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Jérémy Faupin †

Institut Elie Cartan de Lorraine, Université de Lorraine, 57045 Metz Cedex 1, France
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Abstract

We present recent results on the spectral theory for Hamiltonians of
the weak decay. We discuss rigorous results on self-adjointness, location
of the essential spectrum, existence of a ground state, purely absolutely
continuous spectrum and limiting absorption principles. The last two
properties heavily rely on the so-called Mourre Theory, which is used,
depending on the Hamiltonian we study, either in its standard form, or in
a more general framework using non self-adjoint conjugate operators.

1 Introduction

We study various mathematical models for the weak interactions that can be
patterned according to the Standard Model of Quantum Field Theory. The
reader may consult [30, (4.139)] and [50, (21.3.20)]) for a complete description
of the physical Lagrangian of the lepton-gauge boson coupling. A full math-
ematical understanding of spectral properties for the associated Hamiltonians
is not yet achieved, and a rigorous description of the dynamics of particles re-
mains a tremendous task. It is however possible to obtain relevant results in
certain cases, like for example a characterization of the absolutely continuous
spectrum and limiting absorption principles. One of the main obstacles is to
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be able to establish rigorous results without denaturing the original (ill-defined)
physical Hamiltonians, by imposing only mathematical mild and physically in-
terpretable additional assumptions. Among other technical difficulties carried
by each models, there are two common problems. A basic one is to prove that
the interaction part of the Hamiltonian is relatively bounded with respect to the
free Hamiltonian. Without this basic property, it is in general rather illusory
to prove more than self-adjointness for the energy operator. This question can
be reduced to the adaptation of the Nτ estimates of Glimm and Jaffe [21], as
done e.g. in [8], with however serious difficulties for processes involving more
than four particles or more than one massless particle. Another major difficulty
is to prove a limiting absorption principle without imposing any infrared reg-
ularization. This problem can be partly overcome at the expense of a careful
study of the Dirac and Boson fields, and thus a study of local properties for the
generalized solutions to various partial differential equations, like e.g. the Dirac
equations with or without external fields, or the Proca equation.

Derivation of spectral properties for weak interactions – or very similar –
models have been achieved in [7, 8, 2, 22, 11, 13, 26, 4, 9, 10, 32, 33]. In
the present article, we present a review of the results of [2, 11, 13, 32, 4, 9],
focusing on two different processes, one for the gauge bosons W± and one for
the gauge boson Z0. These models already catch some of the main mathematical
difficulties encountered in the above mentioned works. The first model is the
decay of the intermediate vector bosons W± into the full family of leptons. The
second is the decay of the vector boson Z0 into pairs of electrons and positrons.
Both processes involve only three different kind of particles, two fermions and
one boson. However, they have a fundamental difference. The first one involves
massless particles whereas the second one has only massive particles. This forces
us to use rather different strategies to attack the study of spectral properties.

First model: In the weak decay of the intermediate vector bosons W±

into the full family of leptons, the involved particles are the electron e− and
its antiparticle, the positron e+, together with the associated neutrino νe and
antineutrino ν̄e, the muons µ− and µ+ together with the associated neutrino νµ
and antineutrino ν̄µ and the tau leptons τ− and τ+ together with the associated
neutrino ντ and antineutrino ν̄τ .

A representative and well-known example of this general process is the decay
of the gauge boson W− into an electron and an antineutrino of the electron that
occurs in the β-decay that led Pauli to conjecture the existence of the neutrino
[39]

W− → e− + ν̄e.

For the sake of clarity, we shall stick to this case in the first model. The
general situation with all other leptons can be recovered in a straightforward
way.

The interaction for this W± decay, described in the Schrödinger representa-
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tion, is formally given by (see [30, (4.139)] and [50, (21.3.20)])

IW± =

∫
Ψe(x)γα(1−γ5)Ψνe(x)Wα(x)dx+

∫
Ψνe(x)γα(1−γ5)Ψe(x)Wα(x)∗dx ,

where γα, α = 0, 1, 2, 3, and γ5 are the Dirac matrices, Ψ.(x) and Ψ.(x) are the
Dirac fields for e±, νe, and ν̄e, and Wα are the boson fields (see [49, §5.3] and
Section 2).

If one formally expands this interaction with respect to products of creation
and annihilation operators, we are left with a finite sum of terms associated
with kernels of the form

δ(p1 + p2 − k)g(p1, p2, k) ,

with g ∈ L1. Our restriction here only consists in approximating these kernels by
square integrable functions with respect to momenta (see (2.3) and (2.4)-(2.6)).

Under this assumption, the total Hamiltonian, which is the sum of the free
energy of the particles (see (2.2)) and of the interaction, is a well-defined self-
adjoint operator (Theorem 2.2).

In addition, we can show (Theorem 2.6) that for a sufficiently small cou-
pling constant, the total Hamiltonian has a unique ground state corresponding
to the dressed vacuum. This property is not obvious since usual Kato’s pertur-
bation theory does not work here due to the fact that according to the standard
model, neutrinos are massless particles (see discussion in Section 2), thus the
unperturbed hamiltonian, namely the full Hamiltonian where the interaction
between the different particles has been turned off, has a ground state with en-
ergy located at the bottom of the essential spectrum. The strategy for proving
existence of a unique ground state for similar models has its origin in the sem-
inal works of Bach, Fröhlich, and Sigal [6] (see also [40], [5] and [31]), for the
Pauli-Fierz model of non-relativistic QED. Our proofs follow these techniques
as adapted in [7, 8, 17] to a model of quantum electrodynamics and in [2] to a
model of the Fermi weak interactions.

Under natural regularity assumptions on the kernels, we next establish a
Mourre estimate (Theorem 2.8) and a limiting absorption principle (Theo-
rem 2.10) for any spectral interval down to the energy of the ground state and
below the mass of the electron, for small enough coupling constants. As a con-
sequence, the whole spectrum between the ground state and the first threshold
is shown to be purely absolutely continuous (Theorem 2.7).

Our method to achieve the spectral analysis above the ground state energy,
follows [5, 19, 14], and is based on the proof of a spectral gap property for
Hamiltonians with a cutoff interaction for small neutrino momenta and acting
on neutrinos of strictly positive energies.

Eventually, as in [19, 13, 14], we use this gap property in combination with
the conjugate operator method developed in [3] and [44] in order to establish a
limiting absorption principle near the ground state energy of HW . In [13], the
chosen conjugate operator was the generator of dilatations in the Fock space
for neutrinos and antineutrinos. As a consequence, an infrared regularization
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was assumed in [13] in order to be able to implement the strategy of [19].
To overcome this difficulty and avoid infrared regularization, we choose in [4]
a conjugate operator which is the generator of dilatations in the Fock space
for neutrinos and antineutrinos with a cutoff in the momentum variable. Our
conjugate operator thus only affects the massless particles of low energies. A
similar choice is made in [14] for a model of non-relativistic QED for a free
electron at fixed total momentum. Compared with [19] and [14], our method
involves further estimates, which allows us to avoid any infrared regularization.
Under stronger assumptions, the model of W± decay has been studied in [7, 13].
We present in section 2 the results obtained in [4], where the main achievement
is that no infrared regularization is assumed.

Second Model: The physical phenomenon in the decay of the gauge boson
we consider here only involves massive particles, the massive boson Z0, electrons
and positrons,

Z0 → e− + e+ .

In some respects, e.g. as far as the existence of a ground state is concerned,
this feature renders trivial the spectral analysis of the Hamiltonian. On the
other hand, due to the positive masses of the particles, an infinite number of
thresholds occur in the spectrum of the unperturbed Hamiltonian. Understand-
ing the nature of the spectrum of the full Hamiltonian near the thresholds as
the interaction is turned on then becomes a subtle question, as it is known that
spectral analysis near thresholds, in particular by means of perturbation theory,
is a delicate subject. This question is the main concern in the analysis of the
second model.

The interaction between the electrons, positrons and the boson vectors Z0,
in the Schrödinger representation, is given, up to coupling constants, by (see
[30, (4.139)] and [50, (21.3.20)])

IZ0 =

∫
Ψe(x)γα(g′V − γ5)Ψe(x)Zα(x) dx + h.c., (1.1)

where, as above, γα, α = 0, 1, 2, 3, and γ5 are the Dirac matrices and Ψe(x)
and Ψe(x) are the Dirac fields for the electron e− and the positron e+ of mass
me. The field Zα is the massive boson field for Z0. The constant g′V is a real
parameter such that g′V ' 0, 074 (see e.g [30]).

The main results provide a complete description of the spectrum of the
Hamiltonian below the boson mass. We will show that the spectrum is composed
of a unique isolated eigenvalue E, the ground state energy corresponding to the
dressed vacuum, and the semi-axis of essential spectrum [E+ me,∞), me being
the electron mass (Theorem 3.4).

Moreover, with mild regularity assumptions on the kernel, using a version of
Mourre’s theory allowing for a non self-adjoint conjugate operator and requiring
only low regularity of the Hamiltonian with respect to this conjugate operator,
we establish a limiting absorption principle and prove that the essential spec-
trum below the boson mass is purely absolutely continuous (Theorem 3.5).
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In order to establish these results, we need to use a spectral representation
of the self-adjoint Dirac operator generated by the sequence of spherical waves
(see [29] and Section 3). If we have been using the plane waves as for the first
model above, for example the four ones associated with the helicity (see [47]),
the two kernels G(α)(·) of the interaction would have had to satisfy an infrared
regularization with respect to the fermionic variables. By our choice of the se-
quence of the spherical waves, our analysis only requires that the kernels of the
interaction satisfy an infrared regularization for two values of the discrete pa-
rameters characterizing the sequence of spherical waves. For any other value of
the discrete parameters, we do not need to introduce an infrared regularization.

The article is organized as follows. Section 2 is devoted to the study of
the first model, the decay of the gauge bosons W− into an electron and its
associated neutrino. The first part contains a detailed construction of the Fock
Hilbert spaces and the mathematical Hamiltonian for the decay. The second
part of Section 2 deals with the central results of the spectral analysis for this
Hamiltonian, as well as some steps of the proof for the limiting absorption
principle. All details can be found in [4]. Section 3 is concerned with the decay
of the gauge bosons Z0 into electrons and positrons. There, we also give a
detailed description of the Hilbert spaces, notably different than in the previous
section due to the writing of the Dirac fields with spherical waves. We also
write the construction of the Hamiltonian for the decay of the Z0 boson. We
subsequently present the main theorems on spectral and dynamical properties,
with some hints concerning the proof for the limiting absorption principle. All
details can be found in [9]. Section 4 is devoted to a short presentation of open
questions and ongoing work; whenever it is possible we point out the mathemati-
cal difficulties for these new problems.

2 Interaction of the Gauge boson W± with an
electron and a massless neutrino

According to the Standard Model, the weak decay of the intermediate bosons
W+ and W− involves the full family of leptons: electrons, muons, tauons,
their associated neutrinos and the corresponding antiparticles (see [30, Formula
(4.139)] and [50]). In the Standard Model, neutrinos and antineutrinos are as-
sumed to be massless. Despite experimental evidences [20] that in fact neutrinos
have a mass, an extended version of the Standard Model to account for this mass
is beyond the scope of this article.

Neutrinos and antineutrinos are particles with helicity −1/2 and +1/2, re-
spectively. Here we shall assume that both neutrinos and antineutrinos have
helicity ±1/2.

As already mentioned in the introduction, without loss of generality, we
restrict ourselves to the decay of the gauge boson W− into an electron and an
antineutrino,

W− → e− + ν̄e. (2.1)
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However, all results remain true if we consider instead the decay of the W± into
the full family of leptons.

If we include the corresponding antiparticles in the process (2.1), the inter-
action described in the Schrödinger representation is formally given by (see [30,
(4.139)] and [50, (21.3.20)])

IW±=

∫
R3

Ψe(x)γα(1−γ5)Ψνe(x)Wα(x)dx+

∫
R3

Ψνe(x)γα(1−γ5)Ψe(x)Wα(x)∗dx,

where γα, α = 0, 1, 2, 3, and γ5 are the Dirac matrices, Ψ.(x) and Ψ.(x) are the
Dirac fields for e±, νe, and ν̄e, and Wα are the boson fields (see [49, §5.3]) given
respectively by

Ψe(x) =(2π)
− 3

2

∑
s=± 1

2

∫
R3

( u(p, s)

(2(|p|2+me
2)

1
2 )

1
2

b+(p, s)eip.x

+
v(p, s)

(2(|p|2+me
2)

1
2 )

1
2

b∗−(p, s)e−ip.x
)

dp,

Ψνe(x) =(2π)
− 3

2

∑
s=± 1

2

∫
R3

( u(p, s)

(2|p|) 1
2

c+(p, s)eip.x +
v(p, s)

(2|p|) 1
2

c∗−(p, s)e−ip.x
)

dp ,

Ψe(x) =Ψe(x)†γ0 , Ψνe(x) = Ψνe(x)†γ0 ,

and

Wα(x) = (2π)
− 3

2

∑
λ=−1,0,1

∫
R3

( εα(k, λ)

(2(|k|2+mW
2)

1
2 )

1
2

a+(k, λ)eik.x

+
ε∗α(k, λ)

(2(|k|2+mW
2)

1
2 )

1
2

a∗−(k, λ)e−ik.x
)

dk .

Here me > 0 is the mass of the electron and u(p, s)/(2(|p|2 + me
2)1/2)1/2

and v(p, s)/(2(|p|2 +me
2)1/2)1/2 are the normalized solutions to the Dirac equa-

tion (see for example [30, Appendix]), where p ∈ R3 is the momentum variable
of the electron, or its antiparticle, and s is its spin. The mass of the bosons
W± is denoted by mW , and fulfills mW > me (mW /me ≈ 1.57 × 105). The
vectors εα(k, λ) are the polarizations of the massive spin 1 bosons (see [49, Sec-
tion 5.2]), and as follows from the Standard Model, neutrinos and antineutrinos
are considered here to be massless particles.

The operators b+(p, s) and b∗+(p, s) (respectively c+(p, s) and c∗+(p, s)), are
the annihilation and creation operators for the electrons (respectively for the
neutrinos associated with the electrons), satisfying the anticommutation rela-
tions. The index − in b−(p, s), b∗−(p, s), c−(p, s) and c∗−(p, s) are used to denote
the annihilation and creation operators of the corresponding antiparticles. The
operators a+(k, λ) and a∗+(k, λ) (respectively a−(k, λ) and a∗−(k, λ)) are the
annihilation and creation operators for the bosons W− (respectively W+) sat-
isfying the canonical commutation relations. The definition of these operators
is very standard (see e.g. [49] or [12]).
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2.1 Rigorous definition of the model

The mathematical model for the weak decay of the vector bosons W± is defined
as follows.

Let ξ1 = (p1, s1) be the quantum variable of a massive lepton, electron
or positron, where p1 ∈ R3 is the momentum and s1 ∈ {−1/2, 1/2} is the
spin. Let ξ2 = (p2, s2) be the quantum variables of a massless neutrino or
antineutrino, where p2 ∈ R3 and s2 ∈ {−1/2, 1/2} is the helicity of particles
and antiparticles, and, finally, let ξ3 = (k, λ) be the quantum variables of the
spin 1 bosons W+ and W−, with momenta k ∈ R3 and where λ ∈ {−1, 0, 1}
accounts for the polarization of the vector bosons (see [49, section 5.2]).

We define Σ1 = R3×{−1/2, 1/2} for the configuration space of the leptons
and Σ2 = R3 × {−1, 0, 1} for the bosons. Thus L2(Σ1) is the one particle
Hilbert space of each lepton of this process (electron, positron, neutrino and
antineutrino of the electron) and L2(Σ2) is the one particle Hilbert space of
each boson. In the sequel, we shall use the notations

∫
Σ1

dξ :=
∑
s=+ 1

2 ,−
1
2

∫
dp

and
∫

Σ2
dξ :=

∑
λ=0,1,−1

∫
dk.

The Hilbert space for the weak decay of the vector bosons W± is the Fock
space for leptons and bosons describing the set of states with indefinite number
of particles or antiparticles which we define below.

The space FL is the fermionic Fock space for the massive electron and
positron with the associated neutrino and antineutrino, i.e.

FL =

4⊗
Fa(L2(Σ1)) =

4⊗(
⊕∞n=0 ⊗na L2(Σ1)

)
,

where ⊗na denotes the antisymmetric n-th tensor product and ⊗0
aL

2(Σ1) := C.
The bosonic Fock space FW for the vector bosons W+ and W− reads

FW =

2⊗
Fs(L

2(Σ2)) =

2⊗(
⊕∞n=0 ⊗ns L2(Σ2)

)
,

where ⊗ns denotes the symmetric n-th tensor product and ⊗0
sL

2(Σ2) := C.
The Fock space for the weak decay of the vector bosons W+ and W− is thus

F = FL ⊗ FW .

Furthermore, bε(ξ1) (resp. b∗ε (ξ1)) is the annihilation (resp. creation) op-
erator for the corresponding species of massive particle if ε = + and for the
corresponding species of massive antiparticle if ε = −. Similarly, cε(ξ2) (resp.
c∗ε (ξ2)) is the annihilation (resp. creation) operator for the corresponding species
of neutrino if ε = + and for the corresponding species of antineutrino if ε = −.
Finally, the operator aε(ξ3) (resp. a∗ε (ξ3)) is the annihilation (resp. creation)
operator for the boson W− if ε = +, and for the boson W+ if ε = −. The opera-
tors bε(ξ1), b∗ε (ξ1), cε(ξ2), and c∗ε (ξ2) fulfil the usual canonical anticommutation
relations (CAR), whereas aε(ξ3) and a∗ε (ξ3) fulfil the canonical commutation
relation (CCR), see e.g. [49]. Moreover, the a’s commute with the b’s and the
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c’s. In addition, following the convention described in [49, section 4.1] and [49,
section 4.2], we will assume that fermionic creation and annihilation operators
of different species of leptons anticommute (see e.g. [12] for an explicit defini-
tion involving this additional requirement). Therefore, the following canonical
anticommutation and commutation relations hold,

{bε(ξ1), b∗ε′(ξ
′
1)} = δεε′δ(ξ1 − ξ′1) , {cε(ξ2), c∗ε′(ξ

′
2)} = δεε′δ(ξ2 − ξ′2) ,

[aε(ξ3), a∗ε′(ξ
′
3)] = δεε′δ(ξ3 − ξ′3) ,

{bε(ξ1), bε′(ξ
′
1)} = {cε(ξ2), cε′(ξ

′
2)} = 0 ,

[aε(ξ3), aε′(ξ
′
3)] = 0 ,

{bε(ξ1), cε′(ξ2)} = {bε(ξ1), c∗ε′(ξ2)} = 0 ,

[bε(ξ1), aε′(ξ3)] = [bε(ξ1), a∗ε′(ξ3)] = [cε(ξ2), aε′(ξ3)] = [cε(ξ2), a∗ε′(ξ3)] = 0 ,

where {b, b′} = bb′ + b′b and [a, a′] = aa′ − a′a. For ϕ ∈ L2(Σ1), the operators

bε(ϕ) =

∫
Σ1

bε(ξ)ϕ(ξ)dξ, cε(ϕ) =

∫
Σ1

cε(ξ)ϕ(ξ)dξ ,

b∗ε (ϕ) =

∫
Σ1

b∗ε (ξ)ϕ(ξ)dξ, c∗ε (ϕ) =

∫
Σ1

c∗ε (ξ)ϕ(ξ)dξ ,

are bounded operators on F satisfying ‖b]ε(ϕ)‖ = ‖c]ε(ϕ)‖ = ‖ϕ‖L2 , where b]

(resp. c]) is b (resp. c) or b∗ (resp. c∗).
The free Hamiltonian HW,0 is given by

HW,0 =
∑
ε=±

∫
w(1)(ξ1)b∗ε (ξ1)bε(ξ1)dξ1 +

∑
ε=±

∫
w(2)(ξ2)c∗ε (ξ2)cε(ξ2)dξ2

+
∑
ε=±

∫
w(3)(ξ3)a∗ε (ξ3)aε(ξ3)dξ3 ,

(2.2)

where the free relativistic energy of the massive leptons, the neutrinos, and the
bosons are respectively given by

w(1)(ξ1) = (|p1|2 + me
2)

1
2 , w(2)(ξ2) = |p2|, and w(3)(ξ3) = (|k|2 + mW

2)
1
2 .

The interaction HW,I is described in terms of annihilation and creation op-

erators together with kernels G
(α)
ε,ε′(., ., .) (α = 1, 2).

As emphasized in the introduction, each kernel G
(α)
ε,ε′(ξ1, ξ2, ξ3), computed

in theoretical physics, contains a δ-distribution because of the conservation of
the momentum (see [30], [49, section 4.4]). Here, we approximate the singular
kernels by square integrable functions. Therefore, we assume the following

Hypothesis 2.1. For α = 1, 2, ε, ε′ = ±, we assume

G
(α)
ε,ε′(ξ1, ξ2, ξ3) ∈ L2(Σ1 × Σ1 × Σ2) . (2.3)
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Based on [30, p159, (4.139)] and [50, p308, (21.3.20)], we define the interac-
tion as

HW,I = H
(1)
W,I +H

(2)
W,I , (2.4)

where

H
(1)
W,I =

∑
ε 6=ε′

∫
G

(1)
ε,ε′(ξ1, ξ2, ξ3)b∗ε (ξ1)c∗ε′(ξ2)aε(ξ3) dξ1dξ2dξ3

+
∑
ε 6=ε′

∫
G

(1)
ε,ε′(ξ1, ξ2, ξ3)a∗ε (ξ3)cε′(ξ2)bε(ξ1) dξ1dξ2dξ3 ,

(2.5)

H
(2)
W,I =

∑
ε6=ε′

∫
G

(2)
ε,ε′(ξ1, ξ2, ξ3)b∗ε (ξ1)c∗ε′(ξ2)a∗ε (ξ3)dξ1dξ2dξ3

+
∑
ε 6=ε′

∫
G

(2)
ε,ε′(ξ1, ξ2, ξ3)aε(ξ3)cε′(ξ2)bε(ξ1) dξ1dξ2dξ3 .

(2.6)

The operator H
(1)
W,I describes the decay of the bosons W+ and W− into lep-

tons, and H
(2)
W,I is responsible for the fact that the bare vacuum will not be an

eigenvector of the total Hamiltonian, as expected from physics.

All terms in H
(1)
W,I and H

(2)
W,I are well defined as quadratic forms on the

set of finite particle states consisting of smooth wave functions. According to
[41, Theorem X.24] (see details in [13]), one can construct a closed operator
associated with the quadratic form defined by (2.4)-(2.6).

The total Hamiltonian is thus (g ∈ R is a coupling constant),

HW = HW,0 + gHW,I .

2.2 Limiting absorption principle and spectral properties

We begin with a basic self-adjointness property.

Theorem 2.2 (Self-adjointness). Let g1 > 0 be such that

6g2
1

mW

(
1

me
2

+ 1

) ∑
α=1,2

∑
ε 6=ε′
‖G(α)

ε,ε′‖
2
L2(Σ1×Σ1×Σ2) < 1 .

Then, for every g satisfying |g| ≤ g1, HW is a self-adjoint operator in F with
domain D(HW ) = D(HW,0).

Ideas of the proof. The proof of this result is a trivial consequence of the fol-
lowing norm relative boundedness of HW,I with respect to HW,0.
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Lemma 2.3. For any η > 0, β > 0, and ψ ∈ D(HW,0), we have

‖HW,Iψ‖

≤ 6
∑
α=1,2

∑
ε,ε′

‖G(α)
ε,ε′‖

2

(
1

2mW

(
1

me
2

+1

)
+

β

2mWme
2

+
2η

me
2

(1+β)

)
‖HW,0ψ‖2

+

(
1

2mW

(
1 +

1

4β

)
+ 2η

(
1 +

1

4β

)
+

1

2η

)
‖ψ‖2 .

(2.7)

Such a relative bound is obtained by using Nτ estimates of [21]. Details can
be found in [13] and [4].

For the sequel, we shall make some of the following additional assumptions

on the kernels G
(α)
ε,ε′ .

Hypothesis 2.4. There exists K̃(G) < ∞ and ˜̃K(G) < ∞ such that for α =
1, 2, ε, ε′ = ±, i, j = 1, 2, 3, and σ ≥ 0,

(i)

∫
Σ1×Σ1×Σ2

|G(α)
ε,ε′(ξ1, ξ2, ξ3)|2

|p2|2
dξ1dξ2dξ3 <∞ ,

(ii)

(∫
Σ1×({|p2|≤σ}×{− 1

2 ,
1
2})×Σ2

|G(α)
ε,ε′(ξ1, ξ2, ξ3)|2dξ1dξ2dξ3

) 1
2

≤ K̃(G)σ ,

(iii-a) (p2 · ∇p2)G
(α)
ε,ε′(., ., .) ∈ L

2(Σ1 × Σ1 × Σ2) and∫
Σ1×({|p2|≤σ}×{− 1

2 ,
1
2})×Σ2

∣∣∣[(p2 · ∇p2)G
(α)
ε,ε′ ](ξ1, ξ2, ξ3)

∣∣∣2 dξ1dξ2dξ3<
˜̃K(G)σ,

(iii-b)

∫
Σ1×Σ1×Σ2

p2
2,i p

2
2,j

∣∣∣∣∣ ∂2G
(α)
ε,ε′

∂p2,i∂p2,j
(ξ1, ξ2, ξ3)

∣∣∣∣∣
2

dξ1dξ2dξ3 <∞ .

Remark 2.5. Note that obviously, Hypothesis 2.4 (i) is stronger than Hypoth-
esis 2.4 (ii).

Our first main result is the existence of a ground state for HW together with
the location of the spectrum of HW .

Theorem 2.6 (Existence of a ground state and location of the spectrum).

Assume that the kernels G
(α)
ε,ε′ satisfy Hypothesis 2.1 and 2.4(i). Then, there

exists g2 ∈ (0, g1] such that HW has a unique ground state for |g| < g2. More-
over, for

E = inf Spec(HW ) ,

we have E ≤ 0 and the spectrum of HW fulfils

Spec(HW ) = [E, ∞).
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Ideas of the proof. The main ingredients of the proof of the existence of a ground
state are the construction of infrared-cutoff operators and the existence of a gap
above the ground state energy for these operators (see [13, Proposition 3.5]).
This is an adaptation to our case of techniques due to Pizzo [40] and Bach,
Fröhlich and Pizzo [5]. The details can be found in [13]. A different proof of the
existence of a ground state can also be achieved by mimicking the proof given
in [8].

The location of the spectrum follows from the existence of asymptotic Fock
representations for the CAR associated with the neutrino creation and annihi-
lation operators (see [34], [46] and [13]).

Our next main result deals with the absolute continuity of the spectrum and
local energy decay. Such a result is established using standard Mourre theory,
and is a consequence of a limiting absorption principle. To state this result, we
need to introduce the definition of the neutrino position operator B.

Let b be the operator in L2(Σ1) accounting for the position of the neutrino

b = i∇p2 ,

and let
〈b〉 = (1 + |b|2)

1
2 .

Its second quantized version dΓ(〈b〉) is self-adjoint in Fa(L2(Σ1)). We thus
define on F = FL⊗FW the position operator B for neutrinos and antineutrinos
by

B = (1l⊗ 1l⊗ dΓ(〈b〉)⊗ 1l)⊗ 1lFW
+ (1l⊗ 1l⊗ 1l⊗ dΓ(〈b〉))⊗ 1lFW

.

We are now ready to state the main result concerning spectral and dynamical
properties of HW above the ground state energy. Note that the main achieve-
ment of Theorem 2.7 is to be able to prove absolute continuity of the spectrum
and local energy decay down to the ground state energy without assuming any
infrared regularization.

Theorem 2.7 (Absolutely continuous spectrum, Limiting Absorption Principle

and Local Energy Decay). Assume that the kernels G
(α)
ε,ε′ satisfy Hypothesis 2.1

and 2.4 (ii)-(iii). For any δ > 0 satisfying 0 < δ < me, there exists gδ > 0 such
that for 0 < |g| < gδ:

(i) The spectrum of HW in (E, E + me − δ] is purely absolutely continuous.

(ii) For s > 1/2, ϕ ∈ F, and ψ ∈ F, the limits

lim
ε→0

(ϕ, 〈B〉−s(HW − λ± iε)〈B〉−sψ)

exist uniformly for λ in every compact subset of (E, E + me − δ).

(iii) For s ∈ (1/2, 1) and f ∈ C∞0 ((E, E + me − δ)), we have∥∥(B + 1)−se−itHW f(HW )(B + 1)−s
∥∥ = O

(
t−(s−1/2)

)
.
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Ideas of the proof. The main problem we face is that the bottom of the spectrum
E is a threshold of the total Hamiltonian HW by our choice of the conjugate
operator. This renders the analysis of the spectrum and of the dynamics close
to E difficult. To overcome this difficulty, it is not possible to adapt the proof of
Fröhlich, Griesemer and Sigal [19] used in the context of nonrelativistic QED,
since in [19] it is possible to regularize the infrared behavior of the interaction by
using a unitary Pauli-Fierz transformation that has no equivalent for our model.
Instead, to circumvent infrared difficulties, and to avoid infrared regularization
of [13], we adapt to our context the proof of [14] established for a model of
non-relativistic QED for a free electron at fixed total momentum. Due to the
complicated structure of their interaction operator, the authors in [14] used
some Feshbach-Schur map before proving a Mourre estimate for an effective
Hamiltonian. Here, thanks to some specific estimates that we can derive for our
model, we do not need to apply such a map, and we obtain a Mourre estimate
directly for HW .

The main steps of the proof are as follows (details can be found in [4]):
The regularity assumptions Hypothesis 2.4 (iii-a) and (iii-b) on the kernels

allow us to establish a Mourre estimate (Theorem 2.8) and a limiting absorption
principle (Theorem 2.10) for any spectral interval down to the energy of the
ground state and below the mass of the electron. Hence, the whole spectrum
between the ground state and the first threshold is purely absolutely continuous.

To prove Theorems 2.10 and 2.8, we first approximate the total Hamilto-
nian HW by a cutoff Hamiltonian HW,σ with the property that the interaction
between the massive particles and the neutrinos or antineutrinos of energies ≤ σ
has been suppressed. We denote by Hσ

W the restriction of HW,σ to the Fock
space for the massive particles together with the neutrinos and antineutrinos of
energies ≥ σ. Then, as in [13], adapting the method of [5], we prove that for
some suitable sequence σn → 0, the Hamiltonian Hσn

W has a gap of size ∼ σn in
its spectrum above its ground state energy for all n ∈ N.

Thus, we use this gap property in combination with the conjugate operator
method developed in [3] and [44] in order to establish a Mourre estimate for
a sequence of energy intervals (∆n)n≥0 smaller and smaller, accumulating at
the ground state energy of HW , and covering the interval (E, E + me − δ).

This requires to build up a sequence (A
(τ)
n )n≥0 of generators that only affects

the massless particles of low energies. For each n, the self-adjoint conjugate

operators A
(τ)
n is the generator of dilatations in the Fock space for neutrinos

and antineutrinos with a cutoff in the momentum variable, and is defined as
follows.

Set τ := 1 − δ/(2(2me − δ)), γ := 1 − δ/(2me − δ) and define χ(τ) ∈
C∞(R, [0, 1]) as

χ(τ)(λ) =

{
1 for λ ∈ (−∞, τ ] ,
0 for λ ∈ [1, ∞) .

For the sequence of small neutrino momentum cutoffs (σn)n≥0 given by
σ0 = 2me + 1, σ1 = me − δ/2 and for n ≥ 1, σn+1 = γσn, we define, for

12



all p2 ∈ R3 and n ≥ 1,

χ(τ)
n (p2) = χ(τ)

(
|p2|
σn

)
.

The one-particle (neutrino) conjugate operator is

a(τ)
n = χ(τ)

n (p2)
1

2
(p2 · i∇p2 + i∇p2 · p2)χ(τ)

n (p2),

and its second quantized version is

A(τ)
n = 1l⊗ dΓ(a(τ)

n )⊗ 1l, (2.8)

where, as above, dΓ(·) refers to the usual second quantization of one particle
operators. We also set

〈A(τ)
n 〉 = (1 + (A(τ)

n )2)
1
2 .

The operators a
(τ)
n and A

(τ)
n are self-adjoint.

Let (∆n)n≥0 be a sequence of open sets covering any compact subset of
(inf Spec(HW ), me − δ) be defined as ∆n := [(γ − εγ)2σn, (γ + εγ)σn], where
εγ > 0 is fixed and small enough.

Using the spectral gap result for Hσn , relative bounds as in Lemma 2.3 and
Helffer-Sjöstrand calculus (see details in [4, § 5]), we obtain

Theorem 2.8 (Mourre inequality). Suppose that the kernels G
(α)
ε,ε′ satisfy Hy-

pothesis 2.1, 2.4(ii), and 2.4(iii.a). Then, there exists Cδ > 0 and gδ > 0 such
that, for |g| < gδ and n ≥ 1,

E∆n(HW − E) [HW , iA
(τ)
n ]E∆n(HW − E) ≥ Cδ

γ2

N2
σnE∆n(HW − E) . (2.9)

Then we establish a regularity result of HW with respect to the conjugate

operator A
(τ)
n .

Theorem 2.9 (C2(A
(τ)
n )-regularity). Suppose that the kernels G

(α)
ε,ε′ satisfy Hy-

pothesis 2.1 and Hypothesis 2.4(iii). Then, HW is locally of class C2(A
(τ)
n ) in

(−∞, me − δ/2) for every n ≥ 1.

The proof of this result is a straightforward adaptation of [13, Theorem 3.7],

substituting there A by A
(τ)
n .

Now, according to Theorems 0.1 and 0.2 in [44] (see also [28], [25], and [19]),

the C2(A
(τ)
n )-regularity in Theorem 2.9 and the Mourre inequality in Theo-

rem 2.8 imply the following limiting absorption principle for sufficiently small
coupling constants.

Theorem 2.10 (Limiting absorption principle). Suppose that the kernels G
(α)
ε,ε′

satisfy Hypothesis 2.1, 2.4 (ii), and 2.4 (iii). Then, for any δ > 0 satisfying
0 < δ < me/2, there exists gδ > 0 such that, for |g| < gδ, for s > 1/2, ϕ, ψ ∈ F
and for n ≥ 1, the limits

lim
ε→0

(ϕ, 〈A(τ)
n 〉−s(HW − λ± iε)〈A(τ)

n 〉−sψ)
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exist uniformly for λ ∈ ∆n. Moreover, for 1/2 < s < 1, the map

λ 7→ 〈A(τ)
n 〉−s(HW − λ± i0)−1〈A(τ)

n 〉−s

is Hölder continuous of order s− 1/2 in ∆n.

Eventually, the proof of Theorem 2.7 is a direct consequence of the limiting
absorption principle. The absolutely continuous spectrum is deduced from [44,
Theorem 0.1 and Theorem 0.2], and the dynamical properties are derived in the
usual way.

3 Interaction of the gauge boson Z0 with an elec-
tron and a positron

In this section, we do the spectral analysis for the Hamiltonian associated to
the decay of the vector boson Z0 into electrons and positrons,

Z0 → e− + e+ .

The interaction between the electrons/positrons and the vector bosons Z0,
in the Schrödinger representation is given, up to coupling constant, by (see [30,
(4.139)] and [50, (21.3.20)])

IZ0 =

∫
Ψe(x)γα(g′V − γ5)Ψe(x)Zα(x) dx + h.c., (3.1)

where γα, α = 0, 1, 2, 3, and γ5 are the Dirac matrices, g′V is a real parameter
such that g′V ' 0, 074 (see e.g [30]), Ψe(x) and Ψe(x) are the Dirac fields for
the electron e− and the positron e+ of mass me, and Zα is the massive boson
field for Z0.

The field Ψe(x) is formally defined by

Ψe(x) =

∫
ψ+(ξ, x)b+(ξ) + ψ̃−(ξ, x)b∗−(ξ) dξ,

with
ψ̃−(ξ, x) = ψ̃−((p, γ), x) = ψ−((p, (j,−mj ,−κj)), x) . (3.2)

and where ψ±(ξ, x) are the generalized eigenfunctions associated with the con-
tinuous spectrum of the free Dirac operator labeled by the total angular mo-
mentum quantum numbers j and mj , and the quantum numbers κj .

The boson field Zα is formally defined by (see e.g. [49, Eq. (5.3.34)]),

Zα(x)

= (2π)
− 3

2

∫
dξ3

(2(|k|2+mZ0
2)

1
2 )

1
2

(
εα(k, λ)a(ξ3)eik.x + ε∗α(k, λ)a∗(ξ3)e−ik.x

)
,
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where the vectors εα(k, λ) are the polarizations vectors of the massive spin 1
bosons (see [49, Section 5.3]), and with ξ3 = (k, λ), where k ∈ R3 is the mo-
mentum variable of the boson and λ ∈ {−1, 0, 1} is its polarization.

If one considers, as mentioned in the introduction, the full interaction IZ0

in (3.1) describing the decay of the gauge boson Z0 into massive leptons and if
one formally expands this interaction with respect to products of creation and
annihilation operators, we are left with a finite sum of terms with kernels yielding
singular operators which cannot be defined as closed operators. Therefore, in
order to obtain a well-defined Hamiltonian (see e.g [21, 7, 8, 13, 4]), we replace
these kernels by square integrable functions G(α). In particular, this implies
large momentum cutoffs for the electrons, positrons and Z0 bosons. Moreover,
we confine in space the interaction between the electrons/positrons and the
bosons by adding a localization function f(|x|), with f ∈ C∞0 ([0,∞)).

3.1 Rigorous definition of the model

3.1.1 The Fock spaces for electrons, positrons and Z0 bosons

In order to properly define the interaction IZ0 formally introduced above, since
we use a spectral representation of the free Dirac operator generated by the
sequence of spherical waves, we first recall a few facts about solutions of the
free Dirac equation.

The energy of a free relativistic electron of mass me is described by the
self-adjoint Dirac Hamiltonian

HD = α · 1

i
∇+ β me,

(see [42, 47] and references therein) acting on the Hilbert space H = L2(R3;C4),
with domain D(HD) = H1(R3;C4). We use the system of units ~ = c = 1. Here
α = (α1, α2, α3) and β are the Dirac matrices in the standard form.

The generalized eigenfunctions associated with the continuous spectrum of
the Dirac operator HD are labeled by the total angular momentum quantum
numbers

j ∈
{1

2
,

3

2
,

5

2
, . . .

}
, mj ∈ {−j,−j + 1, . . . , j − 1, j}, (3.3)

and by the quantum numbers

κj ∈
{
± (j +

1

2
)
}
. (3.4)

In the sequel, we will drop the index j and set

γ = (j, mj , κj) , (3.5)

and a sum over γ will thus denote a sum over j, mj and κj . We denote by Γ the
set {(j, mj , κj), j ∈ N + 1

2 , mj ∈ {−j,−j + 1, . . . , j − 1, j}, κj ∈ {±(j + 1
2 )}}.
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For p ∈ R3 being the momentum of the electron, and p := |p|, the continuum
energy levels are given by ±ω(p), where

ω(p) := (me
2 + p2)

1
2 . (3.6)

We introduce the notation

ξ = (p, γ) ∈ R+ × Γ. (3.7)

The continuum eigenstates of HD are denoted by

ψ±(ξ, x) = ψ±((p, γ), x) .

We then have
HD ψ±((p, γ), x) = ±ω(p) ψ±((p, γ), x).

The generalized eigenstates ψ± are normalized in such a way that∫
R3

ψ†±((p, γ), x)ψ±((p′, γ′), x) dx = δγγ′δ(p− p′),∫
R3

ψ†±((p, γ), x)ψ∓((p′, γ′), x) dx = 0 .

Here ψ†±((p, γ), x) is the adjoint spinor of ψ±((p, γ), x).

According to the hole theory [42, 43, 47, 49], the absence in the Dirac theory
of an electron with energy E < 0 and charge e is equivalent to the presence of
a positron with energy −E > 0 and charge −e.

Let us split the Hilbert space H = L2(R3;C4) into

Hc− = P(−∞,−me](HD)H and Hc+ = P[me,+∞)(HD)H.

Here PI(HD) denotes the spectral projection ofHD corresponding to the interval
I.

Let Σ := R+ × Γ. We can identify the Hilbert spaces Hc± with

Hc := L2(Σ;C4) ' ⊕γL2(R+;C4) ,

by using the unitary operators Uc± defined from Hc± to Hc via the identities in
the L2 sense

(Uc±φ)(p, γ) =

∫
ψ†±((p, γ) , x)φ(x) dx . (3.8)

On Hc, we define the scalar products

(g, h) =

∫
g(ξ)h(ξ)dξ =

∑
γ∈Γ

∫
R+

g(p, γ)h(p, γ) dp . (3.9)

In the sequel, we shall denote the variable (p, γ) by ξ1 = (p1, γ1) in the case of
electrons, and ξ2 = (p2, γ2) in the case of positrons, respectively.
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We next introduce the Fock space for electrons and positrons.
Let

Fa := Fa(Hc) =

∞⊕
n=0

⊗naHc,

be the Fermi-Fock space over Hc, and let

FD := Fa ⊗ Fa

be the Fermi-Fock space for electrons and positrons, with vacuum ΩD.
The creation and annihilation operators for electrons and positrons are de-

fined as follows
We set, for every g ∈ Hc,

bγ,+(g) = b+(Pγg) , b∗γ,+(g) = b∗+(Pγg) ,

where Pγ is the projection of Hc onto the γ-th component defined according to
(3.8), and b+(Pγg) and b∗+(Pγg) are respectively the annihilation and creation
operator for an electron.

As above, we set, for every h ∈ Hc,

bγ,−(h) = b−(Pγh) ,

b∗γ,−(h) = b∗−(Pγh) ,

where b−(Pγg) and b∗−(Pγg) are respectively the annihilation and creation op-
erator for a positron.

As in [41, Chapter X], we introduce operator-valued distributions b±(ξ) and
b∗±(ξ) that fulfill for g ∈ Hc,

b±(g) =

∫
b±(ξ) (Pγg) (p) dξ

b∗±(g) =

∫
b∗γ,±(p) (Pγg) (p) dξ

where we used the notation of (3.9).
We give here the construction of the Fock space for the Z0 boson.
Let

Σ3 := R3 × {−1, 0, 1} .

The one-particle Hilbert space for the particle Z0 is L2(Σ3) with scalar product

(f, g) =

∫
Σ3

f(ξ3)g(ξ3)dξ3 , (3.10)

with the notations

ξ3 = (k, λ) and

∫
Σ3

dξ3 =
∑

λ=−1,0,1

∫
R3

dk , (3.11)
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where ξ3 = (k, λ) ∈ Σ3.
The bosonic Fock space for the vector boson Z0, denoted by FZ0 , is thus the

symmetric Fock space
FZ0 = Fs(L

2(Σ3)) . (3.12)

For f ∈ L2(Σ3), we define the annihilation and creation operators, denoted
by a(f) and a∗(f) by

a(f) =

∫
Σ3

f(ξ3)a(ξ3)dξ3 (3.13)

and

a∗(f) =

∫
Σ3

f(ξ3)a∗(ξ3)dξ3 (3.14)

where the operators a(ξ3) (respectively a∗(ξ3)) are the bosonic annihilation (re-
spectively bosonic creation) operator for the boson Z0 (see e.g [36, 12, 13]).

3.1.2 The Hamiltonian

The quantization of the Dirac Hamiltonian HD, acting on FD, is given by

TD =

∫
ω(p) b∗+(ξ1) b+(ξ1)dξ1 +

∫
ω(p) b∗−(ξ2) b−(ξ2)dξ2,

with ω(p) given in (3.6). The operator TD is the Hamiltonian of the quantized
Dirac field.

Let DD denote the set of vectors Φ ∈ FD for which Φ(r,s) is smooth and
has a compact support and Φ(r,s) = 0 for all but finitely many (r, s). Then TD
is well-defined on the dense subset DD and it is essentially self-adjoint on DD.
The self-adjoint extension will be denoted by the same symbol TD, with domain
D(TD).

The operators number of electrons and number of positrons, denoted respec-
tively by N+ and N−, are given by

N+ =

∫
b∗+(ξ1) b+(ξ1)dξ1 and N− =

∫
b∗−(ξ2) b−(ξ2)dξ2 . (3.15)

They are essentially self-adjoint on DD.
We have

Spec(TD) = {0} ∪ [me,∞).

The set [me,∞) is the absolutely continuous spectrum of TD.
The Hamiltonian of the bosonic field, acting on FZ0 , is

TZ :=

∫
ω3(k) a∗(ξ3)a(ξ3) dξ3

where
ω3(k) =

√
|k|2 + mZ0

2. (3.16)
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The operator TZ is essentially self-adjoint on the set of vectors Φ ∈ FZ0 such
that Φ(n) is smooth and has compact support and Φ(n) = 0 for all but finitely
many n. Its self-adjoint extension is denoted by the same symbol.

The spectrum of TZ consists of an absolutely continuous spectrum covering
[mZ0 ,∞) and a simple eigenvalue, equal to zero, whose corresponding eigenvec-
tor is the vacuum state Ωs ∈ FZ0 .

The free Hamiltonian is defined on H := FD ⊗ FZ0 by

HZ,0 = TD ⊗ 1l + 1l⊗ TZ . (3.17)

The operator HZ,0 is essentially self-adjoint on D(TD) ⊗ D(TZ). Since me <
mZ0 , the spectrum of HZ,0 is given by

Spec(HZ,0) = {0} ∪ [me, ∞) .

More precisely,

Specpp(HZ,0) = {0}, Specsc(HZ,0) = ∅, Specac(HZ,0) = [me, ∞), (3.18)

where Specpp, Specsc, Specac denote the pure point, singular continuous and
absolutely continuous spectra, respectively. Furthermore, 0 is a non-degenerate
eigenvalue associated to the vacuum ΩD ⊗ Ωs.

The interaction Hamiltonian is defined on H = FD ⊗ FZ0 by

HZ,I = H
(1)
Z,I +H

(1)
Z,I

∗
+H

(2)
Z,I +H

(2)
Z,I

∗
, (3.19)

with

H
(1)
Z,I =

∫ (∫
R3

f(|x|)ψ+(ξ1, x)γµ(g′V − γ5)ψ̃−(ξ2, x)
εµ(ξ3)√
2ω3(k)

eik·x dx

)
×G(1)(ξ1, ξ2, ξ3)b∗+(ξ1)b∗−(ξ2)a(ξ3) dξ1dξ2dξ3 ,

(3.20)

H
(1)
Z,I

∗
=

∫ (∫
R3

f(|x|)ψ̃−(ξ2, x)γµ(g′V − γ5)ψ+(ξ1, x)
ε∗µ(ξ3)√
2ω3(k)

e−ik·x dx

)
×G(1)(ξ1, ξ2, ξ3)a∗(ξ3)b−(ξ2)b+(ξ1) dξ1dξ2dξ3 ,

(3.21)

H
(2)
Z,I =

∫ (∫
R3

f(|x|)ψ+(ξ1, x)γµ(g′V − γ5)ψ̃−(ξ2, x)
ε∗µ(ξ3)√
2ω3(k)

e−ik·x dx

)
×G(2)(ξ1, ξ2, ξ3)b∗+(ξ1)b∗−(ξ2)a∗(ξ3) dξ1dξ2dξ3 ,

(3.22)

and

H
(2)
Z,I

∗
=

∫ (∫
R3

f(|x|)ψ̃−(ξ2, x)γµ(g′V − γ5)ψ+(ξ1, x)
εµ(ξ3)√
2ω3(k)

eik·x dx

)
×G(2)(ξ1, ξ2, ξ3)a(ξ3)b−(ξ2)b+(ξ1) dξ1dξ2dξ3 .

(3.23)
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Performing the integration with respect to x in the expressions above, we see

that H
(1)
Z,I and H

(2)
Z,I can be written under the form

H
(1)
Z,I := H

(1)
Z,I(F

(1)) :=

∫
F (1)(ξ1, ξ2, ξ3)b∗+(ξ1)b∗−(ξ2)a(ξ3) dξ1dξ2dξ3 ,

H
(2)
Z,I := H

(2)
Z,I(F

(2)) :=

∫
F (2)(ξ1, ξ2, ξ3)b∗+(ξ1)b∗−(ξ2)a∗(ξ3) dξ1dξ2dξ3 ,

(3.24)

where, for α = 1, 2,

F (α)(ξ1, ξ2, ξ3) := h(α)(ξ1, ξ2, ξ3)G(α)(ξ1, ξ2, ξ3), (3.25)

and h(1)(ξ1, ξ2, ξ3), h(2)(ξ1, ξ2, ξ3) are given by the integral over x in (3.20) and
(3.22), respectively.

Our main result, Theorem 3.5 below, requires the functions F (α) to be suf-
ficiently regular near p1 = 0 and p2 = 0 (where, recall, ξl = (pl, γl) for l = 1, 2).

Note that this regularity is required for applying the conjugate operator
method. In practice, starting from the physical (ill-defined) Hamiltonian, ap-

plying UV cutoffs G
(α)
ε,ε′ and a space localization f(|x|) to the interaction HZ,I

as done above, this regularity is fulfilled, except, solely, for the part of the field
corresponding to quantum number j = 1/2. This is a consequence of a careful
analysis of the behavior for momenta p close to zero of the generalized eigen-
states ψ+(ξ, x) = ψ+((p, (j,mj , κj);x) and their derivatives have a too singular
behavior at ξ = 0. This analysis is done in [9, Appendix A])

The total Hamiltonian of the decay of the boson Z0 into an electron and a
positron is

HZ := HZ,0 + g HZ,I ,

where g is a real coupling constant.

3.2 Limiting absorbtion principle and spectral properties

For p ∈ R+, j ∈ { 1
2 ,

3
2 , · · · }, γ = (j, mj , κj) and γj = j + 1

2 , we define

A(ξ) = A(p, γ) :=
(2p)γj+1

Γ(γj)

(
ω(p) + me

ω(p)

) 1
2
(∫ ∞

0

|f(r)|r2γj (1 + r2)dr

) 1
2

,

(3.26)

where Γ denotes Euler’s Gamma function, and f ∈ C∞0 ([0,∞)) is the localization
function appearing in (3.20)–(3.23). We make the following hypothesis on the
kernels G(α).

Hypothesis 3.1. For α = 1, 2,∫
A(ξ1)2A(ξ2)2(|k|2 + mZ0

2)
1
2

∣∣∣G(α)(ξ1, ξ2, ξ3)
∣∣∣2 dξ1dξ2dξ3 <∞. (3.27)

20



Note that up to universal constants, the functions A(ξ) in (3.26) are upper
bounds for the integrals with respect to x that occur in (3.20). These bounds
are derived using the inequality (see [49, Eq.(5.3.23)-(5.3.25)])∣∣∣∣∣ εµ(ξ3)√

2ω3(k)

∣∣∣∣∣ ≤ CmZ0 (1 + |k|2)
1
4 . (3.28)

For CZ := 156CmZ0 , let us define

K1(G(α))2 := CZ
2

(∫
A(ξ1)2A(ξ2)2 |G(α)(ξ1, ξ2, ξ3)|2dξ1dξ2dξ3

)
,

K2(G(α))2 := CZ
2

(∫
A(ξ1)2A(ξ2)2 |G(α)(ξ1, ξ2, ξ3)|2(|k|2 + 1)

1
2 dξ1dξ2dξ3

)
.

(3.29)

Our fist result is a basic result on self-adjointness.

Theorem 3.2 (Self-adjointness). Assume that Hypothesis 3.1 holds. Let g0 > 0
be such that

g0
2

( ∑
α=1,2

K1(G(α))2

)
(

1

me
2

+ 1) < 1 . (3.30)

Then for any real g such that |g| ≤ g0, the operator HZ = HZ,0 + gHZ,I is
self-adjoint with domain D(HZ,0). Moreover, any core for HZ,0 is a core for
HZ .

Notice that combining (3.18), relative boundedness of HZ,I with respect to
HZ,0 and standard perturbation theory of isolated eigenvalues (see e.g. [37]),
we deduce that, for |g| � me, inf Spec(HZ) is a non-degenerate eigenvalue of
HZ . In other words, HZ admits a unique ground state.

Theorem 3.2 follows from the Kato-Rellich Theorem together with standard
estimates of creation and annihilation operators in Fock space, showing that the
interaction Hamiltonian HZ,I is relatively bounded with respect to HZ,0.

To establish our next theorems, we need to strengthen the conditions on the
kernels G(α).

Hypothesis 3.3. For α = 1, 2, the kernels G(α) ∈ L2(Σ× Σ× Σ3) satisfy

(i) There exists a compact set K ⊂ R+ × R+ × R3 such that

G(α)(p1, γ1, p2, γ2, k, λ) = 0 if (p1, p2, k) /∈ K.

(ii) There exists ε ≥ 0 such that∑
γ1,γ2,λ

∫
(1 + x2

1 + x2
2)1+ε

∣∣∣Ĝ(α)(x1, γ1, x2, γ2, k, λ)
∣∣∣2dx1dx2dk <∞,

where Ĝ(α) denotes the Fourier transform of G(α) with respect to the vari-
ables (p1, p2), and xj is the variable dual to pj.
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(iii) If γ1j = 1 or γ2j = 1, where for l = 1, 2, γlj = |κjl | (with γl =
(jl,mjl , κjl)), and if p1 = 0 or p2 = 0, then G(α)(p1, γ1, p2, γ2, k, λ) = 0.

Remark. 1) The assumption that G(α) is compactly supported in the vari-
ables (p1, p2, k) is an “ultraviolet” constraint that is made for convenience.
It could be replaced by the weaker assumption that G(α) decays sufficiently
fast at infinity.

2) Hypothesis 3.3 (ii) comes from the fact that the coupling functions G(α)

must satisfy some “minimal” regularity for our method to be applied. In
fact, Hypothesis (ii) could be slightly improved with a refined choice of in-
terpolation spaces in our proof. In Hypothesis 3.3 (iii), we need in addition
an “infrared” regularization. We remark in particular that Hypotheses (ii)
and (iii) imply that, for 0 ≤ ε < 1/2,∣∣G(α)(p1, γ1, p2, γ2, k, λ)

∣∣ . |pl| 12 +ε, l = 1, 2.

We emphasize, however, that this infrared assumption is required only in
the case γlj = 1, that is, for j = 1/2. For all other j ∈ N + 1

2 , we do not
need to impose any infrared regularization on the generalized eigenstates
ψ±((p, γ), x); They are already regular enough.

3) One verifies that Hypotheses 3.3(i) and 3.3(ii) imply Hypothesis 3.1.

Theorem 3.4 (Location of the spectrum). Assume that Hypothesis 3.3 holds.
There exists g1 > 0 such that, for all |g| ≤ g1,

Spec(HZ) = {inf Spec(HZ)} ∪ [inf Spec(HZ) + me,∞).

In particular, HZ has no eigenvalue below its essential spectrum except for the
ground state energy, inf Spec(HZ), which is an isolated simple eigenvalue.

We use the Dereziński-Gérard partition of unity [16] in a version that ac-
commodates the Fermi-Dirac statistics and the CAR. Such a partition of unity
was used previously in [1] (see [9] for details).

Theorem 3.5 (Absolutely continuous spectrum). Assume that Hypothesis 3.3
holds with ε > 0 in Hypothesis 3.3(ii). For all δ > 0, there exists gδ > 0 such
that, for all |g| ≤ gδ, the spectrum of HZ in the interval

[inf Spec(HZ) + me, inf Spec(HZ) + mZ0 − δ]

is purely absolutely continuous.

Ideas of the proof. The proof of Theorem 3.5 relies on Mourre positive com-
mutator method. Though, the standard choice of a conjugate operator as the
second quantized version of the one electron operator 1

2 ((∇pω ·i∇p+i∇p ·(∇pω))
fails to give a Mourre estimate near thresholds, already for the free Hamiltonian
HZ,0.
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Hence, we construct a conjugate operator A by following the idea of Hübner
and Spohn [35] (see also [23, 24]). As in [35], the operator A is only maximal
symmetric, and generates a C0-semigroup of isometries. Therefore, we need
to use Singular Mourre theory with non self-adjoint conjugate operator. Such
extensions of the usual conjugate operator theory [38, 3] considered in [35] were
later extended in [45] and in [23, 24].

The general strategy remains similar to the one using regular Mourre Theory.
We prove regularity of the total Hamiltonian HZ,I with respect to the conjugate
operator A. For this sake, we use here real interpolation theory together with a
version of the Mourre theory requiring only low regularity of the Hamiltonian
with respect to the conjugate operator (see [18] and [9, Appendix B]).

We then establish a Mourre estimate. Formally, our choice of the conjugate
operator A yields [HZ,0, iA] = N++N−, where N± are the number operators for
electrons and positrons. Since N± ≥ 1 away from the vacuum, to obtain a strict
Mourre inequality, it suffices to control g[HZ,I , iA] for g small enough. This is
possible using general relative bounds with respect to HZ,0 for perturbations of
the form HZ,I(−iaF (α)) (see (3.24)), for a denoting the one-particle conjugate
operator, and F (α) being the kernels given by (3.25).

Combining the Mourre estimate with a regularity property of the Hamilto-
nian with respect to the conjugate operator allow us to deduce a Virial theorem
and a limiting absorption principle, from which we obtain Theorem 3.5.

Our main achievement consists in proving that the physical interaction
Hamiltonian HZ,I is regular enough for the Mourre theory to be applied, except
for the terms associated to the “first” generalized eigenstates (j = 1/2). For the
latter, unfortunately, we need to impose a non-physical infrared condition.

4 Prospectives

Despite the number of results concerning spectral and dynamical properties for
weak interaction Hamiltonians or similar models, [7, 8, 2, 11, 13, 26, 4, 9, 10, 32,
33], the study of weak interactions from a rigorous point of view still requires
to be investigated.

We mention here some open problems.

• Spectral study above the boson thresholds. To complete the spectral study
of the above two models, it remains to prove that the spectrum above the
massive bosons (W± or Z0) thresholds is purely absolutely continuous, as
expected for weak interactions models for which there should be no bound
states except for the vacuum. Picking a conjugate operator including the
massive bosons, i.e., a conjugate operator similar to the one we picked,
with an additional term acting on the Bosonic Fock space, the general
strategy adopted above is expected to give purely absolutely continuous
spectrum away from bosonic thresholds. Near bosonic thresholds, like for
instance near (inf Spec(HZ))+mZ0 or (inf Spec(HW ))+mW , we face some
infrared problems. To obtain a limiting absorption principle near bosonic
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thresholds, it is expected, in the case of Z0 decay, that one first has to
derive local properties of the solutions of the Proca equation for massive
spin 1 particles.

• Weak decay of the intermediate boson Z into neutrinos and antineutrinos
The decay of the Z0,

Z0 → νe + ν̄e,

is apparently very similar to the model studied in Section 3. However, the
two fermionic particles created in this process are massless, as described
by the Standard Model. From a technical point of view, using conjugate
operator theory with non self-adjoint conjugate operator as in Section 3 to
prove absolutely continuity of the spectrum of the Hamiltonian H, yields
additional difficulties in that case since, unlike for the model treated in
Section 3, the commutator [H, iA] is not comparable with H.

• Decay of muonic atoms. The decay of a free muon or of a muon in the
electromagnetic field of a nucleus always produces more than three parti-
cles

µ− → νµ + ν̄e + e−.

A natural way to describe this decay in muonic atoms, is to restrict the
Fock space for muons to bound states of Dirac-Coulomb. Moreover, to
account for high energies involved in this decay, it is sufficient to consider
only free electron/positron states.

The inherent mathematical difficulty is that we have to deal with a pro-
cess with four fermionic particles, two of which are massless as given by
the Standard Model. For this model, technical difficulties arise already
for getting a relative bound with respect to the free Hamiltonian for the
interaction. Without such a bound, it remains illusory with the current
techniques to derive any interesting spectral properties.

• Model with neutrino mass. As mentioned in the introduction of Section 2,
neutrinos (of the electrons, muons or tauons) have a mass. To account
for this, one can add a mass to the neutrino in the model of Section 2.
This model already gives interesting mathematical challenges, since the
massive fermions “create” thresholds in the spectrum, but the masses
of the neutrino are so tiny, that relative bounds can not be used as in
Section 2 in the context of usual perturbative theory, unless dealing with
interaction with irrelevant coupling constant g � 1 .

A physically more relevant way to take into account the neutrino mass is
the study of Hamiltonians of post Standard Models.
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