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Abstract. In this paper, we discuss the stability of the mathematical model of a linear one-

dimensional thermoelastic Bresse system, where the coupling is given through the first component of

the Bresse model with the heat conduction of second sound type. We state the well-posedness and show
the polynomial stability of the system, where the decay rate depends on the smoothness of initial data.

Moreover, we prove the non exponential and the exponential decay depending on a new conditions on

the parameters of the system. The proof is based on a combination of the energy method and the
frequency domain approach.
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1. Introduction

In this paper, we consider the following mathematical model consisting of a linear Bresse
system coupled with heat equation via the first equation:

(1.1)


ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + δθx = 0 in (0, 1)× (0,∞) ,
ρ2ψtt − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,
ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,
ρ3θt + qx + δϕxt = 0 in (0, 1)× (0,∞) ,
τqt + βq + θx = 0 in (0, 1)× (0,∞)

along with the initial and boundary conditions of the form

(1.2)



ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) in (0, 1) ,
ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) in (0, 1) ,
w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) in (0, 1) ,
θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) in (0, 1) ,
ϕ (0, t) = ψx (0, t) = wx (0, t) = q (0, t) = 0 in (0,∞) ,
ϕx (1, t) = ψ (1, t) = w (1, t) = θ (1, t) = 0 in (0,∞) ,

where ρ1, ρ2, ρ3, b, k, k0, τ, β, δ and l are positive constants, the initial data ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0
and q0 belong to a suitable Hilbert space, and the unknowns of (1.1)-(1.2) are the following variables:

(ϕ,ψ,w, θ, q) : (0, 1)× (0,∞)→ R5.

∗ Corresponding author.
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Many researchers studied the well-posedness and stability of Bresse systems as well as the thermoelastic
Bresse systems. Under different types of feedbacks, many stability results in the literature have been
obtained depending on the following wave speeds parameters:

s1 =
k

ρ1
, s2 =

b

ρ2
and s3 =

k0
ρ1
,

for this purpose, we refer the reader to [1, 3, 4, 5, 7, 9] and the references therein.

In [7], the authors considered the following coupled system:

(1.3)


ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1)× (0,∞) ,
ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δθx = 0 in (0, 1)× (0,∞) ,
ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,
ρ3θt + qx + δψxt = 0 in (0, 1)× (0,∞) ,
τqt + βq + θx = 0 in (0, 1)× (0,∞) .

They proved that (1.3) is exponentially stable if

s1 = s3,
(ρ1
k
− ρ2

b

)(
1− τkρ3

ρ1

)
=
τδ2

b
and l is small,

and (1.3) is not exponentially stable if

s1 6= s3 or
(ρ1
k
− ρ2

b

)(
1− τkρ3

ρ1

)
6= τδ2

b
.

Moreover, when

s1 = s3,
(ρ1
k
− ρ2

b

)(
1− τkρ3

ρ1

)
6= τδ2

b
and l is small,

the polynomial stability for (1.3) was proved in [7] with the decay rate t−
1
2 .

Recently, in [1], the authors considered the following system:

(1.4)


ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1)× (0,∞) ,
ρ2ψtt − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,
ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0 in (0, 1)× (0,∞) ,
ρ3θt + qx + δwxt = 0 in (0, 1)× (0,∞) ,
τqt + βq + θx = 0 in (0, 1)× (0,∞) ,

under the restriction

(1.5) l 6= π

2
+ pπ, ∀p ∈ N.

They proved that the solution is not exponentially stable if (1.6) or (1.7) does not hold, where

(1.6) (k − k0)
(
ρ3 −

ρ1
τk

)
− δ2 = bρ1 − kρ2 = 0,

and

(1.7) l2 6= bρ1 + k0ρ2
k0ρ2

(π
2

+ pπ
)2

+
ρ1k

ρ2(k + k0)
, ∀p ∈ Z.

Also, they proved that the solution is exponentially stable if (1.6) and (1.7) hold. Moreover, the poly-

nomial stability for (1.4) with the decay rate t−
1
8 was proved in [1] when (1.7) holds and (1.6) does not

hold.

The heat conduction in (1.1), (1.3) and (1.4) is of second sound type; known also as Cattaneo’s law
(for more details, see [7]). On the other hand, in (1.3) and (1.4), the Bresse system is indirectly stabilized
via only its second or third equation, while in our case, the first hyperbolic equation in (1.1) is indirectly
damped through the coupling with the last two ones in (1.1) (which describe the heat conduction of
Cattaneo’s law).

The stability of Bresse system via only its first equation was treated in [3, 4, 5] by the second author
of the present paper using a linear frictional damping or an infinite memory or a heat conduction of type
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I (known as Fourier’s law) or type III. More precisely, it was proved in [3, 4, 5] that, independently of
the values of the coefficients, the Bresse system ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + F = 0 in (0, 1)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) = 0, in (0, 1)× (0,∞) ,
ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,

is not exponentially stable but it is at least polynomially stable with a decay rate depending on the
smoothness of the initial data, where F = γϕt and γ is a positive constant (a linear frictional damping;
see [5]), or

F =

∫ ∞
0

g(s)ϕxx(x, t− s) ds,

and g : R+ −→ R+ is a differentiable function converging exponentially to zero at infinity (an infinite
memory; see [3]) or F = δθx or F = δηxt (heat conduction of type I or type III, respectively; see [4]),
where

ρ3θt − βθxx + δϕxt = 0 in (0, 1)× (0,∞)

and
ρ3ηtt − βηxx − γηxxt + δϕxt = 0 in (0, 1)× (0,∞) .

Our objective in this paper is to check from mathematical viewpoint whether the indirect
damping via the coupling with the heat equation is enough to stabilize the full system,
we establish some stability results for the solutions: non exponential stability, polynomial stability and
exponential stability. Contrary to the cases considered in [3, 4, 5], we prove that, under new relationships
between the coefficients of (1.1), the heat conduction of Cattaneo’s law is strong enough to stabilize
(1.1)-(1.2) exponentially. When these relationships are not satisfied, we show that (1.1)-(1.2) is not
exponentially stable and it is polynomially stable with a decay rate depending on the smoothness of the
initial data. The stability results are proved using the energy method combining with the frequency
domain approach.

Our paper is organized as follows. In section 2, we state the well-posedness of (1.1)-(1.2). In sections 3
and 4, we prove the lack of exponential stability as well as the polynomial decay of solutions for (1.1)-(1.2),
respectively. Section 5 is devoted to the proof of the exponential decay of the solutions for (1.1)-(1.2).
We give some concluding remarks in the last section.

2. Well-posedness

In this section, we state an existence, uniqueness and smoothness result for problem (1.1)-(1.2) using
the semigroup theory and following the same procedure as in [1]. Introducing the vector functions

Φ = (ϕ, u, ψ, v, w, z, θ, q)
T

and Φ0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, q0)
T
,

where u = ϕt, v = ψt and z = wt, system (1.1)-(1.2) can be written as

(2.1)

{
Φt = AΦ, ∀t > 0,
Φ (0) = Φ0,

where the operator A is linear and defined by

(2.2) AΦ =



u
k

ρ1
(ϕx + ψ + l w)x +

lk0
ρ1

(wx − lϕ)− δ

ρ1
θx

v
b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w)

z
k0
ρ1

(wx − lϕ)x −
lk

ρ1
(ϕx + ψ + l w)

− 1

ρ3
qx −

δ

ρ3
ux

−β
τ
q − 1

τ
θx



.
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We consider the following spaces:

H1
∗ (0, 1) =

{
f ∈ H1 (0, 1) : f (0) = 0

}
,
∼
H1
∗ (0, 1) =

{
f ∈ H1 (0, 1) : f (1) = 0

}
,

H2
∗ (0, 1) = H2 (0, 1) ∩H1

∗ (0, 1) ,
∼
H2
∗ (0, 1) = H2 (0, 1) ∩

∼
H1
∗ (0, 1)

and

H = H1
∗ (0, 1)× L2 (0, 1)×

∼
H1
∗ (0, 1)× L2 (0, 1)×

∼
H1
∗ (0, 1)×

(
L2 (0, 1)

)3
,

equipped with the inner product

〈Φ1,Φ2〉H = k 〈ϕ1,x + ψ1 + l w1, ϕ2,x + ψ2 + l w2〉+ k0 〈w1,x − lϕ1, w2,x − lϕ2〉
+b 〈ψ1,x, ψ2,x〉+ ρ1 〈u1, u2〉+ ρ2 〈v1, v2〉+ ρ1 〈z1, z2〉+ ρ3 〈θ1, θ2〉+ τ 〈q1, q2〉 ,

where 〈·, ·〉 denotes the classical inner product of L2(0, 1). The corresponding energy norm will be defined
as follow:

‖Φ‖2H = k ‖ϕx + ψ + l w‖2 + k0 ‖wx − lϕ‖2 + b ‖ψx‖2 + ρ1 ‖u‖2 + ρ2 ‖v‖2 + ρ1 ‖z‖2 + ρ3 ‖θ‖2 + τ ‖q‖2 ,
where ‖·‖ is the standard norm of L2(0, 1). Then A, formally given in (2.2), has the domain

D (A) =

 Φ ∈ H : ϕ ∈ H2
∗ (0, 1) , ψ, w ∈

∼
H2
∗ (0, 1) , u, q ∈ H1

∗ (0, 1) ,

v, z, θ ∈
∼
H1
∗ (0, 1) , ϕx (1) = wx (0) = ψx (0) = 0

 .

Using the same arguments and steps as in [1], we prove that, under the condition (1.5), the space
(H, 〈·, ·〉H) is a Hilbert space, the norm ‖·‖H is equivalent to the one of

H1 (0, 1)× L2 (0, 1)×H1 (0, 1)× L2 (0, 1)×H1 (0, 1)×
(
L2 (0, 1)

)3
,

0 ∈ ρ(A) and the operator A is a maximal monotone operator and its domain is dense in H. Therefore,
from Lummer-Phillip’s theorem, we have that A is the infinitesimal generator of a linear contraction
C0-semigroup in H. So, the following well-posedness result holds (see [10]):

Theorem 2.1. Assume that (1.5) holds. Then, for any m ∈ N and Φ0 ∈ D (Am), system (2.1) admits
a unique solution

Φ ∈ ∩mj=0C
m−j(R+, D

(
Aj
)
),

where D
(
Aj
)
is endowed by the graph norm ‖·‖D(Aj) =

∑j
r=0 ‖Ar·‖H.

Remark 1. 1. In the particular case m = 0; that is, Φ0 ∈ D
(
A0
)

= H, Φ is a weak solution.
For m ∈ N∗, Φ is at least a classical solution.

2. The operator A−1 is bounded and it is a bijection between H and the domain D(A). So
A has a nonempty resolvant and its spectrum is consisting entirely of eigenvalues.

3. Lack of exponential stability

In this section, we state and prove a result regarding the lack of exponential stability of the solutions
of (2.1) depending on the following constants:

ξ0 = bρ1 − k0ρ2,

ξ1 = δ2 −
(
ρ1 −

kρ2
b

)(
bρ3
ρ2
− 1

τ

)
,

ξ2 = δ2 −
(

1− k

k0

)(
ρ3k0 −

ρ1
τ

)
,

and the following additional restriction on l:

(3.1) l2 6= k0ρ2 − bρ1
k0ρ2

(π
2

+ pπ
)2
− kρ1
ρ2(k + k0)

, ∀p ∈ Z.

First, we will state and prove the following crucial lemma needed for the proofs of our main results.

Lemma 3.1. Assume that (1.5) holds. Then (3.1) and iR ⊂ ρ (A) are equivalent.
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Proof. Let a ∈ R∗ and let Φ ∈ D(A) with

(3.2) AΦ = i aΦ.

It is sufficient to prove the equivalence between Φ = 0 (that is, ia is not an eigenvalue of A) and (3.1).
We see that (3.2) is equivalent to

(3.3)



u = iaϕ, v = iaψ, z = iaw,
k

ρ1
(ϕx + ψ + l w)x +

lk0
ρ1

(wx − lϕ)− δ

ρ1
θx = iau,

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w) = iav,

k0
ρ1

(wx − lϕ)x −
lk

ρ1
(ϕx + ψ + l w) = iaz,

− 1

ρ3
qx −

δ

ρ3
ux = iaθ,

−β
τ
q − 1

τ
θx = iaq.

As in [1], computing 〈AΦ,Φ〉, we get

(3.4) 〈AΦ,Φ〉H = −β ‖q‖2 .
Therefore, using (3.2),

−β ‖q‖2 = Re 〈AΦ,Φ〉H = Re 〈iaΦ,Φ〉H = Re ia ‖Φ‖2H = 0.

So we deduce that

(3.5) q = 0.

Taking into account that θ ∈
∼
H1
∗ (0, 1) and using (3.5) and the eighth equation of (3.3), we deduce that

(3.6) θ = 0.

By using the seventh equation of (3.3), (3.5) and (3.6), we find

ux = 0,

and with the first equation of (3.3), we obtain that

ϕx = 0.

As ϕ ∈ H1
∗ (0, 1) and thanks again to the first equation of (3.3), we have

(3.7) ϕ = u = 0.

Using (3.5), (3.6) and (3.7), we remark that (3.3) is reduced to

(3.8)



v = iaψ, z = iaw,

ψx + l

(
1 +

k0
k

)
wx = 0,

b

k
ψxx − (ψ + l w) = −ρ2a

2

k
ψ,

k0
lk
wxx − (ψ + l w) = −ρ1a

2

lk
w.

Taking into account that ψ(1) = w(1) = 0, we remark that the third equation of (3.8) is equivalent to

(3.9) ψ = −l
(

1 +
k0
k

)
w.

Using the last two equations of (3.8), we obtain

b

k
ψxx −

k0
lk
wxx = −ρ2a

2

k
ψ +

ρ1a
2

lk
w,

and by (3.9), we have

(3.10) −
(
b

k
l

(
1 +

k0
k

)
+
k0
lk

)
wxx =

a2

lk

(
ρ2l

2

(
1 +

k0
k

)
+ ρ1

)
w
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with the boundary conditions

w (1) = wx (0) = 0.

Equation (3.10) is equivalent to, for some constants C1 and C2,

w(x) = C1 cos (Ax) + C2 sin (Ax) with A =

√√√√√√√
a2
(
ρ2l

2

(
1 +

k0
k

)
+ ρ1

)
bl2
(

1 +
k0
k

)
+ k0

.

Then, the boundary condition wx (0) = 0 implies that C2 = 0, and so, according to (3.9),

(3.11) w(x) = C1 cos (Ax) and ψ(x) = −C1l

(
1 +

k0
k

)
cos (Ax).

Assume that (3.1) holds. We have to prove that C1 = 0. Assume by contradiction that C1 6= 0. Using
(3.11) and the definition of A, we observe that the last two equations of (3.8) are equivalent to

(3.12) a2 (ρ1b− k0ρ2) +
kk0
k + k0

(
bl2
(

1 +
k0
k

)
+ k0

)
= 0.

On the other hand, (3.11) and the boundary condition w(1) = 0 lead to

(3.13) ∃p ∈ Z : A =
π

2
+ pπ.

By combining (3.12), (3.13) and the definition of A, we arrive at

(3.14) ∃p ∈ Z : l2 =
k0ρ2 − bρ1

k0ρ2

(π
2

+ pπ
)2
− kρ1
ρ2(k + k0)

,

which is a contradiction with (3.1). Hence C1 = 0, and consequently, ψ = w = v = z = 0 according to
(3.11) and the first two equations of (3.8). Then, with (3.5), (3.6) and (3.7), it is clear that Φ = 0. This
shows that (3.15) is satisfied.

Now, assume that (3.1) is not satisfied; that is (3.14) holds. We notice that, for

a =
(π

2
+ pπ

)
√√√√√√√

bl2
(

1 +
k0
k

)
+ k0

ρ2l2
(

1 +
k0
k

)
+ ρ1

,

and for any C1 ∈ C, the function

Φ(x) =

(
0, 0,−l

(
1 +

k0
k

)
C1 cos (Ax) ,−il

(
1 +

k0
k

)
C1a cos (Ax) , C1 cos (Ax) , iC1a cos (Ax) , 0, 0

)T
,

is in D(A) and satisfies (3.2). Hence ia /∈ ρ (A), which implies that (3.15) does not hold. Conclusion,
(3.1) and (3.15) are equivalent. �

Theorem 3.2. Assume that (1.5) holds. Then the semigroup associated to problem (2.1) is not expo-
nentially stable if (3.1) does not hold or ξ0 = 0 or ξ1 6= 0 or ξ2 6= 0.

Proof. It is known that the exponential stability holds if and only if (see [6, 11])

(3.15) iR ⊂ ρ (A)

and

(3.16) sup
λ∈R

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

<∞.

We know, from Lemma 3.1 that (3.15) is not satisfied if (3.1) does not hold. Now, we need to prove that
(3.16) does not hold if ξ0 = 0 or ξ1 6= 0 or ξ2 6= 0.
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Assume that ξ0 = 0 or ξ1 6= 0 or ξ2 6= 0. We follow the same procedures as in [1], where we prove that
there exists a sequence (λn)n∈N ⊂ R such that

lim
n−→∞

∥∥∥(iλnI −A)
−1
∥∥∥
L(H)

=∞,

which is equivalent to prove that there exists (Fn)n∈N ⊂ H with

(3.17) ‖Fn‖H ≤ 1, ∀n ∈ N,

and, for Φn = (iλnI −A)
−1
Fn,

(3.18) lim
n−→∞

‖Φn‖H =∞,

therefore, we have

(3.19) iλnΦn −AΦn = Fn.

So to say, we have to look at the solution of spectral equation (3.19) and show that the corresponding
solution Φn is not bounded when Fn is bounded in H. Rewriting the spectral equation in term of its
components, we have

(3.20)



iλnϕn − un = fn,1,
iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn) + δθn,x = ρ1fn,2,
iλnψn − vn = fn,3,
iλnρ2vn − bψn,xx + k (ϕn,x + ψn + l wn) = ρ2fn,4,
iλnwn − zn = fn,5,
iλnρ1zn − k0 (wn,x − lϕn)x + lk (ϕn,x + ψn + l wn) = ρ1fn,6,
iλnρ3θn + qn,x + δun,x = ρ3fn,7,
iλnτqn + βqn + θn,x = τfn,8,

where Fn = (fn,1, · · · , fn,8) ∈ H and

(3.21) Φn = (ϕn, un, ψn, vn, wn, zn, θn, qn) ∈ D(A).

We will prove that there exists a sequence of real numbers (λn)n∈N and functions (Fn)n∈N ⊂ H verifying
(3.17), (3.18) and (3.20). To do this, we take

(3.22) fn,1 = fn,3 = fn,5 = 0.

So, (3.20)1, (3.20)3 and (3.20)5 are equivalent to

(3.23) un = iλnϕn, vn = iλnψn, and zn = iλnwn.

Then solving (3.20) is reduced to solving

(3.24)


−λ2nρ1ϕn − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn) + δθn,x = ρ1fn,2,
−λ2nρ2ψn − bψn,xx + k (ϕn,x + ψn + l wn) = ρ2fn,4,
−λ2nρ1wn − k0 (wn,x − lϕn)x + lk (ϕn,x + ψn + l wn) = ρ1fn,6,
iλnρ3θn + qn,x + iδλnϕn,x = ρ3fn,7,
iλnτqn + βqn + θn,x = τfn,8.

To simplify the calculations, let N =
(2n+ 1)π

2
. Now, according to our hypotheses in Theorem 3.2, we

consider the three cases ξ0 = 0, [ξ0 6= 0 and ξ1 6= 0] and [ξ0 6= 0 and ξ2 6= 0].

Case 1: ξ0 = 0. We have
b

ρ2
=
k0
ρ1

, then we choose

(3.25) fn,4(x) = − lk0
ρ2
D cos (Nx) , fn,6(x) = − l

2k0
ρ1

D cos (Nx)

and

(3.26) fn,2 = fn,7 = fn,8 = 0,

where D ∈ R, which will be fixed. We will look for a particular solution Φn ∈ D(A) of (3.19) as follow:

Φn = (0, 0, B cos (Nx) , iBλn cos (Nx) , D cos (Nx) , iDλn cos (Nx) , 0, 0)
T
,
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where B ∈ R that will be chosen. So (3.23) is satisfied and Φn ∈ D(A). On the other hand, Φn satisfies
(3.24) if and only if the coefficients B and D satisfy the following system:

(3.27)


kB + l(k + k0)D = 0,(
−λ2n +

b

ρ2
N2 +

k

ρ2

)
B +

lk

ρ2
D = − lk0

ρ2
D,

lk

ρ1
B +

(
−λ2n +

k0
ρ1
N2 +

l2k

ρ1

)
D = − l

2k0
ρ1

D.

Now, we will take

λn = N

√
k0
ρ1
.

Because
b

ρ2
=
k0
ρ1

, we have

−λ2n +
b

ρ2
N2 = −λ2n +

k0
ρ1
N2 = 0,

and therefore, the system (3.27) will be reduced to

kB + l (k + k0)D = 0,

which is equivalent to

B = −l
(

1 +
k0
k

)
D.

Choosing

B = −l
(

1 +
k0
k

)
ρ1ρ2

lk0
√
ρ21 + l2ρ22

and D =
ρ1ρ2

lk0
√
ρ21 + l2ρ22

,

and using (3.22), (3.25) and (3.26), we obtain

‖Fn‖2H = ‖fn,4‖2 + ‖fn,6‖2 =

(
lk0
ρ2

)2
[

1 +

(
lρ2
ρ1

)2
]
D2

∫ 1

0

cos2 (Nx) dx

≤
(
lk0
ρ2

)2
[

1 +

(
lρ2
ρ1

)2
]
D2 = 1,

which implies (3.17). On the other hand, we have

‖Φn‖2H ≥ k0 ‖wn,x − lϕn‖
2

= k0 ‖wn,x‖2 = k0D
2N2

∫ 1

0

sin2 (Nx) dx

=
k0
2
D2N2

∫ 1

0

[1− cos (2Nx)] dx =
k0
2
D2N2,

hence (3.18) is satisfied.

Case 2: ξ0 6= 0 and ξ1 6= 0. We have
b

ρ2
6= k0
ρ1
, and δ2−

(
ρ1 −

kρ2
b

)(
bρ3
ρ2
− 1

τ

)
6= 0, then we choose

(3.28) fn,2 = fn,6 = fn,7 = fn,8 = 0 and fn,4 = cos (Nx),

we consider (3.23) and we take

(3.29)


ϕn = α1 sin (Nx), ψn = α2 cos (Nx), wn = α3 cos (Nx),
θn = α4 cos (Nx), qn = α5 sin (Nx),

λ2n =
b

ρ2
N2 − k0

ρ2
, for n large,



LINEAR THERMOELASTIC BRESSE SYSTEM WITH SECOND SOUND 9

where α1, α2, α3, α4 and α5 are constants that will be fixed. It is clear that (3.17) is satisfied and
Φn ∈ D(A). Using (3.28) and (3.29), we observe that (3.24) is equivalent to

(3.30)



(
kN2 − λ2nρ1 + l2k0

)
α1 + kNα2 + l (k + k0)Nα3 − δNα4 = 0,

kNα1 +
(
bN2 − λ2nρ2 + k

)
α2 + klα3 = ρ2,

l (k + k0)Nα1 + lkα2 +
(
k0N

2 − λ2nρ1 + l2k
)
α3 = 0,

iλnρ3α4 +Nα5 + δiλnNα1 = 0,
(iλnτ + β)α5 −Nα4 = 0.

Using the definition of λn given in (3.29), we see that (3.30) is reduced to

(3.31)



((
k − ρ1b

ρ2

)
N2 +

k0ρ1
ρ2

+ l2k0

)
α1 + kNα2 + l (k + k0)Nα3 − δNα4 = 0,

α2 =
ρ2

k0 + k
− kN

k0 + k
α1 −

kl

k0 + k
α3,((

k0 −
ρ1b

ρ2

)
N2 +

ρ1k0
ρ2

+ l2k

)
α3 + l (k + k0)Nα1 + lkα2 = 0,

α5 =
iN2δλn(

τρ3b

ρ2
− 1

)
N2 − τρ3k0

ρ2
− iλnρ3β

α1,

α4 =

− b

ρ2
N3τδ +

τδk0N

ρ2
+ iδλnNβ(

τρ3b

ρ2
− 1

)
N2 − τρ3k0

ρ2
− iλnρ3β

α1,

inserting (3.31)2 into (3.31)3, we deduce that

(3.32) α3 = −
(
k20 + 2kk0

)
lNα1 + lkρ2

(k0 + k)

((
k0 −

ρ1b

ρ2

)
N2 +

k0ρ1
ρ2

+
kk0l

2

k0 + k

) ,

and then (3.31)1 ×
1

N3
is equivalent to

(3.33)
bτ

ρ2

[(
kk0ρ2

(k0 + k) b
− ρ1

)(
ρ3b

ρ2
− 1

τ

)
+ δ2

]
Nα1 − iβ

[
δ2 +

(
kk0
k0 + k

− ρ1b

ρ2

)
ρ3

]
λn
N
α1

+

(
ρ1
ρ2

+ l2
)(

τρ3b

ρ2
− 1

)
k0
N
α1 −

[
δ2 +

(
kk0
k0 + k

− ρ1b

ρ2

)
ρ3

]
τk0
Nρ2

α1

−

[(
τρ3b

ρ2
− 1

)
− τρ3k0
N2ρ2

− i λn
N2

ρ3β

] (
k20 + 2kk0

)2
l2

(k0 + k)
2

[(
k0 −

ρ1b

ρ2

)
+

k0ρ1
N2ρ2

+
kk0l

2

(k0 + k)N2

]
N

α1 − k0
(
ρ1
ρ2

+ l2
)(

τρ3k0
ρ2N3

+ i
λn
N3

ρ3β

)
α1

=

[(
τρ3b

ρ2
− 1

)
− τρ3k0
N2ρ2

− i λn
N2

ρ3β

] (
k20 + 2kk0

)
l2kρ2

(k0 + k)
2

[(
k0 −

ρ1b

ρ2

)
N2 +

k0ρ1
ρ2

+
kk0l

2

k0 + k

] −
kρ2

[(
τρ3b

ρ2
− 1

)
− τρ3k0
N2ρ2

− iρ3β
λn
N2

]
k0 + k

.

then, we have

xn α1 = yn,
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where 

xn =
bτ

ρ2

[(
kk0ρ2

(k0 + k) b
− ρ1

)(
ρ3b

ρ2
− 1

τ

)
+ δ2

]
N − iβ

[
δ2 +

(
kk0
k0 + k

− ρ1b

ρ2

)
ρ3

]
λn
N

+

(
ρ1
ρ2

+ l2
)(

τρ3b

ρ2
− 1

)
k0
N
−
[
δ2 +

(
kk0
k0 + k

− ρ1b

ρ2

)
ρ3

]
τk0
Nρ2

−

[(
τρ3b

ρ2
− 1

)
− τρ3k0
N2ρ2

− i λn
N2

ρ3β

] (
k20 + 2kk0

)2
l2

(k0 + k)
2

[(
k0 −

ρ1b

ρ2

)
+

k0ρ1
N2ρ2

+
kk0l

2

(k0 + k)N2

]
N

−k0
(
ρ1
ρ2

+ l2
)(

τρ3k0
ρ2N3

+ i
λn
N3

ρ3β

)
,

yn =

[(
τρ3b

ρ2
− 1

)
− τρ3k0
N2ρ2

− i λn
N2

ρ3β

] (
k20 + 2kk0

)
l2kρ2

(k0 + k)
2

[(
k0 −

ρ1b

ρ2

)
N2 +

k0ρ1
ρ2

+
kk0l

2

k0 + k

]

−
kρ2

[(
τρ3b

ρ2
− 1

)
− τρ3k0
N2ρ2

− iρ3β
λn
N2

]
k0 + k

,

using the fact that λ2n =
b

ρ2
N2 − k0

ρ2
, we deduce that

lim
n→∞

|xn| = lim
n→∞

∣∣∣∣bτρ2
[(

kk0ρ2
(k0 + k) b

− ρ1
)(

ρ3b

ρ2
− 1

τ

)
+ δ2

]
N − iβ

[
δ2 +

(
kk0
k0 + k

− ρ1b

ρ2

)
ρ3

]
λn
N

∣∣∣∣
= lim

n→∞

∣∣∣∣bτρ2
[(

kk0ρ2
(k0 + k) b

− ρ1
)(

ρ3b

ρ2
− 1

τ

)
+ δ2

]∣∣∣∣N
= ∞

Therefore, xn 6= 0 for every n sufficiently large, This shows that (3.33) has indeed a solution α1 (for all
n large enough), which is given by

α1 =
yn
xn
.

Now, we distinguish three subcases.

Subcase 2.1:

[
kk0ρ2

(k0 + k) b
− ρ1

](
ρ3b

ρ2
− 1

τ

)
+δ2 6= 0 and

τρ3b

ρ2
−1 6= 0. Throughout this section,

the notation ' means that ”asymptotically equal”, then we deduce from (3.32) and (3.33), as
n→∞,

α1 ' −
kρ22

(
τρ3b

ρ2
− 1

)
bτ (k0 + k)

[(
kk0ρ2

(k0 + k) b
− ρ1

)(
ρ3b

ρ2
− 1

τ

)
+ δ2

]
N

,

(3.34) α3 ' −
(
k20 + 2kk0

)
l

(k0 + k)

(
k0 −

ρ1b

ρ2

)
N

α1 −
lkρ2

(k0 + k)

(
k0 −

ρ1b

ρ2

)
N2

and

α2 '
ρ2

[(
kρ2
b
− ρ1

)(
ρ3b

ρ2
− 1

τ

)
+ δ2

]
(k0 + k)

[(
kk0ρ2

(k0 + k) b
− ρ1

)(
ρ3b

ρ2
− 1

τ

)
+ δ2

] .
As ξ1 6= 0; that is,

(
kρ2
b
− ρ1

)(
ρ3b

ρ2
− 1

τ

)
+ δ2 6= 0, then

(3.35) lim
n→∞

|α2| > 0.
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Subcase 2.2:

[
kk0ρ2

(k0 + k) b
− ρ1

](
ρ3b

ρ2
− 1

τ

)
+ δ2 6= 0 and

τρ3b

ρ2
− 1 = 0. We deduce from (3.34),

(3.32), (3.33) and the choice of λn in (3.29) that, when n→∞,

α1 '
iρ22ρ3βk

√
b

ρ2
(k0 + k) bτδ2N2

and α2 '
ρ2

k0 + k
,

which implies (3.35).

Subcase 2.3:

[
kk0ρ2

(k0 + k) b
− ρ1

](
ρ3b

ρ2
− 1

τ

)
+ δ2 = 0. We see that (3.33) becomes

(3.36) −i
[

kk0ρ2
(k0 + k) b

− ρ1
]
β

τ
λnN

2α1 +

(
ρ1
ρ2

+ l2
)(

τρ3b

ρ2
− 1

)
k0N

2α1 −
(

kk0ρ2
(k0 + k) b

− ρ1
)
k0
ρ2
N2α1

−

[(
τρ3b

ρ2
− 1

)
N2 − τρ3k0

ρ2
− iλnρ3β

] (
k20 + 2kk0

)2
l2

(k0 + k)
2

[(
k0 −

ρ1b

ρ2

)
N2 +

k0ρ1
ρ2

+
kk0l

2

k0 + k

] N2α1 − k0
(
ρ1
ρ2

+ l2
)(

τρ3k0
ρ2

+ iλnρ3β

)
α1

=

[(
τρ3b

ρ2
− 1

)
N2 − τρ3k0

ρ2
− iλnρ3β

] (
k20 + 2kk0

)
l2kρ2N

(k0 + k)
2

[(
k0 −

ρ1b

ρ2

)
N2 +

k0ρ1
ρ2

+
kk0l

2

k0 + k

] −
kρ2

[(
τρ3b

ρ2
− 1

)
N3 − τρ3k0N

ρ2
− iρ3βλnN

]
k0 + k

.

As

[
kk0ρ2

(k0 + k) b
− ρ1

](
ρ3b

ρ2
− 1

τ

)
+δ2 = 0 and δ2 > 0, then we have

kk0ρ2
(k0 + k) b

−ρ1 6= 0, and
τρ3b

ρ2
−1 6= 0.

From (3.34), (3.32), (3.36) and the definition of λn in (3.29), we have, when n→∞,

α1 ' −
ikτρ2

(
τρ3b

ρ2
− 1

)√
ρ2
b

(k0 + k)

[
kk0ρ2

(k0 + k) b
− ρ1

]
β

and α2 '
ik2τρ2

(
τρ3b

ρ2
− 1

)√
ρ2
b

(k0 + k)
2

[
kk0ρ2

(k0 + k) b
− ρ1

]
β

N,

this leads to

(3.37) lim
n→∞

|α2| =∞.

Moreover, as

‖Φn‖2H ≥ b ‖ψn,x‖
2

= b |Nα2|2
∫ 1

0

sin2 (Nx) dx =
b

2
|Nα2|2

∫ 1

0

(1− cos (2Nx)) dx =
b

2
|Nα2|2 ,

then, for all these three subcases, (3.35) and (3.37) lead to (3.18).

Case 3. ξ0 6= 0 and ξ2 6= 0. We have
b

ρ2
6= k0
ρ1

and δ2 −
(

1− k

k0

)(
ρ3k0 −

ρ1
τ

)
6= 0, then we choose

(3.38) fn,2 = fn,4 = fn,7 = fn,8 = 0 and fn,6 = cos (Nx),

we consider (3.23) and we take (3.29) by replacing the third equation by

(3.39) λ2n =
k0
ρ1
N2 − l2k0

ρ1
, for n large,

where the constants α1, α2, α3, α4 and α5 will be determined. Then (3.17) is satisfied and Φn ∈ D(A).
On the other hand, by using (3.24), (3.38) and (3.39), we obtain

(3.40)



(
kN2 − λ2nρ1 + l2k0

)
α1 + kNα2 + l (k + k0)Nα3 − δNα4 = 0,(

bN2 − λ2nρ2 + k
)
α2 + kNα1 + klα3 = 0,(

k0N
2 − λ2nρ1 + l2k

)
α3 + l (k + k0)Nα1 + lkα2 = ρ1,

iλnρ3α4 +Nα5 + δiλnNα1 = 0,
(iλnτ + β)α5 −Nα4 = 0.
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From (3.40)4, (3.40)5 and the definition of λn in (3.39), we have

(3.41) α4 =
−iδλnN (iλnτ + β)α1(

1− τρ3k0
ρ1

)
N2 +

τρ3k0l
2

ρ1
+ iλnρ3β

and α5 =
−iδλnN2α1(

1− τρ3k0
ρ1

)
N2 +

τρ3k0l
2

ρ1
+ iλnρ3β

.

Using (3.41), we deduce from (3.40)1-(3.40)3 and the definition of λn in (3.39) that

(3.42)



(k − k0)N2 + 2l2k0 +
iδ2N2λn(iλnτ + β)(

1− τρ3k0
ρ1

)
N2 +

τρ3k0l
2

ρ1
+ iλnρ3β

α1

+kNα2 + l (k + k0)Nα3 = 0,

kNα1 +

((
b− ρ2k0

ρ1

)
N2 +

l2k0ρ2
ρ1

+ k

)
α2 + klα3 = 0,

α3 =
ρ1

l2 (k + k0)
− N

l
α1 −

k

l (k + k0)
α2,

which implies that

−2k0N
2 + 2l2k0 +

iδ2N2λn(iλnτ + β)(
1− τρ3k0

ρ1

)
N2 +

l2τρ3k0
ρ1

+ iλnρ3β

α1 = −ρ1
l
N,

[(
b− ρ2k0

ρ1

)
N2 +

l2k0ρ2
ρ1

+
kk0
k + k0

]
α2 = − kρ1

l (k + k0)
.

Therefore, using the definition of λn given in (3.39),

(3.43)



((
2 +

τδ2

ρ1
− 4

τρ3k0
ρ1

)
l2k0N

2 + 2ik0ρ3βl
2

√
k0
ρ1
− l2k0
ρ1N2

N +
2τρ3l

4k20
ρ1

)
α1

+

(
−
(
δ2 + 2

(ρ1
τ
− ρ3k0

)) τk0
ρ1

N4 + i(δ2 − 2k0ρ3)β

√
k0
ρ1
− l2k0
ρ1N2

N3

)
α1

= −ρ1
l

(
1− τρ3k0

ρ1

)
N3 − lτρ3k0N − i

ρ1ρ3β

l

√
k0
ρ1
− l2k0
ρ1N2

N2,

α2 = − kρ1

l (k + k0)

[(
b− ρ2k0

ρ1

)
N2 +

l2k0ρ2
ρ1

+
kk0
k + k0

] .
Now, we distinguish three subcases.

Subcase 3.1: δ2 + 2
(ρ1
τ
− ρ3k0

)
6= 0 and 1− τρ3k0

ρ1
6= 0. We deduce from (3.42)3 and (3.43) that,

as n→∞, 

α1 '
ρ21

(
1− τρ3k0

ρ1

)
τ lk0

[
δ2 + 2

(ρ1
τ
− ρ3k0

)]
N
,

α2 ' −
kρ1

l (k + k0)

(
b− ρ2k0

ρ1

)
N2

,

α3 '
τρ1k0

τk0l2 (k + k0)
[
δ2 + 2

(ρ1
τ
− ρ3k0

)] [δ2 − (1− k

k0

)(
ρ3k0 − ρ1

τ

)]
.

As ξ2 6= 0; that is, δ2 −
(

1− k

k0

)(
ρ3k0 −

ρ1
τ

)
6= 0, then we get

(3.44) lim
n→∞

|Nα3 + lα1| =∞.
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Subcase 3.2: δ2 +2
(ρ1
τ
− ρ3k0

)
6= 0 and 1− τρ3k0

ρ1
= 0. We deduce from (3.43) that, when n→∞,

α1 '
iρ21ρ3β

√
k0
ρ1

τ lk0
[
δ2 + 2

(
ρ1
τ − ρ3k0

)]
N2

, α2 ' −
kρ1

l (k + k0)
(
b− ρ2k0

ρ1

)
N2

and α3 '
ρ1

l2 (k + k0)
.

Hence (3.44) holds.

Subcase 3.3: δ2 + 2
(ρ1
τ
− ρ3k0

)
= 0. Then (3.43) becomes

[
−2i

ρ1
τ
β

√
k0
ρ1
− l2k0
ρ1N2

N3 − 2τρ3l
2k20

ρ1
N2 + 2ik0ρ3βl

2

√
k0
ρ1
− l2k0
ρ1N2

N +
2τρ3l

4k20
ρ1

]
α1

= −ρ1
l

(
1− τρ3k0

ρ1

)
N3 − lτρ3k0N − i

ρ1ρ3β

l

√
k0
ρ1
− l2k0
ρ1N2

N2,

α2 = − kρ1

l (k + k0)

[(
b− ρ2k0

ρ1

)
N2 +

l2k0ρ2
ρ1

+
kk0
k + k0

] .
As δ2 + 2

(ρ1
τ
− ρ3k0

)
= 0 and δ2 > 0, then 1 − τρ3k0

ρ1
6= 0, using the previous system and (3.42), we

have as n→∞,

α1 ' −
iτ

(
1− τρ3k0

ρ1

)
2lβ

√
k0
ρ1

, α2 ' −
kρ1

l (k + k0)

(
b− ρ2k0

ρ1

)
N2

and α3 '
iτ

(
1− τρ3k0

ρ1

)
2l2β

√
k0
ρ1

N,

hence (3.44) holds. Finally, because

‖Φn‖2H ≥ k0 ‖wn,x − lϕn‖
2

=
k0
2
|Nα3 + lα1|2

∫ 1

0

[1− cos (2Nx)] dx =
k0
2
|Nα3 + lα1|2 ,

then, by (3.44), we obtain (3.18). This concludes the proof of our Theorem 3.2. �

4. Polynomial stability

In this section, we prove the polynomial decay of the solutions of (2.1). Here and after we will use

the notation [〈f(x), g(x)〉]10 to refer to the usual scalar product in C and given by

[〈f(x), g(x)〉]10 :=
[
f(x)g(x)

]1
0
.

Our main result is stated as follow:

Theorem 4.1. We assume that (1.5) and (3.1) hold. Then, for any m ∈ N, there exists a constant
Cm > 0 such that

(4.1) ∀Φ0 ∈ D (Am) , ∀t > 2,
∥∥etAΦ0

∥∥
H ≤ Cm ‖Φ0‖D(Am)

(
ln t

t

)m
4

ln t.

Proof. It is known (see [8]) that (4.1) holds if (3.15) is satisfied and

(4.2) sup
|λ|≥1

λ−4
∥∥∥(iλI −A)

−1
∥∥∥
L(H)

<∞.

First, the condition (3.15) is satisfied thanks to (3.1) as shown in Lemma 3.1.

Next, we establish condition (4.2) by contradiction. So, assume that (4.2) is false, then there exist a
sequence (Φn)n∈N ⊂ D (A) and a sequence (λn)n∈N ⊂ R satisfying

(4.3) ‖Φn‖H = 1, ∀n ∈ N,

(4.4) lim
n→∞

|λn| =∞



14 MOUNIR AFILAL, AISSA GUESMIA & ABDELAZIZ SOUFYANE

and

(4.5) lim
n→∞

λ4n ‖(iλnI − A) Φn‖H = 0.

Let Φn be define by (3.21). Then (4.5) is equivalent to

(4.6)



λ4n (iλnϕn − un)→ 0 in H1
∗ (0, 1) ,

λ4n
(
iλnρ1un − k (ϕn,x + ψn + lwn)x − lk0 (wn,x − lϕn) + δθn,x

)
→ 0 in L2 (0, 1) ,

λ4n (iλnψn − vn)→ 0 in
∼
H1
∗ (0, 1) ,

λ4n (iλnρ2vn − bψn,xx + k (ϕn,x + ψn + lwn))→ 0 in L2 (0, 1) ,

λ4n (iλnwn − zn)→ 0 in
∼
H1
∗ (0, 1) ,

λ4n
(
iλnρ1zn − k0 (wn,x − lϕn)x + lk (ϕn,x + ψn + lwn)

)
→ 0 in L2 (0, 1) ,

λ4n (iλnρ3θn + qn,x + δun,x)→ 0 in L2 (0, 1) ,
λ4n (iλnτqn + βqn + θn,x)→ 0 in L2 (0, 1) .

Our goal is to derive

(4.7) lim
n→∞

‖Φn‖H = 0

as a contradiction to (4.3). This will be established through several steps.

Step 1. Taking the inner product of λ4n (i λn I − A) Φn with Φn in H and using (3.4), we get

Re
〈
λ4n (i λn I − A) Φn,Φn

〉
= βλ4n ‖qn‖

2
.

So we have, according to (4.3) and (4.5),

(4.8) λ2nqn −→ 0 in L2 (0, 1) .

Step 2. Applying triangular inequality, we obtain

‖λnθn,x‖ ≤
∥∥∥∥λ4n (iλnτqn + βqn + θn,x)

λ3n

∥∥∥∥+
∥∥iλ2nτqn + βλnqn

∥∥ ,
and by using (4.4), (4.6)8 and (4.8), we have

(4.9) λnθn,x −→ 0 in L2 (0, 1) .

As θn ∈
∼
H1
∗ (0, 1), then we get

(4.10) λnθn −→ 0 in L2 (0, 1) .

Step 3. By multiplying (4.6)1, (4.6)3 and (4.6)5 by
1

λ5n
and using (4.4), we obtain

(4.11) ϕn −→ 0, ψn −→ 0 and wn −→ 0 in L2 (0, 1) .

Step 4. Taking the inner product of (4.6)7 with
iϕn,x
λ4n

in L2 (0, 1) and using (4.3) and (4.4), we get

〈iλnρ3θn + qn,x + δun,x, iϕn,x〉 −→ 0,

that is,

ρ3 〈λnθn, ϕn,x〉+ 〈qn,x, iϕn,x〉 − δ 〈iλnϕn,x − un,x, iϕn,x〉+ δλn ‖ϕn,x‖2 −→ 0,

integrating by parts and taking into account the boundary conditions, we have

(4.12) ρ3 〈λnθn, ϕn,x〉 −
〈
λnqn, i

ϕn,xx
λn

〉
− δ 〈iλnϕn,x − un,x, iϕn,x〉+ δλn ‖ϕn,x‖2 −→ 0.

Multiplying (4.6)2 with
1

λ5n
and using (4.4), we obtain

iρ1un −
k

λn
(ϕn,x + ψn + lwn)x −

lk0
λn

(wn,x − lϕn) + δ
θn,x
λn
−→ 0 in L2 (0, 1) ,
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then, using (4.3), (4.4) and (4.9), we deduce that

(4.13)

(∥∥∥∥ϕn,xxλn

∥∥∥∥)
n∈N

is uniformly bounded.

So, by (4.3), (4.4), (4.6)1, (4.8), (4.10), (4.12) and (4.13), we have

(4.14) λn ‖ϕn,x‖2 −→ 0.

Step 5. Taking the inner product of (4.6)2 with
ϕn
λ4n

in L2 (0, 1) and using (4.3) and (4.4), we get

ρ1 〈iλnun, ϕn〉 − k
〈
(ϕn,x + ψn + lwn)x , ϕn

〉
− lk0 〈wn,x − lϕn, ϕn〉+ δ 〈θn,x, ϕn〉 −→ 0,

then, by integrating by parts, we find

−ρ1 〈iλn (iλnϕn − un) , ϕn〉 − ρ1 ‖λnϕn‖2 − k [〈ϕn,x + ψn + lwn, ϕn〉]10
+k 〈ϕn,x + ψn + lwn, ϕn,x〉 − lk0 [〈wn, ϕn〉]10 + lk0 〈wn, ϕn,x〉+ l2k0 ‖ϕn‖2 + δ 〈θn,x, ϕn〉 −→ 0,

by using the boundary conditions, (4.3), (4.4), (4.6)1, (4.9), (4.11) and (4.14), we obtain

(4.15) λnϕn −→ 0 in L2 (0, 1) ,

using (4.4) and (4.6)1, we deduce that

(4.16) un −→ 0 in L2 (0, 1) .

Step 6. We have, by integrating by parts and using the boundary conditions,

〈qn,x, un,x〉 = −〈qn,x, iλnϕn,x − un,x〉+ 〈qn,x, iλnϕn,x〉(4.17)

= −
〈
qn,x
λn

, λn (iλnϕn,x − un,x)

〉
+ [〈qn, iλnϕn,x〉]10 −

〈
λ2nqn, i

ϕn,xx
λn

〉
= −

〈
qn,x
λn

, λn (iλnϕn,x − un,x)

〉
−
〈
λ2nqn, i

ϕn,xx
λn

〉
.

Multiplying (4.6)1 and (4.6)7 by
1

λ5n
and using (4.4), (4.10) and (4.14), we have

(4.18)
un,x
λn
−→ 0 and

qn,x
λn

+ δ
un,x
λn
−→ 0 in L2 (0, 1) ,

so

(4.19)
qn,x
λn
−→ 0 in L2 (0, 1) .

By (4.6)1, (4.8), (4.13), (4.17) and (4.19), we deduce that

(4.20) 〈qn,x, un,x〉 −→ 0.

Taking the inner product of (4.6)7 with
un,x
λ4n

in L2 (0, 1) and using the first convergence of (4.18) and

(4.4), we get

〈iλnρ3θn + qn,x + δun,x, un,x〉 → 0,

therefore

〈iλnρ3θn, un,x〉+ 〈qn,x, un,x〉+ δ ‖un,x‖2 → 0,

so, integrating by parts, we obtain

[〈iλnρ3θn, un〉]10 − 〈iλnρ3θn,x, un〉+ 〈qn,x, un,x〉+ δ ‖un,x‖2 → 0,

by using the boundary conditions, (4.3), (4.9), (4.16) and (4.20), we deduce that

(4.21) un,x → 0 in L2 (0, 1) .

Also with (4.4) and
1

λ4n
×(4.6)1, we have

iλnϕn,x − un,x → 0 in H1
∗ (0, 1) ,
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then, by (4.21), we obtain

(4.22) λnϕn,x −→ 0 in L2 (0, 1) .

Step 7. By multiplying (4.6)3 and (4.6)5 by
1

λ4n
and using (4.3) and (4.4), we have

(4.23) (‖λnψn‖)n∈N and (‖λnwn‖)n∈N are uniformly bounded.

Taking the inner product of (4.6)2 with
iun
λ3n

in L2 (0, 1) and using (4.3) and (4.4), we get〈
iλ2nρ1un − λnk (ϕn,x + ψn + lwn)x − lk0λn (wn,x − lϕn) + δλnθn,x, iun

〉
→ 0,

integrating by parts, we obtain

ρ1 ‖λnun‖2 − kλn [〈ϕn,x + ψn + lwn, iun〉]10 + k 〈λnϕn,x + λnψn + lλnwn, iun,x〉
−lk0λn [〈wn, iun〉]10 + lk0 〈λnwn, iun,x〉+ l2k0 〈λnϕn, iun〉+ δ 〈λnθn,x, iun〉 → 0,(4.24)

so, using the boundary conditions, (4.3), (4.9), (4.15), (4.21), (4.22), (4.23) and (4.24), we deduce that

(4.25) λnun −→ 0 in L2 (0, 1) .

Step 8. Taking the inner product of (4.6)2 with
1

λ4n
(kψn,x + l (k + k0)wn,x) in L2 (0, 1) and using

(4.3) and (4.4), we get〈
iλnρ1un − k (ϕn,x + ψn + lwn)x − lk0 (wn,x − lϕn) + δθn,x, kψn,x + l (k + k0)wn,x

〉
→ 0,

that is,

(4.26) ρ1 〈iλnun, kψn,x + l (k + k0)wn,x〉 − k 〈ϕn,xx, kψn,x + l (k + k0)wn,x〉

− ‖kψn,x + l (k + k0)wn,x‖2 + l2k0 〈ϕn, kψn,x + l (k + k0)wn,x〉 + δ 〈θn,x, kψn,x + l (k + k0)wn,x〉 → 0.

Also, by integrating by parts and using the boundary conditions, we have

〈ϕn,xx, kψn,x + l (k + k0)wn,x〉 = [〈ϕn,x, kψn,x + l (k + k0)wn,x〉]10 − 〈ϕn,x, kψn,xx + l (k + k0)wn,xx〉

= −
〈
λnϕn,x, k

ψn,xx
λn

+ l (k + k0)
wn,xx
λn

〉
.(4.27)

On the other hand, by multiplying (4.6)4 and (4.6)6 by
1

λ5n
and using (4.4), we arrive at

iρ2vn − b
ψn,xx
λn

+
k

λn
(ϕn,x + ψn + lwn)→ 0 in L2 (0, 1)

and

iρ1zn − k0
wn,xx
λn

+ lk0
ϕn,x
λn

+
lk

λn
(ϕn,x + ψn + lwn)→ 0 in L2 (0, 1) .

So, by (4.3) and (4.4), we deduce that

(4.28)

(∥∥∥∥ψn,xxλn

∥∥∥∥)
n∈N

and

(∥∥∥∥wn,xxλn

∥∥∥∥)
n∈N

are uniformly bounded.

Using (4.28), we deduce from (4.22) and (4.27) that

〈ϕn,xx, kψn,x + l (k + k0)wn,x〉 → 0,

and by (4.3) and (4.4), (4.9), (4.11), (4.25) and (4.26), we see that

(4.29) kψn,x + l (k + k0)wn,x → 0 in L2 (0, 1) .

Step 9. Taking the inner product of (4.6)4 with
ψn
λ4n

in L2 (0, 1) and using (4.3) and (4.4), we get

〈iλnρ2vn − bψn,xx + k (ϕn,x + ψn + lwn) , ψn〉 → 0,

that is,

−ρ2 〈vn, iλnψn − vn〉 − ρ2 ‖vn‖2 − b [〈ψn,x, ψn〉]10 + b ‖ψn,x‖2 + k 〈ϕn,x + ψn + lwn, ψn〉 → 0,
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then by the boundary conditions, (4.3), (4.6)3 and (4.11), we deduce that

(4.30) b ‖ψn,x‖2 − ρ2 ‖vn‖2 → 0.

Taking the inner product of (4.6)6 with
wn
λ4n

in L2 (0, 1) and using (4.3) and (4.4), we get〈
iλnρ1zn − k0 (wn,x − lϕn)x + lk (ϕn,x + ψn + lwn) , wn

〉
→ 0,

by integrating by parts, we have

−ρ1 〈zn, iλnwn − zn〉 − ρ1 ‖zn‖2 − k0 [〈wn,x − lϕn, wn〉]10
+k0 ‖wn,x‖2 − lk0 〈ϕn, wn,x〉+ lk 〈ϕn,x + ψn + lwn, wn〉 → 0,

using the boundary conditions, (4.3), (4.4), (4.6)5 and (4.11), we see that

(4.31) k0 ‖wn,x‖2 − ρ1 ‖zn‖2 → 0.

Step 10. Taking the inner product of (4.6)4 with
wn
λ4n

and (4.6)6 with
ψn
λ4n

and using (4.3) and (4.4),

we get {
〈iλnρ2vn − bψn,xx + k (ϕn,x + ψn + lwn) , wn〉 → 0 ,〈
iλnρ1zn − k0 (wn,x − lϕn)x + lk (ϕn,x + ψn + lwn) , ψn

〉
→ 0,

then, by integrating by parts and using the boundary conditions, we observe that{
−ρ2 〈vn, iλnwn − zn〉 − ρ2 〈vn, zn〉+ b 〈ψn,x, wn,x〉+ k 〈ϕn,x + ψn + lwn, wn〉 → 0,
−ρ1 〈zn, iλnψn − vn〉 − ρ1 〈zn, vn〉+ k0 〈wn,x − lϕn, ψn,x〉+ lk 〈ϕn,x + ψn + lwn, ψn〉 → 0,

by using (4.4), (4.11), (4.6)3 and (4.6)5, we obtain

−ρ2 〈vn, zn〉+ b 〈ψn,x, wn,x〉 → 0, and − ρ1 〈vn, zn〉+ k0 〈ψn,x, wn,x〉 → 0,

hence

(4.32)

(
ρ2
b
− ρ1
k0

)
〈vn, zn〉 → 0 and

(
b

ρ2
− k0
ρ1

)
〈ψn,x, wn,x〉 → 0.

Step 11. Now, we distinguish two cases.

Case 1: ξ0 6= 0. We have
b

ρ2
− k0
ρ1
6= 0, then (4.32) implies that

(4.33) 〈vn, zn〉 → 0, and 〈ψn,x, wn,x〉 → 0.

Therefore, taking the inner product in L2 (0, 1) of kψn,x + l(k + k0)wn,x with ψn,x and wn,x, and using
(4.29) and (4.33), we find

(4.34) ψn,x → 0 and wn,x → 0 in L2 (0, 1) ,

and by (4.30), (4.31) and (4.34), we deduce that

(4.35) vn → 0 and zn → 0 in L2 (0, 1) .

Finally, (4.4), (4.8), (4.10), (4.11), (4.16), (4.22), (4.34) and (4.35) imply (4.7).

Case 2: ξ0 = 0. We have
b

ρ2
− k0
ρ1

= 0, then, using (4.6)3-(4.6)6, we obtain

(4.36)


λ4n

(
−λ2n

ρ2
b
ψn − ψn,xx +

k

b
(ϕn,x + ψn + lwn)

)
→ 0 in L2 (0, 1) ,

λ4n

(
−λ2n

ρ2
b
wn − (wn,x − lϕn)x +

lk

k0
(ϕn,x + ψn + lwn)

)
→ 0 in L2 (0, 1) .

Multiplying (4.36)1 and (4.36)2 with
1

λ4n
, and using (4.4), (4.11) and (4.22), we get

(4.37) λ2n
ρ2
b
ψn + ψn,xx → 0 and λ2n

ρ2
b
wn + wn,xx → 0 in L2 (0, 1) .



18 MOUNIR AFILAL, AISSA GUESMIA & ABDELAZIZ SOUFYANE

Adding k×(4.37)1 with l(k + k0)× (4.37)2, and k×(4.37)1 with −l(k + k0)× (4.37)2, we obtain

(4.38)

 λ2n
ρ2
b

[kψn + l(k + k0)wn] + kψn,xx + l(k + k0)wn,xx → 0 in L2 (0, 1) ,

λ2n
ρ2
b

[kψn − l(k + k0)wn] + kψn,xx − l(k + k0)wn,xx → 0 in L2 (0, 1) .

Taking the inner product in L2 (0, 1) of (4.38)1 and (4.38)2 with kψn + l(k+ k0)wn, integrating by parts
and using (4.3) and the boundary conditions, we get

ρ2
b
‖kλnψn + l(k + k0)λnwn‖2 − ‖kψn,x + l(k + k0)wn,x‖2 → 0,〈

λ2n
ρ2
b

[kψn − l(k + k0)wn] , kψn + l(k + k0)wn

〉
− 〈kψn,x − l(k + k0)wn,x, kψn,x + l(k + k0)wn,x〉 → 0,

then, by using (4.3) and (4.29), we obtain

(4.39) kλnψn + l(k + k0)λnwn → 0 in L2 (0, 1) and k2 ‖λnψn‖2 − l2(k + k0)2 ‖λnwn‖2 → 0.

Taking the inner product in L2 (0, 1) of (4.36)1 with
wn
λ2n

, and (4.36)2 with
ψn
λ2n

, and using (4.3) and (4.4),

we get
(4.40)
−λ4n

ρ2
b
〈ψn, wn〉+ λ2n 〈ψn,x, wn,x〉+

k

b
〈λnϕn,x, λnwn〉+

k

b
〈λnψn, λnwn〉+

lk

b
‖λnwn‖2 → 0,

−λ4n
ρ2
b
〈ψn, wn〉+ λ2n 〈ψn,x, wn,x〉+ l

(
1 +

k

k0

)
〈λnψn, λnϕn,x〉+

lk

k0
‖λnψn‖2 +

l2k

k0
〈λnψn, λnwn〉 → 0,

then, by using (4.22) and (4.23), and adding
bk0
k
×(4.40)1 and −bk0

k
×(4.40)2, we obtain

(4.41) lk0 ‖λnwn‖2 − lb ‖λnψn‖2 +
(
k0 − l2b

)
〈λnψn, λnwn〉 → 0.

By taking the inner product in L2 (0, 1) of (4.39)1 with λnψn and using (4.23), we arrive at

(4.42) k ‖λnψn‖2 + l(k + k0) 〈λnψn, λnwn〉 → 0.

On the other hand, combining k0×(4.39)2 and using l(k + k0)2×(4.41), it follows that

(4.43)
[
k0k

2 − bl2(k + k0)2
]
‖λnψn‖2 + l(k + k0)2

(
k0 − l2b

)
〈λnψn, λnwn〉 → 0.

Adding (k + k0)(k0 − bl2)×(4.42) and −(4.43), we find

k0
(
kk0 + bl2(k + k0)

)
‖λnψn‖2 → 0,

then, we have

(4.44) λnψn → 0 in L2 (0, 1) ,

and by using (4.39)1, we obtain

(4.45) λnwn → 0 in L2 (0, 1) .

Using (4.4), (4.6)3, (4.6)5, (4.44) and (4.45), we deduce that

vn → 0 and zn → 0 in L2 (0, 1) .

Taking the inner product in L2 (0, 1) of (4.37)1 with ψn, and (4.37)2 with wn, integrating by parts and
using the boundary conditions, we get

ρ2
b
‖λnψn‖2 − ‖ψn,x‖2 → 0 and

ρ2
b
‖λnwn‖2 − ‖wn,x‖2 → 0,

then by (4.44) and (4.45), we deduce that

ψn,x → 0 and wn,x → 0 in L2 (0, 1) .

Consequently, as in case 1, we see that (4.7) holds. Finally, the proof of our Theorem 4.1 is completed. �
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5. Exponential stability

In this section, we prove that the semigroup associated to (2.1) is exponentially stable provided (1.5),
(3.1) and the following new conditions hold:

(5.1) ξ0 6= 0 and ξ1 = ξ2 = 0.

Theorem 5.1. We assume that (1.5), (3.1) and (5.1) hold. Then the semigroup associated with (2.1) is
exponentially stable.

Proof. We will use the method introduced in [6, 11] by proving (3.15) and (3.16). We have proved in
Lemma 3.1 that (3.1) and (3.15) are equivalent. So the semigroup associated with (2.1) is exponentially
stable if (3.16) holds. We assume by contradiction that the condition (3.16) is false. Then there is a real
sequence (λn)n∈N and a sequence (Φn)n∈N ∈ D (A) such that (4.3) and (4.4) are satisfied and

(5.2) lim
n→∞

‖(iλnI −A) Φn‖H = 0,

i.e., defining Φn by (3.21), we have the following convergence:

(5.3)



iλnϕn − un → 0 in H1
∗ (0, 1) ,

iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn) + δθn,x → 0 in L2 (0, 1) ,

iλnψn − vn → 0 in
∼
H1
∗ (0, 1) ,

iλnρ2vn − bψn,xx + k (ϕn,x + ψn + l wn)→ 0 in L2 (0, 1) ,

iλnwn − zn → 0 in
∼
H1
∗ (0, 1) ,

iλnρ1zn − k0 (wn,x − lϕn)x + lk (ϕn,x + ψn + l wn)→ 0 in L2 (0, 1) ,
iλnρ3θn + qn,x + δun,x → 0 in L2 (0, 1) ,
iλnτqn + βqn + θn,x → 0 in L2 (0, 1) .

In the following, we will check the condition (3.16) by finding the contradiction (4.7) with (4.3). Our
proof is divided into several steps.

Step 1. Taking the inner product of (iλnI −A) Φn with Φn in H and using (3.4), we get

Re 〈(iλnI −A) Φn,Φn〉H = β ‖qn‖2 ,
using (4.3) and (5.2), we deduce that

(5.4) qn → 0 in L2 (0, 1) .

By the triangular inequality, we get∥∥∥∥θn,xλn
∥∥∥∥ ≤ 1

|λn|
‖iλnτqn + βqn + θn,x‖+

∥∥∥∥iτqn +
β

λn
qn

∥∥∥∥ .
From (4.4), (5.3)8 and (5.4), we deduce that

(5.5)
θn,x
λn
→ 0 in L2 (0, 1) .

Step 2. Multiplying (5.3)1 by
iϕn
λn

, we obtain

‖ϕn‖2 −
1

λn
〈un, iϕn〉 → 0.

Multiplying (5.3)3 by
iψn
λn

, we find

‖ψn‖2 −
1

λn
〈vn, iψn〉 → 0.

Multiplying (5.3)5 by
iwn
λn

, we arrive at

‖wn‖2 −
1

λn
〈zn, iwn〉 → 0.
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Hence, using (4.3) and (4.4), we observe that

(5.6) ϕn → 0 in L2 (0, 1) ,

(5.7) ψn → 0 in L2 (0, 1)

and

(5.8) wn → 0 in L2 (0, 1) .

Step 3. Multiplying (5.3)7 by
θn
λn

and integration by parts, we get

iρ3 ‖θn‖2 +

[〈
qn,

θn
λn

〉]1
0

−
〈
qn,

θn,x
λn

〉
+ δ

[〈
un,

θn
λn

〉]1
0

− δ
〈
un,

θn,x
λn

〉
→ 0,

and by using the boundary conditions, (4.3), (5.4) and (5.5), we find

(5.9) θn → 0 in L2 (0, 1) .

Using the triangular inequality, we have∥∥∥∥ϕn,xxλn

∥∥∥∥ ≤
∥∥∥∥ 1

kλn

(
iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn) + δθn,x

)∥∥∥∥
+

∥∥∥∥ iρ1k un −
1

λn
(ψn,x + l wn,x)− lk0

kλn
(wn,x − lϕn) +

δ

k

θn,x
λn

∥∥∥∥ ,
and by (4.3), (4.4), (5.3)2 and (5.5), we obtain

(5.10)

(∥∥∥∥ϕn,xxλn

∥∥∥∥)
n∈N

is uniformly bounded.

Multiplying (5.3)7 by
iϕn,x
λn

, we obtain

ρ3 〈θn, ϕn,x〉+
1

λn
〈qn,x, iϕn,x〉 − δ

〈
iλnϕn,x − un,x,

iϕn,x
λn

〉
+ δ ‖ϕn,x‖2 → 0,

using (4.3), (4.4) and (5.3)1 and integration by parts, we get

(5.11) ρ3 〈θn, ϕn,x〉+
1

λn
[〈qn, iϕn,x〉]10 −

〈
qn,

iϕn,xx
λn

〉
+ δ ‖ϕn,x‖2 → 0,

by using the boundary conditions, (4.3), (5.4), (5.9) and (5.10), we deduce from (5.11) that

(5.12) ϕn,x → 0 in L2 (0, 1) ,

and by (4.4) and (5.3)1, we deduce that

(5.13)
un,x
λn
→ 0 in L2 (0, 1) .

As un ∈ H1
∗ (0, 1), then, by (5.13), we get

un
λn
→ 0 in L2 (0, 1) .

Step 4. Multiplying (5.3)2 by
iun
λn

and integration by parts, we obtain

ρ1 ‖un‖2 + k

〈
ϕn,xx
λn

, i (iλnϕn − un)

〉
+ k 〈ϕn,xx, ϕn〉 −

k

λn
〈ψn,x, iun〉

− l (k + k0)

λn
〈wn,x, iun〉+

l2k0
λn
〈ϕn, iun〉+ δ

〈
θn,x
λn

, iun

〉
→ 0,

then, by integration by parts and using (4.3), (4.4), (5.3)1, (5.5) and (5.10), we have

ρ1 ‖un‖2 + k [〈ϕn,x, ϕn〉]10 − k ‖ϕn,x‖
2 → 0,
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using the boundary conditions and (5.12), we get

(5.14) un → 0 in L2 (0, 1) ,

and by (5.3)1, we deduce that

(5.15) λnϕn → 0 in L2 (0, 1) .

Step 5. Multiplying (5.3)4 by wn, we obtain

〈iλnρ2vn, wn〉 − b 〈ψn,xx, wn〉+ k 〈ϕn,x + ψn + l wn, wn〉 → 0,

and with integration by parts, we get

−ρ2 〈vn, iλnwn − zn〉 − ρ2 〈vn, zn〉 − b [〈ψn,x, wn〉]10 + b 〈ψn,x, wn,x〉+ k 〈ϕn,x + ψn + l wn, wn〉 → 0,

then, using the boundary conditions, (4.3), (5.3)5, (5.7), (5.8) and (5.12), we deduce that

b 〈ψn,x, wn,x〉 − ρ2 〈vn, zn〉 → 0,

then, by using (4.3) and (5.6), we have

(5.16) b 〈ψn,x, wn,x − lϕn〉 − ρ2 〈vn, zn〉 → 0.

Step 6. Multiplying (5.3)2 by wn,x − lϕn, we obtain

ρ1 〈iλnunwn,x − lϕn〉−k
〈
(ϕn,x + ψn + l wn)x , wn,x − lϕn

〉
−lk0 ‖wn,x − lϕn‖2+δ 〈θn,x, wn,x − lϕn〉 → 0,

then, we have

−ρ1
k
〈un, iλnwn,x − zn,x〉 −

ρ1
k
〈un, zn,x〉+

lρ1
k
〈un, iλnϕn〉

−
〈
(ϕn,x + ψn + l wn)x , wn,x − lϕn

〉
− lk0

k
‖wn,x − lϕn‖2 +

δ

k
〈θn,x, wn,x − lϕn〉 → 0.

By using (4.3), (5.3)5 and (5.15), we get

−ρ1
k
〈un, zn,x〉 −

〈
(ϕn,x + ψn + l wn)x , wn,x − lϕn

〉
− lk0
k
‖wn,x − lϕn‖2 +

δ

k
〈θn,x, wn,x − lϕn〉 → 0.(5.17)

Multiplying (5.3)6 by ϕn,x + ψn + l wn, we obtain

〈iλnρ1zn, ϕn,x + ψn + l wn〉 − k0
〈
(wn,x − lϕn)x , ϕn,x + ψn + l wn

〉
+ lk ‖ϕn,x + ψn + l wn‖2 → 0,

then, with integration by parts and using the boundary conditions, we get

−ρ1 〈zn, iλnϕn,x〉 − ρ1 〈zn, iλnψn − vn〉 − ρ1 〈zn, vn〉 − lρ1 〈zn, iλn wn − zn〉
−lρ1 ‖zn‖2 + k0

〈
wn,x − lϕn, (ϕn,x + ψn + l wn)x

〉
+ lk ‖ϕn,x + ψn + l wn‖2 → 0,

therefore, using (4.3), (5.3)3, (5.3)5, (5.7), (5.8), (5.12) and (5.16), we deduce that

(5.18) −ρ1
k0
〈zn, iλnϕn,x〉 −

bρ1
k0ρ2

〈wn,x − lϕn, ψn,x〉 −
lρ1
k0
‖zn‖2

+
〈
wn,x − lϕn, (ϕn,x + ψn + l wn)x

〉
→ 0,

combining (5.17) and (5.18), we find

−ρ1
k0
〈zn, iλnϕn,x〉 −

bρ1
k0ρ2

〈wn,x − lϕn, ψn,x〉 −
lρ1
k0
‖zn‖2

−ρ1
k
〈zn,x, un〉 −

lk0
k
‖wn,x − lϕn‖2 +

δ

k
〈wn,x − lϕn, θn,x〉 → 0,

then, with integration by parts and using the boundary conditions, we obtain

−ρ1
k0
〈zn, iλnϕn,x〉 −

bρ1
k0ρ2

〈wn,x − lϕn, ψn,x〉 −
lρ1
k0
‖zn‖2 −

ρ1
k
〈zn, iλnϕn,x − un,x〉

+
ρ1
k
〈zn, iλnϕn,x〉 −

lk0
k
‖wn,x − lϕn‖2 +

δ

k
〈wn,x − lϕn, θn,x〉 → 0,
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using (4.3) and (5.3)1, we arrive at

ρ1
k0

(
k0
k
− 1

)
〈zn, iλnϕn,x〉 −

bρ1
k0ρ2

〈wn,x − lϕn, ψn,x〉 −
lρ1
k0
‖zn‖2

− lk0
k
‖wn,x − lϕn‖2 +

δ

k
〈wn,x − lϕn, θn,x〉 → 0.(5.19)

Step 7. From (4.3), (5.3)3 and (5.3)5, we observe that

(5.20) (‖λnψn‖)n∈N and (‖λnwn‖)n∈N are uniformly bounded.

We have, by integrating by parts,〈
λ2nρ2ψn + iλnρ2vn, iθn

〉
= −iρ2 〈iλnψn − vn, iλnθn〉

= − iρ2
ρ3
〈iλnψn − vn, iλnρ3θn + qn,x + δun,x〉

+
iρ2
ρ3
〈iλnψn − vn, qn,x〉+

iρ2
ρ3
〈iλnψn − vn, δun,x〉

= − iρ2
ρ3
〈iλnψn − vn, iλnρ3θn + qn,x + δun,x〉 −

iρ2δ

ρ3
〈(iλnψn − vn)x , un〉

+
iρ2
ρ3

[〈iλnψn − vn, qn〉]10 +
iρ2
ρ3

[〈iλnψn − vn, δun〉]10 −
iρ2
ρ3
〈(iλnψn − vn)x , qn〉 ,

by using the boundary conditions, (4.3), (5.3)3 and (5.3)7, we deduce that

(5.21)
〈
λ2nρ2ψn + iλnρ2vn, iθn

〉
→ 0.

Also, we have

〈λnψn, un,x〉 = [〈λnψn, un〉]10 − 〈λnψn,x, un〉
= −〈iλnψn,x − vn,x, iun〉 − 〈vn,x, iun〉
= −〈iλnψn,x − vn,x, iun〉+ 〈vn, iun,x〉 .(5.22)

Using again integration by parts and the boundary conditions, we have

λn 〈ψn,x, qn〉 = λn [〈ψn, qn〉]10 − λn 〈ψn, qn,x〉
= −λn 〈ψn, iλnρ3θn + qn,x + δun,x〉+ λn 〈ψn, iλnρ3θn〉+ λn 〈ψn, δun,x〉

= −λn 〈ψn, iλnρ3θn + qn,x + δun,x〉+
ρ3
ρ2

〈
λ2nρ2ψn + iλnρ2vn, iθn

〉
−ρ3
ρ2
〈iλnρ2vn − bψn,xx + k (ϕn,x + ψn + l wn) , iθn〉

−bρ3
ρ2
〈ψn,xx, iθn〉+

kρ3
ρ2
〈ϕn,x + ψn + l wn, iθn〉+ δ 〈λnψn, un,x〉 ,

then, by (5.22) and integration by parts, we obtain

λn 〈ψn,x, qn〉 = −〈λnψn, iλnρ3θn + qn,x + δun,x〉+
ρ3
ρ2

〈
λ2nρ2ψn + iλnρ2vn, iθn

〉
−ρ3
ρ2
〈iλnρ2vn − bψn,xx + k (ϕn,x + ψn + l wn) , iθn〉(5.23)

−bρ3
ρ2

[〈ψn,x, iθn〉]10 +
bρ3
ρ2
〈ψn,x, iθn,x〉+

kρ3
ρ2
〈ϕn,x + ψn + l wn, iθn〉

−δ 〈iλnψn,x − vn,x, iun〉+ δ 〈vn, iun,x〉 ,

using the boundary conditions, (4.3), (5.3)3, (5.3)4, (5.3)7, (5.7), (5.8), (5.12), (5.20) and (5.21), we
deduce from (5.23) that

(5.24) λn 〈ψn,x, qn〉 −
bρ3
ρ2
〈ψn,x, iθn,x〉 − δ 〈vn, iun,x〉 → 0.
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Also, we have

λn 〈ψn,x, qn〉 =
i

τ
〈ψn,x, iτλnqn〉

=
i

τ
〈ψn,x, iλnτqn + βqn + θn,x〉 −

iβ

τ
〈ψn,x, qn〉+

1

τ
〈ψn,x, iθn,x〉 ,(5.25)

therefore, by using (4.3), (5.3)8, (5.4), (5.24) and (5.25), we obtain(
bρ3
ρ2
− 1

τ

)
〈ψn,x, θn,x〉+ δ 〈vn, un,x〉 → 0,

and so (
bρ3
ρ2
− 1

τ

)
〈ψn,x, θn,x〉 − δ 〈vn, (iλnϕn − un)x〉+ δ 〈vn, iλnϕn,x〉 → 0,

and moreover, by (4.3) and (5.3)1, we find

(5.26)

(
bρ3
ρ2
− 1

τ

)
〈ψn,x, θn,x〉+ δ 〈vn, iλnϕn,x〉 → 0.

Step 8. Multiplying (5.3)4 by ϕn,x + ψn + l wn, we obtain

〈iλnρ2vn, ϕn,x + ψn + l wn〉 − b 〈ψn,xx, ϕn,x + ψn + l wn〉+ k ‖ϕn,x + ψn + l wn‖2 → 0,

with integration by parts and using the boundary conditions, (5.7), (5.8) and (5.12), we get

−ρ2 〈vn, iλnϕn,x〉 − ρ2 〈vn, iλnψn − vn〉 − ρ2 ‖vn‖2

−lρ2 〈vn, iλn wn − zn〉 − lρ2 〈vn, zn〉+ b
〈
ψn,x, (ϕn,x + ψn + l wn)x

〉
→ 0,

using (4.3), (5.3)3 and (5.3)5, we deduce that

−ρ2 〈vn, iλnϕn,x〉 − ρ2 ‖vn‖2 − lρ2 〈vn, zn〉+
b

k
〈ψn,x, iλnρ1un − lk0 (wn,x − lϕn) + δθn,x〉

− b
k

〈
ψn,x, iλnρ1un − k (ϕn,x + ψn + l wn)x − lk0 (wn,x − lϕn) + δθn,x

〉
→ 0,

using (4.3) and (5.3)2, we have

−ρ2 〈vn, iλnϕn,x〉 − ρ2 ‖vn‖2 − lρ2 〈vn, zn〉 −
bρ1
k
〈iλnψn,x − vn,x, un〉

−bρ1
k
〈vn,x, un〉 −

blk0
k
〈ψn,x, wn,x − lϕn〉+

bδ

k
〈ψn,x, θn,x〉 → 0.(5.27)

As, by integrating by parts and using the boundary conditions,

〈vn,x, un〉 = −〈vn, un,x〉 = 〈vn, iλnϕn,x − un,x〉 − 〈vn, iλnϕn,x〉 ,

and with (4.3), (5.3)1, (5.3)3 and (5.27), we see that(
bρ1
k
− ρ2

)
〈vn, iλnϕn,x〉 − ρ2 ‖vn‖2 − lρ2 〈vn, zn〉 −

blk0
k
〈ψn,x, wn,x − lϕn〉+

bδ

k
〈ψn,x, θn,x〉 → 0,

combining with (5.16) and (5.26), we obtain

−1

δ

(
bρ1
k
− ρ2

)(
bρ3
ρ2
− 1

τ

)
〈ψn,x, θn,x〉+

b

k
δ 〈ψn,x, θn,x〉−ρ2 ‖vn‖2−lb

(
1 +

k0
k

)
〈ψn,x, wn,x − lϕn〉 → 0,

then, we get

(5.28)
b

δk

[
δ2 −

(
ρ1 −

kρ2
b

)(
bρ3
ρ2
− 1

τ

)]
〈ψn,x, θn,x〉 − ρ2 ‖vn‖2 − lb

(
1 +

k0
k

)
〈ψn,x, wn,x − lϕn〉 → 0.
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Step 9. We have

〈zn, qn,x〉 = [〈zn, qn〉]10 − 〈zn,x, qn〉
= 〈iλnwn,x − zn,x, qn〉 − 〈iλnwn,x, qn〉

= 〈iλnwn,x − zn,x, qn〉+
1

τ
〈wn,x, iλnτqn + βqn + θn,x〉(5.29)

−β
τ
〈wn,x, qn〉 −

1

τ
〈wn,x, θn,x〉 .

Also, we see that

〈iλnρ1zn, θn〉 = −ρ1 〈zn, iλn θn〉

= −ρ1
ρ3
〈zn, iλn ρ3θn + qn,x + δun,x〉+

ρ1
ρ3
〈zn, qn,x〉+

δρ1
ρ3
〈zn, un,x〉

= −ρ1
ρ3
〈zn, iλn ρ3θn + qn,x + δun,x〉+

ρ1
ρ3
〈zn, qn,x〉

−δρ1
ρ3
〈zn, iλnϕn,x − un,x〉+

δρ1
ρ3
〈zn, iλnϕn,x〉 ,

by using (5.29), we obtain

〈iλnρ1zn, θn〉 = −ρ1
ρ3
〈zn, iλn ρ3θn + qn,x + δun,x〉 −

δρ1
ρ3
〈zn, iλnϕn,x − un,x〉

+
ρ1
ρ3
〈iλnwn,x − zn,x, qn〉+

ρ1
τρ3
〈wn,x, iλnτqn + βqn + θn,x〉

+
δρ1
ρ3
〈zn, iλnϕn,x〉 −

βρ1
τρ3
〈wn,x, qn〉 −

ρ1
τρ3
〈wn,x, θn,x〉 .(5.30)

Multiplying (5.3)6 by θn, we find

〈iλnρ1zn, θn〉 − k0
〈
(wn,x − lϕn)x , θn

〉
+ kl 〈ϕn,x + ψn + lwn, θn〉 → 0,

then by integration by parts and using the boundary conditions, (4.3), (5.3)1, (5.3)5, (5.3)7, (5.3)8, (5.4),
(5.7), (5.8), (5.12) and (5.30), we obtain

− ρ1
τρ3
〈wn,x, θn,x〉+

δρ1
ρ3
〈zn, iλnϕn,x〉+ k0 〈wn,x − lϕn, θn,x〉 → 0.

As (thanks to (5.5) and (5.15))

〈ϕn, θn,x〉 =

〈
λnϕn,

θn,x
λn

〉
→ 0,

we get

(5.31)

(
k0 −

ρ1
τρ3

)
〈wn,x − lϕn, θn,x〉+

δρ1
ρ3
〈zn, iλnϕn,x〉 → 0.

Step 10. By using (5.19) and (5.31), we observe that

1

kδ

[
δ2 −

(
1− k

k0

)(
ρ3k0 −

ρ1
τ

)]
〈wn,x − lϕn, θn,x〉

− bρ1
k0ρ2

〈wn,x − lϕn, ψn,x〉 −
lρ1
k0
‖zn‖2 −

lk0
k
‖wn,x − lϕn‖2 → 0.(5.32)

Multiplying (5.3)4 by wn, and (5.3)6 by ψn, we get
〈iλnvn, wn〉 −

b

ρ2
〈ψn,xx, wn〉+

k

ρ2
〈ϕn,x + ψn + l wn, wn〉 → 0,

〈iλnzn, ψn〉 −
k0
ρ1

〈
(wn,x − lϕn)x , ψn

〉
+
lk

ρ1
〈ϕn,x + ψn + l wn, ψn〉 → 0,
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then 
−〈vn, iλnwn − zn〉 − 〈vn, zn〉 −

b

ρ2
〈ψn,xx, wn〉+

k

ρ2
〈ϕn,x + ψn + l wn, wn〉 → 0,

−〈zn, iλnψn − vn〉 − 〈zn, vn〉 −
k0
ρ1

〈
(wn,x − lϕn)x , ψn

〉
+
lk

ρ1
〈ϕn,x + ψn + l wn, ψn〉 → 0,

by integration by parts and using (4.3), (5.3)3, (5.3)5, (5.7), (5.8) and (5.12), we obtain
−〈vn, zn〉 −

b

ρ2
[〈ψn,x, wn〉]10 +

b

ρ2
〈ψn,x, wn,x〉 → 0,

−〈vn, zn〉 −
k0
ρ1

[〈ψn, wn,x − lϕn〉]10 +
k0
ρ1
〈ψn,x, wn,x − lϕn〉 → 0,

by using the boundary conditions, we find

b

ρ2
〈ψn,x, wn,x〉 −

k0
ρ1
〈ψn,x, wn,x − lϕn〉 → 0.

As 〈ψn,x, ϕn〉 → 0 (according to (4.3) and (5.6)), then(
b

ρ2
− k0
ρ1

)
〈ψn,x, wn,x − lϕn〉 → 0.

As ξ0 6= 0; that is,
b

ρ2
6= k0
ρ1

, then we obtain

(5.33) 〈ψn,x, wn,x − lϕn〉 → 0.

As ξ1 = 0; that is, δ2 −
(
ρ1 − kρ2

b

)(bρ3
ρ2
− 1

τ

)
= 0, then, using (5.28) and (5.33), we find

(5.34) vn → 0 in L2 (0, 1) .

By (5.3)3 and (5.34), we have

(5.35) λnψn → 0 in L2 (0, 1) .

Multiplying (5.3)4 by ψn, we get

〈iλnρ2vn, ψn〉 − b 〈ψn,xx, ψn〉+ k 〈ϕn,x + ψn + l wn, ψn〉 → 0,

then, by integrating by parts, we remark that

(5.36) 〈iρ2vn, λnψn〉 − b [〈ψn,x, ψn〉]10 +
b

2
‖ψn,x‖2 + k 〈ϕn,x + ψn + l wn, ψn〉 → 0.

By using the boundary conditions, (4.3), (5.7), (5.8), (5.12), (5.34), (5.35) and (5.36), we arrive at

(5.37) ψn,x → 0 in L2 (0, 1) .

As ξ2 = 0; that is, δ2 −
(

1− k

k0

)(
ρ3k0 −

ρ1
τ

)
= 0, then, using (5.32) and (5.33), we deduce that

(5.38) zn → 0 in L2 (0, 1)

and

wn,x − lϕn → 0 in L2 (0, 1) ,

and so, using (5.6),

(5.39) wn,x → 0 in L2 (0, 1) .

Finally, (5.4), (5.6), (5.7), (5.8), (5.9), (5.12), (5.14), (5.34), (5.37), (5.38) and (5.39) lead to (4.7), which
is a contradiction with (4.3). Hence, the proof of Theorem 5.1 is completed. �
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Remark 2. Our stability results hold for some other boundary conditions such as{
ϕx (0, t) = ψ (0, t) = w (0, t) = θ (0, t) = 0 in (0,∞) ,
ϕx (1, t) = ψ (1, t) = w (1, t) = θ (1, t) = 0 in (0,∞) ,{
ϕ (0, t) = ψx (0, t) = wx (0, t) = q (0, t) = 0 in (0,∞) ,
ϕ (1, t) = ψx (1, t) = wx (1, t) = q (1, t) = 0 in (0,∞)

and {
ϕx (0, t) = ψ (0, t) = w (0, t) = θ (0, t) = 0 in (0,∞) ,
ϕ (1, t) = ψx (1, t) = wx (1, t) = q (1, t) = 0 in (0,∞) .

The question is posed when [ϕ and ψ] or [ϕ and w] or [ϕ and θ] has the same boundary
condition at 0 or at 1, and when [ϕ and q] or [ψ and w] or [ψ and θ] or [w and θ] do not have
the same boundary condition at 0 or at 1.

6. Concluding Remarks

In this work, we proved that, under new relationships between the coefficients of the
considered model, the coupling of the first component in Bresse system with the heat
conduction of Cattaneo’s law is strong enough to stabilize exponentially the solutions of
the considered model. When these relationships are not satisfied, we showed that the total
energy of the system is not decaying exponentially and it is decaying at least polynomially
with a decay rate depending on the smoothness of the initial data. It will interesting to
study the optimality of the decay rate for the polynomial stability case and to extend our
results to other kind of heat conduction models.
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