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Abstract. A simple model of an atom interacting with the quantized electromagnetic field
is studied. The atom has a finite mass m, finitely many excited states and an electric
dipole moment, ~d0 = −λ0

~d, where ‖di‖ = 1, i = 1, 2, 3, and λ0 is proportional to the
elementary electric charge. The interaction of the atom with the radiation field is described
with the help of the Ritz Hamiltonian, −~d0 · ~E, where ~E is the electric field, cut off at large
frequencies. A mathematical study of the Lamb shift, the decay channels and the life times
of the excited states of the atom is presented. It is rigorously proven that these quantities are
analytic functions of the momentum ~p of the atom and of the coupling constant λ0, provided
|~p| < mc and |=~p| and |λ0| are sufficiently small. The proof relies on a somewhat novel
inductive construction involving a sequence of ‘smooth Feshbach-Schur maps’ applied to a
complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation
of resonance energies that converges super-exponentially fast.

1. Introduction

This paper is devoted to a study of atomic resonances, in particular of the Lamb shift, the
decay channels and the life times of excited states of atoms, in quantum electrodynamics. Our
analysis is based on a variant of the so-called Pauli-Fierz model of quantum electrodynamics.
The atomic degrees of freedom are treated non-relativistically, but photons are massless, and
no infrared cutoff is imposed on the interactions between atoms and the quantized radiation
field. In order to avoid technical complications that might hide the basic simplicity and
elegance of this work, we focus on a somewhat mutilated model of an atom: The mass, m,
of an atom is positive and finite, its kinematics is non-relativistic, but it has only finitely
many excited states and cannot be ionized. The total electric charge of every atom vanishes
and its interaction with the quantized radiation field arises by coupling its electric dipole
moment to the quantized electric field, (i.e., the interaction Hamiltonian is given by −~d0 · ~E,
where ~d0 is the dipole moment operator of the atom and ~E is the quantized electric field).
While the masslessness of photons makes a straightforward application of perturbation theory
impossible, this model does not exhibit a genuine “infrared catastrophe”.

Our main aim, in this paper, is to determine the radiative corrections to the ground-state
dispersion law of an atom and to calculate atomic resonance energies, decay channels and life
times of excited states. Among our new results are proofs of real analyticity of these quantities
as functions of the total momentum, ~p, of the dressed atom, for |~p| < mc (where c is the speed
of light) and of analyticity in the elementary electric charge near the origin.

During the past twenty years, there has been very impressive progress in the mathematical
analysis of atomic ground-states and resonances in the realm of the Pauli-Fierz model, (and of
Rayleigh scattering, ionization of atoms, etc.); see [10], [8], [9], [11], [31], [43], [4], and references
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given there. However, the atomic nucleus has usually been treated as static (infinitely heavy).
Our goal, in this paper, is to remove this shortcoming.

The main mathematical tools we will employ to prove our main results are based on a
combination of dilatation analyticity with a novel method of “spectral renormalization” (in
the guise of an inductive construction based on a sequence of smooth iso-spectral Feshbach-
Schur maps). In the form needed in the analysis of quantum systems with infinitely many
degrees of freedom, these tools were first introduced in [10] and systematically developed in
[8], [11] and [6]. Important refinements of these methods have appeared in [29], [30], [33], [43],
[3], [22]; and references given there. Some alternative methods have been introduced in [1]
and [4].

In previous work, as quoted above, spectral renormalization is cast in the form of a renor-
malization group construction involving iteration of a renormalization map (constructed from
a Feshbach-Schur map that lowers an energy scale by a fixed factor ρ < 1), which maps a
suitably chosen Banach space of effective Hamiltonians on Fock space into itself. One then
attempts to determine the fixed points and the stable and unstable manifolds of the renormal-
ization map – in accordance with the general philosophy of the renormalization group. While
this approach is conceptually transparent and yields very detailed information on the spectral
problem under consideration, it leads to certain somewhat artificial technical complications,
and it is numerically quite inefficient. In this paper, we present an inductive construction
involving a sequence of smooth iso-spectral Feshbach-Schur maps indexed by a sequence of
energy scales that converges to 0 in a “super-exponential” fashion. One of our main aims in
this paper is to describe this method and to demonstrate its basic simplicity and efficiency on
an example that is of interest to physicists.

1.1. The Model. In this section we describe the physical model studied in this paper in
precise mathematical terms.

1.1.1. A Simple Model of an “Atom”. Our model of an atom is non-relativistic. For simplicity,
the atom is assumed to have only finitely many excited states. We describe its internal degrees
of freedom by an N -level system: The Hilbert space of state vectors of the internal degrees of
freedom is given by CN , their Hamiltonian by an N ×N matrix

His :=

Ö
EN · · · 0
...

. . . 0
0 · · · E1

è
,

with EN > · · · > E1. The energy scale of transitions between internal states of the atom is
measured by the quantity

δ0 := min
i 6=j
|Ei − Ej |. (1.1)

By ~x ∈ R3 we denote the position of the (center of mass of the) atom in physical space.
The center of mass momentum corresponds to the operator −i∇, the kinetic energy of the
free center of mass motion is given by − 1

2m∆. These operators act on the usual Hilbert
space L2(R3) of orbital wave functions. The total Hilbert space of state vectors of the atom
corresponds to the tensor product

Hat := L2(R3)⊗ CN .
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The total Hamiltonian of the atom is given by the self-adjoint operator

Hat := − 1

2m
∆ +His, (1.2)

with domain D(Hat) = H2(R3) ⊗ CN , where H2(R3) denotes the Sobolev space of wave
functions with square-integrable derivatives up to order 2. To simplify our notations, we
henceforth put the mass of the atom to 1, which merely amounts to choosing a suitable
system of units.

The electric dipole moment of an atom is represented by the vector operator
~d0 = (d1

0, d
2
0, d

3
0), (1.3)

where, for j = 1, 2, 3, dj0 ≡ 1⊗ dj0 is an N ×N hermitian matrix.

1.1.2. The Quantized Electromagnetic Field. In the following ~k denotes the wave vector of a
photon and λ its helicity. To simplify our formulae we define

R3 := R3 × {1, 2} =
¶
k := (~k, λ) | ~k ∈ R3, λ ∈ {1, 2}

©
. (1.4)

We set R3n := (R3)×n, and, for B ⊂ R3,

B := B × {1, 2},
∫
B
dk(·) :=

∑
λ=1,2

∫
B
d~k(·). (1.5)

The Hilbert space of states of photons is given by

Hf := F+(L2(R3)), (1.6)

where F+(L2(R3)) is the symmetric Fock space over the space L2(R3) of one-photon states.
The usual photon creation- and annihilation operators are denoted by

a∗(k) ≡ a∗λ(~k), a(k) ≡ aλ(~k), (1.7)

k ≡ (~k, λ) ∈ R3, which are operator-valued distributions acting on Hf . The Fock space Hf
contains a unit vector, Ω, called “vacuum (vector)” and unique up to a phase, with the property
that

a(k)Ω = 0,

for all k. (Readers not familiar with these objects may wish to consult, e.g., Section X.7 of
[41].)

The Hamiltonian of the free electromagnetic field is given by

Hf =

∫
R3
|~k| a∗(k)a(k)dk, (1.8)

which is a densely defined, positive operator on Hf .

1.1.3. The Physical System. Our goal is to study an atom interacting with the quantized
electromagnetic field. The Hilbert space of states of this system (atom∨photons) is the tensor
product space

H = Hat ⊗Hf .
We choose the interaction of the atom with the quantized electromagnetic field to be given by
the Ritz Hamiltonian

λ0HI := −~d0 · ~E(~x), (1.9)
where

~d0 = −λ0
~d (1.10)
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is the atomic dipole moment, λ0 > 0 is a coupling constant proportional to the elementary
electric charge, and ‖di‖ = 1, i = 1, ..., 3. Furthermore, ~x is the position of the (center of mass
of the) atom and ~E denotes the quantized electric field, cut off at large photon frequencies. It
is given by the operator

~E(~x) := i

∫
R3

Λ(~k)|~k|
1
2~ε(k)

(
ei
~k·~x ⊗ 1CN ⊗ a(k)− e−i~k·~x ⊗ 1CN ⊗ a∗(k)

)
dk, (1.11)

acting on H. In (1.11), k 7→ ~ε(k) ∈ R3 represents the polarization vector. It is a measurable
function with the properties

|~ε(k)| = 1, ~ε(k) · ~k = 0, ~ε(r~k, λ) = ~ε(~k, λ), ∀r > 0, ∀k ∈ R3. (1.12)

The function Λ : R3 7→ R is an ultraviolet cut-off. To be concrete, we take it to be the
Gaussian

Λ(~k) = e−|
~k|2/(2σ2

Λ) (1.13)
for some cut-off constant σΛ ≥ 1. (Obviously, one may consider a more general class of cut-off
functions.)
The total Hamiltonian of the system is the sum of the Hamiltonians of the atom and the
electromagnetic field, plus an interaction term. It is given by

H := Hat +Hf + λ0HI , (1.14)

Using the Kato-Rellich theorem, one shows that the Hamiltonian H is defined and self-adjoint
on the dense domain D(Hat ⊗ 1Hf + 1Hat ⊗Hf ), where D(A) represents the domain of the
linear operator A.

1.1.4. The Fibre Hamiltonian. The photon momentum operator is the vector operator defined
by

~Pf :=

∫
R3

~k a∗(k)a(k)dk. (1.15)

Let F denote Fourier transformation in the electron position variable ~x ∈ R3. We define the
unitary operator

U := Fei~x·~Pf (1.16)
on H. We conjugate the Hamiltonian H in (1.14) by the unitary operator U introduced in
(1.16) and subtract the trivial term ~p2

2 , to obtain the operator

H := UHU∗ − ~p2

2
=

1

2
(~p− ~Pf )2 − ~p2

2
+His +Hf + λ0HI , (1.17)

where
HI := i

∫
R3

Λ(~k)|~k|
1
2

Ä
~ε(k) · ~d⊗ a(k)− ~ε(k) · ~d⊗ a∗(k)

ä
dk (1.18)

and ~p denotes the total momentum operator. The operator H introduced in Eq. (1.17) is the
main object of study of this paper.

We remark that
L2(R3)⊗ CN ⊗Hf ∼= L2(R3;CN ⊗Hf ). (1.19)

Using (1.19) we see that, for an arbitrary φ ∈ L2(R3
~p;CN ⊗Hf ),

(Hφ)(~p) = H(~p)φ(~p), (1.20)
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where the fibre Hamiltonian, H(~p), is the operator acting on the fibre space

H~p := CN ⊗Hf

given by

H(~p) :=
1

2
~P 2
f − ~p · ~Pf +Hf +His + λ0HI . (1.21)

Using the fact that HI is relatively bounded with respect to H1/2
f and applying the Kato-

Rellich theorem, one sees that, for all ~p ∈ R3, H(~p) is a self-adjoint operator on its domain

D(H(~p)) = D(Hf ) ∩D(~P 2
f ). (1.22)

Eqs (1.20)-(1.21) can be reformulated in the formalism of direct integrals:

H =

∫ ⊕
R3
H~pd~p, H =

∫ ⊕
R3
H(~p)d~p. (1.23)

This paper is devoted to studying properties of the fibre Hamiltonians H(~p), ~p ∈ R3.

1.1.5. Complex Dilatations. For θ ∈ R, we define the (unitary) dilatation operator γ(θ) by
setting

γ(θ)(φ)(~k, λ) := e−3θ/2φ(e−θ~k, λ), for φ ∈ L2(R3). (1.24)

By Γ(θ) := Γ(γ(θ)) we denote the operator on Fock space Hf obtained by “second quantiza-
tion” of γ(θ): For an operator ω acting on the one-photon Hilbert space L2(R3), Γ(ω) denotes
the operator defined on Hf whose restriction to the n-photon subspace is given by

Γ(ω)|L2(R3)⊗
n
s := ⊗nω. (1.25)

A straightforward computation shows that

Hθ(~p) := Γ(θ)H(~p)Γ(θ)∗ =
1

2
e−2θ ~P 2

f − e−θ~p · ~Pf +His + e−θHf + λ0HI,θ, (1.26)

where

HI,θ := ie−2θ
∫
R3

Λ(e−θ~k)|~k|
1
2

Ä
~ε(k) · ~d⊗ a(k)− ~ε(k) · ~d⊗ a∗(k)

ä
dk. (1.27)

The operator Hθ(~p) can be analytically extended to the complex domain

D(0, π/4) := {θ ∈ C : |θ| < π/4}. (1.28)

We will verify in Appendix A, below, that, for all ~p ∈ R3, the map θ 7→ Hθ(~p) is an analytic
family of type (A) on D(0, π/4), in the sense that Hθ(~p) is closed on D(Hf ) ∩ D(~P 2

f ), for
all θ ∈ D(0, π/4), and the vector function θ 7→ Hθ(~p)u is analytic in θ on D(0, π/4), for all
u ∈ D(Hf ) ∩ D(~P 2

f ). The study of resonances of the operator H(~p) amounts to studying
non-real eigenvalues of Hθ(~p), for θ belonging to a suitable open subset of D(0, π/4) \ R.
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1.1.6. Analyticity in the Total Momentum. We pick a vector ~p∗ in R3 of length smaller than
1 and a complex number θ = iϑ with 0 < ϑ < π/4. We set

µ =
1− |~p∗|

2
(1.29)

and define an open set Uθ[~p∗] in complexified momentum space C3 by

Uθ[~p
∗] := {~p ∈ C3 | |~p− ~p∗| < µ} ∩ {~p ∈ C3 | |=~p| < µ

2
tan(ϑ)}. (1.30)

Our main interest is to analyze the ~p-dependence of the ground-state, the ground-state
energy and the resonance energies of the Hamiltonian Hθ(~p) defined in (1.26), for ~p ∈ Uθ[~p∗],
and to verify that these quantities are analytic in ~p ∈ Uθ[~p

∗]. By Hθ,0(~p) we denote the
operator given by

Hθ,0(~p) := e−2θ
~P 2
f

2
− e−θ~p · ~Pf +His + e−θHf (1.31)

corresponding to a vanishing coupling constant, λ0 = 0. It is easy to verify that, for δ0 > 0,
E1, . . . , EN are simple eigenvalues of Hθ,0(~p). Moreover, it is easy to see that, for |~p| < 1 and
~p ∈ R3, the spectrum of Hθ,0(~p) is included in a region of the form depicted in Figure 1.

E1 E2 E3 ... EN
ϑ
2ϑ

Figure 1. Shape of the spectrum of the unperturbed operator Hθ,0(~p) for ~p ∈ R3,
|~p| < 1. E1,...,EN are eigenvalues of Hθ,0(~p), the essential spectrum is located inside
the cuspidal grey regions.

1.2. Main Results. Theorem 1.1, below, claims that, for |~p| < 1, a ground-state and reso-
nances exist and that the ground-state, the ground-state energy and the resonance energies
are analytic in ~p ∈ Uθ[~p∗] (and in λ0, for |λ0| small enough). If |~p| > 1 one expects that the
operator H(~p) does not have a stable ground-state, due to emission of Cherenkov radiation;
see [19]. Assuming that the so-called Fermi-Golden-Rule condition holds, the imaginary parts
of the resonance energies are strictly negative, i.e., the life times of the excited states of an
atom are strictly finite due to radiative decay; see Proposition 1.2.

Theorem 1.1. Let 0 < ν < 1. There exists λc(ν) > 0 such that, for all 0 ≤ λ0 < λc(ν) and
~p ∈ R3, |~p| < ν, the following properties are satisfied:

a) E(~p) := inf σ(H(~p)) is a non-degenerate eigenvalue of H(~p).
b) For every i0 ∈ {1, · · · , N} and θ ∈ C with 0 < =θ < π/4 large enough, Hθ(~p) has an

eigenvalue, z(∞)
i0

(~p), such that z(∞)
i0

(~p)→ Ei0, as λ0 → 0. For i0 = 1, z(∞)
1 (~p) = E(~p).

Moreover, for |~p| < ν, |λ0| small enough and 0 < =θ < π/4 large enough, the ground state
energy, E(~p), the resonance energies z(∞)

i0
(~p), i0 ≥ 2, and their respective eigenvectors (unique

up to a phase), are analytic in ~p, λ0 and θ. In particular, E(~p) and z
(∞)
i0

(~p), i0 ≥ 2, are
independent of θ.
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Remarks.
• Existence and analyticity of a ground state, as well as analyticity of the map ~p 7→ E(~p),
are proven in [22].
• For simplicity of exposition, we only prove, in the present paper, the (existence and)
analyticity of the resonance energies z(∞)

i0
(~p) in ~p, for i0 ≥ 2. In the following, we fix i0

and write z(∞)
i0

(~p) =: z(∞)(~p); (dependence on i0 suppressed). Our proof can be adapted
in a straightforward way to establish the statements concerning analyticity in λ0 and
θ. For different models similar to the model of non-relativistic QED studied in this
paper, analyticity in the coupling constant has been proven previously in [30, 34, 33].
• For Pauli-Fierz models with static nuclei, resonances have been studied in [8, 43, 2, 4].
• The fact that z(∞)(~p) is independent of θ is a direct consequence of the analyticity of
z(∞)(~p) in θ, together with unitarity of the dilatation operator Γ(θ) for real θ’s and with
the existence of a normalizable and analytic eigenstate of Hθ(~p) associated to z(∞)(~p).
• Theorem 1.1 extends to more realistic models of atoms (with dynamical electrons) as
considered for instance in [3, 26, 37]. Such models are not treated in our paper in order
not to hide the basic simplicity of our methods.

Proposition 1.2. Let i0 > 1 and ~p ∈ R3, |~p| < 1. Suppose that∑
j<i0

∫
R3
dk
∣∣∣(~d)N−j+1,N−i0+1 · ~ε(k)

∣∣∣2|~k||Λ(~k)|2δ
Ä
Ej − Ei0 + |~k| − ~p · ~k +

~k2

2

ä
> 0,

(Fermi-Golden-Rule condition) (1.32)

where (dl)i,j, l = 1, ..., 3, is the matrix element of the operator dl in the eigenbasis of His; see
Eq. (1.3) and (1.10). Then, under the conditions of Theorem 1.1 and for λ0 small enough,
the imaginary part of z(∞)(~p) is strictly negative.

The proof of Proposition 1.2 does not rely on the inductive construction used to establish
Theorem 1.1. A single application of a suitably chosen Feshbach-Schur map, i.e., a single
decimation step, is sufficient to prove this proposition, and our argumentation follows closely
the one presented in [11, 9]. To render this paper reasonably self-contained, the proof is given
in Section 6.2.

1.3. Strategy of Proof and Sketch of Methods. Ultimately, our aim is to study spectral
properties of the operators Hθ(~p) introduced in (1.26). This spectral problem is difficult,
because, among other things, it involves the study of eigenvalues imbedded in continuous
spectrum and located at thresholds of the continuous spectrum of Hθ(~p). Standard analytic
perturbation theory is therefore not applicable. The key tool we will use to prove our results
is the isospectral Feshbach-Schur map, which was originally developed to cope with problems
of this kind in [10]. In this paper we will use the smooth Feshbach-Schur map introduced in
[6] and further studied in [29] and [30], which has major technical advantages (and, alas, some
conceptual disadvantages), as compared to the original Feshbach-Schur map.

The Feshbach-Schur map is tailor-made for the analysis of small regions in the spectra of
closed operators on Hilbert space, in particular regions of their spectra near thresholds. It
enables one to construct “effective operators” that, on the part of the spectrum of interest,
have the same spectrum (with the same multiplicity) as the original operator, i.e., are iso-
spectral to the original operator. By iterating the Feshbach-Schur map one is able to zoom
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into tiny regions in the spectrum of an operator of interest and extract ever more accurate
information on such parts of the spectrum. In particular, by constructing an infinite sequence
of Feshbach-Schur maps, we will be able to determine the exact location of the ground-state-
and the resonance energies and the corresponding eigenstates of the deformed Hamiltonians,
Hθ(~p), =θ > 0, of atoms coupled to the radiation field. The Feshbach-Schur maps will be
adapted to the particular resonance that one wishes to analyze. It is a novel aspect of our
construction that it yields an algorithm that converges super-exponentially fast.

1.3.1. Mathematical Tools.
The Feshbach-Schur Map. The fundamental tool used to prove our main results is the
smooth Feshbach-Schur map; see [6, 29]. A key property of this map is its iso-spectrality,
which we now describe in more precise terms.

Definition 1.3 (Feshbach-Schur Pairs). Let P be a positive operator on a separable Hilbert
space H whose norm is bounded by 1, 0 ≤ P ≤ 1. Assume that P and P :=

√
1− P 2 are both

non-zero. Let H and T be two closed operators on H with identical domains D(H) and D(T ).
Assume that P and P commute with T . We set W := H − T and we define

HP :=T + PWP HP := T + PWP.

The pair (H,T ) is called a Feshbach-Schur pair associated with P iff
(i) HP and T are bounded invertible on P [H]

(ii) H−1
P
PWP can be extended to a bounded operator on H

For an arbitrary Feshbach-Schur pair (H,T ) associated with P , we define the smooth Feshbach-
Schur map by

FP (·, T ) : H 7→ FP (H,T ) := T + PWP − PWPH−1
P
PWP. (1.33)

Theorem 1.4. Let 0 ≤ P ≤ 1, and let (H,T ) be a Feshbach-Schur pair associated with P
(i.e., satisfying properties (i) and (ii) in Definition 1.3). Let V be a closed subspace with
P [H] ⊂ V ⊂ H, and such that

T : D(T ) ∩ V → V, PT−1PV ⊂ V.

Define

QP (H,T ) := P − PH−1
P
PWP.

Then the following hold true:
(i) H is bounded invertible on H if and only if FP (H,T ) is bounded invertible on V .
(ii) H is not injective if and only if FP (H,T ) is not injective as an operator on V :

Hψ = 0, ψ 6= 0 =⇒ FP (H,T )Pψ = 0, Pψ 6= 0,

FP (H,T )φ = 0, φ 6= 0 =⇒ HQP (H,T )φ = 0, QP (H,T )φ 6= 0.

Remarks.
• Items (i) and (ii) of Theorem 1.4 describe what we call iso-spectrality. This notion does
not mean that the spectra of H and of FP (H,T ) are identical. Rather, iso-spectrality
is a local property: One uses the Feshbach-Schur map to explore spectral properties of
an operator within specific, small regions in the complex plane.
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• As emphasized in [29], if T is bounded invertible in P [H], if T−1PWP and PWT−1P
are bounded operators with norm strictly less than one, and if T−1PWP is bounded,
then items (i) and (ii) of Definition 1.3 are satisfied. We will often use these criteria
to show that a pair (H,T ) is a Feshbach-Schur pair associated with P .

Wick Monomials. We now describe the general class of operators to which the methods
developed in this paper, based on the smooth Feshbach-Schur map, can be applied.

Setting N0 := N ∪ {0}, we denote by

w := {wm,n}m,n∈N0 (1.34)

a sequence of bounded measurable functions,

∀m,n : wm,n : R× R3 × R3m × R3n 7→ C, (1.35)

that are continuously differentiable in the variables, r ∈ σ(Hf ) ⊂ R, ~l ∈ σ(~Pf ) = R3, respec-
tively, appearing in the first and the second argument, and symmetric in the m variables in
R3m and the n variables in R3n. We suppose furthermore that

w0,0(0,~0) = 0. (1.36)

With a sequence, w, of functions, as specified above, and a positive number 1 ≥ ρ > 0, we
associate operators

Wm,n(w) := 1Hf≤ρ

∫
R3m×R3n

a∗(k1) · · · a∗(km)wm,n(Hf , ~Pf , k
1, · · · , km, k̃1

, · · · , k̃n) (1.37)

· a(k̃
1
) · · · a(k̃

n
)

m∏
i=1

dki

n∏
j=1

dk̃j1Hf≤ρ.

It is easy to show thatWm,n(w) is actually a bounded operator onHf . The operatorsWm,n(w)
defined in (1.37) are called (generalized) Wick-monomials (at the energy scale ρ). For every
sequence of functions w and every E ∈ C we define

H[w, E ] =
∑

m+n≥0

Wm,n(w) + E , W≥1(w) :=
∑

m+n≥1

Wm,n(w). (1.38)

The complex number E is the vacuum expectation value of H[w, E ]:

〈Ω|H[w, E ]Ω〉 = E . (1.39)

1.3.2. The First Decimation Step of Spectral Renormalization. Recall that we wish to analyze
the fate of an excited state of an atom after it is coupled to the radiation field. Let us consider
the excited state indexed by i0 ∈ {2, · · · , N}, with unperturbed internal energy Ei0 . We expect
that, after coupling the atom to the quantized radiation field, an excited state (corresponding
to an index i0 > 1) is unstable, i.e., is turned into a resonance. Our goal is to determine its life
time and the real part of the resonance energy (Lamb shift). For this purpose, we introduce a
sequence of smooth Feshbach-Schur “decimation” maps that will be successively applied to the
deformed Hamiltonians Hθ(~p), with the goal of constructing a sequence of operators, which –
when applied to the vacuum Ω – will converge to z(∞)(~p)Ω, where z(∞)(~p) is the ith0 resonance
energy; (as announced, we will omit reference to i0 in our notation, since i0 will be fixed). In
this subsection, we sketch the construction of the first decimation map.



10 M. BALLESTEROS, J. FAUPIN, J. FRÖHLICH, AND B. SCHUBNEL

We define a decreasing function χ ∈ C∞(R) satisfying

χ(r) :=

{
1, if r ≤ 3/4,
0 if r > 1,

(1.40)

and strictly decreasing on (3/4, 1). Furthermore, we choose a constant ρ0 ∈ (0, 1) and define

χρ0(r) := χ(r/ρ0), χρ0
(r) :=

»
1− χ2

ρ0
(r). (1.41)

Let ψi0 denote the normalized eigenvector (unique up to a phase) of the operator His corre-
sponding to the eigenvalue Ei0 . The orthogonal projection onto ψi0 is denoted by

Pi0 := |ψi0〉〈ψi0 |. (1.42)

Next, we define an operator χi0 by

χi0 := Pi0 ⊗ χρ0(Hf ). (1.43)

In Section 3 we will prove that, for |z − Ei0 | � ρ0µ sin(ϑ), (Hθ(~p) − z,Hθ,0(~p) − z) is a
Feshbach-Schur pair associated to χi0 and that, as a consequence, there is a sequence of
functions w(0)(~p, z) [see (1.34)] and a complex number E(0)(~p, z) such that an application of
the Feshbach-Schur map, Fχi0

(·, Hθ,0(~p) − z), to the operator Hθ(~p) − z1 yields an operator
of the form specified in Eq. (1.38). More precisely,

Fχi0
(Hθ(~p)− z,Hθ,0(~p)− z)|Pi0⊗1Hf≤ρ0 [H~p] = Pi0 ⊗H[w(0)(~p, z), E(0)(~p, z)]. (1.44)

We simplify our notation by writing [see (1.38)]

H(0)(~p, z) := H[w(0)(~p, z), E(0)(~p, z)] = W
(0)
≥1 (~p, z) + w

(0)
0,0(~p, z,Hf , ~Pf ) + E0(~p, z), (1.45)

where
W

(0)
≥1 (~p, z) :=

∑
m+n≥1

Wm,n(w(0)(~p, z)).

One expects that it is easier to analyze the operator H(0)(~p, z), rather than the original
operator Hθ(~p) − z, because the former acts on a subspace, Pi0 ⊗ 1Hf≤ρ0 [H~p] ⊂ H~p (with
all internal states corresponding to indices i 6= i0 eliminated), and the operator W (0)

≥1 (~p, z) is
bounded in norm by some power of ρ0.

1.3.3. Inductive Construction of Effective Hamiltonians. The accuracy of the information on
the spectrum of the operator H(0)(~p, z) near 0, and hence on the spectrum of the operator
Hθ(~p) near Ei0 , that can be achieved (after one application of the Feshbach-Schur map) is
limited by the circumstance that ρ0 cannot be taken to be very small. Luckily, it turns out that
this limitation can be removed by successive applications of Feshbach-Schur maps that lower
the energy range of the states in the subspaces on which the Feshbach-Schur operators act
further and further towards 0 and, hence, determine the location of the spectrum of Hθ(~p) near
Ei0 ever more accurately. Successive applications of Feshbach-Schur maps yield Hamiltonians

H(j)(~p, z) = H[w(j)(~p, z), E(j)(~p, z)], j ∈ N0, (1.46)

as in Eq. (1.38), with the following properties:

Hθ(~p)− z is bounded invertible⇐⇒ H(j)(~p, z) is bounded invertible. (1.47)

Hθ(~p)− z is not injective⇐⇒ H(j)(~p, z) is not injective. (1.48)
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These “iso-spectrality properties” permit us to trade the analysis of the spectrum of Hθ(~p)
near the energy Ei0 of an excited state of the atom for the analysis of the spectrum of the
operators H(j)(~p, z) near the origin. This turns out to simplify matters considerably: The
study of the operators H(j)(~p, z) is much easier than the study of the original Hamiltonian,
because H(j)(~p, z) is the sum of a diagonal operator, whose spectrum is known explicitly, and a
perturbation term whose operator norm will turn out to decrease to zero super-exponentially,
as j → ∞. Below, we describe in somewhat more detail how this idea, which was originally
developed in [10], [9], can be implemented, technically; (details will be presented in Section
4).

Let ~p∗ ∈ R3, with |p∗| < 1, and let ~p ∈ Uθ[~p∗]. We define two sequences of numbers (ρj)j∈N0 ,
(rj)j∈N0 by

ρj = ρ
(2−ε)j
0 , with ε ∈ (0, 1), rj :=

µ sin(ϑ)

32
ρj , (1.49)

where 0 < ρ0 < 1 is a suitably chosen parameter; (see Section 4). The rate of convergence
of the sequence ρj depends on the infrared behavior of the interacting Hamiltonian HI . In
general, if HI behaves like |~k|α−1/2 in the infrared and α > 0, the sequence ρj can be chosen
to be equal to ρ(1+ε)j

0 for any 0 < ε < α. A filtration of Hilbert spaces (H(j))j∈N0 is given by
setting

H(j) = 1Hf≤ρj [Hf ]. (1.50)

We construct inductively a sequence of complex numbers {z(j−1)(~p)}j∈N0 , z(−1)(~p) := Ei0 ,
and, for every z ∈ D(z(j−1)(~p), rj), a sequence of functions w(j)(~p, z) and a complex number
E(j)(~p, z) [see (1.34)-(1.39)] , with the following properties:

(a) Let

W (j)
m,n(~p, z) := Wm,n(w(j)(~p, z)), H(j)(~p, z) := H[w(j)(~p, z), E(j)(~p, z)], (1.51)

acting on H(j), (with m,n ∈ N0); see (1.37) and (1.38). Then we have that

‖W (j)
0,0 (~p, z)Ψ‖ = ‖w(j)

0,0(~p, z,Hf , ~Pf )Ψ‖ ≥ ε‖HfΨ‖, ∀Ψ ∈ H(j) (1.52)

for some constant ε > 0 depending on ~p, but independent of j. The pair of operatorsÄ
H(j)(~p, z),W

(j)
0,0 (~p, z) + E(j)(~p, z)

ä
is a Feshbach-Schur pair associated to χρj (Hf ).

Thus

H(j+1)(~p, z) = Fχρj+1 (Hf )[H
(j)(~p, z),W

(j)
0,0 (~p, z) + E(j)(~p, z)]|1Hf≤ρj+1

(1.53)

is well defined. Note that the vacuum vector Ω ∈ Hf is an eigenvector of W (j)
0,0 (~p, z)

with associated eigenvalue 0, for all j ∈ N0.
(b) The complex number z(j)(~p) is defined as the only zero of the function

D
(
z(j−1)(~p),

2

3
rj
)
3 z −→ E(j)(~p, z) = 〈Ω| H(j)(~p, z)Ω〉, (1.54)

and the following inequalities hold:

|z(j)(~p)− z(j−1)(~p)| < rj
2
,

∣∣∣E(j)(~p, z)
∣∣∣ ≤ µ

16
ρj+1, for z ∈ D

(
z(j)(~p),

2

3
rj+1

)
. (1.55)
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Ei0
z(0)z(1)

D(Ei0 , r0)

D(z(0), r1)

D(z(1), r2)

Figure 2. For fixed ~p ∈ Uθ[~p
∗], the sets D(z(j)(~p), rj+1) are shrinking super-

exponentially fast with j and, for every j ∈ N0, D(z(j)(~p), rj+1) ⊂ D(z(j−1)(~p), rj).

By Eqs. (1.38) and (1.51),

H(j)(~p, z) = W
(j)
0,0 (~p, z) + E(j)(~p, z) +W

(j)
≥1 (~p, z). (1.56)

As a function of Hf and ~Pf , the operator W (j)
0,0 (~p, z) = w

(j)
0,0(~p, z,Hf , ~Pf ) is defined by func-

tional calculus and satisfies (1.52). Given w(j)
0,0, the spectrum of

W
(j)
0,0 (~p, z) + E(j)(~p, z) (1.57)

can be determined explicitly. This operator is therefore considered to be the unperturbed
Hamiltonian (the operator T in Definition 1.3) in the next application of the Feshbach-Schur
map. Eq. (1.56) shows that the operatorH(j)(~p, z) is the sum of the unperturbed Hamiltonian,
T = W

(j)
0,0 (~p, z) + E(j)(~p, z), and a perturbation given by W = W

(j)
≥1 (~p, z) whose norm tends to

zero, as j tends to ∞. We will actually prove that, for every j ∈ N0,

‖W (j)
≥1 (~p, z)‖ ≤ Cjρ2

j , (1.58)

for some constant C > 1. Recalling formula (1.33) for the Feshbach-Schur map, just above
Theorem 1.4, we find that the bound (1.58), the lower bound in (1.52) and (1.55) enable us to
construct Fχρj+1 (Hf )[H

(j)(~p, z),W
(j)
0,0 (~p, z)+E(j)(~p, z)] with the help of a convergent Neumann

expansion in powers of the perturbation W (j)
≥1 (~p, z). Thanks to (1.58), (1.52) and (1.55) and

using “iso-spectrality”, the sequence {H(j)(~p, z)} of effective Hamiltonians enables us to locate
the spectrum of the deformed Hamiltonian Hθ(~p), =θ > 0, near the energy Ei0 with ever
higher precision as the resonance energy z(∞)(~p) is approached. (We remark that z(∞)(~p) is
an eigenvalue of the operator Hθ(~p), =θ > 0, as proven in the next subsection.)

It is a characteristic feature of multi-scale renormalization, as well as of KAM theory, that
a problem of singular perturbation theory involving an infinite range of scales is decomposed
into a sequence of infinitely many regular perturbation problems, one for every finite range
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of scales, solved iteratively, with the splitting of an effective Hamiltonian into an unperturbed
part and a perturbation chosen anew, in every step, j, of the iterative perturbative analysis.
These are key features enabling one to successfully cope with problems of singular perturbation
theory. They will become manifest in the analysis presented in this paper.

1.3.4. Construction of Eigenvalues and Analyticity in ~p, θ and λ0. In this section we sketch
the main ideas of our construction of the ground-state-(i0 = 1) and resonance-(i0 > 1) energy
z(∞)(~p) of Hθ(~p) (for some fixed i0 ≥ 1) and of the proof that z(∞)(~p) is an eigenvalue of
Hθ(~p), for ~p ∈ Uθ[~p∗], =θ < π

4 large enough, and λ0 ≥ 0 small enough. (Note that, for the
ground-state, i.e., for i0 = 1, we can choose θ to vanish, and z(∞)(~p) is shown to be a simple
eigenvalue of the self-adjoint operator H(~p), for ~p ∈ R3, with |~p| < 1, and λ0 positive and
small enough. As a function of ~p this is the renormalized dispersion law of the atom.)

We start our considerations by observing that the sequence of approximate resonance en-
ergies (z(j)(~p))j∈N0 is Cauchy, as follows from Eq. (1.55). It is not difficult to show (see
Section 5) that it actually is a Cauchy sequence of analytic functions of the momentum ~p, for
~p ∈ Uθ[~p∗]. (Analyticity in θ, for =θ < π

4 large enough, and in λ0, for |λ0| small enough, can
be shown by very similar arguments, which we skip here). We then define

z(∞)(~p) := lim
j→∞

z(j)(~p) =
⋂
j∈N0

D
Ä
z(j−1)(~p), rj

ä
, (1.59)

which is analytic in ~p ∈ Uθ[~p
∗]. The complex number z(∞)(~p) is an eigenvalue of Hθ(~p);

it is the resonance energy that we are looking for. It is convenient to extend the operator
H(j)(~p, z(∞)(~p)), for j ∈ N0, to an operator defined on the entire Fock space Hf by defining it
to vanish on the orthogonal complement of the subspace H(j) = Ran(1Hf≤ρj ). We continue
to use the same symbol, H(j)(~p, z(∞)(~p)), for this extension. Similarly, we extend the other
operators in (1.56) to operators acting on the entire Fock space.

We then show that

lim
j→∞

H(j)(~p, z(∞)(~p)) = 0 = H(∞)(~p, z(∞)(~p)). (1.60)

(In the proof of (1.60), we use (1.36).)
With some further effort, using iso-spectrality, one then shows that

z(∞)(~p) is an eigenvalue of Hθ(~p), (1.61)

for =θ < π
4 large enough. Analyticity of z(∞)(~p) in θ then implies that this quantity is actually

independent of θ.
Next, we sketch the proofs of (1.60) and of (1.61). Using (1.55), (1.56) and (1.58), we see

that
lim
j→∞

‖H(j)(~p, z(∞)(~p))−W (j)
0,0 (~p, z(∞)(~p))‖ = 0. (1.62)

As explained in Section 1.3.3, see (1.45) and (1.50),

W
(j)
0,0 (~p, z(∞)(~p)) = w

(j)
0,0(~p, z(∞)(~p), Hf , ~Pf )1Hf≤ρj . (1.63)

The derivatives of w(j)
0,0(~p, z(∞)(~p), r,~l) in the variables r and ~l are uniformly bounded, for

r ∈ [0, ρj ], |~l| ≤ r (and |w(j)
0,0(~p, z(∞)(~p), r,~l)| ≥ ε · r, for some constant ε > 0 independent of

j), for all j ∈ N0. These properties and the normalization condition (1.36) imply that

lim
j→∞

W
(j)
0,0 (~p, z(∞)(~p)) = 0, (1.64)
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which, together with (1.62), implies (1.60).
By (1.50), ⋂

j∈N0

H(j) = {CΩ}.

Eq. (1.60) then shows that the vacuum Ω is an eigenvector of H(∞)(~p, z(∞)(~p)) with eigenvalue
0. To prove (1.61) we apply part (ii) of Theorem 1.4 iteratively, after each application of a
Feshbach map.
We define

Qχρj := Qχρj

(
H(j)(~p, z(∞)(~p)),W

(j)
0,0 (~p, z(∞)(~p)) + E(j)

0,0(~p, z(∞)(~p))
)
, (1.65)

where the operator Q has been defined in Theorem 1.4. One can then prove that

ψ(0) := lim
j→∞

Qχρ1Qχρ1 · · ·Qχρj (Ω) (1.66)

exists. Using that H(∞)(~p, z(∞)(~p))Ω = 0, we are able to show that

H(0)(~p, z(∞)(~p))ψ(0) = 0.

Then, using Theorem 1.4 once more, we conclude that [see (1.42)-(1.43)]

Qχi0

(
Hθ(~p)− z(∞)(~p), Hθ,0(~p)− z(∞)(~p)

)
(ψ(0) ⊗ ψi0) (1.67)

is an eigenvector of Hθ(~p) with eigenvalue z(∞)(~p).

Acknowledgement. We are grateful to T.Chen and A.Pizzo for stimulating discussions on prob-
lems related to those studied in this paper. We are especially indebted to V. Bach and I. M.
Sigal for numerous illuminating discussions and collaboration on problems closely related to
those analyzed and the mathematical methods used in the present paper. The research of J.
Fa. is supported by ANR grant ANR-12-JS01-0008-01; the stay of J. Fr. at the Institute for
Advanced Study, Princeton, has been supported by the ‘Fund for Math’ and ‘The Robert and
Luisa Fernholz Visiting Professorship Fund’.

2. Parameters of the Problem, Notations

In this section, we present a list of all the parameters appearing in the analysis of the
spectral problems solved in this paper. In Subsection 2.2, we introduce the main symbols and
notations used in subsequent sections.

2.1. System- and algorithmic parameters. The quantities λ0 (coupling constant), δ0

(spacing between energies of excited states of the atom), N (number of internal energy levels
of the atom), σΛ (ultraviolet cut-off imposed on the quantized electric field), and µ (bound
on the momentum of the atom) are parameters characteristic of the physical system under
investigation. They are henceforth called system parameters. All our estimates depend
on the choice of these parameters, and our main results only hold if suitable restrictions on
the values of these parameters are imposed. Other parameters appearing in our analysis are
related to the mathematical methods applied to establish our main results, in particular to the
algorithm (inductive construction) used to derive the main estimates needed in our proofs. We
call them algorithmic parameters. Among these parameters are the dilatation parameter,
ϑ, appearing in the complex deformation of the basic Hamiltonian used to locate the resonance
energies, and the scale parameter ρ0, as well as the parameter ε appearing in the definition of
the Feshbach maps; see Eq. (1.49). These (auxiliary) parameters are chosen so as to ensure
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(and “optimize”) the convergence of the inductive construction outlined above. Constraints on
the choice of the parameters ϑ and ρ0 are discussed in Sections 3 and 4, respectively. In the
rest of this text, we call problem parameter any system-or algorithmic parameter.

2.2. Notations relative to creation/annihilation operators and integrals. We intro-
duce the notations

k(m) := (k1, . . . , km) ∈ R3m, k̃(n) := (k̃1, . . . , k̃n) ∈ R3n,

K(m,n) := (k(m), k̃(n)), dK(m,n) :=
m∏
i=1

dki

n∏
j=1

dk̃j ,

|K(m,n)| := |k(m)| |k̃(n)|, |k(m)| :=
m∏
i=1

|~ki|, |k̃(n)| :=
n∏
j=1

|~̃kj |,

a∗(k(m)) :=
m∏
i=1

a∗λi(
~ki), a(k̃(n)) :=

n∏
j=1

aλj (
~̃
kj).

For ρ ∈ C, we set

ρk(m) := (ρ~k1, λ1, . . . , ρ~km, λm), ρK(m,n) := (ρk(m), ρk̃(n)).

For m := (m1, ...,mL), n := (n1, ..., nL), we set

K(m,n) = (k
(m1)
1 , ..., k

(mL)
L , k̃

(n1)
1 , ..., k̃

(nL)
L ) ∈ R3[

∑
i
(mi+ni)].

For ρ ∈ R+, and m,n ∈ N, we introduce

Bρ := {k ∈ R3 | |~k| ≤ ρ},

Bm
ρ := {(k1, ..., km) ∈ R3m |

m∑
i=1

|~ki| ≤ ρ},

B(m,n)
ρ := Bm

ρ ×Bn
ρ .

2.3. Kernels and their domain of definition. Let ρ > 0. We set

Bρ := {(r,~l) ∈ [0, ρ]× R3, |~l| ≤ r}. (2.1)

Let wm,n be a function
wm,n : Bρ ×B(m,n)

ρ → C.
We introduce

‖wm,n‖ 1
2

:= sup
(r,~l)∈Bρ

ess sup
K(m,n)∈B(m,n)

ρ

|wm,n
Ä
r,~l,K(m,n)

ä
|

|k(m)|1/2|k̃(n)|1/2
. (2.2)

The choice of the norm ‖·‖ 1
2
is motivated by the infrared behavior of the interaction Hamilton-

ian HI , which behaves like ~k 7→ |~k|1/2 for small values of |~k|. Lemma 3.1 below establishes the
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link between the norm of the operator Wm,n and the norm ‖wm,n‖ 1
2
of its associated kernel.

Finally, if w0,0 : Bρ → C is essentially bounded, we set

‖w0,0‖∞ = ess sup
(r,~l)∈Bρ

|w0,0

Ä
r,~l
ä
|. (2.3)

2.4. Notations relative to estimates. Many numerical constants appear in our estimates.
Keeping track of all these constants would be very cumbersome and is not necessary for
mathematical rigor. Let a, b > 0. We write

a = O(b) (2.4)

if there is a numerical constant C > 0 independent of the system and algorithmic parameters
such that a ≤ Cb.

The shorthand
“for all a� b, . . . ” (2.5)

means that “there exists a (possibly very small, but) positive numerical constant C independent
of the system and algorithmic parameters such that, for all a ≤ Cb, . . . ”

3. The first decimation step

Here we present details of the results described in Section 1.3.1. We use the notations
introduced there.

In Subsection 3.1.1, we state two standard lemmas that we use repeatedly in our analysis.
The proofs are postponed to Appendix B for the reader’s convenience.

In Subsection 3.1.2, we prove under suitable assumptions that the pair (Hθ(~p)−z,Hθ,0(~p)−
z) is a Feshbach-Schur pair associated to the generalized projection χi0 = Pi0⊗χρ0(Hf ) defined
in (1.43). This result holds for all (~p, z) in the open set Uρ0 [Ei0 ], where

Uρ0 [Ei0 ] := Uθ[~p
∗]×D(Ei0 , r0); (3.1)

see (1.30) and (1.49). We remind the reader that the operator H(0)(~p, z) is the partial trace
over the internal degrees of freedom of the restriction of the Feshbach operator Fχi0

(Hθ(~p)−
z,Hθ,0(~p)−z) to 1Hf≤ρ0(Hf ); see (1.44)-(1.45). In Subsection 3.2, we show that H(0)(~p, z) can
be rewritten as a convergent series of Wick monomials and that it is analytic in (~p, z) on the
open set Uρ0 [Ei0 ]. Details of the proofs are postponed to Appendix C.1 and C.2. In Lemma
3.5, we prove that there exists a unique element z(0)(~p) ∈ D(Ei0 , r0), for each ~p ∈ Uθ[~p], such
that E(0)(~p, z(0)(~p)) = 0. The properties of the kernels w(0)

m,n and the function E(0) established
in Lemmas 3.4 and 3.5 are the basis of the inductive construction described in Section 4.

3.1. Feshbach-Schur Pair.

3.1.1. Two Lemmas. We begin with a lemma showing that the norm of the Wick monomials
is controlled by the norm of their associated kernels. The proof is standard and deferred to
Appendix B.
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Lemma 3.1. Let ρ > 0. Let wm,n be a function wm,n : Bρ ×B(m,n)
ρ → C with ‖wm,n‖ 1

2
<∞,

and let Wm,n be the Wick monomial on 1Hf≤ρHf , defined in the sense of quadratic forms by

Wm,n := 1Hf≤ρ

Ç∫
B

(m,n)
ρ

dK(m,n)a∗(k(m))wm,n
Ä
Hf , ~Pf ,K

(m,n)
ä
a(k̃

(n)
)

å
1Hf≤ρ.

Then
‖Wm,n‖ ≤ (8π)

m+n
2 ρ2(m+n)‖wm,n‖ 1

2
. (3.2)

The next lemma will be used in the remainder of this section. Again, its proof is deferred to
Appendix B. We remind the reader that σΛ is the ultraviolet cut-off parameter that appears
in the interacting Hamiltonian HI and that δ0 denotes the minimal distance between two
distinct eigenvalues of His.

Lemma 3.2.
• Let 0 < ρ < 1. For all θ = iϑ ∈ D(0, π/4), we have that∥∥∥(Hf + ρ)−1/2HI,θ(Hf + ρ)−1/2

∥∥∥ = O
(
σ

3/2
Λ

ρ1/2

)
. (3.3)

• Let 0 < ρ0 < min(1, δ0). For all θ = iϑ, 0 < ϑ < π/4, and (~p, z) ∈ Uρ0 [Ei0 ], the operator
[Hθ,0(~p)− z]Ran(χi0 ) is bounded invertible and satisfies the estimates∥∥∥[Hθ,0(~p)− z]−1

Ran(χi0 )

∥∥∥ = O
Ç

1

µρ0 sin(ϑ)

å
, (3.4)

∥∥∥ [(Hθ,0(~p)− z)−
1
2 (Hf + ρ0)(Hθ,0(~p)− z)−

1
2

]
Ran(χi0 )

∥∥∥ = O
Ç

1

µ sin(ϑ)

å
. (3.5)

3.1.2. (Hθ(~p)− z,Hθ,0(~p)− z) is a Feshbach-Schur pair. We now show that the pair (Hθ(~p)−
z,Hθ,0(~p)−z) is a Feshbach-Schur pair, provided that the coupling constant λ0 is small enough
and that the scale parameter ρ0 satisfies ρ0 � λ2

0(µ sinϑ)−2.

Lemma 3.3. There exists λc > 0 such that, for all 0 ≤ λ0 ≤ λc, θ = iϑ satisfying 0 < ϑ < π/4

and σ−3/2
Λ µ sinϑ� λ0, (~p, z) ∈ Uρ0 [Ei0 ], and ρ0 such that λ2

0σ
3
Λ(µ sinϑ)−2 � ρ0 < min(1, δ0),

the pair (Hθ(~p)− z,Hθ,0(~p)− z) is a Feshbach-Schur pair associated to χi0 .

Proof. Lemma 3.2 shows that [Hθ,0(~p)−z]Ran(χi0 ) is bounded invertible for all (~p, z) ∈ Uρ0 [Ei0 ].
We prove that

Hχi0
(~p, z) := Hθ,0(~p)− z + λ0χi0HI,θχi0 (3.6)

is bounded invertible on Ran(χi0). The proof is standard and relies on Equation (3.3) in
Lemma 3.2. By (3.3), the Neumann series for [Hχi0

(~p, z)]−1
Ran(χi0 ) is estimated as

∥∥∥[Hχi0
(~p, z)]−1

Ran(χi0 )

∥∥∥ ≤ ρ−1
0

∞∑
n=0

î
Cσ

3/2
Λ λ0ρ

−1/2
0

ón ×
∥∥∥∥ [(Hθ,0(~p)− z)−

1
2 (Hf + ρ0)(Hθ,0(~p)− z)−

1
2

]
Ran(χi0 )

∥∥∥∥n+1

,(3.7)
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for some numerical constant C > 0. Using (3.5), we see that the Neumann series converges
uniformly in (~p, z) ∈ Uρ0 [Ei0 ] provided that λ0 � σ

−3/2
Λ ρ

1/2
0 µ sinϑ. Moreover,∥∥∥[Hχi0

(~p, z)]−1
Ran(χi0 )

∥∥∥ = O
Ç

1

µρ0 sin(ϑ)

å
. (3.8)

Since in addition HI,θχi0 and χi0HI,θ extend to bounded operators on H~p, it follows that
(Hθ(~p)− z,Hθ,0(~p)− z) is a Feshbach-Schur pair associated to χi0 . �

3.2. Wick-ordering and analyticity of H(0)(~p, z). We assume that the parameters ρ0, λ0

and θ satisfy the hypotheses of Lemma 3.3, so that the smooth Feshbach-Schur map associated
to χi0 can be applied to the pair (Hθ(~p)−z,Hθ,0(~p)−z) for all (~p, z) ∈ Uρ0 [Ei0 ]. Let H(0)(~p, z)

be defined as in (1.44). More precisely, H(0)(~p, z) is the bounded operator onH(0) = 1Hf≤ρ0Hf
associated with the bounded quadratic form defined by

〈ψ|H(0)(~p, z)φ〉 = 〈ψi0 ⊗ ψ|Fχi0
(Hθ(~p, z), Hθ,0(~p, z))ψi0 ⊗ φ〉, (3.9)

for all ψ, φ ∈ H(0), where ψi0 is a normalized eigenvector associated to the eigenvalue Ei0
of His. Here we omit the argument θ to simplify notations. Lemma 3.4 below shows that
H(0)(~p, z) can be rewritten as a convergent series of Wick monomials on H(0); see (1.45).
The convergence is uniform on the open set Uρ0 [Ei0 ]. The main tool used in the proof is the
pull-though formula

a(k)g(Hf , ~Pf ) = g(Hf + |~k|, ~Pf + ~k)a(k), (3.10)

which holds for any measurable function g : R4 → C, and which enables us to normal order
the creation and annihilation operators that appear in H(0)(~p, z). Lemma 3.4 also shows that
H(0)(~p, z) can be made arbitrary close (in norm) to the operatorÄ

e−θHf − e−θ~p · ~Pf + Ei0 − z
ä
|H(0)

(3.11)

by an appropriate tuning of the coupling constant λ0, and that the map (~p, z) 7→ H(0)(~p, z) ∈
L(H(0)) is analytic on Uρ0 [Ei0 ]. The proof of Lemma 3.4 is postponed to Appendix C.

Lemma 3.4. Let γ > 0. There exists λc(γ) > 0 such that, for all 0 ≤ λ0 ≤ λc(γ) and θ and ρ0

as in Lemma 3.3, H(0) can be rewritten as a uniformly convergent series of Wick monomials
on Uρ0 [Ei0 ],

H(0)(~p, z) = H[w(0)(~p, z), E(0)(~p, z)] =
∑

m+n≥0

W (0)
m,n(~p, z) + E(0)(~p, z). (3.12)

The associated kernels
w(0)
m,n : Uρ0 [Ei0 ]× Bρ0 ×B(m,n)

ρ0
→ C

and the function E(0) : Uρ0 [Ei0 ]→ C satisfy the following properties:

• w(0)
0,0(~p, z, ·, ·) is C1 on Bρ0 and w(0)

0,0(~p, z, 0,~0) = 0 for all (~p, z) ∈ Uρ0 [Ei0 ],

• w(0)
m,n(~p, z, ·, ·,K(m,n)), m + n ≥ 1, are C1 on Bρ0 for almost every K(m,n) ∈ B(m,n)

ρ0 and
every (~p, z) ∈ Uρ0 [Ei0 ],
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• For all (~p, z) ∈ Uρ0 [Ei0 ],

‖w(0)
m,n(~p, z)‖ 1

2
≤ γµ sin(ϑ)ρ

− 1
2

(m+n)+1
0 , (3.13)

‖∂#w
(0)
m,n(~p, z)‖ 1

2
≤ γρ−

1
2

(m+n)
0 , (3.14)

for all m+ n ≥ 1, where ∂# stands for ∂r or ∂lj , and

|(Ei0 − z)− E(0)(~p, z)| ≤ γµρ0 sin(ϑ), (3.15)

‖∂rw(0)
0,0(~p, z)− e−θ‖∞ +

3∑
q=1

‖∂lqw
(0)
0,0(~p, z) + pqe

−θ‖∞ ≤ γ +
√

3ρ0. (3.16)

Moreover, the bounded operator-valued function (~p, z) 7→ H(0)(~p, z) ∈ L(H(0)) is analytic on
Uρ0 [Ei0 ].

Since (~p, z) 7→ H(0)(~p, z) ∈ L(H(0)) is analytic on the open set Uρ0 [Ei0 ], the map (~p, z) 7→
E(0)(~p, z) = 〈Ω|H(0)(~p, z)Ω〉 ∈ C is also analytic. Our next lemma establishes, for each ~p ∈
Uθ[~p

∗], the existence of a unique element z(0)(~p) ∈ D(Ei0 , r0), such that E(0)(~p, z(0)(~p)) = 0.
Here we recall that r0 = ρ0µ sin(ϑ)/32.

Lemma 3.5. Let 0 < γ � 1 and suppose that λ0, ρ0, θ = iϑ are fixed as in Lemma 3.3. Let
~p ∈ Uθ[~p∗]. The holomorphic function z 7→ E(0)(~p, z) ∈ C possesses a unique zero z(0)(~p) ∈
D(Ei0 , r0). Furthermore, for any η > 0 such that r0η + γρ0µ sin(ϑ) < r0, D(z(0)(~p), r0η) ⊂
D(Ei0 , r0), and

|E(0)(~p, z)| ≤ 2γρ0µ sin(ϑ) + r0η, (3.17)

|z(0)(~p)− Ei0 | ≤ γρ0µ sin(ϑ), (3.18)

for all z ∈ D(z(0)(~p), r0η).

Proof. Since γ � 1, we have that r0 > γρ0µ sin(ϑ). We apply Rouché’s theorem to the
functions z 7→ E(0)(~p, z) and z 7→ Ei0 − z on D(Ei0 , r) with γρ0µ sin(ϑ) < r < r0. For any
z ∈ ∂D(Ei0 , r), we have that |Ei0 − z| = r, and hence

|E(0)(~p, z)− (Ei0 − z)| ≤ γρ0µ sin(ϑ) < |Ei0 − z|,

for any r > γρ0µ sin(ϑ). As r can be chosen arbitrarily close to r0, we deduce that z 7→
E(0)(~p, z) possesses a unique zero, z(0)(~p), inD(Ei0 , r0). Let η > 0 such that r0η+γρ0µ sin(ϑ) <
r0. The triangle inequality implies that

|E(0)(~p, z)| ≤ γρ0µ sin(ϑ) + |z − z(0)(~p)|+ |z(0)(~p)− Ei0 | ≤ 2γρ0µ sin(ϑ) + r0η,

for all z ∈ D(z(0)(~p), r0η) ⊂ D(Ei0 , r0). �
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4. The inductive construction

As described in Subsection 1.3.3, we propose to inductively construct a sequence of effective
Hamiltonians, H(j)(~p, z), j = 0, 1, ..., with the property that H(j)(~p, z(∞)(~p)) is not injective
if and only if z(∞)(~p) is an eigenvalue of Hθ(~p). We use the notations introduced in Section 1,
and we now present the details of our inductive construction. In particular, one of our purposes
in this section is to prove bounds on the perturbation W (j)

≥1 (~p, z); see (1.58). We remind the
reader that our inductive construction can be summarized by describing the induction step,
from j to j + 1:

(i) In passing from j to j + 1, our starting point is the effective Hamiltonian H(j)(~p, z) con-
structed in the previous induction step, which is an operator defined on the space H(j) =
1Hf≤ρjHf , provided (~p, z) is constrained to belong to a certain open subset Uρj [z(j−1)] of
C3 × C. For each ~p ∈ Uθ[~p∗], the admissible values of z are then taken to lie inside a small
disk centered at the zero, z(j)(~p), of the function

z 7→ E(j)(~p, z) = 〈Ω|H(j)(~p, z)Ω〉.

This will define an open set Uρj+1 [z(j)] ⊂ Uρj [z(j−1)].
(ii) We apply the Feshbach-Schur map to the Feshbach pair (H(j)(~p, z),W

(j)
0,0 (~p, z) + E(j)(~p, z))

associated to χρj+1(Hf ), for all (~p, z) in Uρj+1 [z(j)]. We then re-Wick order the resulting
operator (all creation operators moved to the left of all annihilation operators, using the pull-
through formula). This yields a new effective Hamiltonian, H(j+1)(~p, z), at step j+1, which
will be shown to be well-defined on H(j+1) = 1Hf≤ρj+1Hf , provided (~p, z) ∈ Uρj+1 [z(j)].

4.1. Inductive properties of the kernels – from an energy scale ρ to the energy
scale ρ2−ε. We first consider an effective Hamiltonian, given as a sum of Wick monomials, at
an energy scale ρ, with 0 < ρ < 1. By an application of the smooth Feshbach-Schur map, we
obtain a new effective Hamiltonian at an energy scale ρ̃, with

ρ̃ := ρ2−ε, 0 < ε < 1, (4.1)

which has certain properties allowing us to iterate the construction. For a kernel wm,n(~p, z)

defined on a subset S of Bρ × B(m,n)
ρ , ‖wm,n(~p, z)‖1/2 is the norm of wm,n(~p, z) as defined in

(2.2) with the supremum taken over the subset S.
For f : C3 → C a continuous function and ρ > 0, we define

Uρ[f ] := {(~p, z) ∈ Uθ[~p∗]× C | z ∈ D (f(~p), rρ)} , (4.2)

where D (f(~p), rρ) is the complex open disk centered at f(~p) and with radius

rρ :=
ρµ sin(ϑ)

32
.

For (~p, z) ∈ Uρ[f ], we consider the operator

H(~p, z) = H[w(~p, z), E(~p, z)] =
∑

m+n≥0

Wm,n(~p, z) + E(~p, z), (4.3)

on 1Hf≤ρHf , associated with a sequence of kernels

wm,n : Uρ[f ]× Bρ ×B(m,n)
ρ → C

and a function E : Uρ[f ]→ C. We assume that there exists a constant D > 1 such that
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(a) w0,0(~p, z, ·, ·) is C1 on Bρ, and w0,0(~p, z, 0,~0) = 0, for all (~p, z) ∈ Uρ[f ];

(b) the kernels wm,n(~p, z, ·, ·,K(m,n)), m + n ≥ 1, are C1 on Bρ, for almost every K(m,n) ∈
B

(m,n)
ρ and every (~p, z) ∈ Uρ[f ]. Moreover, wm,n(~p, z, ·, ·,K(m,n)) is symmetric in k(m) and

k̃
(n)

;

(c) for all (~p, z) ∈ Uρ[f ],

‖wm,n(~p, z)‖ 1
2
≤ Dm+nρ−(m+n)+1µ sin(ϑ), (4.4)

‖∂#wm,n(~p, z)‖ 1
2
≤ Dm+nρ−(m+n), (4.5)

for all m+ n ≥ 1, where ∂# stands for ∂r or ∂lj ;
(d) the maps E : Uρ[f ]→ C and (~p, z) 7→ H(~p, z) ∈ L(1Hf≤ρHf ) are analytic on Uρ[f ];
(e) for all ~p ∈ Uθ[~p

∗], the holomorphic function z 7→ E(~p, z) ∈ C possesses a unique zero
f̃(~p) ∈ D(f(~p), 2rρ/3), where f̃ is analytic in ~p ∈ Uθ[~p∗]; with ρ̃ defined by (4.1), we then
have that

Uρ̃[f̃ ] ⊂ Uρ[f ],

|f̃(~p)− f(~p)| < rρ
2
, (4.6)

for all ~p ∈ Uθ[~p∗], and

|E(~p, z)| ≤ µρ̃

16
, (4.7)

for all (~p, z) ∈ Uρ̃[f̃ ].

Lemma 4.1. Let D > 1 be as in (4.4) and (4.5) and such that ρε � D−1. Let f : C3 → C be
a continuous function, and let H(~p, z) be the operator given in (4.3). For (~p, z) ∈ Uρ[f ], this
operator is assumed to satisfy properties (a)–(e), above. In addition, we assume that

‖∂rw0,0(~p, z)− e−θ‖∞ +
3∑
q=1

‖∂lqw0,0(~p, z) + pqe
−θ‖∞ ≤

µ

4
, ∀(~p, z) ∈ Uρ[f ], (4.8)

and that
|∂zE(~p, z) + 1| ≤ 1

4
, ∀z ∈ D(f(~p),

2

3
rρ), (4.9)

where D(f(~p), 2
3rρ) denotes the closed disk with radius 2rρ/3 centered at f(~p).

Then, for ρ̃ = ρ2−ε, the effective Hamiltonian

H̃(~p, z) := Fχρ̃(Hf )[H(~p, z),W0,0(~p, z) + E(~p, z)]1Hf≤ρ̃[Hf ],

is well-defined for all (~p, z) ∈ Uρ̃[f̃ ], and there exists a sequence of kernels

w̃m,n : Uρ̃[f̃ ]× Bρ̃ ×B(m,n)
ρ̃ → C,

and a function Ẽ : Uρ̃[f̃ ]→ C, such that

H̃(~p, z) = H[w̃(~p, z), Ẽ(~p, z)] =
∑

m+n≥0

W̃m,n(~p, z) + Ẽ(~p, z), (4.10)

for all (~p, z) ∈ Uρ̃[f̃ ]. The maps w̃m,n and Ẽ have properties (a)–(e), above, with ρ replaced by
ρ̃, f by f̃ , D replaced by DC, for some constant C independent of the ’problem parameters’
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and D, and f̃ replaced by ˜̃
f . Here ˜̃

f(~p) denotes the unique zero of the map z 7→ Ẽ(~p, z) ∈ C
in D(f̃(~p), 2rρ̃/3).
Moreover, we have that

‖w̃0,0(~p, z) + Ẽ(~p, z)− w0,0(~p, z)− E(~p, z)‖∞ ≤ D2Cρ2+εµ sin2(ϑ), (4.11)

‖∂#(w̃0,0(~p, z)− w0,0(~p, z))‖∞ ≤ D2Cρ2ε sin(ϑ), (4.12)

for all (~p, z) ∈ Uρ̃[f̃ ].

Remarks. In our inductive construction, the constant D in Lemma 4.1 is replaced at step
j by Cj, where C is the numerical constant appearing in (4.11) and (4.12). Moreover, ρ is
replaced by ρ(2−ε)j

0 . The hypothesis ρ(2−ε)j
0 � C−j is fulfilled at any step j if ρ0 is sufficiently

small. Furthermore, Equations (4.11) and (4.12) imply that (4.8) and (4.9) hold true at any
step j for sufficiently small values of ρ0; see Paragraph 4.2.

The proof of Lemma 4.1 occupies three subsections. In Subsection 4.1.1 we show that the pair

(H(~p, z),W0,0(~p, z) + E(~p, z))

is a Feshbach-Schur pair associated to χρ̃(Hf ), for all (~p, z) ∈ Uρ̃[f̃ ]. In Subsection 4.1.2, we
apply the Feshbach-Schur map to this Feshbach-Schur pair and re-Wick order the resulting
operator H̃(~p, z), so as to bring it into the “normal form” shown in Eq. (4.10). We then
verify that the sequence of kernels w̃ has properties (a), (b), (c) and satisfy the estimates in
(4.11)–(4.12). Finally, in Subsection 4.1.3, we prove that properties (d) and (e) hold, too.

4.1.1. Proof of applicability of the Feshbach-Schur map. Let (~p, z) ∈ Uρ̃[f̃ ]. We have that

|w0,0(~p, z, r,~l) + E(~p, z)| ≥ |w0,0(~p, z, r,~l)| − |E(~p, z)|

≥ |r − ~p ·~l| − µ

4
r − µρ̃/16

≥ r
Å
µ− µ

4

ã
− µρ̃/16

≥ µ

2
ρ̃,

for all (~p, z) ∈ Uρ̃[f̃ ] and r ≥ 3ρ̃/4. Therefore, the restriction of W0,0(~p, z) + E(~p, z) to
Ran(χρ̃(Hf )) is bounded-invertible and

‖[W0,0(~p, z) + E(~p, z)]−1χρ̃(Hf )‖ = O
( 1

µρ̃

)
.

Next, we prove that the restriction of Hχρ̃(Hf )(~p, z) to Ran(χρ̃(Hf )) is bounded-invertible.
It follows from (4.4) and (3.2) that

‖Wm,n(~p, z)‖ ≤ ρ2(m+n)‖wm,n(~p, z)‖ 1
2
(8π)

m+n
2 ≤ ρ2(m+n)(8π)

m+n
2 ρ−(m+n)+1Dm+nµ. (4.13)

Summing (4.13) over m+ n ≥ 1, we find that

‖W≥1(~p, z)‖ = O
Ä
Dρ2µ

ä
, (4.14)

which yields

‖[W0,0(~p, z) + E(~p, z)]−1χρ̃(Hf )W≥1(~p, z)‖ = O (Dρε) .
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Since ρε � D−1, we deduce that (H(~p, z),W0,0(~p, z) + E(~p, z)) is a Feshbach-Schur pair asso-
ciated to χρ̃(Hf ), for all (~p, z) ∈ Uρ̃[z(~p)], and that H̃(~p, z) is well-defined.

4.1.2. Re-Wick ordering and proof of the inductive properties (a), (b) and (c). We temporarily
omit the argument (~p, z). To shorten our notation, we introduce the operators

Hχρ̃ := W0,0 + E + χρ̃(Hf )W≥1χρ̃(Hf ) (4.15)

and

R(Hf , ~Pf ) :=
χ2
ρ̃(Hf )

W0,0(Hf , ~Pf ) + E
. (4.16)

We have that

H̃ = (W0,0 + E)1Hf≤ρ̃ + χρ̃(Hf )W≥1χρ̃(Hf ) + Ṽ , (4.17)

where
Ṽ = −χρ̃(Hf )W≥1χρ̃(Hf )

î
Hχρ̃

ó−1

|Ran(χρ̃(Hf ))
χρ̃(Hf )W≥1χρ̃(Hf ).

For any L ∈ N and any M1, ...,ML ∈ N, we define M := (M1, ...,ML). The Neumann
expansion for Ṽ reads

Ṽ = −
∞∑
L=2

(−1)L
∑

M,N ; Mi+Ni≥1

ṼM,N , (4.18)

where

ṼM,N := χρ̃(Hf )
L−1∏
i=1

î
WMi,NiR(Hf , ~Pf )

ó
WML,NLχρ̃(Hf ). (4.19)

To normal order ṼM,N , we pick out m1/n1 creation/annihilation operators from the M1/N1

creation/annihilation operators available in WM1,N1 ,..., mL/nL creation/annihilation opera-
tors from the ML/NL creation/annihilation operators available in WML,NL , and contract all
the remaining annihilation and creation operators. As the monomials WMi,Ni ’s are symmetric
in k1, ..., kMi

, and in k̃1, ..., k̃Ni , there are

CM,N
m,n :=

L∏
i=1

Ç
Mi

mi

åÇ
Ni

ni

å
contraction schemes giving rise to the same contribution. We then pull through all the remain-
ing m1 + ....+mL uncontracted creation operators to the left, and the remaining n1 + ....+nL
uncontracted annihilation operators to the right. This causes a shift in the arguments of
the operators wMi,Ni(Hf , ~Pf ,K

(Mi,Ni)
i ) and R(Hf , ~Pf ) via the pull-through formula given in

(3.10). The contracted part is expressed as a vacuum expectation value. ṼM,N can be rewritten
in the form

ṼM,N =
∑

m,n; mi≤Mi,ni≤Ni
CM,N
m,n

∫
dK(m,n) a∗(k(m))〈Ω|VM,N

m,n (r,~l,K(m,n))Ω〉
r=Hf ,~l=~Pf

a(k̃
(n)

),

where a∗(k(m)) =
∏L
i=1 a

∗(k
(mi)
i ), see Paragraph 2.2. Furthermore, if mi (or ni) is equal to

zero, a∗(k(mi)
i ) (or a(k̃

(ni)
i )) is replaced by 1 in the above formula. A precise expression for

the operator VM,N
m,n (r,~l,K(m,n)) is given in [22]. The reader should notice that this precise

expression is not necessary to pursue our analysis. What matters is that VM,N
m,n (r,~l,K(m,n))
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is a product of L − 1 operators R(Hf + r, ~Pf + ~l) with shifted arguments, together with the

truncated kernels WMi,Ni
mi,ni (r,~l, k

(mi)
i , k̃

(ni)
i ) with shifted arguments, where

WMi,Ni
mi,ni (r,~l,k

(mi)
i , k̃

(ni)
i ) = 1Hf≤ρ

∫
dX

(Mi−mi,Ni−ni)
i a∗(x

(Mi−mi)
i )

wMi,Ni (Hf + r, ~Pf +~l,K
(mi,ni)
i , X

(Mi−mi,Ni−ni)
i ) a(x̃

(Ni−ni)
i ) 1Hf≤ρ

(4.20)

and

VM,N
m,n (r,~l,K(m,n)) = χρ̃(r + r̃0)

L−1∏
i=1

[
WMi,Ni
mi,ni (r + ri,~l +~li, k

(mi)
i , k̃

(ni)
i )

R(Hf + r + r̃i, ~Pf +~l +
~̃
li)
]
WML,NL
mLnL

(r + rL,~l +~lL, k
(mL)
L , k̃

(nL)
L )χρ̃(r + r̃L).

(4.21)

The terms ri’s, r̃i’s, ~li’s,
~̃
li’s are the shifts that come from the pull-through formula, see (C.12).

Therefore, we deduce that there exists a sequence of kernels w̃M,N : Uρ̃[f̃ ]×Bρ̃ ×B(m,n)
ρ̃ → C

and a function Ẽ : Uρ̃[f̃ ]→ C such that

H̃(~p, z) = H[w̃(~p, z), Ẽ(~p, z)] =
∑

M+N≥0

W̃M,N (~p, z) + Ẽ(~p, z), (4.22)

where we have introduced the arguments (~p, z) again in (4.22). The associated kernels are
given by

w̃M,N (~p, z, r,~l, k(M), k̃
(N)

) =
∑
L=1

(−1)L+1
∑

m1 + ...+mL = M
n1 + ...+ nL = N

∑
p1, ..., pL
q1, ..., qL

mi + ni + pi + qi ≥ 1

C
m+p,n+q
m,n

〈Ω|V m+p,n+q
m,n (~p, z, r,~l,K(M,N))Ω〉sym, (4.23)

for M +N ≥ 1, where m+ p = (m1 + p1, ...,mL + pL), and fsym denotes the symmetrization

of f with respect to the variables k(M) and k̃
(N)

. Notice that we have set pi := Mi − mi,
qi := Ni−ni, i = 1, ..., L. Also note that we started the sum in (4.23) at L = 1, and not L = 2,
since we included the contribution of the term χρ̃(Hf )W≥1(~p, z)χρ̃(Hf ) in (4.17). Similarly,

w̃0,0(~p, z, r,~l)+Ẽ(~p, z) =
[
w0,0(~p, z, r,~l) + E(~p, z)

+
∞∑
L=2

(−1)L−1
∑

p1, ..., pL
q1, ..., qL
pi + qi ≥ 1

〈Ω|V p,q

0,0 (r,~l)Ω〉
]
1r≤ρ̃. (4.24)

We now bound (4.23) and (4.24). Thanks to (3.2),

‖WMi,Ni
mi,ni (r,~l, k

(mi)
i , k̃

(ni)
i )‖ ≤ |k(mi)

i |1/2 |k̃(ni)
i |1/2‖wMi,Ni‖ 1

2
(
√

8πρ2)Mi+Ni−mi−ni . (4.25)

The same bounds are satisfied by the partial derivatives with respect to r and lq with ‖wMi,Ni‖ 1
2

replaced by ‖∂#wMi,Ni‖ 1
2
. Since

|w0,0(~p, z, r,~l) + E(~p, z)| ≥ µ

2
ρ̃,
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there exists a numerical constant C > 0 such that

sup
(r,~l),r≥ 3

4
ρ̃,|~l|≤r

|R(~p, z, r,~l)| ≤ C

ρ̃µ
, (4.26)

sup
(r,~l),r≥ 3

4
ρ̃,|~l|≤r

|∂]R(~p, z, r,~l)| ≤ C

ρ̃2µ2
. (4.27)

Suppressing the argument (~p, z, r,~l,K(m,n)) on the left side to shorten our formulas, it follows
immediately from (4.25) and (4.21) that

‖V m+p,n+q
m,n ‖ ≤ CL

(µρ̃)L−1

L∏
i=1

[
|k(mi)
i |1/2|k̃(ni)

i |1/2‖wmi+pi,ni+qi(~p, z)‖ 1
2
(
√

8πρ2)pi+qi
]
,

and,

‖∂rV
m+p,n+q
m,n ‖ ≤ L CL

(µρ̃)L−1
sup
j

L∏
i=1

[
|k(mi)
i |1/2|k̃(ni)

i |1/2
(
(1− δij)‖wmi+pi,ni+qi(~p, z)‖ 1

2

+ δij‖∂rwmi+pi,ni+qi(~p, z)‖ 1
2

)
(
√

8πρ2)pi+qi
]

+ (L+ 1)
CL

(µρ̃)L

L∏
i=1

[
|k(mi)
i |1/2|k̃(ni)

i |1/2‖wmi+pi,ni+qi(~p, z)‖ 1
2
(
√

8πρ2)pi+qi
]

Using the inequality Ç
mi + pi
mi

å
≤ 2mi+pi ,

we deduce that

‖w̃M,N (~p, z)‖ 1
2
≤
∞∑
L=1

4M+NCL

(µρ̃)L−1

∑
m,n,p,q

mi+ni+pi+qi≥1

L∏
i=1

(
‖wmi+pi,ni+qi(~p, z)‖ 1

2

(2
√

8πρ2)pi+qi
Å

1

2

ãmi+ni )
.

Inequality (4.4) for the norms of the kernels implies that

‖wmi+pi,ni+qi(~p, z)‖ 1
2
≤ ρ−(mi+ni+pi+qi)+1Dmi+ni+pi+qiµ sin(ϑ)

≤
Ä 1

32C
ρ̃
ä−(mi+ni+pi+qi)+1

Dmi+ni+pi+qiµ sin(ϑ),

where we have used that mi + ni + pi + qi ≥ 1. It then follows that

‖w̃M,N (~p, z)‖ 1
2
≤
(128CD

ρ̃

)M+N ∞∑
L=1

(µ sin(ϑ)ρ̃/32)L

(µρ̃)L−1

Ñ ∑
p+q≥0

(64C
√

8πρ2D

ρ̃

)p+q ∑
m+n≥0

1

2m+n

éL

≤
(128CD

ρ̃

)M+N
µρ̃ sin(ϑ),

where we have used that ρε < (128C
√

8πD)−1, in order to sum over p+ q on the right-hand
side. A similar bound is satisfied by the partial derivatives with respect to r and lq, q = 1, ..., 3,
with µρ̃ sin(ϑ) replaced by 1. This shows that w̃M,N satisfies property (c), with D replaced
by CD provided that C is chosen large enough. It is important to remark that the constant
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C > 0 can be chosen to be independent of the ’problem parameters’ and of the constant D.
This property of C is needed to implement our inductive construction.

Likewise,

‖w̃0,0(~p, z)+Ẽ(~p, z)− w0,0(~p, z)− E(~p, z)‖∞

≤
∞∑
L=2

(C sin(ϑ)ρµ)L

(ρ̃µ)L−1

Ñ ∑
p+q≥1

î
2D
√

8πρ
óp+qéL

≤ C̃D2ρ4ρ̃−1µ sin2(ϑ) = C̃D2ρ2+εµ sin2(ϑ),

and a similar bound is satisfied for ∂#(w̃0,0(~p, z) − w0,0(~p, z)), which proves (4.11)–(4.12),
provided that C is chosen large enough.

4.1.3. Properties (d) and (e). We first observe that the map (~p, z) 7→ H̃(~p, z) is analytic on
Uρ̃[f̃ ]. This follows from the facts that the smooth Feshbach-Schur map preserves analytic-
ity in (~p, z) (because the Neumann series converges uniformly on Uρ̃[f̃ ]) and that the maps
(~p, z) 7→ W≥1(~p, z) ∈ L(Hf ) and (~p, z) 7→ W0,0(~p, z) + E(~p, z) are analytic on Uρ̃[f̃ ] (because,
by assumption, (~p, z) 7→ H(~p, z) is analytic on the open set Uρ[f ] ⊃ Uρ̃[f̃ ]). We refer the
reader to [22] for more details. Therefore (~p, z) 7→ Ẽ(~p, z) = 〈Ω|H̃(~p, z)Ω〉 is analytic in (~p, z),
too.

We now prove property (e). Let ~p ∈ Uθ[~p
∗] and z = f̃(~p) + βrρ̃ ∈ D(f̃(~p), rρ̃), with

0 ≤ |β| ≤ 2/3. The triangle inequality, the inequality (4.6), and the hypothesis ρε � 1 imply
that z ∈ D(f(~p), 2rρ/3). We consider the circular contour C centered at f̃(~p) and with radius
rC = 3rρ̃/4. We have that {~p} × C ⊂ Uρ̃[f̃ ] ⊂ Uρ[f ], and, by Cauchy’s formula,

|∂zẼ(~p, z)− ∂zE(~p, z)| ≤ 1

2π

∣∣∣∣ ∫
C
dz′
Ẽ(~p, z′)− E(~p, z′)

(z − z′)2

∣∣∣∣
≤ 3

4(3/4− |β|)2

CD2µ sin2(ϑ)ρ2+ε

rρ̃
,

where we have used (4.11) and the fact that w0,0(~p, z, 0,~0) = 0 = w̃0,0(~p, z, 0,~0), see property
(a). It follows that

|∂zẼ(~p, z)− ∂zE(~p, z)| ≤ 96

4(3/4− |β|)2
CD2ρ2ε. (4.28)

Since

|∂zE(~p, z) + 1| ≤ 1/4,

for any z ∈ D(f̃(~p), 2
3rρ̃), we deduce that

|∂zẼ(~p, z) + 1| ≤ 1

2
, (4.29)
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for any z ∈ D(f̃(~p), 2
3rρ̃), where we use the hypothesis that ρ

ε � D−1. We estimate |Ẽ(~p, z)−
f̃(~p) + z| on the circle ∂D(f̃(~p), 2

3rρ̃). Let z ∈ D(f̃(~p), 2
3rρ̃). We obtain from (4.29) that

|Ẽ(~p, z)− f̃(~p) + z| ≤ |Ẽ(~p, z)− Ẽ(~p, f̃(~p)) + z − f̃(~p)|+ |Ẽ(~p, f̃(~p))|

≤ 1

2
|z − f̃(~p)|+ |Ẽ(~p, f̃(~p))− E(~p, f̃(~p))|

≤ 1

2
|z − f̃(~p)|+ CD2µ sin2(ϑ)ρ2+ε, (4.30)

where we have used the fact that E(~p, f̃(~p)) = 0, along with (4.11). If ρ is sufficiently small
then

CD2 sin2(ϑ)ρ2+εµ <
rρ̃
3
,

and hence
|Ẽ(~p, z)− f̃(~p) + z| < |z − f̃(~p)|, (4.31)

for any z ∈ ∂D(f̃(~p), 2
3rρ̃). Rouché’s theorem then implies that z 7→ Ẽ(~p, z) has a unique zero,

˜̃
f(~p), inside the disk of radius 2rρ̃/3.

To prove (4.6), we observe that (4.30), with z =
˜̃
f(~p), yields

1

2
| ˜̃f(~p)− f̃(~p)| ≤ CD2µ sin2(ϑ)ρ2+ε = 32CD2 sin(ϑ)ρ2εrρ̃.

The hypothesis that ρε � D−1 implies that

| ˜̃f(~p)− f̃(~p)| ≤ rρ̃
2
. (4.32)

Next, we verify that Ẽ satisfies (4.7). Let ˜̃ρ := ρ̃2−ε. The triangle inequality directly implies
that U ˜̃ρ[

˜̃
f ] ⊂ Uρ̃[f̃ ], and we have that

|Ẽ(~p, z)| ≤ |Ẽ(~p, z) + z − ˜̃
f(~p)|+ |z − ˜̃

f(~p)|

≤ 3

2
|z − ˜̃

f(~p)| ≤ 2r ˜̃ρ ≤
1

16
˜̃ρµ, (4.33)

for any z ∈ D(
˜̃
f(~p), r ˜̃ρ) ⊂ D(f̃(~p), 2rρ̃/3), where (4.29) has been used in the second inequality.

To complete our proof, we show that the map ~p 7→ ˜̃
f(~p) is analytic on Uθ[~p

∗] and that
the set U ˜̃ρ[

˜̃
f ] is open. Let (~p0,

˜̃
f(~p0)) ∈ U ˜̃ρ[

˜̃
f ] ⊂ Uρ̃[f̃ ]. Since |∂zẼ(~p0, z) + 1| < 1/2, for all

z ∈ D(f̃(~p0), 2rρ̃/3), the inverse function theorem implies that the map

(~p, z) 7→ (~p, Ẽ(~p, z)) (4.34)

is biholomorphic in a small polydisk D0 ⊂ Uρ̃[f̃ ] around (~p0,
˜̃
f(~p0)). We denote its inverse by

h. The image of D0, denoted D1, contains the point (~p0, 0), because Ẽ(~p0,
˜̃
f(~p0)) = 0. As D1

is open, it contains (~p, 0), for any ~p sufficiently close to ~p0. Therefore, h(~p, 0) coincides with
(~p,

˜̃
f(~p)), for ~p near ~p0, and we deduce that ~p 7→ ˜̃

f(~p) is holomorphic in a neighborhood of
~p0. By letting ~p0 vary one sees that this implies that ~p 7→ ˜̃

f(~p) is holomorphic on Uθ[~p∗]. In
particular the set

U ˜̃ρ[
˜̃
f ] :=

{
(~p, z) ∈ Uθ[~p∗]× C | z ∈ D(

˜̃
f(~p), r ˜̃ρ)

}
. (4.35)
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is an open subset of C4.

4.2. Inductive construction of the operators H(j)(~p, z). Let 0 < ε < 1 and let ρ0 be
such that 0 < ρ0 � min(1, δ0)µ. Let γ < ρ0, where γ is the constant that appears in the
estimates (3.13)–(3.16). For λ0 and θ = iϑ as in Lemma 3.4, we deduce from Section 3 that the
sequence of kernels w(0)

m,n and the function E(0) corresponding to the operator H(0)(~p, z) satisfy
properties (a)–(e) and (4.8)–(4.9), with D = 1, f(~p) = Ei0 , f̃(~p) = z(0)(~p), and ρ = ρ0. We
consider the sequences (ρj)j∈N0 and (rj)j∈N0 introduced in (1.49). By repeated application of
Lemma 4.1, we construct a sequence of effective Hamiltonians H(j)(~p, z) at scale ρj by setting

H(j+1)(~p, z) = Fχρj+1 (Hf )[H
(j)(~p, z),W

(j)
0,0 (~p, z) + E(j)(~p, z)]1Hf≤ρj+1

[Hf ]. (4.36)

In order to be able to apply Lemma 4.1 in each induction step, we only need to show that the
properties (4.8)–(4.9) hold in each step of the induction and that ρεjCj � 1, for all j ∈ N0.
This is accomplished in the following lemma. Let ρC,ε,µ be the largest positive constant such
that, for any 0 ≤ ρ < ρC,ε,µ,

∞∑
k=1

C2k−1ρ2ε(2−ε)k−1
+
√

3ρ < µ. (4.37)

Lemma 4.2. Suppose that ρ0 � ρC,ε,µ, γ < ρ0, and choose λ0 and θ = iϑ as in Lemma
3.4. For any j ∈ N0, there exists a function z(j−1) : Uθ[~p

∗] → C, a sequence of kernels
w

(j)
m,n : Uρj [z(j−1)] × Bρj × B

(m,n)
ρj → C and a function E(j) : Uρj [z(j−1)] → C such that (4.36)

holds, and

(a) w(j)
0,0(~p, z, ·, ·) is C1 on Bρj , and w

(j)
0,0(~p, z, 0,~0) = 0, for all (~p, z) ∈ Uρj [z(j−1)].

(b) w(j)
m,n(~p, z, ·, ·,K(m,n)), m + n ≥ 1, are C1 on Bρj for almost every K(m,n) ∈ B(m,n)

ρj and

every (~p, z) ∈ Uρj [z(j−1)]. Moreover, w(j)
m,n(~p, z, ·, ·,K(m,n)) is symmetric in k(m) and k̃

(n)
.

(c) For all (~p, z) ∈ Uρj [z(j−1)],

‖w(j)
m,n(~p, z)‖ 1

2
≤ Cj(m+n)ρ

−(m+n)+1
j µ sin(ϑ), (4.38)

‖∂#w
(j)
m,n(~p, z)‖ 1

2
≤ Cj(m+n)ρ

−(m+n)
j , (4.39)

for all m+ n ≥ 1, where ∂# stands for ∂r or ∂lp and C is the positive constant appearing
in Lemma 4.1.

(d) The maps E : Uρj [z(j−1)] → C and (~p, z) 7→ H[w(j)(~p, z), E(j)(~p, z)] ∈ L(1Hf≤ρjHf ) are
analytic on Uρj [z(j−1)].

(e) For all ~p ∈ Uθ[~p∗], the holomorphic function z 7→ E(j)(~p, z) ∈ C has a unique zero z(j)(~p) ∈
D(z(j−1)(~p), 2rρj/3). The function z(j) is analytic on Uθ[~p

∗]. Moreover, Uρj+1 [z(j)] ⊂
Uρj [z(j−1)], and

|E(j)(~p, z)| ≤ µρj+1

16
, (4.40)

|z(j)(~p)− z(j−1)(~p)| < rj/2, (4.41)

for all (~p, z) ∈ Uρj+1 [z(j)] and ~p ∈ Uθ[~p∗], respectively.
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Proof. The hypothesis that ρ0 � ρC,ε,µ implies that Cjρεj < c, for a positive numerical
constant c, where c is small enough such that Lemma 4.1 holds at any step j. As mentioned
at the beginning of this subsection, the properties (a)–(e) and the inequalities (4.8) and (4.9)
are valid are step j = 0. Proceeding by induction, we assume that the properties (a)–(e) and
the inequalities (4.8) and (4.9) are valid at any step k ≤ j ∈ N0. If we prove that

‖∂rw(j)
0,0(~p, z)− e−θ‖∞ +

3∑
q=1

‖∂lqw
(j)
0,0(~p, z) + pqe

−θ‖∞ ≤
µ

4
, ∀(~p, z) ∈ Uρj [z(j−1)], (4.42)

and ∣∣∣∂zE(j)(~p, z) + 1
∣∣∣ < 1

4
, ∀z ∈ D(z(j−1)(~p),

2

3
rj), (4.43)

then Lemma 4.1 show that

H(j+1)(~p, z) = Fχρj+1 (Hf )[H
(j)(~p, z),W

(j)
0,0 (~p, z) + E(j)(~p, z)]1Hf≤ρj+1

[Hf ]

is well-defined on Uρj+1 [z(j)] and satisfies properties (a)-(e) at step j + 1, and hence the
induction step will be completed.

The bound (4.42) is a direct consequence of estimate (4.11) in Lemma 4.1. Since properties
(a)–(e) are valid for any k ≤ j, we conclude that Uρj [z(j−1)] ⊂ Uρj−1 [z(j−2)] ⊂ ... ⊂ Uρ0 [Ei0 ].
Moreover, (4.11)–(4.12) are valid at any step k ≤ j, with ρ replaced by ρk−1 and D2C by
C2k−1. Therefore,

‖∂rw(j)
0,0(~p, z)− e−θ‖∞ ≤

j∑
k=1

‖∂rw(k)
0,0(~p, z)− ∂rw(k−1)

0,0 (~p, z)‖∞ + ‖∂rw(0)
0,0(~p, z)− e−θ‖∞

≤
j∑

k=1

C2k−1ρ2ε
k−1 sin(ϑ) + γ +

√
3ρ0,

for any (~p, z) ∈ Uρj [z(j−1)]. Assuming that ρ0 � ρC,ε,µ and γ < ρ0, this implies that the sum
on the right side is smaller than µ/4.

The bound (4.43) is proven by a similar argument: For any ~p ∈ Uθ[~p
∗] and any z ∈

D(z(j−1)(~p), 2
3rj), we have that

∣∣∣∂zE(j)(~p, z) + 1
∣∣∣ ≤ j∑

k=1

∣∣∣∂zE(k)(~p, z)− ∂zE(k−1)(~p, z)
∣∣∣+ ∣∣∣∂zE(0)(~p, z) + 1

∣∣∣
≤ C

Ñ
j∑

k=1

C2k−1ρ2ε
k−1 + γ

é
,

where C is a positive numerical constant independent of the ’problem parameters’. The last
inequality follows from (4.28) in the proof of Lemma 4.1. Also note that we have used the
fact that D(z(j−1)(~p), 2

3rj) ⊂ D(z(j−2)(~p), 2
3rj−1), which follows from (4.41). Thus, the right

side is smaller than 1/4 if ρ0 is sufficiently small. This completes the proof of the lemma. �

5. Existence and analyticity of the resonances

In Paragraph 5.1, we prove that the sequence of functions ~p 7→ z(j)(~p) constructed in the
previous subsection converges uniformly on Uθ[~p∗]. Identifying 1CN ⊗Qχρj with Qχρj for any
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j ≥ 1 (see (1.65)), we show in Subsection 5.2 that the sequence of vector valued functions

Ψ(j)(~p) := Qχi0
Qχρ1 ...Qχρj (ψi0 ⊗ Ω) (5.1)

converges uniformly on Uθ[~p∗] to a non-vanishing function ~p 7→ Ψ(∞)(~p). Here, ψi0 is a unit
eigenvector of His associated with the eigenvalue Ei0 and the operators Q# are defined as
in Theorem 1.4. For all ~p ∈ Uθ(~p∗), Ψ(∞)(~p) is an eigenvector of Hθ(~p) associated with the
eigenvalue z(∞)(~p).

5.1. Convergence of z(j) and analyticity of the limit.

Lemma 5.1. Suppose that the parameters ε, γ, ρ0, λ0 and θ are fixed as in Section 4. The
sequence of holomorphic functions (z(j)) converges uniformly to an holomorphic function z(∞)

on Uθ[~p∗].

Proof. The estimate

|z(j+1)(~p)− z(j)(~p)| ≤ rj+1

2
=
µρj+1 sin(ϑ)

64
, ∀~p ∈ Uθ[~p∗], (5.2)

obtained in Lemma 4.2, implies that (z(j)) is uniformly Cauchy. Hence (z(j)) converges uni-
formly on Uθ(~p∗). Since (z(j)) is analytic on Uθ(~p∗) for all j, by Lemma 4.2, the uniform limit
z(∞) is also analytic. �

5.2. Existence and analyticity of the eigenvector Ψ(∞)(~p).

Lemma 5.2. Suppose that the parameters ε, γ, ρ0, λ0 and θ are fixed as in Section 4. The
sequence (Ψ(j)) converges uniformly on Uθ[~p∗]. The limit, Ψ(∞), satisfies Ψ(∞)(~p) 6= 0 for all
~p ∈ Uθ[~p∗]. Furthermore, (Hθ(~p)− z(∞)(~p))ψ(j)(~p) converges to zero uniformly on Uθ[~p∗] and

dim Ker(Hθ(~p)− z(∞)(~p)) = 1.

Proof. We use the formula
HQχ(H,T ) = χFχ(H,T ) (5.3)

for the Feshbach pair (H,T ), see [6]. It implies that

[Hθ(~p)− z(∞)(~p)]Qχi0
Qχρ1 ...Qχρj

= χi0χρ1(Hf )...χρj (Hf )Fχρj (Hf )[H
(j−1),W

(j−1)
0,0 + E(j−1)],

(5.4)

where we omitted the argument (~p, z(∞)(~p)) on the right-hand side of (5.4). Applying (5.4)
to ψi0 ⊗ Ω, we deduce that

[Hθ(~p)− z(∞)(~p))]ψ(j)(~p) = χi0χρ1(Hf )...χρj (Hf ) H(j)(~p, z(∞)(~p))|ψi0 ⊗ Ω〉. (5.5)

We have that

H(j)(~p, z(∞)(~p))|ψi0 ⊗ Ω〉 =
∑
M>0

W
(j)
M,0(~p, z(∞)(~p))|ψi0 ⊗ Ω〉+ E(j)(~p, z(∞)(~p))|ψi0 ⊗ Ω〉. (5.6)
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The bound (4.38), the key estimate (3.2), and the inequality (4.40) imply that the right-hand
side is bounded in norm by some numerical constant multiplied by ρj , i.e. tends to zero super-
exponentially fast as j tends to infinity. We show that Ψ(j) converges to a non-vanishing
vector-valued function. We remark that

Ψ(j+1)(~p)−Ψ(j)(~p) = Qχi0
Qχρ1 ...Qχρj (Qχρj+1

− χρj+1(Hf ))|ψi0 ⊗ Ω〉
= (Qχi0

− χi0 + χi0)...(Qχρj − χρj (Hf ) + χρj (Hf ))(Qχρj+1
− χρj+1(Hf ))|ψi0 ⊗ Ω〉.

Using that exp(x) ≥ 1 + x for any x ≥ 0, we deduce that

‖Ψ(j+1)(~p)−Ψ(j)(~p)‖ ≤ e
Ä∑j

k=1
‖Qχρk−χρk (Hf )‖+‖Qχi0

−χi0‖
ä
‖Qχρj+1

− χρj+1(Hf )‖. (5.7)

Furthermore,

‖Qχρk − χρk(Hf )‖ = ‖χρk(Hf )[H
(k−1)
χρk

(Hf )]
−1
|Ran(χρk

(Hf ))χρk(Hf )W
(k−1)
≥1 χρk(Hf )‖

= O
Ä
Ck−1ρ2

k−1µ
ä
‖[H(k−1)

χρk
(Hf )]

−1
|Ran(χρk

(Hf ))‖ = O
Ä
Ck−1ρεk−1

ä
for any k ≥ 1. The right-hand side converges super-exponentially fast to zero and the sum over
j of ‖Qχρj −χρj (Hf )‖ is smaller than one if ρ0 is small enough. We deduce that ‖Ψ(j+1)(~p)−
Ψ(j)(~p)‖ converges super-exponentially fast to zero. This implies that (Ψ(j)) is uniformly
Cauchy and hence converges uniformly. Since each Ψ(j) is analytic in ~p, the limit Ψ(∞) is also
analytic on Uθ[~p∗]. Furthermore, a similar argument as above shows that

‖Ψ(j)(~p)− Ω‖ < 1

for all ~p. Therefore, Ψ(∞)(~p) 6= 0 for all ~p, which implies that

dim Ker(Hθ(~p)− z(∞)(~p)) ≥ 1.

Using the “iso-spectrality” of the Feshbach-Schur map together with the fact that any vector
Ψ ∈ Hf satisfies the lim

j→∞
χρj(Hf )Ψ = 〈Ω|Ψ〉Ω, we verify that

dim Ker(Hθ(~p)− z(∞)(~p)) ≤ 1.

Our argumentation is similar to [35]. Let n ∈ N. We assume that z(∞)(~p) is degenerate. We
can find a non zero vector Ψ̃ ∈ Hf such that PΩΨ̃ = 0 and H(n)(~p, z∞(~p))χρn(Hf )Ψ̃ = 0. We
take n large enough such that χρn(Hf )χρj (Hf ) = χρj (Hf ) for all j > n. We use that

1Hf≤ρn ≥ χρn(Hf ),

1Hf≤ρn = PΩ +
∞∑

j=n+1

1 3
4
ρj+1<Hf≤ 3

4
ρj

+ 1 3
4
ρn+1<Hf≤ρn ,

to estimate the norm of χρn(Hf )Ψ̃. We get:

‖χρn(Hf )Ψ̃‖2 ≤
∞∑

j=n+1

‖1 3
4
ρj+1<Hf≤ 3

4
ρj
χρn(Hf )Ψ̃‖2 + ‖1 3

4
ρn+1<Hf≤ρnχρn(Hf )Ψ̃‖2

≤ 4

µ2

∞∑
j=n

ρ−2
j+1

∥∥∥(W (j)
0,0 (~p, z∞(~p)) + E(j)(~p, z∞(~p)))1 3

4
ρj+1<Hf≤ρjχρj (Hf )Ψ̃

∥∥∥2
.
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To go from the first line to the second line, we have used the estimate

|w(j)
0,0(~p, z∞(~p), r,~l) + E(j)(~p, z∞(~p))| ≥ µ

2
ρj+1, ∀r ≥ 3

4
ρj+1, |~l| ≤ r,

proven at the beginning of Paragraph 4.1.1, and the equality

1 3
4
ρj+1<Hf≤ 3

4
ρj
χρn(Hf ) = 1 3

4
ρj+1<Hf≤ 3

4
ρj
χρj (Hf ).

Since 13ρj+1/4<Hf≤ρj commutes with W (j)
0,0 (~p, z∞(~p)) + E(j)(~p, z∞(~p)), and since

H(j)(~p, z∞(~p))χρj (Hf )Ψ̃ = 0,

we deduce that

‖χρn(Hf )Ψ̃‖2 ≤ 4

µ2
‖χρn(Hf )Ψ̃‖2

∞∑
j=n

ρ−2
j+1

∥∥∥W (j)
≥1 (~p, z∞(~p))

∥∥∥2
.

We have shown in (4.14) that there exists a numerical constant C independent of j and the
problem parameters, such that

‖W (j)
≥1 (~p, z)‖ ≤ CCjρ2

jµ,

for all j ∈ N. Since ∑j C
2jρ4

j/ρ
2
j+1 converges, ‖χρn(Hf )Ψ̃‖ must be zero for large values of n.

This contradicts Theorem 1.4, and, therefore, z∞(~p) cannot be degenerate.
�

6. Imaginary part of the resonances (z(∞)(~p))

In this section, assuming that Fermi’s Golden Rule holds, we prove that the imaginary
part of z(∞)(~p) is strictly negative for small enough values of the coupling constant λ0. More
precisely, using the isospectrality of the Feshbach-Schur map (see Definition 1.3 and Theorem
1.4), we verify that the operator Hθ(~p)− z is invertible for any z ∈ C such that =z ≥ −c0λ

2
0,

where c0 is a positive constant.

6.1. Computing the leading part of the Feshbach-Schur Map. We recall from Lemma
3.3 that if the parameters λ0, ρ0 and θ = iϑ satisfy the conditions λ2

0σ
3
Λ(µ sinϑ)−2 � ρ0 <

min(1, δ0), then (Hθ(~p) − z,Hθ,0(~p) − z) is a Feshbach-Schur pair associated to χi0 for any
(~p, z) ∈ Uρ0 [Ei0 ]. The corresponding Feshbach-Schur operator is given by

Fχi0
(Hθ(~p)− z,Hθ,0(~p)− z) = Hθ,0(~p)− z + λ0χi0HI,θχi0

− λ2
0χi0HI,θχi0 [Hχi0

(~p, z)]−1
Ran(χi0 )χi0HI,θχi0 . (6.1)

We recall from Theorem 1.4 the iso-spectral property:

Hθ(~p)− z is bounded invertible
⇐⇒ Fχi0

(Hθ(~p)− z,Hθ,0(~p)− z)|Pi0⊗1Hf≤ρ0 [H] is bounded invertible. (6.2)

The estimation of the imaginary part of z(∞)(~p) relies on the analysis of Fχi0
(Hθ(~p) −

z,Hθ,0(~p)− z). We set

wθ0,1(k) := ie−2θΛ(e−θ~k)|~k|1/2~ε(k) · ~d, wθ1,0(k) = −wθ0,1(k), (6.3)
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and

Zod(~p) :=

∫
dkPi0w

θ
0,1(k)P i0

Ä
His − Ei0 + e−θ|~k|+ e−2θ

~k2

2
− e−θ~p · ~k

ä−1
P i0w

θ
1,0(k)Pi0 , (6.4)

Zd(~p) :=

∫
dkPi0w

θ
0,1(k)Pi0

Ä
e−θ|~k|+ e−2θ

~k2

2
− e−θ~p · ~k

ä−1
wθ1,0(k)Pi0 ,

where, recall, Pi0 is the orthogonal projection onto the one-dimensional eigenspace associated
to the eigenvalue Ei0 of His.

In the next lemma we identify the leading order term of Fχi0
(Hθ(~p) − z,Hθ,0(~p) − z) in

terms of powers of λ0.

Lemma 6.1. Under the conditions of Lemma 3.3, there is a bounded operator Rem such that

Fχi0
(Hθ(~p)− z,Hθ,0(~p)− z) =

î
Ei0 − z + e−θHf + e−2θ

~P 2
f

2
− e−θ~p · ~Pf

ó
(6.5)

− λ2
0Z

d(~p)⊗ χ2
ρ0

(Hf )− λ2
0Z

od(~p)⊗ χ2
ρ0

(Hf ) + Rem,

and

‖Rem‖ ≤ Cλ2
0

( σ
9/2
Λ

µ2 sin(ϑ)2 min(1, δ2
0)

( λ0

ρ0
1/2

+
ρ0

2

λ0

)
+ ρ0

)
, (6.6)

where C is a positive constant.

Proof. The proof follows the lines of Lemma 3.16 of [11], where similar results are shown for
a different model (see also [9], where all details are included). �

Remarks. Lemma 6.1 gives the leading order contribution of Fχi0
(Hθ(~p) − z,Hθ,0(~p) − z)

provided that we choose, for instance,

ρ0 = λ
4/5
0 . (6.7)

The condition λ2
0σ

3
Λ(µ sinϑ)−2 � ρ0 is then satisfied if we require that λ6/5

0 � σ−3
Λ (µ sinϑ)2.

Equations (6.5) and (6.6) give

Fχi0
(Hθ(~p)− z,Hθ,0(~p)− z) =

î
Ei0 − z + e−θHf + e−2θ

~P 2
f

2
− e−θ~p · ~Pf

ó
− λ2

0Z
d(~p)⊗ χ2

ρ0
(Hf )

− λ2
0Z

od(~p)⊗ χ2
ρ0

(Hf ) + λ
2+3/5
0 O

( σ
9/2
Λ

sin(ϑ)2µ2 min(1, δ2
0)

)
. (6.8)

The remainder term is small compared to λ2
0 provided that

λ
3/5
0 � σ

−9/2
Λ (µ sinϑ)2.

6.2. The Imaginary Part of z(∞)(~p). In this section we estimate the imaginary part of
z(∞)(~p), assuming here that ~p has real entries.

We study the leading order term of Fχi0
(Hθ(~p) − z,Hθ,0(~p) − z)|Pi0⊗1Hf≤ρ0 [H], that we

denote by HL(~p)− z (see (6.23) below). It is a normal operator whose spectrum is explicitly
computable: As Zod(~p) and Zd(~p) are rank-one operators, we can write Zod(~p) = zod(~p)Pi0
and Zd(~p) = zd(~p)Pi0 , for some complex numbers zod(~p) and zd(~p). Then we can write HL(~p)

as the sum of (Ei0 − λ2
0z
d(~p)− λ2

0z
od(~p))Pi0 plus an operator that is a function of Hf and ~Pf .

The spectrum of the latter operator lies in the lower half plane, which can be easily shown
from geometrical considerations, using the spectral theorem. Using analyticity in θ we show
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that zd(~p) is real, which implies that the imaginary part of the spectrum of HL(~p) is below
−λ2

0=zod(~p). Proving that −=zod(~p) < 0 is, thus, essential to show that =z(∞)(~p) < 0. This
is where the Fermi Golden Rule is used, see Subsection 6.2.1.

Once we have proven that the imaginary part of the spectrum ofHL(~p) is below −λ2
0=zod(~p),

which is negative, we conclude by a perturbative argument, using a Neumann series expansion,
thatHL(~p)−z+Rem is invertible if =z is larger than a (strictly) negative number (for small λ0).
This assertion and the iso-spectrality of the Feshbach-Schur map then imply that Hθ(~p)− z is
invertible for such z’s, from which we conclude in Subsection 6.2.2 that =z(∞)(~p) is (strictly)
smaller than zero.

6.2.1. Analysis of Zod(~p).

Proposition 6.2. Let ~p ∈ Uθ[~p∗] ∩ R3. We define (see (1.42))

zod(~p) := 〈ψi0 | Zod(~p)ψi0〉. (6.9)

The following holds true:

=zod(~p) = π
∑
j<i0

∫
R3
dk
∣∣∣ ∑
s∈{1,2,3}

(ds)N−j+1,N−i0+1εs(k)
∣∣∣2 (6.10)

· |~k||Λ(~k)|2δ
Ä
Ej − Ei0 + |~k| − ~p · ~k +

~k2

2

ä
.

Proof. We denote by

k̂ :=
1

|k|
~k, rk := (r~k, λ), k̂ := (k̂, λ), ∀k ∈ R3, k 6= (0, λ), ∀r ≥ 0. (6.11)

Let

fod
k̂

(z) :=z3e−z
2/σ2

Λ (6.12)

· 〈ψi0 |~ε(k̂) · ~d P i0
Ä
His − Ei0 + z +

z2

2
− z~p · k̂

ä−1
P i0~ε(k̂) · ~d ψi0〉.

Using spherical coordinates we obtain that (see (6.3) and (6.4))

zod(~p) =

∫
dk̂

∫ ∞
0

dre−θfod
k̂

(e−θr), (6.13)

where
∫
dk̂ denotes the surface integral over the 2 dimensional sphere in R3.

Let γθ : [0,∞)→ C be the path defined by the formula

γθ(r) := e−θr. (6.14)

We denote furthermore, for every R > 0, by γθ,R the restriction of γθ to the interval [0, R]
and by γ̃θ,R the straight (oriented) line segment with starting point γθ(R) and ending point
γθ(R).

Eq. (6.13) implies that we can view the integral with respect to r as a complex integral
with respect to γθ. It follows furthermore that

=zod(~p) =
1

2i

∫
dk̂
[ ∫

γθ

fod
k̂

(z)dz −
∫
γ
θ

fod
k̂

(z)dz
]
. (6.15)

The function fod
k̂

is meromorphic in the region delimited by the curves γθ and γθ containing
the positive part of the real axis. The poles of fod

k̂
in this region are the positive real numbers
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r such that Ei0 − r − r2

2 + r~p · k̂ belongs σ(His) \ {Ei0}. Since −r − r2

2 + r~p · k̂ is strictly
negative and strictly decreasing as a function of r for r > 0, there are only i0 − 1 poles and
they correspond to the positive real numbers rodj such that

Ei0 − rodj −
(rodj )2

2
+ rodj ~p · k̂ = Ej (6.16)

for some j < i0. In fact the explicit solutions of Eq. (6.16) are given by the formula

Ej − Ei0 +
r2

2
+ r(1− ~p · k̂) =

1

2

[
r −

(
− (1− ~p · k̂) +

√
2(Ei0 − Ej) + (1− ~p · k̂)2

)]
(6.17)

·
[
r −

(
− (1− ~p · k̂)−

√
2(Ei0 − Ej) + (1− ~p · k̂)2

)]
.

Let R > 0 such that the poles are contained in the interior of the (closed) curve γθ,R+γ̃θ,R−γθ,R
(the curve γθ,R followed by γ̃θ,R and this last one followed by −γθ,R, which is the curve γθ,R
going in the contrary direction). It follows from the exponential decay of fod

k̂
that∫

γθ

fod
k̂

(z)dz −
∫
γ
θ

fod
k̂

(z)dz =

∫
γθ,R+γ̃θ,R−γθ,R

fod
k̂

(z). (6.18)

From the residue theorem and (6.15)-(6.18) we conclude that

=zod(~p) = π

∫
dk̂

∑
j∈{1,··· ,i0−1}

Res(fod
k̂
, rodj ). (6.19)

We obtain finally (6.10) from (6.19) and from the fact that

Res(fod
k̂
, rodj ) = lim

z→rodj
(z − rodj )fod

k̂
(z) (6.20)

= lim
z→rodj

(z − rodj )z3e−z
2/σ2

Λ

· 〈ψi0 |~ε(k̂) · ~d Pj
Ä
His − Ei0 + z +

z2

2
− z~p · k̂

ä−1
Pj~ε(k̂) · ~d ψi0〉

=(rodj )3e−(rodj )2/σ2
Λ

· 〈ψi0 |~ε(k̂) · ~d Pj
1»

2(Ei0 − Ej) + (1− ~p · k̂)2
Pj~ε(k̂) · ~d ψi0〉,

where we used (6.16)-(6.17). �

6.2.2. Estimations of =z(∞)(~p).

Theorem 6.3. Suppose that the parameters θ, λ0, ρ0 satisfy the conditions of Lemma 3.3
and λ3/5

0 � σ
−9/2
Λ (µ sinϑ)2. There exists a positive constant C independent of the problem

parameters such that, for all ~p ∈ Uθ[~p∗] ∩ R3 and z ∈ C such that |z − Ei0 | < ρ0µ sin(ϑ)/32
and

λ2
0

[
C

σ
9/2
Λ

sin(ϑ)2µ2 min(1, δ2
0)
λ

3/5
0 −=zod(~p)

]
< =z,

the operator Hθ(~p) − z is (bounded) invertible. In particular, if =zod(~p) > 0 (i.e. the Fermi
Golden Rule is satisfied), the imaginary part of z(∞)(~p) is strictly negative.
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Proof. We define
zd(~p) := 〈ψi0 | Zd(~p)ψi0〉. (6.21)

Applying the procedures of Paragraph 6.2.1, it is easy to prove that zd(~p) does not depend on
θ. zd(~p) is therefore real, since for θ = 0, zd(~p) ∈ R. Using (6.5) and (6.6) we obtain that

Fχi0
(Hθ(~p)− z,Hθ,0(~p)− z)|Pi0⊗1Hf≤ρ0 [H] =(HL(~p)− z)|Pi0⊗1Hf≤ρ0 [H] + Rem, (6.22)

where

HL(~p) :=Ei0 −
î
λ2

0<zod(~p) + λ2
0z
d(~p)
ó
χ2
i0 − iλ

2
0=zod(~p)χ2

i0 (6.23)

+
î
e−θHf + e−2θ

~P 2
f

2
− e−θ~p · ~Pf

ó
and

‖Rem‖ ≤ Cλ2+3/5
0

σ
9/2
Λ

sin(ϑ)2µ2 min(1, δ2
0)
. (6.24)

As |~p| < 1, it follows that for every r ≥ 0 and every ~l ∈ R3 with |~l| ≤ r ,

r − ~p ·~l ≥ 0, (6.25)

which implies that

=
[
e−θr + e−2θ

~l2

2
− e−θ~p ·~l

]
≤ 0. (6.26)

Eq.(6.26) and the Spectral Theorem applied to the normal operatorHL(~p) imply thatHL(~p)−z
restricted to the range of χi0 is invertible for =z > −λ2

0=zod(~p) and that

‖(HL(~p)− z)−1
|Pi0⊗1Hf≤ρ0 [H]‖ ≤

1

|=z + λ2
0=zod(~p)|

. (6.27)

A Neumann series expansion together with (6.24) and (6.27) imply that Fχi0
(Hθ(~p)−z,Hθ,0(~p)−

z)|Pi0⊗1Hf≤ρ0 [H] is invertible, for =z > −λ2
0=zod(~p), whenever

Cλ
2+3/5
0

σ
9/2
Λ

sin(ϑ)2µ2 min(1, δ2
0)

1

|=z + λ2
0=zod(~p)|

< 1. (6.28)

The conclusions of Theorem 6.3 follow from this last assertion and the iso-spectrality of the
Feshbach-Schur map. �

Appendix A. Analyticity of Type (A)

We recall that a map η 7→ Aη from an open connected set V ⊂ Cn to the set of (unbounded)
operators in a Hilbert space H is called analytic of type (A) if there is a dense domain D ⊂ H
such that, for all η ∈ V , Aη is closed on D, and for all ψ ∈ D, the map η 7→ Aηψ is analytic
on V .

Lemma A.1. Let U := {~p ∈ C3 | |<(~p)|+ |=(~p)| < 1}. The map (θ, ~p, λ0) 7→ Hθ(~p) is analytic
of type (A) on D(0, π/4)× U × C.
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Proof. Let θ ∈ D(0, π/4), ~p ∈ C3 with |<~p|+|=~p| < 1, and λ0 ∈ C. For all ψ ∈ D(Hf )∩D(~P 2
f ),

we have that∥∥∥Äe−2θ
~P 2
f

2
− e−θ~p · ~Pf + e−θHf

ä
ψ
∥∥∥2

= e−2<θ
∥∥∥(Hf − ~p · ~Pf )ψ

∥∥∥2
+

1

4
e−4<θ

∥∥∥~P 2
f ψ
∥∥∥2

+ <
Ä
e−θe−2θ̄

¨
(Hf − ~p · ~Pf )ψ| ~P 2

f ψ
∂ä

≥ e−2<θ(1− |~p|)2‖Hfψ‖2 +
1

4
e−4<θ

∥∥∥~P 2
f ψ
∥∥∥2

+ e−3<θ<
Ä
ei=θ
¨
(Hf − ~p · ~Pf )ψ| ~P 2

f ψ
∂ä
.

Using that | sin=θ| ≤ cos=θ, a direct computation gives

<
Ä
ei=θ
¨
(Hf − ~p · ~Pf )ψ| ~P 2

f u〉
ä

= cos(=θ)
¨
(Hf −<~p · ~Pf )ψ| ~P 2

f u
∂

+ sin(=θ)
¨
=~p · ~Pfψ| ~P 2

f ψ
∂

≥ cos(=θ)(1− |<~p| − |=~p|)
¨
Hfψ| ~P 2

f ψ
∂
≥ 0,

and hence∥∥∥Äe−2θ
~P 2
f

2
− e−θ~p · ~Pf + e−θHf

ä
ψ
∥∥∥2
≥ e−2<θ(1− |~p|)2‖Hfψ‖2 +

1

4
e−4<θ

∥∥∥~P 2
f ψ
∥∥∥2
.

This implies that e−2θ ~P 2
f /2 − e−θ~p · ~Pf + e−θHf is closed on D(Hf ) ∩D(~P 2

f ). Since HI,θ is

relatively H1/2
f -bounded, it is infinitesimally small with respect to Hf , and therefore, since in

addition His is bounded, we easily deduce that Hθ(~p) is closed on D(Hf ) ∩D(~P 2
f ).

Verifying that (θ, ~p, λ0) 7→ Hθ(~p) is analytic on D(0, π/4)×U×C for all ψ ∈ D(Hf )∩D(~P 2
f )

is straightforward (Here we need in particular that the ultraviolet cutoff function Λ is real
analytic). �

Appendix B. Proof of Lemmas 3.1 and 3.2

B.1. Proof of Lemma 3.1. Let ϕ,ψ ∈ Ran(1Hf≤ρHf ). We have that

|〈ψ|Wm,nϕ〉| ≤ ‖wm,n‖ 1
2

∫
B

(m,n)
ρ

dK(m,n)‖a(k(m))ψ‖‖a(k̃
(n)

)ϕ‖ |k(m)|1/2|k̃(n)|1/2

≤ ‖wm,n‖ 1
2
V1/2
m V1/2

n Dn(ϕ)1/2D1/2
m (ψ),

where

Vm :=

∫
Bmρ

dk(m),

Dn(ϕ) :=

∫
Bnρ

dk(n)|k(n)| ‖a(k(n))ϕ‖2.

A direct computation gives Vm ≤ (m!)−1(8π)mρ3m and an easy argument by induction shows
that Dn(ϕ) ≤ ‖Hn/2

f ϕ‖2 ≤ ρn‖ϕ‖2. Putting all the bounds together, we find that

|〈ψ|Wm,nϕ〉| ≤ ρ2(m+n)‖wm,n‖ 1
2

(8π)
m+n

2

√
m!n!

‖ψ‖‖ϕ‖, (B.1)

which implies (3.2).

B.2. Proof of Lemma 3.2.
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B.2.1. Proof of the estimate (3.3). Let j ∈ {1, ..., 3}. We introduce

fj(k) = −iΛ(e−θ~k)|~k|1/2εj(k).

It is sufficient to bound a(fj)(Hf + ρ)−1/2. We set ω(~k) = |~k|. Thanks to the pull-through
formula, we have that for any ψ ∈ Hf ,

‖a(fj)(Hf + ρ)−1/2ψ‖ ≤
∫
dk ‖(Hf + ρ+ |~k|)−1/2a(k)fj(k)ψ‖

≤
∥∥∥ fj
ω1/2

∥∥∥
L2(R3)

Å∫
dk‖(Hf + ρ+ ω)−1/2ω1/2a(.)ψ‖2

ã1/2

≤ 2‖Λ(e−iϑ·)‖L2(R3)‖ψ‖

where the last line comes from the equality

||(Hf + ρ+ ω(k))−1/2ω1/2a(k)ψ||2 = 〈(Hf + ρ)−1/2ψ| ω(k)a∗(k)a(k)(Hf + ρ)−1/2ψ〉.

This proves (3.3).

B.2.2. Proof of the estimate (3.4). Let (~p, z) ∈ Uρ0 [Ei0 ]. We have that

[Hθ,0(~p)− z]Ran(χi0 ) =
N∑
j=1

Pj ⊗ bj(~p, z,Hf , ~Pf ), (B.2)

where

bi0(~p, z, r,~l) =

(
e−2θ

~l2

2
+ e−θr − e−θ~p ·~l + Ei0 − z

)
1r>3ρ0/4, (B.3)

bj(~p, z, r,~l) = e−2θ
~l2

2
+ e−θr − e−θ~p ·~l + Ej − z (j 6= i0). (B.4)

Any vector ϕ ∈ Hf can be represented as a sequence (ϕ(n)) of completely symmetric functions
of momenta, ϕ(n) ∈ L2

s(R3n). The operators bj(~p, z,Hf , ~Pf ) are multiplication operators in
this representation. Therefore, we only need to show that |bi0(~p, z, r,~l)| and |bj(~p, z, r,~l)|,
j 6= i0, are bounded below by strictly positive constants. This amounts to estimate the
distance between z and the range of bi0(~p, 0, ·, ·) and bj(~p, 0, ·, ·), j 6= i0; see Figure 3 below.

... Ei0−1 Ei0 Ei0+1 ...
ϑ
2ϑ

r0

Figure 3. The spectral parameter z is located inside the disk D(Ei0 , r0) of center
Ei0 and radius r0. |Ei0 −Ej | ≥ δ0 for all j 6= i0. The grey shaded regions contain the
range of bi0(~p, 0, ·, ·) and bj(~p, 0, ·, ·), j 6= i0.
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Let r > 3ρ0

4 and |~l| ≤ r. Estimating |bi0(~p, z, r,~l)| from below by the absolute value of its
real part, we obtain

|bi0(~p, z, r,~l)| ≥
∣∣∣∣ cos(2ϑ)

~l2

2
+ cos(ϑ)

Ä
r −<(~p) ·~l

ä
−=(~p) ·~l sin(ϑ) + Ei0 −<(z)

∣∣∣∣
≥ r cos(ϑ) (1− |~p| − |=(~p)| tan(ϑ))− |Ei0 − z|,

as θ = iϑ, with 0 < ϑ < π/4. Since |~p| < 1− µ, and |=~p| < µ tan(ϑ)/2 < µ/2, we finally find
that

|bi0(~p, z, r,~l)| ≥ r cos(ϑ)
µ

2
− ρ0µ

32
>
ρ0µ

8
.

For j < i0, the difference Ej − z can be cancelled by e−2θ~l2

2 + e−θr− e−θ~p ·~l if ρ0 is not small
enough, and we have to impose a constraint on ρ0 that depends on the minimal separation
between the eigenvalues, δ0. Let ρ0 < δ0. We assume that 0 < δ0 < 1. For δ0 ≥ 1, it
suffices to replace δ0 by 1 in the next estimates. We split the interval [0,∞) into two disjoints
subintervals I1 and I2, with I1 = [0, δ0/8] and I2 = (δ0/8,∞). We give a lower bound for bj
on both intervals. Let r ∈ I1. We have that

|bj(~p, z, r,~l)| ≥ |Ei0 − Ej | − |z − Ei0 | − r cos(ϑ)− r
Å
|~p| cos(ϑ) + |=(~p)| sin(ϑ) +

r

2

ã
> |Ei0 − Ej | −

δ0

2
>
δ0

2
.

(B.5)

Let r ∈ I2. We estimate |bj(~p, z, r,~l)| from below by the absolute value of its imaginary part.
An easy calculation shows that

|bj(~p, z, r,~l)| ≥ r sin(ϑ) (1− |~p| − |=(~p)| cot(ϑ))− ρ0µ sin(ϑ)

32
.

Since we have chosen |=(~p)| ≤ µ tan(ϑ)/2, it follows that

|bj(~p, z, r,~l)| ≥
δ0µ sin(ϑ)

32
. (B.6)

We deduce that [Hθ,0(~p)− z]|Ran(χi0 ) is bounded invertible and that its inverse satisfies (3.4).
The proof of (3.5) is similar.

Appendix C. Proof of Lemma 3.4

C.1. Proof of the estimates. To prove Lemma 3.4, we re-Wick order the product of creation
and annihilation operators that appear in

Pi0 ⊗H(0)(~p, z) = Fχi0
(Hθ(~p)− z,Hθ,0(~p)− z)|Pi0⊗1Hf≤ρ0 [H]. (C.1)

We recall that we want to find a sequence of kernels (w
(0)
M,N ), M + N ≥ 0, with w

(0)
M,N :

Uρ0 [Ei0 ]× Bρ0 ×B
(M,N)
ρ0 → C, and a map E(0) : Uρ0 [Ei0 ]→ C, such that

H(0)(~p, z) =
∑

M+N≥0

W
(0)
M,N (~p, z) + E(0)(~p, z), (C.2)



40 M. BALLESTEROS, J. FAUPIN, J. FRÖHLICH, AND B. SCHUBNEL

We remind the reader that the operators W (0)
M,N (~p, z) are defined in the sense of quadratic

forms by

W
(0)
M,N (~p, z) = 1Hf≤ρ0

Ç∫
B

(M,N)
ρ0

dK(M,N)a∗(k(M))w
(0)
M,N

Ä
~p, z,Hf , ~Pf ,K

(M,N)
ä
a(k̃

(N)
)

å
1Hf≤ρ0 ,

for all M +N ≥ 1.
For any bounded operator A on CN ⊗Hf , we denote by 〈A〉i0 the bounded operator on Hf

associated to the bounded quadratic form

(ψ, φ) 7→ 〈ψi0 ⊗ ψ|A(ψi0 ⊗ φ)〉 ∈ C. (C.3)

The bounded operator H(0)(~p, z) in (C.1) identifies with the following operator (denoted by
the same symbol) on Hf :

H(0)(~p, z) =
( Ä
Hf − ~p · ~Pf

ä
e−θ +

~P 2
f

2
e−2θ + Ei0 − z

)
1Hf≤ρ0 + λ0〈χi0HI,θχi0〉i0

− λ2
0〈χi0HI,θχi0 [Hχi0

(~p, z)]−1
Ran(χi0 )χi0HI,θχi0〉i0 .

(C.4)

The operators on the first line are already Wick-ordered. The first operator contributes to
W

(0)
0,0 (~p, z) + E(0)(~p, z), and the second to W

(1)
1,0 (~p, z) and W

(1)
0,1 (~p, z). To normal order the

operator on the second line, we use the Neumann expansion for [Hχi0
(~p, z)]−1

Ran(χi0 ). It is easy
to show that

〈χi0HI,θχi0 [Hχi0
(~p, z)]−1

Ran(χi0 )χi0HI,θχi0〉i0 =
∞∑
L=2

(−λ0)L−2ṼL(~p, z), (C.5)

where

ṼL(~p, z) := 〈χi0
Å
HI,θχ

2
i0 [H0,θ(~p, z)]

−1
Ran(χi0 )

ãL−1

HI,θχi0〉i0 .

We first split HI,θ into the sum of two operators (HI,θ)
0,1 and (HI,θ)

1,0, where

(HI,θ)
0,1 = i

∫
R3
dk |~k|1/2e−2θΛ(e−θ~k)~ε(~k) · ~d a(k), (C.6)

(HI,θ)
1,0 = −i

∫
R3
dk |~k|1/2e−2θΛ(e−θ~k)~ε(~k) · ~d a∗(k). (C.7)

This yields

ṼL(~p, z) =
∑

p1, ..., pL
q1, ..., qL
pi + qi = 1

〈χi0
L−1∏
j=1

Å
(HI,θ)

pj ,qjχ2
i0 [H0,θ(~p, z)]

−1
Ran(χi0 )

ã
(HI,θ)

pL,qLχi0〉i0 . (C.8)

Let j ∈ {1, ..., L}. The operator-valued distribution a(kj)/a∗(kj) that appears in (HI,θ)
pj ,qj

can either be contracted with another creation/annihilation operator appearing in (HI,θ)
pj′ ,qj′ ,

j′ 6= j, or left uncontracted. In the latter case, we pull it to the right of (C.8) if it is an
annihilation operator, or to the left of (C.8) if it is a creation operator. This modifies the
operators χ2

i0
[H0,θ(~p, z)]

−1
Ran(χi0 ) via the pull-though formula given in (3.10). We introduce the
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notations

(HI,θ)
00
01 = i|~k|1/2e−2θχ(e−θ~k)~ε(~k) · ~d,

(HI,θ)
00
10 = −i|~k|1/2e−2θχ(e−θ~k)~ε(~k) · ~d,

(HI,θ)
10
00 = (HI,θ)

1,0, (HI,θ)
01
00 = (HI,θ)

0,1.

The contracted part is expressed as a vacuum expectation value, and

ṼL(~p, z) =
∑

m,n,p,q
mi+ni+pi+qi=1

∫
a∗(k(m))〈ψi0 ⊗ Ω|V p,q

m,n(Hf , ~Pf ,K
(m,n))(ψi0 ⊗ Ω)〉a(k̃

(n)
)dK(m,n)

(C.9)
where m = (m1, . . . ,mL),

V
p,q
m,n(r,~l,K(m,n)) = χρ0(r + r̃0)

L−1∏
j=1

[
(HI,θ)

pjqj
mjnj

R(Hf + r + r̃j , ~Pf +~l +
~̃
lj)
]
(HI,θ)

pLqL
mLnL

χρ0(r + r̃L),

(C.10)

and

R(r,~l) :=
Pi0 ⊗ χ2

ρ0
(r) + P i0 ⊗ 1HfÄ

r − ~p ·~l
ä
e−θ +

~l2

2
e−2θ + Ei0 − z

. (C.11)

The shifts ri’s, r̃i’s, ~li’s,
~̃
li’s come from the Pull-through formula and are given by

ri :=
i−1∑
j=1

Σ[k̃
(nj)
j ] +

L∑
j=i+1

Σ[k
(mj)
j ], ~li :=

i−1∑
j=1

~Σ[k̃
(nj)
j ] +

L∑
j=i+1

~Σ[k
(mj)
j ],

r̃i :=
i∑

j=1

Σ[k̃
(nj)
j ] +

L∑
j=i+1

Σ[k
(mj)
j ],

~̃
li :=

i∑
j=1

~Σ[k̃
(nj)
j ] +

L∑
j=i+1

~Σ[k
(mj)
j ]. (C.12)

where Σ[k(m)] :=
∑m
i=1 |~ki|, Σ[k̃(n)] :=

∑n
j=1 |

~̃
kj |, ~Σ[k(m)] :=

∑m
i=1

~ki, ~Σ[k̃(n)] :=
∑n
j=1

~̃
kj . We

rewrite

− λ2
0〈χi0HI,θχi0 [Hχi0

(~p, z)]−1
Ran(χi0 )χi0HI,θχi0〉i0 =

∑
M+N≥0

W̃
(0)
M,N (~p, z), (C.13)

where the kernels w̃(0)
M,N are given by

w̃
(0)
M,N (~p, z, r,~l, k(M), k̃

(N)
) =

−
∑
L=2

(−λ0)L
∑

m,n, p, q

m1 + ...+mL = M
n1 + ...+ nL = N

mi + ni + pi + qi = 1

〈ψi0 ⊗ Ω|V p,q
m,n(~p, z, r,~l,K(M,N))ψi0 ⊗ Ω〉sym, (C.14)

for M +N ≥ 1, and

w̃
(0)
0,0(r,~l) = −

∑
L=2

(−λ0)L
∑
p, q

pi + qi = 1

〈ψi0 ⊗ Ω|V p,q

0,0 (~p, z, r,~l)ψi0 ⊗ Ω〉
(C.15)
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for M +N = 0. fsym denotes the symmetrization of f with respect to the variables k(M) and
k̃

(N)
. Using the estimate (3.3),

‖(Hf + ρ0)−1/2HI,θ(Hf + ρ0)−1/2‖ = O(ρ
−1/2
0 σ

3/2
Λ ), (C.16)

we obtain the bound

‖V p,q
m,n(~p, z, r,~l,K(m,n))‖ ≤ ρ0

L∏
j=1

∥∥∥∥(Hf + ρ0)−1/2(HI,θ)
pjqj
mjnj (Hf + ρ0)−1/2

∥∥∥∥
sup
j

∥∥∥∥(Hf + ρ0)R(Hf + r + r̃j , ~Pf +~l +
~̃
lj)

∥∥∥∥L−1

.

(C.17)

Distinguishing the cases pj + qj = 1 and pj + qj = 0 and using Estimate (3.5) of Lemma 3.2,
we deduce that there exists a positive constant C such that

‖V p,q
m,n(~p, z, r,~l,K(m,n))‖ ≤ ρ0

CL

(µ sin(ϑ))L−1

L∏
j=1

(σ
3/2
Λ ρ

−1/2
0 )pj+qjρ

−(mj+nj)
0 |k(mj)

j |1/2|k̃(nj)
j |1/2.

(C.18)

Since mj + nj + pj + qj = 1, it follows that

‖w̃(0)
M,N (~p, z)‖ 1

2
≤
∞∑
L=2

(Cσ
3/2
Λ λ0ρ

−1/2
0 )L

(µ sin(ϑ))L−1
ρ
− 1

2
(M+N)

0 ρ0. (C.19)

Similarly,

‖w̃(0)
0,0(~p, z)‖∞ ≤

∞∑
L=2

(Cσ
3/2
Λ λ0ρ

−1/2
0 )L

(µ sin(ϑ))L−1
ρ0, (C.20)

and proceeding in the same way for the derivatives ∂#w̃
(0)
M,N , where ∂# stands for ∂r or ∂lj ,

we conclude that

‖w̃(0)
M,N (~p, z)‖ 1

2
= O

Ñ
λ2

0σ
3
Λ

µ sin(ϑ)ρ
1
2

(M+N)
0

é
, (C.21)

‖∂#w̃
(0)
M,N (~p, z)‖ 1

2
= O

Ñ
λ2

0σ
3
Λ

µ2 sin2(ϑ)ρ
1
2

(M+N)+1
0

é
, (C.22)

uniformly with respect to M +N ≥ 1, and that

‖w̃(0)
0,0(~p, z)‖∞ = O

Ç
λ2

0σ
3
Λ

µ sin(ϑ)

å
, (C.23)

‖∂#w̃
(0)
0,0(~p, z)‖∞ = O

Ç
λ2

0σ
3
Λ

µ2 sin2(ϑ)ρ0

å
. (C.24)

Since λ0 ≥ 0 is chosen such that λ0 � µ sin(ϑ)ρ
1/2
0 σ

3/2
Λ , this concludes the proof of the

estimates of the lemma.
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C.2. Proof of the analyticity of the map (~p, z) 7→ H(0)(~p, z) ∈ L(H(0)). We start from
the expression of H(0)(~p, z) given in (C.4),

H(0)(~p, z) =
( Ä
Hf − ~p · ~Pf

ä
e−θ +

~P 2
f

2
e−2θ + Ei0 − z

)
1Hf≤ρ0 + λ0〈χi0HI,θχi0〉i0

− λ2
0〈χi0HI,θχi0 [Hχi0

(~p, z)]−1
Ran(χi0 )χi0HI,θχi0〉i0 .

(C.25)

The first term on the right-hand side of (C.25) is analytic on Uρ0 [Ei0 ]. We have seen in the
proof of Lemma 3.3 that the Neumann series for [Hχi0

(~p, z)]−1
Ran(χi0 ) is uniformly convergent

on Uρ0 [Ei0 ]. It is therefore sufficient to check that the map

(~p, z) 7→
ñ
Hf + ρ0

Hθ,0(~p, z)

ô
Ran(χi0 )

∈ L(Ran(χi0))

is analytic on Uρ0 [Ei0 ]. Since weak and strong analyticity are equivalent, we only need to show
that the maps

(~p, z) 7→
¨
ψj ⊗ ϕ

∣∣∣ ñ Hf + ρ0

Hθ,0(~p, z)

ô
Ran(χi0 )

ψj ⊗ ϕ
∂
∈ C (C.26)

are analytic for any ψj ⊗ ϕ ∈ Ran(χi0), where ψj , j = 1, ..., N , are unit eigenvectors of His

associated to the eigenvalues Ej . Using, for any ϕ in Fock space, the representation ϕ = (ϕ(n))

with ϕ(n) ∈ L2
s(R3n), we find that

〈ψj ⊗ ϕ
∣∣∣ ñ Hf + ρ0

Hθ,0(~p, z)

ô
Ran(χi0 )

ψj ⊗ ϕ
∂

= (1− δi0j)
ρ0

Ej − z
|ϕ(0)|2

+
∑
n≥1

∫
R3n

dk(n) |k1|+ · · ·+ |kn|+ ρ0

bj(~p, z,Σ[k(n)], ~Σ[k(n)])
|ϕ(n)(k1, ..., kn)|2,

where bj is defined in (B.3)–(B.4), and we have set Σ[k(n)] = |k1| + · · · + |kn| and ~Σ[k(n)] =
~k1 + · · ·+~kn. The functions (~p, z) 7→ (r+ρ0)/bj(~p, z, r,~l) are analytic on Uρ0 [Ei0 ] for any fixed
(r,~l) ∈ R+ × R3 with |~l| ≤ r, and |(r + ρ0)/bj(~p, z, r,~l)| is uniformly bounded as follows from
the proof of Lemma 3.3. Using Morera’s theorem for several complex variables (see [44]), we
deduce that

(~p, z) 7→
¨
ψj ⊗ ϕ

∣∣∣ ñ Hf + ρ0

Hθ,0(~p, z)

ô
Ran(χi0 )

ψj ⊗ ϕ
∂
∈ C (C.27)

is analytic, and hence, that H(0)(~p, z) is analytic in (~p, z) ∈ Uρ0 [Ei0 ].
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