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Abstract. In this paper, we consider a viscoelastic plate equation with a log-

arithmic nonlinearity. Using the Galaerkin method and the multiplier method,

we establish the existence of solutions and prove an explicit and general decay
rate result. This result extends and improves many results in the literature

such as Gorka [19], Hiramatsu et al. [27] and Han and Wang [26].

1. Introduction. In this paper, we deal with the existence and decay of solutions
of the following plate problem:

utt + ∆2u+ u−
∫ t

0
g(t− s)∆2u(s)ds = ku ln |u|, in Ω× (0,∞),

u = ∂u
∂ν = 0, in ∂Ω× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.1)

where Ω is a bounded domain of R2 with a smooth boundary ∂Ω, ν is the unit
outer normal to ∂Ω and k is a small postive real number. The kernel g satisfies
some conditions to be specified later.
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1.1. Plate problems. Concerning the study of plates, Lagnese [31] studied a vis-
coelastic plate equation and showed that the energy decays to zero as time goes
to infinity by intorducing a dissipative mechanism on the boundary of the system.
Rivera et al. [43] proved that the first and second order energy, associated with
the solutions of the viscoelastic plate equation, decay exponentially provided that
the kernel of the memory also decays exponentially. Komornik [29] investigated
the energy decay of a plate model under weak growth assumptions on the feedback
function. Messaoudi [36] studied the following problem:

utt + ∆2u+ |ut|m−2ut = |u|p−2u, in QT = Ω× (0, T ),

u = ∂u
∂ν = 0, on ΓT = ∂Ω× [0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.2)

established an existence result and showed that the solution continues to exist glob-
ally if m ≥ p, and blows up in finite time if m < p and the initial energy is negative.
This result was later improved by Chen and Zhou [13].

For boundary damping, Santos and Junior [44] studied the stability of the fol-
lowing system:

utt + ∆2u = 0, in Ω× (0,∞),

u = ∂u
∂ν = 0, on Γ0 × (0,∞),

−u+
∫ t

0
g1(t− s)β1u(s)ds = 0, on Γ1 × (0,∞),

∂u
∂ν +

∫ t
0
g2(t− s)β2u(s)ds = 0, on Γ2 × (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

(1.3)

where

β1u = ∆u+ (1− µ)B1u and β2u =
∂∆u

∂µ
+ (1− µ)

∂B2u

∂η
with

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx and B2u = (ν1 − ν2)uxy + ν1ν2 (uyy − uxx) .

For more results in this direction, see [3, 22, 26, 30, 32].

1.2. Viscoelastic problems. Since the pioneer works of Dafermos [15, 16] in 1970,
where the general decay was discussed, problems related to viscoelasticity have
attracted a great deal of attention and many results of existence and long-time
behavior have been established. The importance of the viscoelastic properties of
materials has been realized because of the rapid developments in rubber and plastic
industry. Many advances in the studies of constitutive relations, failure theories and
life prediction of viscoelastic materials and structures were reported and reviewed
in the last two decades [14]. Hrusa [28] considered a one-dimensional nonlinear
viscoelastic equation of the form

utt − cuxx +

∫ t

0

m(t− s)(ψ(ux(s)))xds = f(x, t)

and proved several global existence results for large data and an exponential decay
result for strong solutions when m(s) = e−s and ψ satisfies certain conditions. In
[17], Dassios and Zafiropoulos considered a viscoelastic problem in R3 and proved a
polynomial decay result for exponentially decaying kernels. After that, Rivera [42]
considered equations for linear isotropic homogeneous viscoelastic solids of integral
type which occupy bounded domains or the whole space Rn. In the bounded-
domain case and for exponentially decaying memory kernels and regular solutions,
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he showed that the sum of the first and the second energy decays exponentially.
Whereas, the decay is polynomial when the body occupies the whole space Rn,
even if the relaxation function is of an exponential decay.

For quasilinear problems, Cavalcanti et al. [7] studied, in a bounded domain, the
following equation:

|ut|ρutt −∆u−∆utt +

∫ t

0

g(t− τ)∆u(τ)dτ − γ∆ut = 0, in Ω× (0,∞), (1.4)

for ρ > 0. A global existence result for γ ≥ 0, as well as an exponential decay
result for γ > 0, have been established. This latter result was then extended to
a situation, where γ = 0, by Messaoudi and Tatar [39, 40], and exponential and
polynomial decay results have been established in the absence, as well as in the
presence, of a source term. In all the above mentioned works, the rates of decay in
relaxation functions were either of exponential or polynomial type. In [8], Cavalcanti
et al. considered

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ a(x)ut + |u|p−1
u = 0, in Ω× (0,∞),

where a : Ω → R+ is a function which may vanish on a part of the domain Ω but
satisfies a(x) ≥ a0 on ω ⊂ Ω and g satisfies, for two positive constants ξ1 and ξ2,

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), ∀t ∈ R+

and established an exponential decay result under some restrictions on ω. Berrimi
and Messaoudi [4] established the result of [8], under weaker conditions on both
a and g, to a problem where a source term is competing with the damping term.
Cavalcanti and Oquendo [10] considered the following problem:

utt−k0∆u+

∫ t

0

div[a(x)g(t− s)∆u(s)]ds+b(x)h(ut)+f(u) = 0, in Ω×(0,∞) (1.5)

and established, for a(x) + b(x) ≥ ρ > 0, an exponential stability result for g
decaying exponentially and h linear, and a polynomial stability result for g decaying
polynomially and h nonlinear. Li et al. [34] treated (1.5) with b(x) = 0 and
f(u) = −|u|γu, γ > 0. They showed the global existence and uniqueness of global
solution of problem (1.5) and established uniform decay rate of the energy under
suitable conditions on the initial data and the relaxation function g. For more
general decaying relaxation functions, Messaoudi [37, 38] considered

utt −∆u+

∫ t

0

g(t− τ)∆u(τ)dτ = b|u|q−2
u, in Ω× (0,∞) (1.6)

for q ≥ 2, b ∈ {0, 1} and g satisfying (A1) and (A2) below with p = 1, and
established a more general decay result, from which the usual exponential and
polynomial decay rates are only special cases. Guesmia et al. [24] studied the
well-posedness and stability of the following coupled two wave equations:{

utt −∆u+
∫ t

0
g1(t− τ)∆u(τ)dτ + |ut|m−1

ut = f1(u, v), in Ω× (0,∞),

vtt −∆v +
∫ t

0
g2(t− τ)∆v(τ)dτ + |vt|r−1

vt = f2(u, v), in Ω× (0,∞),
(1.7)

where m, r ≥ 1, f1 and f2 are given functions satisfying some hypotheses, and g1

and g2 are like g in (A1) and (A2) below (with p = 1, ξ1 and ξ2 instead of ξ).
They established the same stability estimate as in [37, 38] with ξ = min{ξ1, ξ2}.
Very recently, Messaoudi and Al-Khulaifi [41] considered (1.4) with γ = 0, where
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the relaxation function satisfies (2.2) below, and established a more general decay
result. For the case of memories acting on the boundary of domain, we refer the
readers to [9, 23] and the references therein.

1.3. Problems with logarithmic nonlinearity. The logarithmic nonlinearity is
of much interest in physics, since it appears naturally in inflation cosmology and
supersymmetric filed theories, quantum mechanics and nuclear physics [1, 18]. This
type of problems has applications in many branches of physics such as nuclear
physics, optics and geophysics [2, 5, 19]. Birula and Mycielski [5, 6] studied the
following problem:

utt − uxx + u− εu ln |u|2 = 0, in [a, b]× (0, T ),

u(a, t) = u(b, t) = 0, in (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in [a, b],

(1.8)

which is a relativistic version of logarithmic quantum mechanics and can also be
obtained by taking the limit p → 1 for the p-adic string equation [20, 45]. In [11],
Cazenave and Haraux considered

utt −∆u = u ln |u|k, in R3 (1.9)

and established the existence and uniqueness of the solution for the Cauchy problem.
Gorka [19] used some compactness arguments and obtained the global existence of
weak solutions for all (u0, u1) ∈ H1

0 × L2 to the initial-boundary value problem
(1.9) in the one-dimensional case. Bartkowski and Gorka [2] proved the existence
of classical solutions and investigated the weak solutions for the corresponding one-
dimensional Cauchy problem for equation (1.9). Hiramatsu et al. [27] introduced
the following equation:

utt −∆u+ u+ ut + |u|2u = u ln |u| (1.10)

to study the dynamics of Q-ball in theoretical physics and presented a numerical
study. However, there was no theoretical analysis for the problem. In [25], Han
proved the global existence of weak solutions, for all (u0, u1) ∈ H1

0 (Ω)× L2(Ω), to
the initial boundary value problem (1.10) in Ω ⊂ R3.

In this paper, we are concerned with the well-posedness and stability of the plate
problem (1.1) with a kernel g having an arbitrary growth at infinity (condition (2.2)
below). The obtained stability results improve and generalize many results in the
literature.

This paper is organized as follows. In section 2, we present some notations and
material needed for our work. In section 3, we establish the local existence of the
solutions of the problem. The global existence and the decay results are presented
in section 4 and section 5, respectively.

2. Preliminaries. In this section, we present some notations and material needed
in the proof of our results. We use the standard Lebesgue space L2(Ω) and Sobolev
space H2

0 (Ω) with their usual scalar products and norms. Throughout this paper,
c is used to denote a generic positive constant.

We consider the following hypotheses:

(A1) g : R+ → R+ is a C1- nonincreasing function satisfying

g(0) > 0 and 1−
∫ ∞

0

g(s)ds = ` > 0. (2.1)
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(A2) There exist a nonincreasing differentiable function ξ : R+ → R+, with ξ(0) >
0, and a constant 1 ≤ p < 3

2 such that

g′(t) ≤ −ξ(t)gp(t), ∀t ∈ R+. (2.2)

(A3) The constant k in (1.1) satisfies 0 < k < k0, where k0 is the positive real
number satisfying √

2π`

k0cp
= e−

3
2−

1
k0 (2.3)

and cp is the smallest positive number satisfying

‖∇u‖22 ≤ cp‖∆u‖22, ∀u ∈ H2
0 (Ω),

where ‖.‖2 = ‖.‖L2(Ω).

Remark 2.1. The function f(s) =
√

2π`
cps
− e− 3

2−
1
s is a continuous and decreasing

function on (0,∞), with

lim
s→0+

f(s) =∞ and lim
x→∞

f(x) = −e− 3
2 .

Then, there exists a unique k0 > 0 such that f(k0) = 0. Moreover,

e−
3
2−

1
s <

√
2π`

cps
, ∀s ∈ (0, k0). (2.4)

The energy functional associated with problem (1.1) is

E(t) =
1

2

(
‖ut‖22 +

(
1−

∫ t

0

g(s)ds

)
‖∆u‖22 +

k + 2

2
‖u‖22

)
− 1

2

∫
Ω

u2 ln |u|kdx+
1

2
(go∆u)(t),

(2.5)

where

(go∆u)(t) =

∫ t

0

g(t− s)‖∆u(s)−∆u(t)‖22ds.

Direct differentiation of (2.5), using (1.1), leads to

E′(t) =
1

2
(g′o∆u)(t)− 1

2
g(t)‖∆u‖22 ≤

1

2
(g′o∆u)(t) ≤ 0. (2.6)

Lemma 2.2 ([21, 12], Logarithmic Sobolev inequality). Let u be any function in
H1

0 (Ω) and a be any positive real number. Then∫
Ω

u2 ln |u|dx ≤ 1

2
‖u‖22 ln ‖u‖22 +

a2

2π
‖∇u‖22 − (1 + ln a)‖u‖22. (2.7)

Corollary 2.3. Let u be any function in H2
0 (Ω) and a be any positive real number.

Then ∫
Ω

u2 ln |u|dx ≤ 1

2
‖u‖22 ln ‖u‖22 +

cpa
2

2π
‖∆u‖22 − (1 + ln a)‖u‖22. (2.8)

Lemma 2.4 ([11], Logarithmic Gronwall inequality). Let c > 0, γ ∈ L1(0, T ;R+)
and assume that the function w : [0, T ]→ [1,∞) satisfies

w(t) ≤ c
(

1 +

∫ t

0

γ(s)w(s) lnw(s)ds

)
, 0 ≤ t ≤ T. (2.9)
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Then

w(t) ≤ c exp

(
c

∫ t

0

γ(s)ds

)
, 0 ≤ t ≤ T. (2.10)

3. Local existence. In this section, we state and prove the local existence result
for problem (1.1).

Definition 3.1. Let T > 0. A function

u ∈ C([0, T ], H2
0 (Ω)) ∩ C1([0, T ], L2(Ω)) ∩ C2([0, T ], H−2(Ω))

is called a weak solution of (1.1) on [0, T ] if, for any w ∈ H2
0 (Ω) and t ∈ [0, T ],

∫
Ω
utt(x, t)w(x)dx+

∫
Ω

∆u(x, t)∆w(x)dx+
∫

Ω
u(x, t)w(x)dx

−
∫

Ω
∆w(x)

∫ t
0
g(t− s)∆u(s)dsdx =

∫
Ω
u(x, t)w(x) ln |u(x, t)|kdx,

u(x, 0) = u0(x), ut(x, 0) = u1(x).

(3.1)

Theorem 3.2. Assume that (A1) and (A3) hold and let (u0, u1) ∈ H2
0 (Ω)×L2(Ω).

Then problem (1.1) has a weak solution

u ∈ C([0, T ], H2
0 (Ω)) ∩ C1([0, T ], L2(Ω)) ∩ C2([0, T ], H−2(Ω)). (3.2)

Proof. To establish the existence of a solution to problem (1.1), we use the Faedo-
Galerkin method. Let {wj}∞j=1 be an orthogonal basis of the “separable” space

H2
0 (Ω) which is orthonormal in L2(Ω). Let Vm = span{w1, w2, ..., wm} and let the

projections of the initial data on the finite dimensional subspace Vm be given by

um0 (x) =

m∑
j=1

ajwj(x) and um1 (x) =

m∑
j=1

bjwj(x),

where

um0 → u0 in H2
0 (Ω) and um1 → u in L2(Ω), as m→∞. (3.3)

We search for an approximate solution

um(x, t) =

m∑
j=1

hmj (t)wj(x)

of the approximate problem in Vm:

∫
Ω

(
umttw + ∆um∆w + umw −

∫ t
0
g(t− s)∆um(s)ds∆w

)
dx

=
∫

Ω
wum ln |um|kdx, ∀w ∈ Vm,

um(0) = um0 =
∑m
j=1(u0, wj)wj ,

umt (0) = um1 =
∑m
j=1(u1, wj)wj .

(3.4)

This leads to a system of ODEs for unknown functions hmj (t). Based on standard
existence theory for ODE, one can obtain functions

hj : [0, tm)→ R, j = 1, 2, ...,m,

which satisfy (3.4) in a maximal interval [0, tm), tm ∈ (0, T ]. Next, we show that
tm = T and that the local solution is uniformly bounded independent of m and t.
For this purpose, let us replace w by umt in (3.4) and integrate by parts to obtain

d

dt
Em(t) ≤ 1

2
(g′o∆um)(t) ≤ 0, (3.5)
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where

Em(t) =
1

2

(
‖umt ‖22 +

(
1−

∫ t

0

g(s)

)
‖∆um‖22 +

k + 2

2
‖um‖22

)
− 1

2

∫
Ω

|um|2 ln |um|kdx+
1

2
(go∆um)(t).

(3.6)

From (3.5), we have
Em(t) ≤ Em(0).

The last inequality together with (2.1) and the Logarithmic Sobolev inequality (2.8)
lead to

‖umt ‖22 + (go∆um)(t) +

(
`− ka2cp

2π

)
‖∆um‖22 +

[
k + 2

2
+ k (1 + ln a)

]
‖um‖22

≤ C +
k

2
‖um‖22 ln ‖um‖22,

(3.7)
where C = 2Em(0). Choosing

e−
3
2−

1
k < a <

√
2π`

kcp
(3.8)

will make

`− ka2cp
2π

> 0 and
k + 2

2
+ k (1 + ln a) > 0.

This selection is possible thanks to (A3). So, we get

(go∆um)(t) + ‖umt ‖22 + ‖∆um‖22 + ‖um‖22 ≤ c
(

1 + ‖um‖22 ln ‖um‖22
)
. (3.9)

Let us note that

um(., t) = um(., 0) +

∫ t

0

∂um

∂s
(., s)ds.

Then, using Cauchy-Schwarz’ inequality, we get

‖um(t)‖22 ≤ 2‖um(0)‖22 + 2

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

∂um

∂s
(s)ds

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ 2‖um(0)‖22 + 2T

∫ t

0

‖umt (s)‖22ds,

(3.10)

hence, inequality (3.9) gives

‖um‖22 ≤ 2‖um(0)‖22 + 2cT

(
1 +

∫ t

0

‖um‖22 ln ‖um‖22ds
)
. (3.11)

If we put C1 = max {2cT, 2‖um(0)‖22}, (3.11) leads to

‖um‖22 ≤ 2C1

(
1 +

∫ t

0

‖um‖22 ln ‖um‖22ds
)
.

Without loss of generality, we take C1 ≥ 1, which gives

‖um‖22 ≤ 2C1

(
1 +

∫ t

0

(
C1 + ‖um‖22

)
ln
(
C1 + ‖um‖22

)
ds

)
.

Applying the Logarithmic Gronwall inequality to the last inequality, we obtain the
following estimate:

‖um‖22 ≤ 2C1e
2C1T := C2.
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Hence, from inequality (3.9) it follows that:

(go∆um)(t) + ‖umt ‖22 + ‖∆um‖22 + ‖um‖22 ≤ c (1 + C2 lnC2) := C3,

where C3 is a positive constant independent of m and t. This implies

sup
t∈(0,tm)

‖umt ‖22 + sup
t∈(0,tm)

‖∆um‖22 + sup
t∈(0,tm)

‖um‖22 ≤ 3C3. (3.12)

So, the approximate solution is uniformly bounded independent of m and t. There-
fore, we can extend tm to T . Moreover, we obtain, from (3.12),{

um is uniformly bounded in L∞(0, T ;H2
0 (Ω)),

umt is uniformly bounded in L∞(0, T ;L2(Ω)),
(3.13)

which implies that there exists a subsequence of (um) (still denoted by (um)), such
that 

um⇀u weakly * in L∞(0, T ;H2
0 (Ω)),

umt ⇀ut weakly * in L∞(0, T ;L2(Ω)),

um⇀u weakly in L2(0, T ;H2
0 (Ω)),

umt ⇀ut weakly in L2(0, T ;L2(Ω)).

(3.14)

Making use of Aubin-Lions’ theorem, we find, up to a subsequence, that

um → u strongly in L2(0, T ;L2(Ω))

and

um → u a.e. in Ω× (0, T ).

Since the map s→ s ln |s|k is continuous on R, we have the convergence

um ln |um|k → u ln |u|k a.e. in Ω× (0, T ).

Using the embedding of H2
0 (Ω) in L∞(Ω) (since Ω ⊂ R2), it is clear that um ln |um|k

is bounded in L∞(Ω × (0, T )). Next, taking into account the Lebesgue bounded
convergence theorem (Ω is bounded), we get

um ln |um|k → u ln |u|k strongly in L2(0, T ;L2(Ω)). (3.15)

Now, we integrate (3.4) over (0, t) to obtain, for every w ∈ Vm,∫
Ω

umt wdx−
∫

Ω

um1 wdx+

∫ t

0

∫
Ω

∆um(s)∆wdxds+

∫ t

0

∫
Ω

um(s)wdxds

−
∫ t

0

∫
Ω

∫ τ

0

g(τ − s)∆um(s)ds∆wdxdsdτ =

∫
Ω

∫ t

0

wum(s) ln |um(s)|kdxds.

(3.16)
Convergences (3.3), (3.14) and (3.15) are sufficient to pass to the limit in (3.16), as
m→ +∞, and get, for any w ∈ Vm and m ≥ 1,∫

Ω

utwdx =

∫
Ω

u1wdx−
∫ t

0

∫
Ω

∆u(s)∆wdxds−
∫ t

0

∫
Ω

u(s)wdxds

+

∫ τ

0

∫
Ω

∆w(x)

∫ t

0

g(t− s)∆u(s)dsdxdt+

∫
Ω

∫ t

0

u(s)w ln |u(s)|kdsdx,

(3.17)
which implies that (3.17) is valid for any w ∈ H2

0 (Ω). Using the fact that the terms
in the right-hand side of (3.17) are absolutely continuous since they are functions
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of t defined by integrals over (0, t), hence it is differentiable for a.e. t ∈ R+. Thus,
differentiating (3.17), we obtain, for a.e. t ∈ (0, T ) and any w ∈ H2

0 (Ω),∫
Ω

utt(x, t)w(x)dx+

∫
Ω

∆u(x, t)∆w(x)dx+

∫
Ω

u(x, t)w(x)dx

−
∫

Ω

∆w(x)

∫ t

0

g(t− s)∆u(s)dsdx =

∫
Ω

w(x)u(x, t) ln |u(x, t)|kdx.
(3.18)

To handle the initial conditions, we note that

um⇀u weakly in L2(0, T ;H2
0 (Ω)) and umt ⇀ut weakly in L2(0, T ;L2(Ω)).

(3.19)
Thus, using Lion’s Lemma [33], we obtain

um → u in C([0, T ], L2(Ω)). (3.20)

Therefore, um(x, 0) makes sense and

um(x, 0)→ u(x, 0) in L2(Ω).

Also, we have
um(x, 0) = um0 (x)→ u0(x) in H2

0 (Ω).

Hence
u(x, 0) = u0(x).

Now, multiply (3.4) by φ ∈ C∞0 (0, T ) and integrate over (0, T ), we obtain, for any
w ∈ Vm,

−
∫ T

0

∫
Ω

umt (t)wφ′(t)dxdt = −
∫ T

0

∫
Ω

∆um(t)∆wφ(t)dxdt

−
∫ T

0

∫
Ω

umwφ(t)dxdt+

∫ T

0

∫
Ω

∫ t

0

g(t− s)∆um(s)ds∆wφ(t)dxdt

+

∫ T

0

∫
Ω

umwφ(t) ln |um|kdxdt.

(3.21)

As m→∞, we have, for any w ∈ H2
0 (Ω) and any φ ∈ C∞0 ((0, T )),

−
∫ T

0

∫
Ω

ut(t)wφ
′(t)dxdt = −

∫ T

0

∫
Ω

∆u(t)∆wφ(t)dxdt−
∫ T

0

∫
Ω

uwφ(t)dxdt

+

∫ T

0

∫
Ω

∫ t

0

g(t− s)∆u(s)ds∆wφ(t)dxdt+

∫ T

0

∫
Ω

wφ(t)u ln |u|kdxdt.

(3.22)
This means (see [35]),

utt ∈ L2([0, T ), H−2(Ω)).

Recalling that ut ∈ L2((0, T ), L2(Ω)), we obtain

ut ∈ C([0, T ), H−2(Ω)).

So, umt (x, 0) makes sense and

umt (x, 0)→ ut(x, 0) in H−2(Ω).

But
umt (x, 0) = um1 (x)→ u1(x) in L2(Ω).

Hence
ut(x, 0) = u1(x).
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4. Global existence. In this section, we state and prove a global existence re-
sult under smallness conditions on the initial data (u0, u1). For this purpose, we
introduce the following functionals:

J(t) =
1

2

((
1−

∫ t

0

g(s)ds

)
‖∆u‖22 + ‖u‖22 + (go∆u)(t)−

∫
Ω

u2 ln |u|kdx
)

+
k

4
‖u‖22

(4.1)

and

I(t) =

(
1−

∫ t

0

g(s)ds

)
‖∆u‖22 + ‖u‖22 + (go∆u)(t)− 3

∫
Ω

u2 ln |u|kdx. (4.2)

Lemma 4.1. The following inequalities hold:

− kd0

√
|Ω|c3∗‖∆u‖

3
2
2 ≤

∫
Ω

u2 ln |u|kdx ≤ kc3∗‖∆u‖32, ∀u ∈ H2
0 (Ω), (4.3)

where d0 = sup0<s<1

√
s| ln s|, |Ω| is the Lebegue measure of Ω and c∗ is the smallest

embedding constant (∫
Ω

|u|3dx
) 1

3

≤ c∗‖∆u‖2, ∀u ∈ H2
0 (Ω) (4.4)

(c∗ exists thanks to the embedding of H2
0 (Ω) in L∞(Ω)).

Proof. Let

Ω1 = {x ∈ Ω : |u(x)| > 1} and Ω2 = {x ∈ Ω : |u(x)| ≤ 1}.

So, using (4.4), we have∫
Ω

u2 ln |u|kdx =

∫
Ω2

u2 ln |u|kdx+

∫
Ω1

u2 ln |u|kdx

≤ k
∫

Ω1

u2 ln |u|dx ≤ k
∫

Ω1

|u|3dx ≤ k
∫

Ω

|u|3dx ≤ kc3∗‖∆u‖32,

this gives the right inequality in (4.3).

On the other hand, using Hölder’s inequality and (4.4), we find

−
∫

Ω

u2 ln |u|kdx = −
∫

Ω2

u2 ln |u|kdx−
∫

Ω1

u2 ln |u|kdx

≤ −k
∫

Ω2

u2 ln |u|dx = k

∫
Ω2

u2| ln |u||dx

≤ kd0

∫
Ω

|u| 32 dx ≤ kd0

√
|Ω|
(∫

Ω

|u|3dx
) 1

2

≤ kd0

√
|Ω|c3∗‖∆u‖

3
2
2 ,

which implies the left inequality in (4.3).

Lemma 4.2. Assume that (A1)− (A3). Let (u0, u1) ∈ H2
0 (Ω)× L2(Ω) such that

I(0) > 0 and
√

54kc3∗

(
E(0)

`

) 1
2

< `. (4.5)

Then

I(t) > 0, ∀t ∈ [0, T ). (4.6)
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Proof. From (4.2), we have∫
Ω

u2 ln |u|kdx =
1

3

(
1−

∫ t

0

g(s)ds

)
‖∆u‖22 +

1

3
‖u‖22 +

1

3
(go∆u)(t)− 1

3
I(t). (4.7)

Substitute (4.7) in (4.1), we find

J(t) =
1

3

[(
1−

∫ t

0

g(s)ds

)
‖∆u‖22 + ‖u‖22 + (go∆u)(t)

]
+
k

4
‖u‖22 +

1

6
I(t). (4.8)

Since I(0) > 0 and I is continuous on [0, T ], there exists t0 ∈ (0, T ] such that
I(t) > 0, for all t ∈ [0, t0). Let us denote by t0 the biggest real number in (0, T ]
such that I > 0 on [0, t0). If t0 = T , then (4.6) is satisfied.

We assume by contradiction that t0 ∈ (0, T ). Thus I(t0) = 0 and

‖∆u(t)‖22 ≤
3

`
J(t) ≤ 3

`
E(t) ≤ 3

`
E(0), ∀t ∈ [0, t0). (4.9)

If ‖∆u(t0)‖22 = 0, then (4.3) and (4.4) give

0 = I(t0) = (go∆u) (t0) =

∫ t0

0

g(s)‖∆u(s)‖22ds. (4.10)

Consequently, if g > 0 on [0, t0), we get

‖∆u(s)‖2 = 0, ∀s ∈ [0, t0).

Then

I(t) = 0, ∀t ∈ [0, t0),

which is not true since I > 0 on [0, t0). If g is not positive on [0, t0), then let
t1 ∈ [0, t0) the smallest real number such that g(t1) = 0. Because g(0) > 0 and g
is positive, nonincreasing and continuous on R+ (condition (A1)), then t1 > 0 and
g = 0 on [t1,∞). Therefore, from (4.10), we deduce that

0 =

∫ t0

0

g(s)‖∆u(s)‖22ds =

∫ t1

0

g(s)‖∆u(s)‖22ds,

then ‖∆u(s)‖2 = 0, for any s ∈ [0, t1), which implies that I(t) = 0, for any t ∈ [0, t1).
As before, this is a contraduction with the fact that I > 0 on [0, t0). Then we
conclude that ‖∆u(t0)‖22 > 0. On the other hand, we have

I(t0) ≥ `‖∆u(t0)‖22 − 3

∫
Ω

u(t0)2 ln |u(t0)|kdx.

By using (4.9) and Lemma 4.1, we have

I(t0) ≥

[
`− 3kc3∗

(
6E(0)

`

) 1
2

]
‖∆u(t0)‖22.

By recalling (4.5), we arrive at I(t0) > 0, which contradicts the assumption I(t0) =
0. Hence, t0 = T and then

I(t) > 0, ∀t ∈ [0, T ).

The global existence can be easily established by repeating the steps of the proof
of Theorem 3.1 [40].
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5. Stability. In this section, we state and prove our stability result. We start by
establishing several lemmas needed for the proof of our main result.

Lemma 5.1. Assume that g satisfies (A1). Then, for u ∈ H2
0 (Ω), we have∫

Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx ≤ c(go∆u)(t)

and ∫
Ω

(∫ t

0

g′(t− s)(u(t)− u(s))ds

)2

dx ≤ −c(g′o∆u)(t).

Proof. ∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx

=

∫
Ω

(∫ t

0

√
g(t− s)

√
g(t− s)(u(t)− u(s))ds

)2

dx.

By applying Cauchy-Schwarz’ and Poincaré’s inequalities, we can show that∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx

≤
∫

Ω

(∫ t

0

g(t− s)ds
)(∫ t

0

g(t− s)(u(t)− u(s))2ds

)
dx

≤ (1− `)c(go∆u)(t)

≤ c(go∆u)(t).

(5.1)

Similarly, the second inequality in Lemma 5.1 can be proved.

Lemma 5.2. Assume that g satisfies (A1) and (A2). Then∫ ∞
0

ξ(t)g1−σ(t)dt <∞, ∀σ < 2− p. (5.2)

Proof. Using (A1) and (A2), we easily see that, for any σ < 2− p,
ξ(t)g1−σ(t) = ξ(t)g1−σ(t)gp(t)g−p(t) ≤ −g′(t)g1−σ−p(t).

Integrate the last inequality over (0,∞), we obtain∫ ∞
0

ξ(t)g1−σ(t)dt ≤ −
∫ ∞

0

g′(t)g1−σ−p(t)dt =

[
−g

2−p−σ(t)

2− p− σ

]∞
0

<∞.

Similar to Cavalcanti and Oquendo [10], we can easily have the following lemma:

Lemma 5.3. Assume that (A1)− (A3) and (4.5) hold and u is a solution of (1.1).
Then, for any 0 < σ < 1, we have

(go∆u)(t) ≤ c
[(∫ ∞

0

g1−σ(t)dt

)
E(0)

] p−1
p−1+σ

(gpo∆u)
σ

p−1+σ (t).

By taking σ = 1
2 , we get

(go∆u)(t) ≤ c
(∫ t

0

g
1
2 (s)ds

) 2p−2
2p−1

(gpo∆u)
1

2p−1 (t) (5.3)
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and, for any ε0 ∈ (0, 1),

(go∆u)
1

1+ε0 (t) ≤ c
1

1+ε0

(∫ t

0

g
1
2 (s)ds

) 2p−2
(2p−1)(1+ε0)

(gpo∆u)
1

(2p−1)(1+ε0) (t). (5.4)

Corollary 5.4. Assume that (A1) − (A3) and (4.5) hold and u is a solution of
(1.1). Then

ξ(t)(go∆u)(t) ≤ c (−E′(t))
1

2p−1 (5.5)

and, for any ε0 ∈ (0, 1),

ξ(t)(go∆u)
1

1+ε0 (t) ≤ cε0 (−E′(t))
1

(2p−1)(1+ε0) . (5.6)

Proof. Multiply both sides of (5.3) by ξ(t) and use (5.2) and (2.6) to obtain

ξ(t)(go∆u)(t) ≤ cξ
2p−2
2p−1 (t)

(∫ t

0

g
1
2 (s)ds

) 2p−2
2p−1

ξ
1

2p−1 (t)(gpo∆u)
1

2p−1 (t)

≤ c
(∫ t

0

ξ(s)g
1
2 (s)ds

) 2p−2
2p−1

(ξgpo∆u)
1

2p−1 (t)

≤ c
(∫ ∞

0

ξ(s)g
1
2 (s)ds

) 2p−2
2p−1

(−g′o∆u)
1

2p−1 (t)

≤ c (−E′(t))
1

2p−1 .

(5.7)

For the proof of (5.6), using (5.5) and because ξ is nonincreasing, we obtain

ξ(t)(go∆u)
1

1+ε0 (t) = ξ
ε0

1+ε0 (t) (ξ(t)(go∆u)(t))
1

1+ε0 ≤ cε0 (−E′(t))
1

(2p−1)(1+ε0) .

Lemma 5.5. Assume that (A1)− (A3) and (4.5) hold. Then the functional

ψ(t) =

∫
Ω

uutdx

satisfies, along the solutions of (1.1),

ψ′(t) ≤ ||ut||22 −
`

2
||∆u||22 − ||u||

2
2 +

∫
Ω

u2 ln |u|kdx+ c(go∆u)(t). (5.8)

Proof. By using Eq. (1.1), we easily see that

ψ′(t) = ||ut||22 − ||∆u||
2
2 − ||u||

2
2 +

∫
Ω

∆u

∫ t

0

g(t− s)∆u(s)dsdx

+

∫
Ω

u2 ln |u|kdx.
(5.9)

We now use Lemma 5.1 and Young’s inequality, to obtain, for any µ > 0,∫
Ω

∆u(t)

(∫ t

0

g(t− s)∆u(s)ds

)
dx

≤
(

1− `+
µ

2

)
||∆u||22 +

1

2µ
(1− `)(go∆u)(t).

(5.10)

By choosing µ = ` and combining (5.9) and (5.10), we obtain (5.8).
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Lemma 5.6. Assume that (A1)− (A3) and (4.5) hold. Then the functional

χ(t) = −
∫

Ω

ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

satisfies, along the solutions of (1.1) and for any ε0 ∈ (0, 1) and δ > 0,

χ′(t) ≤ δ||∆u||22 +
c

δ
(go∆u)(t) +

c

δ
(−g′o∆u)(t) +

(
δ −

∫ t

0

g(s)ds

)
‖ut‖22

+ cε0,δ(go∆u)
1

1+ε0 (t).

(5.11)

Proof. Direct computations, using (1.1), yield

χ′(t) =

∫
Ω

∆u

∫ t

0

g(t−s)(∆u(t)−∆u(s))dsdx+

∫
Ω

u

∫ t

0

g(t−s)(u(t)−u(s))dsdx

+

∫
Ω

∫ t

0

g(t− s)(∆u(t)−∆u(s))ds

∫ t

0

g(t− s)∆u(s)dsdx

−
∫

Ω

u ln |u|k
∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫

Ω

ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
(∫ t

0

g(s)ds

)∫
Ω

u2
tdx.

(5.12)
Similarly to (5.9), we estimate the right-hand side terms of (5.12). So, by using

Young’s inequality, the first term gives, for any δ > 0,∫
Ω

∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))dsdx ≤ δ

4
||∆u||22 +

c

δ
(go∆u)(t). (5.13)

Using Lemma 5.1, Young’s and Poincaré’s inequalities, the second and fifth terms
lead to ∫

Ω

u

∫ t

0

g(t− s)(u(t)− u(s))dsdx ≤ δ

4
||∆u||22 +

c

δ
(go∆u)(t) (5.14)

and

−
∫

Ω

ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx ≤ δ||ut||22 −
c

δ
(g′o∆u)(t). (5.15)

Similarly, the third term can be estimated as follows∫
Ω

∫ t

0

g(t− s)(∆u(t)−∆u(s))ds

∫ t

0

g(t− s)∆u(s)dsdx

≤ δ

4
||∆u||22 + c

(
1 +

1

δ

)
(go∆u)(t).

(5.16)

Let ε0 ∈ (0, 1) and f(s) = sε0 (| ln s| − s). Notice that f is continuous on (0,∞) and
its limit at 0 is 0, and its limit at ∞ is −∞. Then f has a maximum dε0 on [0,∞),
so the following inequality holds:

s| ln s| ≤ s2 + dε0s
1−ε0 , ∀s > 0. (5.17)
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Applying this inequality to u ln |u|, using the embedding of H2
0 (Ω) in L∞(Ω) and

performing the same calulactions as before, we get, for any δ1 > 0,∫
Ω

u ln |u|k
∫ t

0

g(t− s)(u(t)− u(s))dsdx

≤k
∫

Ω

(
u2 + dε0 |u|1−ε0

) ∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤c
∫

Ω

|u|
∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣ dx
+ δ1

∫
Ω

u2dx+ cε0,δ1

∫
Ω

∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣
2

1+ε0

dx

≤cδ1||∆u||22 +
c

δ1

∫
Ω

∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣2 dx
+ cε0,δ1

∫
Ω

∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣
2

1+ε0

dx,

then, puting δ
4 = cδ1 and using Hölder’s inequality and Lemma 5.1, we find∫

Ω

u ln |u|k
∫ t

0

g(t− s)(u(t)− u(s))dsdx ≤ δ

4
||∆u||22 +

c

δ
(go∆u)(t)

+ cε0,δ(go∆u)
1

1+ε0 (t).

(5.18)

The above inequalities imply (5.11).

Lemma 5.7. Assume that (A1)−(A3) and (4.5) hold and let ε0 ∈ (0, 1). Then, for
k small enough, there exist two positive constants ε1 and ε2 such that the functional

L(t) = E(t) + ε1ψ(t) + ε2χ(t)

satisfies

L ∼ E (5.19)

and, for any t0 > 0, there exists a positive constant m such that

L′(t) ≤ −mE(t) + c(go∆u)(t) + cε0(go∆u)
1

1+ε0 (t), ∀t ≥ t0. (5.20)

Proof. For the proof of (5.19), we see that, using similar calculations as before,

|L(t)− E(t)| = |ε1ψ(t) + ε2χ(t)|

≤ c (ε1 + ε2)
(
||ut||22 + ||∆u||22 + (go∆u)(t)

)
,

therefore, from (4.6) and (4.8), we obtain

|L(t)− E(t)| ≤ c (ε1 + ε2)

(
1

2
||ut||22 + J(t)

)
= c (ε1 + ε2)E(t),

then

(1− c (ε1 + ε2))E(t) ≤ L(t) ≤ (1 + c (ε1 + ε2))E(t).

Hence, for ε1, ε2 > 0 satisfying

1− c (ε1 + ε2) > 0, (5.21)

the equivalence (5.19) holds.
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Now, we prove inequality (5.20). Since g is positive and g(0) > 0 then, for any
t0 > 0, we have ∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0, ∀t ≥ t0.

By using (2.6), (5.8), (5.11) and the definition of E(t), then, for t ≥ t0 and any
m > 0, we have

L′(t) ≤ −mE(t)−
(
ε2(g0 − δ)− ε1 −

m

2

)
‖ut‖22

−
(
`

2
ε1 − ε2δ −

m

2

)
‖∆u‖22 −

(
ε1 −

(k + 2)m

4

)
‖u‖22

+
(
kε1 − k

m

2

)∫
Ω

u2 ln |u|dx+
(
cε1 + ε2

c

δ
+
m

2

)
(go∆u)(t)

+

(
1

2
− cε2

δ

)
(g′o∆u)(t) + ε2cε0,δ(go∆u)

1
1+ε0 (t).

(5.22)

Using the Logarithmic Sobolev inequality, for 0 < m < 2ε1, we get

L′(t) ≤ −mE(t)−
(
ε2(g0 − δ)− ε1 −

m

2

)
‖ut‖22

−
(
`

2
ε1 − ε2δ −

m

2
− k

(
ε1 −

m

2

) cpa2

2π

)
‖∆u‖22

−
(
ε1 −

m(k + 2)

4
+ k

(
ε1 −

m

2

)
(1 + ln a) + k

(m
4
− ε1

2

)
ln ‖u‖22

)
‖u‖22

+
(
cε1 + ε2

c

δ
+
m

2

)
(go∆u)(t)

+

(
1

2
− cε2

δ

)
(g′o∆u)(t) + ε2cε0,δ(go∆u)

1
1+ε0 (t).

(5.23)
At this point we choose δ so small that

g0 − δ >
1

2
g0 and δ <

`g0

16
.

Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

g0

4
ε2 < ε1 <

g0

2
ε2 (5.24)

will make

k1 := ε2(g0 − δ)− ε1 > 0 and k2 :=
`

2
ε1 − ε2δ > 0.

Then, we choose ε1 and ε2 so small so that (5.21) and (5.24) remain valid and,
further,

1

2
− cε2

δ
> 0.
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Consequently, we get (5.19) and

L′(t) ≤ −mE(t)−
(
k1 −

m

2

)
‖ut‖22

−
(
k2 −

m

2
− k

(
ε1 −

m

2

) cpa2

2π

)
‖∆u‖22

−
(
ε1 −

m(k + 2)

4
+ k

(
ε1 −

m

2

)
(1 + ln a) + k

(m
4
− ε1

2

)
ln ‖u‖22

)
‖u‖22

+ c(go∆u)(t) + cε0,δ(go∆u)
1

1+ε0 (t).

(5.25)
Then, using (3.8) and selecting m and k so small that

α1 = k1 −
m

2
> 0, α2 = k2 −

m

2
− k

(
ε1 −

m

2

) cpa2

2π
> 0

and

α3 = ε1 −
m(k + 2)

4
+ k

(
ε1 −

m

2

)
(1 + ln a) + k

(m
4
− ε1

2

)
ln ‖u‖22 > 0.

Therefore, we arrive at the desired result (5.20).

Remark 5.8. Using (2.1), (2.5), (4.1), (4.6) and (4.8), we have

E(t) = J(t) +
1

2
‖ut(t)‖22 ≥ J(t) ≥ l

6
‖∆u(t)‖22,

then, using (2.6),

‖∆u(t)‖22 ≤
6

l
E(t) ≤ 6

l
E(0). (5.26)

So, from (2.6) and using Young’s inequality, we get

|E′(t)| = 1

2
g(t)‖∆u(t)‖22 −

1

2
(g′o∆u)(t)

≤ 1

2
g(t)‖∆u(t)‖22 −

∫ t

0

g′(t− s)
(
‖∆u(t)‖22 + ‖∆u(s)‖22

)
ds

≤ 6

l

(
1

2
g(t) + 2g(0)− 2g(t)

)
E(0)

≤ cE(0).

(5.27)

Theorem 5.9. Let (u0, u1) ∈ H2
0 (Ω)× L2(Ω), ε ∈ (0, 2p− 1) and t0 > 0. Assume

that (A1) − (A3) and (4.5) hold. Then, for k small enough, there exists a positive
constant K such that the solution of (1.1) satisfies

E(t) ≤ K
(

1 +

∫ t

t0

ξ2p−1+ε(s)ds

) −1
2p−2+ε

, ∀t ≥ t0. (5.28)

Moreover, if there exist ε1 ∈ (0, 2p− 1) and t0 > 0 such that∫ ∞
t0

(
1 +

∫ t

t0

ξ2p−1+ε1(s)ds

) −1
2p−2+ε1

dt <∞, (5.29)

then, for any ε ∈ (0, p) and t0 > 0, there exists a positive constant K̃ such that the
solution of (1.1) satisfies

E(t) ≤ K̃
(

1 +

∫ t

t0

ξp+ε(s)ds

) −1
p−1+ε

, ∀t ≥ t0. (5.30)
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Proof. We multiply (5.20) by ξ(t) and use Corollary 5.4 and (5.27) to get, for any
t ≥ t0,

ξ(t)L′(t) ≤ −mξ(t)E(t) + c (−E′(t))
1

2p−1 + c (−E′(t))
1

(2p−1)(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
ε0

(2p−1)(1+ε0) (−E′(t))
1

(2p−1)(1+ε0)

+ c (−E′(t))
1

(2p−1)(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
1

(2p−1)(1+ε0) , ∀t ≥ t0.

(5.31)

Multiply the last inequality by ξγ(t)Eγ(t), where γ = (2p−1)(1+ε0)−1, and notice
that ξ′ ≤ 0 to obtain

ξγ+1(t)Eγ(t)L′(t) ≤ −mξγ+1(t)Eγ+1(t) + c (ξE)
γ

(t) (−E′(t))
1
γ+1 , ∀t ≥ t0.

Use of Young’s inequality, with q = γ + 1 and q∗ = γ+1
γ , gives, for any ε′ > 0,

ξγ+1(t)Eγ(t)L′(t) ≤ −mξγ+1(t)Eγ+1(t) + c
(
ε′ξγ+1(t)Eγ+1 − cε′E′(t)

)
= −(m− ε′c)ξγ+1(t)Eγ+1 − cE′(t), ∀t ≥ t0.

We then choose 0 < ε′ < m
c and recall that ξ′ ≤ 0 and E′ ≤ 0, to get, for

c1 = m− ε′c,(
ξγ+1EγL

)′
(t) ≤ ξγ+1(t)Eγ(t)L′(t) ≤ −c1ξγ+1(t)Eγ+1(t)− cE′(t), ∀t ≥ t0,

which implies (
ξγ+1EγL+ cE

)′
(t) ≤ −c1ξγ+1(t)Eγ+1(t), ∀t ≥ t0.

Let F = ξγ+1EγL+ cE. Then F ∼ E (thanks to (5.19)) and

F ′(t) ≤ −cξγ+1(t)F γ+1(t) = −cξ(2p−1)(1+ε0)(t)F (2p−1)(1+ε0)(t), ∀t ≥ t0.

Integrating over (t0, t) and using the fact that F ∼ E, we obtain (5.28) with ε =
(2p− 1)ε0.

To establish (5.30), we use the idea of Messaoudi and Al-Khulaifi [41]. Let

η(t) =

∫ t

0

‖∆u(t)−∆u(t− s)‖22ds.

Using (5.28), (5.29) and (5.26), we have

η(t) ≤ 2

∫ t

0

(
‖∆u(t)‖22 + ‖∆u(t− s)‖22

)
ds

≤ 12

l

∫ t

0

(E(t) + E(t− s)) ds

≤ 24

l

∫ t

0

E(s)ds <
24

l

∫ ∞
0

E(s)ds <∞.

This implies that

sup
t>0

η1− 1
p (t) <∞. (5.32)

Assume that η(t) > 0. Then, because ξ is nonincreasing, we find

ξ(t)(g ◦∆u)(t) ≤ η(t)

η(t)

∫ t

0

(ξp(s)gp(s))
1
p ‖∆u(t)−∆u(t− s)‖22ds.
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Applying Jensen’s inequality to get

ξ(t)(g ◦∆u)(t) ≤ η(t)

(
1

η(t)

∫ t

0

ξp(s)gp(s)‖∆u(t)−∆u(t− s)‖22 ds
) 1
p

.

Therefore, using (A2) and (5.32) we obtain

ξ(t)(g ◦∆u)(t) ≤ η1− 1
p (t)

(
ξp−1(0)

∫ t

0

ξ(s)gp(s)‖∆u(t)−∆u(t− s)‖22ds
) 1
p

≤ c(−g′ ◦∆u)
1
p (t),

and then, according to (2.6),

ξ(t)(g ◦∆u)(t) ≤ c(−E′(t))
1
p . (5.33)

So, since ξ is nonincreasing,

ξ(t)(g ◦∆u)
1

1+ε0 (t) = (ξε0(t)ξ(t)(g ◦∆u)(t))
1

1+ε0

≤ (ξε0(0)ξ(t)(g ◦∆u)(t))
1

1+ε0

≤ c (ξ(t)(g ◦∆u)(t))
1

1+ε0

≤ c(−E′(t))
1

p(1+ε0) .

(5.34)

If η(t) = 0, then s→ ∆u(s) is a constant function on [0, t]. Therefore

(g ◦∆u)(t) = 0,

and hence (5.33) and (5.34) hold.

Now, multiplying (5.20) by ξ(t) and using (5.27), (5.33) and (5.34) to find, for
any t ≥ t0 (as for (5.31)),

ξ(t)L′(t) ≤ −mξ(t)E(t) + c (−E′(t))
1
p + c (−E′(t))

1
p(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
ε0

p(1+ε0) (−E′(t))
1

p(1+ε0) + c (−E′(t))
1

p(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
1

p(1+ε0) , ∀t ≥ t0.
(5.35)

Inequality (5.31) with 2p − 1 replaced by p is exactely (5.35). Then, the proof of
(5.30) can be completed as for the one of (5.28) (by taking γ = p(1 + ε0) − 1 and
ε = pε0). This completes the proof of our main result.

Remark 5.10. We note here that 2p− 2 + ε and p− 1 + ε can be arbitrary close to
2p− 2 and p− 1, respectively, since ε can be arbitrary close to zero. On the other
hand, in the absence of the logarithmic “forcing” term (k = 0), the estimates (5.17)
and (5.18) drop out and, consequently, (5.20) takes the form

L′(t) ≤ −mE(t) + c(go∆u)(t), ∀t ≥ t0. (5.36)

In this case, we obtain the following result:

Theorem 5.11. Let (u0, u1) ∈ H2
0 (Ω) × L2(Ω) and t0 > 0. Assume that (A1) −

(A2) hold. Then, there exists a positive constant K such that the solution of (1.1)
satisfies, for all t ≥ t0,

E(t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

if p = 1 (5.37)
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and

E(t) ≤ K
(

1 +

∫ t

t0

ξ2p−1(s)ds

) −1
2p−2

if 1 < p <
3

2
. (5.38)

Moreover, if 1 < p < 3
2 and∫ ∞

0

(
1 +

∫ t

t0

ξ2p−1(s)ds

) −1
2p−2

dt <∞, (5.39)

then

E(t) ≤ K
(

1 +

∫ t

t0

ξp(s)ds

) −1
p−1

, ∀t ≥ t0. (5.40)

Remark 5.12. This result (k = 0) improves and generalizes many results in the
literature such as Han and Wang [26].

Acknowledgment. The authors thank KFUPM for its continuous support. This
work was funded by KFUPM under Project #IN151023. This work was finished
during the visit of the second author to KFUPM in December 2016.

REFERENCES

[1] J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52

(1995), 5576–5587.
[2] K. Bartkowski and P. Gorka, One-dimensional Klein-Gordon equation with logarithmic non-

linearities, J. Phys. A, 41 (2008), 355201, 11 pp.

[3] A. Benaissa and A. Guesmia, Energy decay of solutions of a wave equation of φ-Laplacian
type with a general weakly nolinear dissipation, Elec. J. Diff. Equa., 109 (2008), 1–22.

[4] S. Berrimi and S. Messaoudi, Exponential decay of solutions to a viscoelastic equation with

nonlinear localized damping, Electron. J. Differential Equations, 88 (2004), 1–10.
[5] I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull.

Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 461–466.
[6] I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics, 100 (1976),

62–93.

[7] M. Cavalcanti, V. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for
nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001),

1043–1053.

[8] M. Cavalcanti, V. Domingos Cavalcanti and J. Soriano, Exponential decay for the solution of
semilinear viscoelastic wave equations with localized damping, E. J. Differ. Eq., 44 (2002),

1–14.
[9] M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation

with boundary condition of memory type, Diff. Integ. Equa., 18 (2005), 583–600.

[10] M. Cavalcanti and H. Oquendo, Frictional versus viscoelastic damping in a semilinear wave

equation, SIAM J. Control Optim., 42 (2003), 1310–1324.
[11] T. Cazenave and A. Haraux, Equations d’evolution avec non-linearite logarithmique, Ann.

Fac. Sci. Toulouse Math., 2 (1980), 21–51.
[12] H. Chen, P. Luo and G. W. Liu, Global solution and blow-up of a semilinear heat equation

with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84–98.

[13] W. Chen and Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear
Analysis A, 70 (2009), 3203–3208.

[14] R. Christensen, Theory of Viscoelasticity, An Introduction, Academic Press: New York, 1982.

[15] C. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970),
297–308.

[16] C. Dafermos, On abstract volterra equations with applications to linear viscoelasticity, J.

Differ. Equ., 7 (1970), 554–569.
[17] G. Dasios and F. Zafiropoulos, Equipartition of energy in linearized 3-D viscoelasticity, Quart.

Appl. Math., 48 (1990), 715–730.

http://www.ams.org/mathscinet-getitem?mr=MR2426013&return=pdf
http://dx.doi.org/10.1088/1751-8113/41/35/355201
http://dx.doi.org/10.1088/1751-8113/41/35/355201
http://www.ams.org/mathscinet-getitem?mr=MR2430906&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2075427&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0403458&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0426670&return=pdf
http://dx.doi.org/10.1016/0003-4916(76)90057-9
http://www.ams.org/mathscinet-getitem?mr=MR1855298&return=pdf
http://dx.doi.org/10.1002/mma.250
http://dx.doi.org/10.1002/mma.250
http://www.ams.org/mathscinet-getitem?mr=MR1907720&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2136980&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2044797&return=pdf
http://dx.doi.org/10.1137/S0363012902408010
http://dx.doi.org/10.1137/S0363012902408010
http://www.ams.org/mathscinet-getitem?mr=MR583902&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3263450&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2014.08.030
http://dx.doi.org/10.1016/j.jmaa.2014.08.030
http://www.ams.org/mathscinet-getitem?mr=MR2503066&return=pdf
http://dx.doi.org/10.1016/j.na.2008.04.024
http://www.ams.org/mathscinet-getitem?mr=MR0281400&return=pdf
http://dx.doi.org/10.1007/BF00251609
http://www.ams.org/mathscinet-getitem?mr=MR0259670&return=pdf
http://dx.doi.org/10.1016/0022-0396(70)90101-4
http://www.ams.org/mathscinet-getitem?mr=MR1079915&return=pdf
http://dx.doi.org/10.1090/qam/1079915


EXISTENCE AND A GENERAL DECAY FOR A VISCOELASTIC PLATE EQUATION 179

[18] K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B, 425
(1998), 309–321.

[19] P.Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59–66.

[20] P. Gorka, H. Prado and E. G. Reyes, Nonlinear equations with infinitely many derivatives,
Complex Anal. Oper. Theory, 5 (2011), 313–323.

[21] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061–1083.
[22] A. Guesmia, Existence globale et stabilisation interne non linéaire d’un système de Petrovsky,
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Afrika Matematika, 10 (1999), 14–25.

[24] A. Guesmia, S. Messaoudi and B. Said-Houari, General decay of solutions of a nonlinear

system of viscoelastic wave equations, NoDEA, 18 (2011), 659–684.
[25] X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball

dynamics, Bull. Korean Math. Soc., 50 (2013), 275–283.

[26] X. Han and M. Wang, General decay estimate of energy for the second order evolution equa-
tions with memory, Act Appl. Math., 110 (2010), 194–207.

[27] T. Hiramatsu, M. Kawasaki and F. Takahashi, Numerical study of Q-ball formation in gravity

mediation, Journal of Cosmology and Astroparticle Physics, 6 (2010), 008.
[28] W. Hrusa, Global existence and asymptotic stability for a semilinear Volterra equation with

large initial data, SIAM J. Math. Anal., 16 (1985), 110–134.
[29] V. Komornik, On the nonlinear boundary stabilization of Kirchoff plates, NoDEA Nonlinear

Differential Equations Appl., 1 (1994), 323–337.

[30] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989.
[31] J. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic

damping, International Series of Numerical Mathematics, vol. 91. Birhauser: Verlag, Bassel,

1989.
[32] I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli moments only, J.

Differential Equations, 95 (1992), 169–182.

[33] J. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, second
Edition, Dunod, Paris, 2002.

[34] F. Li, Z. Zhao and Y. Chen, Global existence uniqueness and decay estimates for nonlinear

viscoelastic wave equation with boundary dissipation, Nonlinear Anal.: RealWorld Applica-
tions, 12 (2011), 1759–1773.

[35] M-T. Lacroix-Sonrier, Distrubutions Espace de Sobolev Application, Ellipses Edition Market-
ing S.A, 1998.

[36] S. Messaoudi, Global existence and nonexistence in a system of Petrovsky, Journal of Math-

ematical Analysis and Applications, 265 (2002), 296–308.
[37] S. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear

source, Nonlinear Anal., 69 (2008), 2589–2598.
[38] S. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. App., 341

(2008), 1457–1467.

[39] S. Messaoudi and N.-E Tatar, Global existence asymptotic behavior for a non-linear viscoelas-

tic problem, Math. Methods Sci. Res., 7 (2003), 136–149.
[40] S. Messaoudi and N.-E Tatar, Global existence and uniform stability of solutions for a quasi-

linear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665–680.
[41] S. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic

equation, Applied Mathematics Letters, 66 (2017), 16–22.
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