant and its spectrum is consisting entirely of eigenvalues.

3. LACK OF EXPONENTIAL STABILITY

In this section, we state and prove a result regarding the lack of exponential stability of the solutions
of (2.1) depending on the following constants:

&o = bpr — kopo,
k b 1
e
P2 T

& =0%— 1_/:0) (,03/60—%1),

and the following additional restriction on I:

(3.1) 22 kopa — bp1

2 k
<Z+p7r> L e - Vp € Z.
kop2 pa(

2 k+ ko)’
First, we will state and prove the following crucial lemma needed for the proofs of our main results.

Lemma 3.1. Assume that (1.5) holds. Then (3.1) and iR C p (A) are equivalent.
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Proof. Let a € R* and let ® € D(A) with
(3.2) AD =iad.

It is sufficient to prove the equivalence between ® = 0 (that is, éa is not an eigenvalue of A) and (3.1).
We see that (3.2) is equivalent to

u =1tap, v=1iay, z =1iaw,
k Ik )
—(pz + Y +1w), + = (w, — lp) — —0, = iau,
%1 I P1 P1
—Ppe — — (pe + ¥ + lw) = iav,
(3.3) b ?
' oy (We =19, = = (o + 9 +1w) = iaz,
1
I R
—FQx - guw = iaf,
3
B 1 .
——q— -t =iaq
o
As in [1], computing (AP, @), we get
(3.4) (AD, @), = B lql.

Therefore, using (3.2),
—Blg|l> = Re (A®,®),, = Re (ia®, ®),, = Reia ||®|3, = 0.
So we deduce that
(3.5) q=0.
Taking into account that 6 € I—Z} (0,1) and using (3.5) and the eighth equation of (3.3), we deduce that
(3.6) 0 =0.
By using the seventh equation of (3.3), (3.5) and (3.6), we find

Uy = U,
and with the first equation of (3.3), we obtain that
e = 0.
As ¢ € H} (0,1) and thanks again to the first equation of (3.3), we have
(3.7) p=u=0.
Using (3.5), (3.6) and (3.7), we remark that (3.3) is reduced to

v =1ay), z = iaw,

(3.8) b a?
Ewww - (1/14‘“0) = _ka wa
ko 7[)10,2

Ewmf(iﬁqtlw): T

Taking into account that ¢(1) = w(1) = 0, we remark that the third equation of (3.8) is equivalent to

o) T

Using the last two equations of (3.8), we obtain

b ko B P2 (12

7#}.%."5 - wa:t = L lb +

p1a2
w
k

Ik

and by (3.9), we have

b k‘o kio - CL2 2 kO
(3.10) —(kl(l—l—k)—i—lk)wm—lk (pgl 1+k +p1 ) w
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with the boundary conditions
w (1) =w, (0) =0.

Equation (3.10) is equivalent to, for some constants C; and Cy,

o () +0)
w(z) = Cq cos (Az) + Cysin (Az) with A = )

bi2 <1+ i?) + ko

Then, the boundary condition w, (0) = 0 implies that C5 = 0, and so, according to (3.9),

(3.11) w(z) = Crcos (Az) and o(x) = —Cql (1 + k;:) cos (Ax).

Assume that (3.1) holds. We have to prove that C; = 0. Assume by contradiction that Cy # 0. Using
(3.11) and the definition of A, we observe that the last two equations of (3.8) are equivalent to

kko ko
12 > (p1b—k b (14 =) +ko | =0.
(3.12) a” (p1 0P2)+k+k0( <+k>+ 0) 0
On the other hand, (3.11) and the boundary condition w(1) = 0 lead to
(3.13) IpeZ: A:g—f—pﬂ'.

By combining (3.12), (3.13) and the definition of A, we arrive at

kopa —bp1 (7 2 kp1
3.14 HEZ:Z2:7(7—|— w) ___tn
( ) P kop2 g TP p2(k + ko)

which is a contradiction with (3.1). Hence C; = 0, and consequently, ) = w = v = z = 0 according to
(3.11) and the first two equations of (3.8). Then, with (3.5), (3.6) and (3.7), it is clear that ® = 0. This
shows that (3.15) is satisfied.

Now, assume that (3.1) is not satisfied; that is (3.14) holds. We notice that, for

2
b12<1+0>+k0
a=(5+p ) T ;
pal 1+? +p1

and for any Cy € C, the function

k

is in D(A) and satisfies (3.2). Hence ia ¢ p (A), which implies that (3.15) does not hold. Conclusion,
(3.1) and (3.15) are equivalent. O

T
O(z) = (O,O7 -1 <1 + ]ZO> Cy cos (Ax), —il (1 + ko) Ciacos (Ax),Cy cos (Ax),iCracos (Ax),0, 0) )

Theorem 3.2. Assume that (1.5) holds. Then the semigroup associated to problem (2.1) is not expo-
nentially stable if (3.1) does not hold or &g =0 or & # 0 or & # 0.

Proof. 1t is known that the exponential stability holds if and only if (see [6, 11])

(3.15) iR C p(A)

and

3.16 N[ — A < 0.
(3.16) sup | = A)71| <00

We know, from Lemma 3.1 that (3.15) is not satisfied if (3.1) does not hold. Now, we need to prove that
(3.16) does not hold if & =0 or &; # 0 or & # 0.
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Assume that § = 0 or & # 0 or & # 0. We follow the same procedures as in [1], where we prove that
there exists a sequence (A)nen C R such that

lim H(z’)\nI—A)_lH = o0,

n—>-ro0 L(H)

which is equivalent to prove that there exists (F),)neny C H with

(3.17) [Fullyy <1, VneN,
and, for @, = (iA,] — A) " F,,
(3.18) lim [ @l = oc,

therefore, we have
(3.19) M@y — AD, = F,.

So to say, we have to look at the solution of spectral equation (3.19) and show that the corresponding
solution ®,, is not bounded when F,, is bounded in H. Rewriting the spectral equation in term of its
components, we have

Z)\n%pn — Up = fn,lv
Z)\nplun —k (‘pn,m + ¢n + l’wn)m - lkO (wn,x - lSOn) + §9n,x = plfn,27
Z)\nwn —Un = fn,3a
i/\np2vn - bwn,xw +k (‘Pn,x + wn + lwn) = p2fn,47
(3.20) . Vr
AWy — 2p = fn,5a
Z)\nplzn - kO (wn,m - l@n)x + lk ((Pn,:t + u)n + l wn) = plfn,ﬁa
Z)\np39n + An,x + 5un,:r = p3fn,77
Z)\nTQn + Bqn + en,m = Tfn,Sa

where Fn = (fn,17 o afn,8) € H and
(321) ®, = (sﬂmun,d}n,vmwn,zmem%) € D(A)

We will prove that there exists a sequence of real numbers (A, ),en and functions (F),),eny C H verifying
(3.17), (3.18) and (3.20). To do this, we take

(322) fn,l = fn,3 = fn,5 = 0.
So, (3.20)1, (3.20)3 and (3.20)5 are equivalent to
(3.23) Up = IAPn,  Up = A0y, and  z, = iA,wy,.

Then solving (3.20) is reduced to solving

_A%plgpn —k (‘pn,z + wn + l wn)r - lkO (wn,a: - l‘pn) + 6971,1 = plfn,%
*A%PQW - bwn,xx +k (Sﬁn,x + wn + lwn) = p2fn,47

(324) *)\iplwn - kO (wn,x - l@n)x + lk (San,m + wn + lwn) - plfn,ﬁv
Z)\np30n + dn,x + Zé)‘n@n,z = p3fn,7>
Z)\TLan + /B(Zn + en,w = Tfn,S-

2 1
To simplify the calculations, let N = M Now, according to our hypotheses in Theorem 3.2, we

2
consider the three cases g = 0, [§g # 0 and & # 0] and [{p # 0 and & # 0].

bk
Case 1: £, =0. We have — = —0, then we choose

P2 P1
lko ko
. n.alxr) = ——D cos x), fnelx)=———Dcos x
(3.25) frna(z) Dcos (Nz), fns(z) D cos (Nz)
P2 P
and
(326) fn,2 = fn,? = fn,S = 07

where D € R, which will be fixed. We will look for a particular solution ®,, € D(A) of (3.19) as follow:
®,, = (0,0, Bcos (Nz),iBA, cos (Nz),Dcos (Nz),iD), cos (Nz),0,0)",
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where B € R that will be chosen. So (3.23) is satisfied and ®,, € D(A). On the other hand, ®,, satisfies
(3.24) if and only if the coefficients B and D satisfy the following system:

kB + 1(k + ko)D = 0,

b k lk ko
-2+ —N%+ ) B+ —D=-—D,
(3.27) ( P2 P2 2/)2 Pg
lk k I°k I*k
~B+ (—Ai + 2N 4 ) D=—--"2D.
p1 p1 P1 p1
Now, we will take
k
An =Ny [=
P1
b 0
Because — = —, we have
P2 P1

b k
A2 4+ —N?2=-x2 4+ 22N2 =,
P2 P1
and therefore, the system (3.27) will be reduced to

kB +1(k+ ko) D =0,

ko
B=-l(1+—|D.

B=— <1+k0)plp2 and D— — P2
ko

k) Tkor/p? + 1203 lko/p? + 1203

and using (3.22), (3.25) and (3.26), we obtain

which is equivalent to

Choosing

2 2 2
||Fn||7-¢ = an,4 + an,6||

2 2 1
(U%) [1 + (lm) ] DQ/ cos? (Nz) dx
P2 P1 0
2 2
& ()]
P2 P1

which implies (3.17). On the other hand, we have

1
@013, > Ko l[wn,e — lonll ko || wn..||” = k0D2N2/ sin? (Nz) da
0

1
= %DQNQ/ [1 —cos (2Nz)] de = %DQNQ,
0

hence (3.18) is satisfied.

1
Case 2: & # 0 and &; # 0. We have L # @, and 0% — <p1 — km) (bp?’ — ) # 0, then we choose
p2 " p1 b p2 T

(328) fn72 = fn,6 = fn,? = fn,S =0 and fn,4 = COS (NCC),
we consider (3.23) and we take

Yy = agcos (Nz), w, = azcos(Nzx),
gn = apsin (Nz),

©n = a1 8in (Nz),

(3.29) 0, = agcos (Nzx),
)\2 — ENQ _ @

" p2 p2’

for n large,
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where a1, a9, a3, a4 and a5 are constants that will be fixed. It is clear that (3.17) is satisfied and
®,, € D(A). Using (3.28) and (3.29), we observe that (3.24) is equivalent to

(sz 7)\%/)1 +l2]€0) aq +l€N042 +l(k+k0)N043 75N0¢4 = 0,
kNaq + (bN2 —A2py + k) ao + klas = pa,
(3.30) L(k+ ko) Nay + lkas + (koN? — A2 py + 1%k) a3 = 0,
iAppsay + Nas + i, Na; =0,
(IApT+ B)as — Nay = 0.

Using the definition of A, given in (3.29), we see that (3.30) is reduced to

<(k— plb) N2+kopl+l2ko> a1+kNa2+l(k+k0)Na3—5Noz4 =0,
b’ &N
T otk kot k' hotk
((k‘o — pplb> N2+ p;k()—f—lgk) Oég—i-l(k‘—I—kio)NOél + lkag = 0,
2 2
(3.31) s = iN26)\, o
(Tﬂsb _ 1) N2 TPsko s
P2 P2
_ 0 gy g TORN L a8
= TPZQb pQTpgko ‘ o
( 1>N21)\npgﬂ
P2 P2

inserting (3.31)y into (3.31)3, we deduce that

(K2 + 2kko) INay + lkps

p1b kopr . kkol? ) ’
ko+k ko —— | N2+ —/— +
(ko )<< ’ P2> p2  kot+k

(3.32) g3 = —

1
and then (3.31); x N3 is equivalent to

bT kkopg > <p3b 1> 2:| . |: 2 ( kko p1b> :| An
3.33 SR (L P2 ) 4 82| Nay —if |82 + _ P | 2
(3.33) o K(ko—kk)b A o —if Kotk )P N
p1 | 2\ [ Tpsb ) ko [ 9 ( kko ,01b> } Tko
C(P ) (T2 ) By sty _ PO | I,
(PQ )( p2 N7 Fo+k  pa )] Np™

Tp3b Tp3k An
(28t

P2 N2p2 P1 2 TPSkO . )\n
- N
(ko + k)2 | (ko — p1b + kop1 + kkol? e (Pz * > (P2N3 +ZN3p3ﬂ “
0 D2 N2py ' (ko + k) N2

P2 P2 N2py

p1b kop1 kkoﬂ} - ko + k
ko + k) (ko — 5= ) N2 + +
(ko ) [(0 ,02> P2 ko + k

Tp3b Tp3ko . An Tp3b Tpzko . LA
[( — 1) N2, 2N2p35] (k% + Zkko) PPkps  kpo {( -1) - —ip3f—

then, we have

Tn &1 = Yn,
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bT kkopQ >(p3b 1) 2:| . |:2 < kko p1b> :|>\
P32 _Z) 4+ 82| N—ip |62+ - A2
K k0+kb)b 'le p2 T o ;ﬂ k;k0+k P2 Ps
P e G
(o) () e e )] 28

[ b _ ;\’;jko - 'L 35] (K2 + 2kko)” 12

p1b kOPl kkol? }
(ko + k)2 | (ko — 222 + + N
o+ k)’ [( ’ P2> N2py (ko + k) N2

p1 | 9\ [ TPsko An
—ko | — +1
O<pz+ ><0N3+ NP 35)

Tp3b Tpsko . } 2 2
— -1 - —i— ki + 2kko) 19k
(2 )] e

p1b kop1 kk012:|
ko + k) (ko — 55 ) N2+ 222 4
(ko + &) KO Pz) P2 ko+k

Tpsb Tpsko . A
k 1) - _ipgfln
_ r K P2 ) N?po 30 32

ko + k ’
b ko

using the fact that \2 = — N2 — — we deduce that
P2 P2

br kkopg pgb 1) 2:| . |:2 ( kko p1b> :|
Ay L - B2 2 )4+ 682 N—iB|s - A

P2 [((k0+k)b p1> <P2 -) " wp Fotk  po )
br kkopg > (pgb 1) 2:|

— (2 B2 ) +8%|N
p2 [((k‘o Y A I

Therefore, x,, # 0 for every n sufficiently large, This shows that (3.33) has indeed a solution «; (for all
n large enough), which is given by

where

S

=

Yn =

|
g
=]z

lim |z,| =
n—oo n—00

= lim

= o

= —.
In
Now, we distinguish three subcases.

1
_Kkops p1 psb _ +62 #0 and —— Tpsb —1# 0. Throughout this section,
(ko + k)b p2 p2

the notation ~ means that ”asymptotlcally equal”, then we deduce from (3.32) and (3.33), as

Subcase 2.1: {

n — 00,
kp% (Tp?’b — 1)
o] X — P2
kkop2 > (Psb 1) } ’
br (ko + k) | [ ——20P2 P22 2| N
00 | (gt 7) (57
k2 + 2kkg) 1
(3.34) o~ — ( ot 0) 5 o) — tkps 2
(ko + k) (ko - pl) N (ko+k) <k0 - ”1) N?
P2 P2
and

k
n (o) (5 -2) 7]
P2 T
k‘kopz p3b 1) ]
(ko + k) _ = 02
s | (=) (5 —2)+
] ) . [ kp2 psb 1 2
As & #0; that is, | — — py + 6% # 0, then
b P2 T
(3.35) ILm |ag| > 0.
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kk b 1 b
Subcase 2.2: [OpQ — pl} (pg — ) +6%2 #£0 and TP32 1 = 0. We deduce from (3.34),
(ko + k)b p2 T p2

(3.32), (3.33) and the choice of A, in (3.29) that, when n — oo,

, b
ip3pafky | s

(ko + k) bT62 N2

P2
ko—‘rk’

o) ~ and a9 ~

which implies (3.35).

kkop2 } <03b 1)
Subcase 2.3: |——~— — 222 2 ) 4+ 6% = 0. We see that (3.33) becomes
[( ol (20 (3.33) becom

| Ekop2 } B 2 (pl 2) <7'P3b ) 2 ( kkop2 > ko .o
3.36) —i | ——2 ol EANZan + (B2 ) [ 25 — 1) koN?ag — | —222 — 5 ) 2N
(3.36) [(ko +Ro M W s P2 N T\ o+ ko )

b k
K”’?’ - 1> Nz I angﬁ} (k3 + 2kko)” 12

k
— P2 : ppfb Fomn e N2aq — ko (Z; + l2) (T/Z 0 4 z’)\npsﬂ) a
k k ko — — | N2

(ko 1) KO P2) M P2 Jrko—i—k]

; k b koN
KTPS - 1) Nz TP i)\npsﬁ} (k3 + 2kko) Ikpa N kpo ng - 1) N3 - T ipsﬂ)\nN}
P2 P2 P2 P2

_ pib kopy | khkol? ] a ko + k
ko 4+ k)? | ko N2 + +
(o +5) K p2 ) p2 kot+k

kkop2 } (pgb 1) ) 9 kkopo 7p3b
As | ——0F2 B2 Z) 462 =0and s >0, th have ——0F2 0, and —140.
S [(ko R o1 - an en we have o+ k) p1 # 0, an s =+
From (3.34), (3.32), (3.36) and the definition of A, in (3.29), we have, when n — oo,

ikTpa (Tpgb — 1) ,/@ ik%Tpo (7’p3b — 1) 1/
P2 b N

ap ~ — and o ~

kkopa kkopa } ’
ko+ k)| ——m—m— — ko +k
(ko )[(k0+k)b P1}5 (ko )[k0+k —p1| B
this leads to
(3.37) nl;rgo |aa| = oo.
Moreover, as
| @, \|H>b||¢nx|| —b|Noz2\ / sin? (Nz)dx |Noz2| / (1 —cos (2Nz)) dx |N052\

then, for all these three subcases, (3.35) and (3.37) lead to (3.18).
b,k k
Case 3. £ # 0 and & # 0. We have p— #* 20 and 62 — (1 — Ic) (pgko - —) # 0, then we choose
2 0

P1
(338) fn,2 = fn,4 = fn,? = an,S =0 and fn,6 = COs (N.’E),
we consider (3.23) and we take (3.29) by replacing the third equation by
k 1’k
(3.39) A2 =2N2 20 for n large,
P1 P1

where the constants g, as, as, oy and as will be determined. Then (3.17) is satisfied and ®,, € D(A).
On the other hand, by using (3.24), (3.38) and (3.39), we obtain

(kN2 )\2p1+l2k0)a1+/€N0¢2+l(k+k0)N0&3—5NOL4:0,
(bN2 )\2p2+k)052+kN041+k’1043—0
(340) (kONZ A2 aP1+ l2k‘) o + 1 (k‘ + k‘o) Noy + lkag = P1,
iAppsag + Nas + did,Nag =0,
(IApT + B)as — Nay = 0.



12 MOUNIR AFILAL, AISSA GUESMIA & ABDELAZIZ SOUFYANE

From (3.40)4, (3.40)5 and the definition of A, in (3.39), we have

—i6A, N (iA, —id\, N?

(341) a4 = Z (iAnT +kﬁl)2al and as = ’ ! a]i B .
(1_W>N2+W+W35 (1_W)N2+W+M3ﬁ

P1 P1 P1 P1

Using (3.41), we deduce from (3.40);-(3.40)3 and the definition of A, in (3.39) that
1602N2 )\, (iM,
(k — ko) N2 + 212k + ! (i ”@ a
(1_W3ko>N2+Tpskol+M a3
P1 P1 "
(3.42) +kNag +1(k+ ko) Naz =0,
p2ko o Pkopo B
kNaq + b—— | N+ ——+k)as+ klag =0,
P1 P1

STtk 1 Ttk

which implies that
102N\, (i
—2ko N2 + 20%ko + @k ( 12T +kﬁ> 1=-2w,
1— TIP3\ 2y U TP3RO + iAnpsf
k 1k plkk - k
P2K0 2 002 0 P1
b——— | N+ —— + =——.
K p1 ) p1 +’f]a2 L (K + ko)

k+ ko
Therefore, using the definition of A, given in (3.39),

52 k ko 12k 27 pal k2
((2 + 4”’30> ko N2 + ik ps B12 /70 L S 0) a
1

P1 P1

k k %k
+ | — (52 + 2 (& - pgk‘o)) l]\/v4 + Z(52 - Qkopg)ﬁ UL 9 N3 aq
T P1 P1

(3.43)
k k 1’k
=& <1 - T"’”) N — lrpgkoN — 21788 [Fo _ 0 N2,
l p1 l p1 ;N
k
2= k - %k kko |
P2Ro 002 0
L(k+Ek (b — ) N2+ + }
( o) { P1 P1 k+ ko
Now, we distinguish three subcases.
k
Subcase 3.1: §2 +2 (& — p3k0> #0and 1 — % # 0. We deduce from (3.42)3 and (3.43) that,
T 1

as n — 0o,

Tpsk
pi <1 - 30)
Pl

(a5 e )
ko {52 ) (& — pgko)] N
T
g >~ — kpl
~ - ,
1(k + ko) (b p;°> N2
1

(15 b 2)
0 —11—-— (pgk‘o - p?) .
Thol2 (k + ko) [52 2 (% - pgko)} ko

Q3 ~

As & # 0; that is, 62 — (1 — :) (pgk;o — p—l) # 0, then we get
0

T

(3.44) lim |Nasz + lag| = co.
n—oo
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k
Subcase 3.2: §%+2 (— - p3k0> #0and 1— % = 0. We deduce from (3.43) that, when n — oo,
1
ipipsBy/ 5 kp . o
ay , Qg >~ — nd ag ~ —————.
VTl [2 02 (2 = psko) [N (k4 k) (b e2ke) 2 DBkt ko)
P1

Hence (3.44) holds.
Subcase 3.3: §%2+2 (& — p3k‘0) = 0. Then (3.43) becomes
T

21.2 2 41.2
_9 plﬁ ko l ko N3 27’/)31 kO N2 n 22k0p3,3l2 ko l ko N—|— 27’p3l kO o
T p1IN? P1 p1N? P1

k k l2k
__m (1 _TP3 o) N3 — IrpskoN — i 01,03/3 ko Thko no
l P1 plN
kp1

g = — .
p2ko Pkopo kko }
Lk + ko) | (0— 2250 ) N2 ¢ +
(k+ ko) K p1 ) P1 k+ ko
2 p1 2 Tpsko
As 6+ 2 (— — pgko) =0 and 6° > 0, then 1 — # 0, using the previous system and (3.42), wi
P1
have as n — oo,
. Tpsko . Tp3ko
Tl — ——— © ir (1 = 2222
alz——pl, g ~ — il and agz—plN,
ko p2ko ko
203, 2 L(k+ko) (b~ N2 2023
41 Pl P1

hence (3.44) holds. Finally, because

ki ! ki
@03, > ko l|lwne — lonl® = 30 |Nas + zaﬁ/ [1—cos (2Nz)] dz = 50 |Nas + lag |2,
0
then, by (3.44), we obtain (3.18). This concludes the proof of our Theorem 3.2. O

4. POLYNOMIAL STABILITY

In this section, we prove the polynomial decay of the solutions of (2.1). Here and after we will use
the notation [(f(a:),g(ar;))](lJ to refer to the usual scalar product in C and given by

(@9} = [f@i5@)],
Our main result is stated as follow:

Theorem 4.1. We assume that (1.5) and (3.1) hold. Then, for any m € N, there exists a constant

Con > 0 such that
Int\*
H’H WH(I)OHD(_Am) ( ) In t.

Proof. Tt is known (see [8]) that (4.1) holds if (3.15) is satisfied and

(4.2) sup A~4 ‘(i)\l - A)_l‘
IAIZ1 £

(4.1) Voo € D(A™), Vt > 2,

< 00.
(H)

First, the condition (3.15) is satisfied thanks to (3.1) as shown in Lemma 3.1.

Next, we establish condition (4.2) by contradiction. So, assume that (4.2) is false, then there exist a
sequence (®p,)neny C D (A) and a sequence (A, )nen C R satisfying

(4.3) |@nll,, =1, Vn€EN,

(4.4) nhHH;O [An| = 00



14 MOUNIR AFILAL, AISSA GUESMIA & ABDELAZIZ SOUFYANE

and
. 4 . . _

(4.5) nh_)rréo An 1A T — A) @], = 0.

Let ®,, be define by (3.21). Then (4.5) is equivalent to
/\4 (iAnpn —un) = 0 in H! (0,1),

(z/\nplun —k (Pna + Un +lwy), — ko (Wne — lpn) + 51‘)”@) —0 in L?(0,1),

A (iApthn — vp) = 0 in H! (0,1),

(46) /\n (Z/\nPQUn - bwn,xx +k (‘Pn,x + '(/)n + lwn)) —0 in L? (07 1) y
A (iApwn — 2) — 0 in H! (0,1),
)\fL (z)\nplzn — ko (Wn,e — lon), + 1k (Pnz + VY + lwn)) -0 in L2 (0,1),
A (iAnp30n + Qoo + Otp i) — 0 in L2 (0,1),
A (iAnTn + Ban + Onz) — 0 in L2 (0,1)

Our goal is to derive

(4.7) Tim @[], =0

as a contradiction to (4.3). This will be established through several steps.
Step 1. Taking the inner product of A% (i \,, I — A) ®,, with ®, in H and using (3.4), we get

Re (X, (iAn ] — A) @, ®,) = A, [lan” -
So we have, according to (4.3) and (4.5),
(4.8) Aogn — 0in L7 (0,1).
Step 2. Applying triangular inequality, we obtain
H X4 (AT + By + On,)

[AnOn el <

\ A2 gn + Bhna]

A3 ’
and by using (4.4), (4.6)s and (4.8), we have
(4.9) Mz — 0in L2 (0,1) .
As 0,, € H! (0,1), then we get
(4.10) Ay — 0in L2 (0,1).

1
Step 3. By multiplying (4.6)1, (4.6)3 and (4.6)5 by e and using (4.4), we obtain
(4.11) 0n —0, ¥, —0 and w, — 0 in L?(0,1).

Step 4. Taking the inner product of (4.6); with ZS‘;\% in L2 (0,1) and using (4.3) and (4.4), we get

<l)\np39n + dn,x + 6un,$7 “pn,w> — 07
that is,
. . . 2
p3 <)\n9n; Qpn,x> + <qn,m7 Z@n,m> - 5 <7f)\n§0n,z - un,ma Z(Pn,x> + 6)\n ”Son,mH — 07

integrating by parts and taking into account the boundary conditions, we have

(p’ﬂ T
An

(412) 03 <>\n9n7 (pn,:c> - <)\’I’Lq’ﬂ7 > - 5 <Z)‘n§0’ﬂ,a: - un,:l?? upn,l’> + 6>‘n ”(p’ﬂ’!l?”Q — O

1
Multiplying (4.6)2 with v and using (4.4), we obtain

n

k Lk, (7]
— — (Pnz + Un + lwy) O (wp.w — lipy) + 622 — 0in L2(0,1),

1P1Un A, , z X , A,
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then, using (4.3), (4.4) and (4.9), we deduce that

(4.13) ( Pn,zs ) is uniformly bounded.
An neN

So, by (4.3), (4.4), (4.6)1, (4.8), (4.10), (4.12) and (4.13), we have

(4.14) A | nel|* — 0.

Step 5. Taking the inner product of (4.6); with % in L2 (0,1) and using (4.3) and (4.4), we get

n

P1 <Z/\nun7 <Pn> —k <((pn,r + ¢n + lwn)z 750n> - lkO <wn,:1c - lﬁPm Sﬁn> + o <0n,fca Qan> — 0,
then, by integrating by parts, we find
—p1 (iAn (IAnPn — Un) , on) — p1 H)\nSOnHQ — k[{@n,e + ¥n + lwp, Son>](1)
+k (Pn,z + U + 1w, 9nz) = Lo [(wns 9n)]g + ko (W, e} + ko onl|* + 6 (Bnes o) — 0,
by using the boundary conditions, (4.3), (4.4), (4.6)1, (4.9), (4.11) and (4.14), we obtain

(4.15) Ao — 0in L?(0,1),
using (4.4) and (4.6)1, we deduce that
(4.16) U, — 0in L?(0,1).

Step 6. We have, by integrating by parts and using the boundary conditions,
(417) <qn,w7 un,z> = - <Qn,wa i/\n(pn,w - un7w> + <Qn7w7 i)\n4pn7w>

- _ <q:\L’I s An (Z'/\n@n,x — Un,x)> + [<qn, i)‘n@n,x”é _ </\3an7 i¢n,zz>

An

1
Multiplying (4.6)1 and (4.6)7 by — and using (4.4), (4.10) and (4.14), we have

15

A%

(4.18) Une 50 and L2 459 504 £2(0,1),

An An An
S0
(4.19) q;’“’ —0in L2(0,1).
By (4.6)1, (4.8), (4.13), (4.17) and (4.19), we deduce that
(4.20) (n,@s Un,z) — 0.
Taking the inner product of (4.6)7 with u;lm in L? (0,1) and using the first convergence of (4.18) and
(4.4), we get !

<l)\np39n + An,z + 6un,w7 un,z) — 07

therefore

<i)‘n,030m un,r> + <qn,ra un,z> +46 Hun,r”2 — 0,
so, integrating by parts, we obtain
[<i>\np30naun>](l) - <i>\np39n,xaun> + <Qn,ac7un,x> +0 ||un,ac||2 — 0,
by using the boundary conditions, (4.3), (4.9), (4.16) and (4.20), we deduce that
(4.21) Up — 0 in L?(0,1).
1
Also with (4.4) and )\—4><(4.6)17 we have

n

iIA@ne — Une — 0 in H} (0,1),
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then, by (4.21), we obtain
(4.22) Ann.e — 0in L?(0,1).

1
Step 7. By multiplying (4.6); and (4.6)5 by N and using (4.3) and (4.4), we have

(4.23) (IM¥nl) pen and ([[Anwn||), ey are uniformly bounded.
Taking the inner product of (4.6)s with Z;\L—" in L? (0,1) and using (4.3) and (4.4), we get

3
n

(iX2 p1un — Ak (@ne + U+ lwn),, — koA (Wnp — lon) + 6Anby 2, ity ) — 0,
integrating by parts, we obtain

P1 ||/\nun||2 — kX, [<§0n,ac + wn + lwna Zun>](1) +k <)\n§0n,x + Anwn + l/\nwn7 iun,ac>

(4.24) —lkoAn [(Wn, i)y + Tko AnWn, it o) + 12ko (A @n, itin) + 8 (AnBpa, i) — 0,
s0, using the boundary conditions, (4.3), (4.9), (4.15), (4.21), (4.22), (4.23) and (4.24), we deduce that
(4.25) At — 0 in L2 (0,1).

Step 8. Taking the inner product of (4.6)y with )\% (ktn.o + 1 (k + ko) wy ) in L?(0,1) and using
(4.3) and (4.4), we get
(iAnprttn, — K (@nz + Pn + 1w, — ko (Wne — 19n) + 005 0, ktbn o + 1k + ko) wnz) — 0,
that is,
(4.26) p1 (iAntin, ktbn o + 1 (K + ko) Wn o) — k (Onaas Ktbn,a + 1 (K + ko) Wn )

- kan,x +1 (k + kO) wn,xHZ + lsz <§0na k¢n,x +1 (k + kO) wn,:c> +0 <9n,ac7 kwn,x +1 (k + kO) wn,x> — 0.
Also, by integrating by parts and using the boundary conditions, we have

<(pn,wx, kd)n,w + l (k + kO) wn7w> = [<(pn,17 k'(/}n,a: + l (k? + ko) wn,g;>](1) — <<Pn7w, kwn,zx + l (kj + ko) wn,xw)
(4.27) = - <An<pn,x, R 4 ko) wA> .

1
On the other hand, by multiplying (4.6)4 and (4.6)g by v and using (4.4), we arrive at

wn,zx k

ipotn — b T (e + n +lw,) — 0in L2 (0,1)
and Ik
ipran — kol g P M 4 lwy) — 0in L2 (0,1).
An A A T
So, by (4.3) and (4.4), we deduce that
(4.28) <H Yrze ) and (H Yn,ze ) are uniformly bounded.
An neN An neN

Using (4.28), we deduce from (4.22) and (4.27) that
(Pn,az: ktbne +1(k + ko) Wy z) — 0,
and by (4.3) and (4.4), (4.9), (4.11), (4.25) and (4.26), we sec that
(4.29) kb o +1(k+ ko) wn. — 0in L2 (0,1).
Un .

— i
4
A

Step 9. Taking the inner product of (4.6)4 with n L?(0,1) and using (4.3) and (4.4), we get

<i)\np2'0n - bq/}n,xx +k (@n,x + wn + lwn) 7¢n> — 0,
that is,

—pP2 <'Un7l)\nwn - Un> — P2 ||'Un||2 - b [<wn,1,7wn>](1) + b H’(/)n,at, |2 + k <<pn,x + ¢n + lwn7¢n> — Oa
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then by the boundary conditions, (4.3), (4.6)3 and (4.11), we deduce that
(4.30) blltn.q
Taking the inner product of (4.6)¢ with % in L% (0,1) and using (4.3) and (4.4), we get

n
<7'Anplzn - kO (wn,w - l@n)r +1k (‘pn,l + wn + lwn) 7wn> — Oa
by integrating by parts, we have

> = p2 [loa]* = 0.

_pl <Zn77f)\nwn - Zn> - pl ”Zn”2 - k() [<wn,z - l@nawn”é
ko [wnoll” — ko (@, Wno) + 1k (9o + n + lwn, wa) = 0,
using the boundary conditions, (4.3), (4.4), (4.6)s and (4.11), we see that
2 2
(431) kO ||wn,zH — P HZTLH — 0.

17

Step 10. Taking the inner product of (4.6)4 with % and (4.6)g with % and using (4.3) and (4.4),

n n
we get

<7:/\np2vn - bwn,zw + k (@n,x + '(/Jn + lwn) ) wn> — 0 )
<i)\nplzn — ko (wn,a: - l(pn)$ + 1k (Spn,a: + "/}n + lwn) ,¢n> — 0,

then, by integrating by parts and using the boundary conditions, we observe that

{ —pP2 <Un7 Z)\nwn - Zn> — P2 <Un7 zn> + b <’(/}n,a:7 wn,x> + k <90n,:1: + wn + lwru wn> — 07

—pP1 <Znal)‘nwn - Un> —pP1 <Znavn> + kO <wn7w - l(pnv'(/)n,a:> + lk <<pn,w + wn + lwnawn> — Oa

by using (4.4), (4.11), (4.6)3 and (4.6)5, we obtain
—pP2 <Una Zn> + b <¢n,w7wn,7;> — 0; and — P1 <vn7 Zn> + kO <wn,w7wn,z> — 07

hence

p2 p1 b ko)
4.32 - — Un, Zn — 0 and - - n,x, Wn,x — 0.
(4.32) (2-2) s (=2 )

Step 11. Now, we distinguish two cases.

bk
Case 1: & # 0. We have — — —> = 0, then (4.32) implies that
P2 P1

(4.33) (Un, 2n) = 0, and (Y z, Wna) — 0.

Therefore, taking the inner product in L? (0,1) of ki, » + L(k + ko)wy, , with 9, . and wy, ., and using

(4.29) and (4.33), we find

(4.34) Yo —0 and wn, — 0in L2(0,1),
and by (4.30), (4.31) and (4.34), we deduce that
(4.35) vy — 0 and 2z, — 0in L?(0,1).
Finally, (4.4), (4.8), (4.10), (4.11), (4.16), (4.22), (4.34) and (4.35) imply (4.7).
bk
Case 2: & = 0. We have o p—o = 0, then, using (4.6)3-(4.6)s, we obtain
2 1
4 2 P2 k .19
(4.36) e Ik
b —)\%?wn — (wp,z — ln), + . (Onz + Yn + lwn)> —0in L2(0,1).
0

1
Multiplying (4.36); and (4.36)2 with o and using (4.4), (4.11) and (4.22), we get
2 P2 2 P2 . 2
(4.37) )\n?wn + Vs = 0 and /\n?wn + Wy g — 0in L= (0,1).
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Adding kx(4.37); with I(k + ko)X (4.37)2, and kx(4.37); with —I(k + ko) x (4.37)2, we obtain
e A2 ;)2 Kty + 1(k + ko) wn] + kb sa + L(k + ko)wn.ze — 0in L2 (0,1),
' 2 k¢n - (k + kO)wn] + kwn,ww - l(k + kO)wn,mz — 0 in L2 (0, 1) .

Taking the inner product in L2 (0,1) of (4.38); and (4.38)2 with ki, + I(k + ko)w,, integrating by parts
and using (4.3) and the boundary conditions, we get

£2 Hk>\nwn + l(k + kO))‘nwnnz - ”kd}n,x + l(k + ko)wn’l’HQ - 07
{)\2 P2 [k, — Uk + ko)ws] , ki, + Uk + ko)wn> — (kn.e — Uk + ko)wn 2, kb » + 1k + ko)wn o) = 0,

then, by using (4.3) and (4.29), we obtain

(4.39) kXt + L(k 4 ko)Anw, — 0 in L2 (0,1) and k2 | Xtnll® — 12(k + ko)? | Anwy]|* — 0.
Taking the inner product in L? (0,1) of (4.36), with — )\2 , and (4.36)2 with 1){)2 , and using (4.3) and (4.4),
we get
(4.40)
k k lk
)‘4 r2 <wn; wn> + )\ <1/Jn,:r7 wn,z> + Z <)\n§0n,z7 >\nwn> + 5 <>\n1/]n> A wn> ? ||)\nwn||2 — 0,
k Ik
/\4 p2 <1;Z]n; wn> + )\ <wn,xawn,z> +1 <]— + If) <)\nwna >\n90n,1> H>\nwn” + k‘i < n¥n, )‘nwn> — 0,
0

bk bk
then, by using (4.22) and (4.23), and adding ?Ox(4.40)1 and ffx(4.40)2, we obtain

(4.41) ko [ Anwn|® = 16 | Aatn])® + (Ko — 126) (At Apawy) — 0.
By taking the inner product in L% (0,1) of (4.39); with A\,%, and using (4.23), we arrive at
(4.42) kAt | + Lk + ko) (Anthn, Antwn) — 0.
On the other hand, combining kox (4.39)2 and using I(k + ko)?x (4.41), it follows that
(4.43) [kok? — bI%(k + ko)?] | Aatnll” + 1(k + ko)? (ko — 12b) (Antn, Antwy,) — O.
Adding (k + ko) (ko — bl?)x(4.42) and —(4.43), we find
ko (kko + bI%(k + ko)) | Antbnl|® — 0,
then, we have
(4.44) Aty — 0'in L2 (0, 1),
and by using (4.39);, we obtain
(4.45) A, — 0 in L?(0,1).
Using (4.4), (4.6)3, (4.6)5, (4.44) and (4.45), we deduce that
vy —0 and 2z, — 0in L?(0,1).

Taking the inner product in L? (0,1) of (4.37); with 1,,, and (4.37) with w,,, integrating by parts and
using the boundary conditions, we get

P2 2

7 )\n n

2 |t
then by (4.44) and (4.45), we deduce that

2,0 and &; [Antwn | = [lwn 2 ]|* = 0,

Yne—0 and w,, — 0in L?(0,1).
Consequently, as in case 1, we see that (4.7) holds. Finally, the proof of our Theorem 4.1 is completed. [
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5. EXPONENTIAL STABILITY

In this section, we prove that the semigroup associated to (2.1) is exponentially stable provided (1.5),
(3.1) and the following new conditions hold:

(5.1) §o#0 and & =& =0.

Theorem 5.1. We assume that (1.5), (3.1) and (5.1) hold. Then the semigroup associated with (2.1) is
exponentially stable.

Proof. We will use the method introduced in [6, 11] by proving (3.15) and (3.16). We have proved in
Lemma 3.1 that (3.1) and (3.15) are equivalent. So the semigroup associated with (2.1) is exponentially
stable if (3.16) holds. We assume by contradiction that the condition (3.16) is false. Then there is a real
sequence (A,), oy and a sequence (®y,), .y € D (A) such that (4.3) and (4.4) are satisfied and

(5.2) nh—>120 |(iA I — A) @, |5, = 0,

i.e., defining ®,, by (3.21), we have the following convergence:
iIAnon — Uy — 0 in H!(0,1),
ZAnplun —k (@n,x + ’(/}n + lwn)x - lkO (wn,w - l@n) + 6971,9: —0 in L2 (07 1) )
App — v, — 0 in H!(0,1),

(5.3) iA P2y, — Wp po + k (P +Un +1lw,) = 0 in L2 (0,1),
AWy, — 2p — 0 in H!(0,1),
iAnp12n — ko (Wnz — lon), + 1k (Pnz +Vn +lw,) — 0 in L2 (0,1),
Z>\np30n + dn,x + 5un,a: —0 in L2 (0, 1) s
iMTqn + Bgn + Onx — 0 in L?(0,1).

In the following, we will check the condition (3.16) by finding the contradiction (4.7) with (4.3). Our
proof is divided into several steps.

Step 1. Taking the inner product of (iA,I — A) ®,, with ®,, in H and using (3.4), we get
Re ((iAnd — A) @y, Pr)yy = B ||qn||2 )
using (4.3) and (5.2), we deduce that

(5.4) ¢n — 0in L*(0,1).
By the triangular inequality, we get
: < )\n n n 0n T n 3 4n
From (4.4), (5.3)s and (5.4), we deduce that
97’1 xr .
(5.5) <~ 0in L*(0,1).

n

Step 2. Multiplying (5.3)1 by Z;\’l, we obtain

n

1 )
||<Pn||2 N (Un, ipn) — 0.

n

Multiplying (5.3)3 by Zj\p—n, we find

n

1 .
||¢n||2 T <'Unvzwn> — 0.

Multiplying (5.3)5 by Z;U—n, we arrive at

n

1 .
HwnHQ W <Z7L7an> — 0.
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Hence, using (4.3) and (4.4), we observe that

(5.6) ©0n — 0in L?(0,1),
(5.7) ¢ — 0 in L2 (0,1)
and

(5.8) wy, — 0 in L?(0,1).

On,
Step 3. Multiplying (5.3)7 by o and integration by parts, we get

. 0\ 1" O 6\ 1" On,a
Zp3H9 H2+ |:<q77>:| _<QT7 >+6|:<’U/ ’ N —0(u ) ’ _>O7
n v )\n o v )\n n )\n o n )\n

and by using the boundary conditions, (4.3), (5.4) and (5.5), we find
(5.9) 6, — 0in L?(0,1).

Using the triangular inequality, we have

n,rxr ]‘
’ 90)\, < o (z/\nplun —k (Pnaz + Vn +lwn), — ko (Wnz —lon) + (59n’x) ‘
Zp1 1 ”{IQ 1) Hnr
5 Un T [ n,r l n,x) 7N nr*ln 7
| e T R, (e L) = g3 (Wne = lion) + 30
and by (4.3), (4.4), (5.3)2 and (5.5), we obtain
(5.10) (H Pn,zs ) is uniformly bounded.
/\” neN

Multiplying (5.3)7 by Mf\n,z, we obtain

n

1 , , P,z
P3 <9n7 Qpn,z> + )\7 <qn,w7upn7w> -0 <7'An50n,m — Un,z, Qi\ > + 0 ||(PTL7I||2 — O,
using (4.3), (4.4) and (5.3); and integration by parts, we get
Z‘ n,rxr

(5.11) 1 O o) + 3 Laninlly — (an 52 ) >0
by using the boundary conditions, (4.3), (5.4), (5.9) and (5.10), we deduce from (5.11) that
(5.12) @Ynz — 0in L?(0,1),
and by (4.4) and (5.3)1, we deduce that
(5.13) Una 0in L2(0,1).
As u, € H!(0,1), then, by (5.13), we get

;L" — 0 in L2 (0,1).

Step 4. Multiplying (5.3)2 by Z;f—n and integration by parts, we obtain
1 ||un|| + k )\ (Z)‘NLPTL - Un) + k <90n,mw7 (Pn> - )\7 <wn,xalun>

2
_ l(k)\;ko) <wn7$, zun> + l)\ﬁ <<,On, Zun> + 6<9>7\L7.’Ij’iu”> 0,

then, by integration by parts and using (4.3), (4.4), (5.3)1, (5.5) and (5.10), we have

leunH +k[<§0n1790n>] _kHQOan =0,
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using the boundary conditions and (5.12), we get

(5.14) u, — 0in L?(0,1),
and by (5.3)1, we deduce that
(5.15) Ann — 0in L?(0,1) .

Step 5. Multiplying (5.3)4 by @,,, we obtain
<i)\np2vna wn> - b <wn,xaza wn> + k <§0n,x + '(/}n + lwna wn> — 07

and with integration by parts, we get

—p2 <’Un, Z)\nwn - ZTL> — P2 <Un7 Zn> - b Kwn,:m wn>]é + b <wn,w7 wn,z> + k <<pn7w + wn + l Wnp, wn> — 07
then, using the boundary conditions, (4.3), (5.3)5, (5.7), (5.8) and (5.12), we deduce that

b <7/}n,zv wn,m> — P2 <'Una Zn> — 0,
then, by using (4.3) and (5.6), we have

(5.16) b (Yn,zs Wne — lpn) = p2 (Un, 20) — 0.

Step 6. Multiplying (5.3)2 by wy,» — lpn, we obtain

21

P1 <Z)\nunwn,:c - l‘pn>_k <(<pn,z + 1 +1 wn)z , Wn,o — l¢n>_lk0 ”wn,x - l‘pn”2+5 <9n,;c7 Wn,x — l‘Pn> — 0,

then, we have

. l .
_% <un71)\nwn,x - Zn,ac> - % <un7 Zn,x> + % <un72>\n§0n>
Ik 1)
- <( nax T 1/% + lwn)m s Wn,x — l‘Pn> - ?O ||wn,x - l‘Pn”2 + % <9n,xawn,a¢ -
By using (4.3), (5.3)5 and (5.15), we get

_% <U”ﬂ7 Zn7$> - <(<pn7w + wn +lwn)x y Wn,o — l‘Pn>
lk )
(5.17) — =2 lwn = lonl> + 3 Bz, Wne = lpn) = 0.

Multiplying (5.3)¢ by ©n,o + ¥n + lwy,, we obtain

then, with integration by parts and using the boundary conditions, we get

—pP1 <Znal)\n%0n,a:> — pP1 <Znyl>\nwn - Un> — P1 <Znavn> - lPl <Zn; ZATL Wy — Zn>
~1p1 |20l + ko (Wn.a — 1pn, (Pn.e + W + Lwn), ) + Uk [on 2 + n + Lwn|* = 0,

therefore, using (4.3), (5.3)s, (5.3)s5, (5.7), (5.8), (5.12) and (5.16), we deduce that

p1 ) bp1
5.18 —— (Zn, A On.) — ——
(518) 2 en D) —

+ <wn,x — lon, (Wn,:c + ¢ +1 wn)m> — 0,
combining (5.17) and (5.18), we find

lp1 2
<wn,:r - l(pnu ’(/Jn,:r:> - ? ||Zn||
0

bpl lpl

P1 . 2
-7 val)\n n,r/ — wn,:}c _l ny ¥Yn,x/ — Zn
o (o AP = po (e = Ko tie) = el
lk )
_% <Zn,xa un> - ?O ”wn,m - lﬂonnz + E <wn,z - l@naen,z> — 07
then, with integration by parts and using the boundary conditions, we obtain
p1 : bp1 lp1 2 p1 ,

-3 val)\n n,r/ wnm_l nawnz — 7 ll%n - g ZnaZ/\n n,w_un,w
o Pn.z) k0p2< a = loms ) = ozl = 50 @ )
p1 . lko 2 0

+? <znal)\n80n,m> - ? Hwn,x - l‘pn” + % <wn,:v - l@’ru 9n7w> — 07

lpn) — 0.
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using (4.3) and (5.3)1, we arrive at

ko ) . bp lpl
7 ——1 Znal)\n nw_iwn:v_l ns Pn,z) — 7 [|%n
2 (B 1) o) (s s n) =

(5.19) B e = gl + e~ o, e} .
Step 7. From (4.3), (5.3)3 and (5.3)5, we observe that
(5.20) (IM¥nl) pen and ([[Anwnl]), ey are uniformly bounded.
We have, by integrating by parts,
(N2 Doty + iAnpavn, i0,) = —ips (iAgtn — Un,iAn6y)
= =0 = v g+ s+ 0)
2532 (iIAWn — Un, Qnoa) + Zp% (iAnthn, — Up, OUp, )
= o — v, gl + s+ B} = 2 (A = ),

+Zﬁi2 [< Ann — Un, Qn>] + Zpﬂ [(Z)\nq/)n - vnyaun”(l) ZIDQ <( Anthn —

p3 3 3
by using the boundary conditions, (4.3), (5.3)s and (5.3)7, we deduce that

(5.21) (A2 p2tin + iAoy, 6, ) — 0.

Also, we have

<)\n¢n»un,r> - [<>\nwnaun>](1) - <)\nwnzaun>
= - <7/>\n1/)n,"c — Un,x, Zun) - <vn,zy 'Lun>
(5.22) = — (i WUng — Vnogs BUp) + (Up, (U q) -
Using again integration by parts and the boundary conditions, we have

A (Vnzy@n) = An [(Un, qn>] = A (Yns Gnz)
= =\ <wn7 Z)\np?)on + Gn,a + 5un,:c> + A <7/}na Z'/\n,039n> + A <77[}7la 6Un,:c>

= =\ <1/}n7 i)\np?)en + Qn,z + 5un,w> 23 <)\2 p2'(/}n + Z)\np2vna 0, >

—% (IAnp2Vn — bbn za + K (Pne + Y +1wy) ,i0,)
2

b k
8 (s 00) + 22 (P + U+ Lt 0) + 8 At tn 1)
P2 P2

then, by (5.22) and integration by parts, we obtain

>\n <¢n,za Qn>

— (A, iAnp3bn + Gn,z + S, z) r pB <)‘ p2n + iAnp2vn, iy, >

2

b b k .
3 [<1/}n ) 0, >} p3 <wn ) ity :c> p3 <30n,z + 1/}77, + lwvu Zan)
P2 P2 P2

_5 <Z)\nwn,x - Un,wa Zun) + 5 <Un7 Zun,a:> )

un>

n)z ) Qn> ,

using the boundary conditions, (4.3), (5.3)3, (5.3)4, (5.3)7, (5.7), (5.8), (5.12), (5.20) and (5.21), we

deduce from (5.23) that

(5.24) M (s ) — bf’ (s 0.0 — 6 (v, it ) = 0.
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Also, we have

) .
An <wn,w7 (Zn> = ; <wn,za ZT)\nq'n>
i . i3 1 )
(525) = ; <wn,wa Z)\nTQn + Bqn + 9n,z> - 7 <wn,w7 Qn> + ; <1/}n,a:; 'Len,w> )
therefore, by using (4.3), (5.3)s, (5.4), (5.24) and (5.25), we obtain
b 1
<p3 - ) <¢n,x7 0n,x> +0 <Un7un,ac> — 0,
P2 T
and so
bp3 1 . .
7 - ; <wn,xa 9n,z> -9 <vna (l>\n§0n - un)$> +90 <'Un> ZAn(Pn,a:> — 0,
2
and moreover, by (4.3) and (5.3);, we find
bp3 1 .
(5.26) — — = | (g, On ) + 0 (U, iA0n z) — 0.
P2 T

Step 8. Multiplying (5.3)4 by ¢n. + ¥ + L w,, we obtain

<i/\np2'vn; Pn,x + wn + lwn> -b <7/)n,z:va Pn,x + wn +lwn> +k ||§0n,z + q,bn + lwnH2 - Oa

with integration by parts and using the boundary conditions, (5.7), (5.8) and (5.12), we get

—p2 <Una iAn@n,x> — P2 <U7Lai/\n77[}n - Un> — P2 H'Un”2
_l,o2 <'Un7 7I>\n Wy — Zn> - ZPZ <Un7 Zn> + b <f¢)n,za (9071,:6 + 'll)n + l wn)aj> — 0;

using (4.3), (5.3)3 and (5.3)5, we deduce that
. b .
—pP2 <Una ZAnQOn,z> — P2 ||UnH2 - ll)2 <Un7 Zn) + % <wn,zy 7'Anplun - lkO (wn,a: - l‘pn) + 59n,1>
b
_E <wn,wa ZA1’Liolun —k ((Pn,z + wn + lwn)z - lkO (wn,x - l@n) + 59n,m> — 0;

using (4.3) and (5.3)2, we have

. bp1 .
—pP2 <vnalAn@n,z> — P2 annz - po <Un7 Zn> - % <Z)‘nwn,z - Un,z7un>
b blk bd
(527) _% </U’n,:v7un> - ko <wn,xa Wp,x — l‘pn> + ? <¢n,zaen,z> — 0.

As, by integrating by parts and using the boundary conditions,
<Un,ac7 un> = - <'Un7 un,x> = <Un7 i/\n@n,x - Un,ac> - <Una iAn@n,x> ,
and with (4.3), (5.3)1, (5.3)3 and (5.27), we see that

blk

b
k <wn,xa wn,z - l@n) + ? <¢n,m»9n,x> — Oa

bp .
(%2~ 2} i) = o2 ol = 1 G2 =

combining with (5.16) and (5.26), we obtain

1 bpl bp3 1 b 2 ko
5 ( k P2> ( Do 7_) <1/)n,179n7w>+ k(s <wn7wa 9n,:p> P2 ||UnH lb (1 + k‘ ) <wn,mzwn,:p l¢n> — 0;

then, we get

b5 kpz ) (brs 1 - 2_ ko -
(5.28) ok |:(5 — (,01 - b ) (p2 7_):| <wn7m79n7w> P2 ||UTLH b (1 + A ) me,wn,x l‘pn) — 0.
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Step 9. We have

1
{zn, qn,z> = [<Zm Qn>]0 - <Zn,a:a In)
= <ZAnwn,'E — Zn,x, Qn> - <iAnwn,z7 Qn>
1 )
(5'29) = <i/\nwn,x — Zn,xs Qn> + ; <wn,za Z/\nTQn + ﬁQn + 6nw>
1

_; <wn,w; Qn> - ; <wn,a:7 9n,w> .

Also, we see that

(iIAnp12n, On) = —p1(2n, 1A, On)
. 1)
= S <Znal>\n p30n + Qn,o + 5un,z> + o <Zn7qn,1> + £ <Z”7u”>m>
P3 p3 P3
= 7,071 <Zna iAn p30n + G,z + 5un:c> + & <Zna qn,z>
P3 3
_op1 dp1

- <Zn7 Z)\ncpn,:v - un,m> + <Zn; Z)\n@n,m> )
P3 P3

by using (5.29), we obtain

1)
<i)\nplzn; 9n> = _& <Zn, Z)‘n p39n + dn,x + 6un,z> - ﬁ <Zn, Z)\n@n,a: - un,a:)
P3 P3

1.
_’_& <Z)\nwn,:b - Zn,:m qn> +
p3 TpP3
dp1 Bp1 P1

5.30 +— (2n,tA\n nax) — —— \Wn,zy qn) — —— wn,zven,z .
(5:30 20 s D) = 2 s 00) = 2 (e, )

Multiplying (5.3)¢ by 0,, we find

P

<wn,z7 z)\ann + 5% + 9n,:1:>

<7;/\nplzna 0n> - kO <(wn,:v - l@n)x ) 9n> + kl <S0n,x + ql)n + lwn70n> — 07

then by integration by parts and using the boundary conditions, (4.3), (5.3)1, (5.3)s, (5.3)7, (5.3)s, (5.4),
(5.7), (5.8), (5.12) and (5.30), we obtain
op1 .
- <wn,m7 9n,£> + 7 <val)‘n90n,:c> + ko <wn,z - l@nyen,m> — 0.
3

As (thanks to (5.5) and (5.15))

anr
<90na 0n,x> == <An§0na ’> — 07

An
we get
0
(5.31) ( 0— pl) (Wne = 1on, Onz) + 22 (2, iAnpns) = 0.
TP3 P3

Step 10. By using (5.19) and (5.31), we observe that

1 [, k 1
s |:5 — <1 — ko) (p3l€0 - - ):| <wn,z _l@naen,z>

bpy Ip1 o ko 2
5.32 - Wy oz — Lon, Un ) — — ||zn]|” — — [[wn.oe — lon||” — 0.
(532) P2 (= U = ozl = 2 s = L]
Multiplying (5.3)4 by w,,, and (5.3)g by ¥, we get
b k
<i)\nvnawn> - <wn,zm»wn> + - <90n,:c + wn +lwnawn> - 07
2

2
. Ik
(iAnZn, ) — ;TT {(Wno = lon), ) + — Pz + ¥n + Lwn, ¥n) = 0,

o1
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then

b k
- <'Un7i)\nwn - Zn> - <vn7 Zn> - <’(/}n,a:a:; wn> + - <§0n,a: + ’(/}n + lwnawn> — 0;
2 2

lk

- <Znal)\nwn - Un> - <Zna Un) - ;? <(wn,r - l@n)x 7wn> + E <90n,z + Y + Lw,, ¢n> — 0,

by integration by parts and using (4.3), (5.3)3, (5.3)5, (5.7), (5.8) and (5.12), we obtain

b b
- <Una Zn> - [<wn,$7wn>]é + g <wn,z7wn,m> — O>

02
k k
- <U7la Zn> - ,07(1) [(djnvwn,x - l@nﬂ(l) + ;? <wn,ac7wn,x - l@n> — 0,

by using the boundary conditions, we find

b k
— <1/)n,ac7wn,x> - = <wn,ac7wn,x - l‘Pn> — 0.
P2 P1

As (.5, on) — 0 (according to (4.3) and (5.6)), then

(b - ko) <wn,z7wn,w - l@n> — 0
P2 pP1

b k
As &y # 0; that is, — # —O, then we obtain
P2

P1
(533) <¢n,xa Wp,x — l(pn> — 0.
b 1
As & = 0; that is, §2 — (p1 - k%) <p3 - > = 0, then, using (5.28) and (5.33), we find
P2 T
(5.34) vp — 0in L% (0,1) .
By (5.3); and (5.34), we have
(5.35) Aty — 0 in L2(0,1).

Multiplying (5.3)4 by ¥, we get

<i)\np2vn7 "/}n> —-b <wn,zra "/}n> + k <§0n,:v + 'l/}n + l Wn, wn> — 07
then, by integrating by parts, we remark that

(5:36)  {ioaon Ann) = DLW )]y 2 el 4 o+ o + L) 0.

By using the boundary conditions, (4.3), (5.7), (5.8), (5.12), (5.34), (5.35) and (5.36), we arrive at
(5.37) Yne — 0in L?(0,1).

As & = 0; that is, 62 — (1 — :()) (pgko - %) = 0, then, using (5.32) and (5.33), we deduce that
(5.38) 2, — 0in L?(0,1)

and

Wy — lpn, — 0in L* (0, 1),
and so, using (5.6),
(5.39) Wy — 0in L?(0,1).

Finally, (5.4), (5.6), (5.7),

(
is a contradiction with (4.3). Hence, the proof of Theorem 5.1 is completed.

5.8), (5.9), (5.12), (5.14), (5.34), (5.37), (5.38) and (5.39) lead to (4.7), which
)- 0
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Remark 2. Our stability results hold for some other boundary conditions such as

0z (0,8) = (0,t) =w (0,t) =6 (0,£) =0 in (0,00),
< (1L,t) =9 (1,t) = w(l,t)=0(1,t) =0 n (0,00),

90(07t>:wwa)?t):wm(07t>ZQ(O’t):O z'n((),oo),
{ @(Lt) =1y (Lt) = Wy (Lt) = Q(lvt) =0 in (0,00)
and
cpm((),t):w(O,t):w(O,t):G(O,t):O in((),oo),
{ @(Lt) =y (17t) = Wy (Lt) = Q(lvt) =0 in (0,00)
The question is posed when [p and 9] or [¢ and w] or [¢ and 6] has the same boundary
condition at 0 or at 1, and when [¢ and ¢] or [¢) and w] or [¢) and 6] or [w and 6] do not have
the same boundary condition at 0 or at 1.

6. CONCLUDING REMARKS

In this work, we proved that, under new relationships between the coefficients of the
considered model, the coupling of the first component in Bresse system with the heat
conduction of Cattaneo’s law is strong enough to stabilize exponentially the solutions of
the considered model. When these relationships are not satisfied, we showed that the total
energy of the system is not decaying exponentially and it is decaying at least polynomially
with a decay rate depending on the smoothness of the initial data. It will interesting to
study the optimality of the decay rate for the polynomial stability case and to extend our
results to other kind of heat conduction models.
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