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Abstract. We prove maximal speed estimates for nonlinear quantum propaga-
tion in the context of the Hartree equation. More precisely, under some regularity
and integrability assumptions on the pair (convolution) potential, we construct a
set of energy and space localized initial conditions such that, up to time-decaying
tails, solutions starting in this set stay within the light cone of the corresponding
initial datum. We quantify precisely the light cone speed, and hence the speed of
nonlinear propagation, in terms of the momentum of the initial state.

1. The Problem and Results

In contrast to the key principle of relativity, in Quantum Mechanics, a local change
of initial conditions effects the solutions everywhere instantaneously. As Quantum
Mechanics is the theory of the quantum matter in non-extreme conditions, it is
important to understand the limitations this imposes and to investigate universal
properties of the Quantum Mechanical (QM) propagation in some depth.

QM predictions are probabilistic and therefore so is the characterization of quan-
tum evolution. It was shown in [39] that, assuming the energy is bounded initially,
the supports of solutions of the Schrödinger equation, up to vanishing in time prob-
ability tails, spread with a finite speed. This result was improved in [22, 41, 1] and
extended in [5] to photon interacting with an atomic or molecular system, while
[14, 15] developed a related approach in condensed matter physics.

For an electron in an atom the maximal velocity of propagation obtained in [1]
is close to the one computed heuristically and to the one observed: of the order of
105m/s which is less than 0.1% of the speed of light. Hence, in a few body case, the
QM predictions here are fairly reliable.

Though bounds obtained in [39, 22, 41] and especially in [1] are valid for rather
general class of potentials, for many-particles systems, their dependence on the
number of particles (which in applications could vary from a few to 1020) is rather
poor.

In this paper, we prove bounds on the speed of propagation for bosonic many-body
systems in the mean-field approximation, i.e. for the Hartree equation (HE),

i
∂

∂t
ψt = (−1

2
∆ + V )ψt + v ∗ |ψt|2ψt, (1.1)

in the physical space Rd, d ≥ 3. Here V and v are real functions, external (‘one-
body’) and internal (interparticle, or ‘pair’) potentials.
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We make the following two sets of assumptions on the pair convolution potential
v, and the external potential V :

• We assume that v : Rd → R satisfies 1

v ∈ W γ,(q,∞) if 1 < q < d/2, for d/(2q) < γ,

or v ∈ W γ,1 with γ > d/2,
(1.2)

where W γ,q is the standard Sobolev space (W γ,2 ≡ Hγ), and W γ,(q,∞) denotes
the Lorentz-Sobolev space; see (1.10) below.

• We assume that V : Rd → R satisfies Yajima-type conditions2 (cf. [43, 17, 35],
[19, Eq. (2.10)], and references therein):

|〈x〉σ〈∇〉αV | . 1, σ ≥ 3
2
d+ 3, α ≤ γ + bd−1

2
c, (1.3)

where 〈x〉 :=
√

1 + |x|2.

• Furthermore, we let H := −1
2
∆ + V and assume that

H has neither nonpositive eigenvalues nor a resonance at 0. (1.4)

We recall that H := −1
2
∆ + V is said to have a resonance at 0 if the equation

Hu = 0 has a distributional solution u ∈ 〈x〉νL2 = {f = 〈·〉νg | g ∈ L2}, for any
ν > 1

2
. One can show that there are no zero energy resonances in dimensions d ≥ 5.

In Proposition 1.8 below we give explicit restrictions on V for which condition (1.4)
is satisfied.

The assumptions (1.3)-(1.4) are more than enough to guarantee that the propa-
gator e−itH is bounded on the Sobolev space Hγ, and satisfies the same dispersive
estimates as the propagator eit∆/2; see (B.2) and (B.11).

Denote χ = χ(r) for a smooth bump function supported in [0, 1] and such that
χ = 1 on [0, 1/2]. Let χA denote the characteristic function of a set A. For I ⊂ R
a bounded open interval, we define the upper speed (or momentum, as the mass
of particles is set equal to 1) bound given that the energy of the initial state ψ0 is
supported in I as

kI := ‖|∇|χI(H)‖. (1.5)

Finally, let Bs(ε) denote the ball in Hs centered at the origin and of radius ε > 0.
With this, we formulate our main result.

Theorem 1.1 (Maximal propagation speed for HE). Assume Conditions (1.2),
(1.3) and (1.4). Let I be a bounded open interval, g ∈ C∞0 (I;R), b > 0 and s ≥ γ.
Then, there exist ε > 0 and a set

Sg,b ⊂ Bs(Cε), (1.6)

1The regularity assumptions on v are probably not optimal and can be weakened. We however
decided to state things in this way for technical convenience.

2Note that these conditions are not optimal, and we opted to state them in a simple and
concise form that applies to all dimensions d ≥ 3. We refer to the cited papers for more precise
assumptions.
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for some absolute C > 0 (see (3.12)), such that the following hold true:

(i) Sg,b is in one-to-one correspondence with the set g(H)χ(|x|/b)Bs(ε);

(ii) For any initial condition ψ0 ∈ Sg,b, the Hartree equation (1.1) has a global
solution in Hs and this solution satisfies the estimate

‖χ{|x|≥c|t|+a}ψt‖ . ε〈t〉−1/2, (1.7)

for any constants c and a satisfying c > kI and a > b.

Remark 1.2 (On the decay rate). The algebraic decay rate of −1/2 in (1.7) can
probably be improved. The restriction is coming from the presence of the nonlin-
earity, as one can see by comparing with the arbitrary decay rate obtained in the
linear (time-independent) case in [1].

Remark 1.3 (Scaling). In the quantum mechanical context, one would like to keep
‖ψ0‖2, interpreted as the initial number of particles, at least of O(1). To reflect this
interpretation, one may phrase the main result of Theorem 1.1 without assuming
smallness on the data, but assuming instead that the pair interaction potential is
small. In other words, we may let ε = 1 in the statement of Theorem 1.1 and change
v to ε2v in the Hartree equation (1.1).

By definition (3.12) below, the set Sg,b consists of Hs-functions ‘localized’ in the
position x and energy H (essentially to |x| ≤ b and I, respectively). Estimate (1.7)
shows that (up to time-decaying tails), a solution to the Hartree equation starting
in the set

S :=
⋃

g∈C∞0 ,b>0

Sg,b

stays inside the c-light cone of an initial condition. After [39], we call such a result
a maximal (propagation) speed bound (MSB).

The infimum of all c’s for which (1.7) holds is called the maximal speed of propa-
gation, cmax. Theorem 1.1 implies the bound cmax ≤ kI .

As was mentioned above, for the (linear) Schrödinger equation (v = 0), such an
estimate was found in [39], improved in [22, 41, 1].

The MSB is conceptually close to the celebrated Lieb-Robinson bound in Quan-
tum Statistical Mechanics proved in [28] and improved by many authors and ex-
tended to various areas of quantum physics with many important applications (see
[7, 20, 31] for reviews and references).3

For certain models of quantum many-body systems without the Hartree or Hartree-
Fock approximation, the Lieb-Robinson and maximal velocity bounds were obtained
in a number of papers, see [13, 18, 29, 14, 15, 16, 30, 7, 37, 42, 27, 44] and references
therein.

Our approach follows that of [1] (originating in turn in [39]) for the linear Schrö-
dinger equation and is based on constructing nearly monotonic (for bounded energy

3The Lieb-Robinson bound does not involve an explicit energy cut-off, but there is an implicit
one in setting up the problem on a lattice, rather than a continuous space.
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intervals) ‘propagation observables’ providing quantitative information about the
quantum evolution in question. One of our key contributions is the extension of the
quantum energy localization method, which proved to be exceptionally effective in
the linear context, to nonlinear problems.

Remark 1.4 (MSB-intuition). The MSB is determined by the kinetic energy term and
the main effort is directed at controlling the influence of the effective time-dependent
potential, due to the nonlinearity (time-dependent self-consistent potential). Such a
control is subtle as, a priori, one cannot rule out that the time-dependent potential
does not pump energy onto the systems leading to an acceleration.

Remark 1.5 (Finiteness of kI). Since V is bounded (in fact, ∆-boundedness with a
relative bound < 1 (see (4.1) below) suffices), ∆ is H-bounded and therefore kI in
(1.5) is finite.

Remark 1.6 (Sharpness of the MSB). Under our assumptions, the bound cmax ≤ kI
is sharp. To illustrate this, we consider the special case of v = 0. In this case, we can
take Sg,b = g(H)χ(|x|/b)L2(Rd). Then, one can show (see e.g. [38]) that solutions of
(1.1) with v = 0 (the Schrödinger equation) with initial conditions in Sg,b concentrate
on the trajectories x = pt+x0, where p = −i∇ is the quantum momentum operator
and x0 ∈ Rd, and consequently g(H) ≈ g(1

2
|p|2 + V (pt+ x0)) ≈ g(1

2
|p|2), as t→∞.

Choosing I to be a small interval around an energy E > 0 and using that g(H)
is supported in I, we see that the support of the solution ψt expands at the rate√
Et. On the other hand kI = ‖|p|χI(H)‖ ≈

√
E. (Of course, one can simplify the

arguments by taking V = 0.)

Remark 1.7 (Dependence on number of particles). The bound kI is of the same form
as in the (linear) one-particle case and gives a similar magnitude for the speed as in
that case. However, the constant (subsumed in the symbol .) on the r.h.s. of (1.7)
depends on the size of the pair potential v. (In the mean-field derivation of the HE,
one considers the pair potential w in the many-body SE to be of the form w = 1

n
v,

with v = O(1) in the particle number n (see [4]). This v enters the HE.)

Open problems. (a) Prove MSB (1.7) with the implicit constant on the r.h.s. inde-
pendent of the size of the pair potential v.

(b) Prove the MSB (1.7) for n-particle systems with n-independent bounds.
(c) Prove the MSB (1.7) for the Hartree-von Neumann (‘mixed state’ Hartree)

equation, see [33] for some results on the long-time dynamics of this equation.
(d) Investigate a possibility of an acceleration due to strong nonlinearities.

The following proposition gives explicit restrictions on V guaranteeing that Con-
dition (1.4) holds.

Proposition 1.8. Assume that the positive and negative parts of the potential V ,
V+ = max(V, 0), V− = max(−V, 0), satisfy

V+(x) ≤ C〈x〉−α, V−(x) ≤ δ〈x〉−α, α > 2, (1.8)
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for some C > 0 and for δ > 0 small enough. Then the operator H = −1
2
∆ + V has

no eigenvalues and 0 is not a resonance of H.

Proposition 1.8, or a similar statement, might be known. For the convenience of
the reader, we provide its proof in Appendix A.

Theorem 1.1 and Proposition 1.8 imply

Corollary 1.9. Assume that Conditions (1.2), (1.3) and (1.8) hold. Then the
conclusions of Theorem 1.1 hold.

Remark 1.10 (The case of pure power NLS). Our main result, Theorem 1.1, can be
extended also to the case of the pure power NLS equation

i
∂

∂t
ψt = (−1

2
∆ + V )ψt + |ψt|2σψt, ‖ψ0‖Hs∩Lp′ (Rd) ≤ ε, (1.9)

see Remark 4.4 below for a detailed discussion.

Organization of the paper. In Section 2, we state a standard global existence result
with time decay for small solutions. In Section 3, we describe the class of admissible
data, S =

⋃
g∈C∞0 ,b>0 Sg,b, for our MPS bounds. The main result of this section

is proven in Section 6, after we state in Section 5 some preliminary estimates. In
Section 4, we prove Theorem 1.1. Technical proofs are collected in the appendices.

Notation. As mentioned above, Lq and W s,q denote the usual Lebesgue and Sobolev
spaces, Lq,∞ denotes the weak-Lq space, and W s,(q,∞) (q > 1) stands for Lorentz-
Sobolev space,

W γ,(q,∞) =
{
f ∈ Lq,∞ , 〈∇〉αf ∈ Lq,∞, α ≤ γ

}
. (1.10)

To simplify the statements below, we will also write, abusing notations in the case
where q = 1,

L1,∞ ≡ L1, W s,(1,∞) ≡ W s,1.

We let 〈x〉 :=
√

1 + |x|2 for x ∈ Rd, and denote by L2
γ := 〈x〉−γL2 the usual

weighted L2 space.
We use standard notation for norms, and will often let ‖ · ‖ = ‖ · ‖L2 . We

will sometimes also use ‖ · ‖ to denote the operator norm when there is no risk of
confusion.

As usual, p′ denotes the Hölder conjugate exponent of p ∈ [1,∞]. The Lebesgue
indices q and p appearing in the statements of the results (see for example (2.1) and
(2.2) in Theorem 2.1) are related as follows:

1

p
=

1

2
− 1

2q
,

1

p
+

1

p′
= 1. (1.11)

We write A . B if A ≤ CB for some absolute constant C > 0 independent of A
and B. We write A ≈ B if A . B and B . A.

More notation will be introduced in the course of the proofs.
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2. Global solutions

We begin with a basic theorem on the existence of global small solutions with
time decay.

Theorem 2.1. Let 1 ≤ q < d/2 and s > d/(2q). Assume that V satisfies Conditions
(1.3), (1.4) and that

v ∈ Lq,∞ if 1 < q < d/2, v ∈ L1 if q = 1. (2.1)

Then, there exists ε̄ > 0 such that, for any ε ≤ ε̄, Eq. (1.1) with an initial condition
ψ0 satisfying

ψ0 ∈ Hs ∩ Lp′ , ‖ψ0‖Hs∩Lp′ ≤ ε, (2.2)

where p′ is given by (1.11), i.e. p′ = 2q
q+1

for q ≥ 1, has a unique global solution

ψt ∈ C(R, Hs(Rd)) and this solution satisfies, for all t ∈ R,

‖ψt‖L2 = ‖ψ0‖L2 , (2.3)

‖ψt‖Hs . ‖ψ0‖Hs , (2.4)

‖ψt‖Lp . ε〈t〉−d/(2q). (2.5)

Theorem 2.1 is proven using standard energy and decay estimates. For q = 1
(v ∈ L1), it is proven in [12]. In Appendix B, we present a proof for the full range
of q’s.

3. Set of initial conditions and asymptotic energy cut-off

In this section, we describe the set of initial conditions, S =
⋃
g∈C∞0 ,b>0 Sg,b, used

in Theorem 1.1. To do this, we introduce asymptotic energy cut-offs.
Let f(|ψ|2) := v ∗ |ψ|2 and let Hψ

t be the ψt-dependent Schrödinger operator on
L2(Rd) defined as

Hψ
t := −1

2
∆ + V + f(|ψt|2). (3.1)

If ψt ∈ Lp, with p as in Theorem 2.1, by Young’s inequality we have f(|ψt|2) ∈ L∞.

Then, by Kato’s result (see e.g. [8]), the operator Hψ
t is self-adjoint on the domain
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of ∆. We let Uψ
t ≡ Uψ

t,0 be the propagator generated by Hψ
t . Then a solution ψt of

(1.1) satisfies the fixed point equation ψt = Uψ
t ψ0. We also denote

Wψ
t := f(|ψt|2) = v ∗ |ψt|2, Hψ

t = H +Wψ
t . (3.2)

For real-valued g ∈ C∞0 (R) we define the asymptotic energy cut-offs (cf. [1, 39])
as the operator norm limit

gψ+(H) := lim
τ→∞

(Uψ
τ )−1g(H)Uψ

τ . (3.3)

The next proposition will imply that this limit exists under our assumptions.

Proposition 3.1. Let Wt(x) = W (x, t) be a real, time-dependent bounded potential
satisfying∫ ∞

0

‖∂αxWt‖L∞dt <∞, where either α = 0 or 1 ≤ |α| ≤ 2. (3.4)

Let Ut := U(t, 0) be the evolution generated by Ht := H + Wt. Then, for all g ∈
C∞0 (R;R), the following operator-norm limit exists

g+(H) := lim
t→∞

U−1
t g(H)Ut. (3.5)

Proof. Define gt(H) := U−1
t g(H)Ut, and write gt(H) as the integral of the derivative

and use that ∂rgr(H) = −iU−1
r [g(H),Wr]Ur to obtain

gt(H) = g(H)− i
∫ t

0

U−1
r [g(H),Wr]Urdr. (3.6)

If (3.4) holds with α = 0, using the trivial estimate

‖[g(H),Wr]‖ . ‖g(H)‖‖Wr‖L∞ . ‖Wr‖L∞ ,

shows that (3.5) exists.
If (3.4) holds with 1 ≤ |α| ≤ 2, then we use Lemma E.3, which shows that∥∥[g(H),Wr]

∥∥ . max
1≤|α|≤2

‖∂αxWr‖L∞ .

Hence (3.5) exists. �

Remark 3.2 (Bound (3.4)). For either the Hartree case (3.2) or the NLS one (4.7),
the bound (3.4) follows from the decay of ‖ψt‖Lp at a sufficiently fast rate in t; see
for example Lemma 4.2.

Corollary 3.3 (Existence of the asymptotic cutoff (3.3)). Under the conditions of
Theorem 2.1, if ψt is a solution of (1.1) then, for all g ∈ C∞0 (R;R), the limit (3.5)
exists and

gψ+(H) = g(H)− i
∫ ∞

0

(
Uψ
r

)−1
[g(H),Wψ

r ]Uψ
r dr. (3.7)
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Proof. Under the conditions of Theorem 2.1, Young’s inequality implies that

‖Wψ
t ‖L∞ . 〈t〉−d/q, (3.8)

see Lemma 4.2 below. Hence since q < d, Proposition 3.1 implies the existence of
the limit (3.3) and the formula (3.7). �

To proceed, recall that Bs(ε) denotes the ball of radius ε in Hs,

Bs(ε) :=
{
f ∈ Hs, ‖f‖Hs < ε

}
. (3.9)

Recall also that L2
γ := 〈x〉−γL2 and let ‖f‖L2

γ
:= ‖〈x〉γf‖L2 be the corresponding

norm. Note that if γ > d/(2q), then L2
γ ⊂ Lp

′
where p′ is given by (1.11). For ε > 0,

Bsγ(ε) denotes the ball of radius ε in L2
γ ∩Hs:

Bsγ(ε) :=
{
f ∈ L2

γ ∩Hs, ‖f‖L2
γ

+ ‖f‖Hs < ε
}
. (3.10)

The next proposition is the main result of this section.

Proposition 3.4. Let 1 < q < d/2, d/(2q) < γ < d/q − 1, and γ ≤ s. Let
g ∈ C∞0 (R;R). Let ε, ε̃ > 0 be such that C0ε = ε̃ � 1 with C0 sufficiently large.
Then assuming Conditions (1.2), (1.3) and (1.4) on the potentials V and v,

• For all φ ∈ Bsγ(ε) there exists a unique ψ0 ∈ Bsγ(ε̃) solving the equation

ψ0 = g
Ψ(ψ0)
+ (H)φ, (3.11)

where gψ+(H) is defined in (3.3) and Ψ(ψ0) : t → the solution ψt of (1.1) with
the datum ψ0 (which exists globally since ψ0 ∈ Bsγ(ε̃) ⊂ ε̃(Hs∩Lp′) and satisfies
the properties in Theorem 2.1).

• The map Φg : φ 7→ ψ0 restricted to the domain g(H)Bsγ(ε) is injective (note
that g(H)Bsγ(ε) ⊂ Bsγ(Cε) for some C > 0).

Eq. (3.11) is a fixed point problem depending on φ (or an implicit function
equation). We prove Proposition 3.4 in Section 6.

Definition 3.5 (Set Sg,b). Let Φg be the injective maps defined in the second
statement of Proposition 3.4. For g ∈ C∞0 (R;R) and b > 0, we define the set
Sg,b of initial conditions, ψ0, appearing in Theorem 1.1, Eq. (1.6), as

Sg,b := Φg

(
g(H)χ(|x|/b)Bs(ε)

)
. (3.12)

Proposition 3.4 shows that the class of initial data Sg,b is in one-to-one correspon-
dence with the set g(H)χ(|x|/b)Bs(ε) (note that χ(|x|/b)Bs(ε) ⊂ Bsγ(Cε) for some
C > 0). Proposition 3.4 and Theorem 2.1 imply that

Corollary 3.6. Under the conditions of Proposition 3.4, the set Sg,b of initial con-
ditions, ψ0, constructed in (3.12), has properties (i) and the first part of (ii) (that
for any initial condition ψ0 ∈ Sg,b, the Hartree equation (1.1) has a global solution
in Hs) of Theorem 1.1.
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4. Proof of Theorem 1.1

We will use the following result about the linear propagators proven in [1] under
stronger assumptions.

Theorem 4.1 (Maximal propagation speed for t-dependent potentials). Suppose
that Ht = −1

2
∆ + V +Wt, with V (x) satisfying the inequality

‖V u‖ ≤ a1

2
‖∆u‖+ a2‖u‖, (4.1)

for some 0 ≤ a1 < 1, a2 > 0, and Wt(x), a real, time-dependent, bounded potential
such that

either

∫ ∞
0

wt dt <∞ or

∫ ∞
0

w′t dt <∞,

where wt :=

∫ ∞
t

‖Wr‖W 1,∞dr and w′t := max
1≤|α|≤2

∫ ∞
t

‖∂αxWr‖L∞dr.
(4.2)

Let I be a bounded open interval, g ∈ C∞0 (I;R) and let kI be as in (1.5). If c > kI
and a > b, then, for all 0 < β < 1, the evolution Ut = U(t, 0) generated by Ht

satisfies the estimate

‖χ{|x|≥ct+a} Utg+(H)χ{|x|≤b}‖ . t−min( 1
2
,1−β) + w]

tβ
(4.3)

for t ≥ 1. Here w]
tβ

is either wtβ or w′
tβ

, depending on the condition in (4.2).

A proof of Theorem 4.1 is given in Appendix D. Note that in our context, it is
preferable to use the condition

∫∞
0

∫∞
t
‖Wψ

r ‖W 1,∞drdt < ∞ since it requires less

regularity on v than the condition
∫∞

0

∫∞
t
‖∂αWψ

r ‖L∞drdt <∞, 1 ≤ |α| ≤ 2.

Proof of Theorem 1.1. Let ψt ∈ C(R, Hs(Rd)) be the unique global solution of Eq.
(1.1) with an initial condition ψ0 in the set Sg,b (see (3.12)), given in Theorem 2.1.
Theorem 1.1 follows from Theorem 4.1 by letting (see (3.2))

Wt 7→ Wψ
t := f(|ψt|2), Ut 7→ Uψ

t , β = 1/2, (4.4)

provided we verify Condition (4.2), that wtβ . 〈t〉−1/2, and Proposition 3.4 which
shows that the class of initial data Sg,b is in one-to-one correspondence with the set
g(H)χ(|x|/b)Bs(ε) ⊂ g(H)Bsγ(Cε) for some C > 0 (see Corollary 3.6).

For Condition (4.2), we need the following direct consequence of Theorem 2.1:

Lemma 4.2. Under the conditions of Theorem 2.1, we have that∥∥Wψ
t

∥∥
L∞
. ε2〈t〉−

d
q . (4.5)

Suppose in addition that v satisfies (1.2). Then∥∥Wψ
t

∥∥
W γ,∞ . ε2〈t〉−

d
q . (4.6)
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Proof of Lemma 4.2. First consider the L∞-norm of Wψ
t . By Young’s inequality,∥∥Wψ

t

∥∥
L∞
. ‖v‖Lq,∞

∥∥|ψt|2∥∥Lq′ . ‖v‖Lq,∞‖ψt‖2
Lp ,

since p = 2q′. Hence the first inequality in (4.5) follows from (2.5) in Theorem 2.1.
If we suppose in addition that v belongs to W γ,(q,∞), then we can write∥∥Wψ

t

∥∥
W γ,∞ . ‖v‖W γ,(q,∞)

∥∥|ψt|2∥∥Lq′ . ‖v‖W γ,(q,∞)‖ψt‖2
Lp ,

and hence (4.6) follows again from (2.5). �

Now, condition (4.2) follows from Lemma 4.2 since, using γ ≥ 1, we have ‖Wψ
t ‖W 1,∞

. 〈t〉−d/q with q < d/2. Hence, wt . 〈t〉−d/q+1 and Theorem 1.1 follows. �

Remark 4.3 (Integrability assumptions). In dimension 3, the endpoint case in The-
orem 2.1 for our integrability conditions is v ∈ L3/2 and ψ0 ∈ L6/5. This would
correspond to sharp decay in L6

x that implies that ‖Wt‖L∞ . t−2, which is the
borderline rate for the current argument; see (4.2).

Remark 4.4 (The case of pure power NLS). To extend Theorem 1.1 to the NLS (1.9)
(see Remark 1.10), we take

Wψ
t := |ψt|2σ (4.7)

instead of v ∗ |ψt|2. It is not hard to show that there exist numbers σ0 = σ0(d) and
s0 = s0(σ, d) sufficiently large, such that assuming that σ ≥ σ0(d) and s ≥ s0(σ, d),
a global existence result analogous to Theorem 2.1 holds for (1.9), and implies
bounds on Wt that can be used to verify condition (4.2) and apply Theorem 4.1.
The analogue of Proposition 3.4 needed to construct a suitable class of initial data,
can also be proven following the same arguments we give in Section 6, and the
analogous results from Section 5 for the flow of (1.9).

For example, in dimension d = 3, consider σ = 3/2 (quartic NLS) and let p′ ∈
[1, 6/5). Then one can show (as in the proof of Theorem 2.1) that the same estimate
(2.4)-(2.5) hold for solution of (1.9):

‖ψt‖Lp . ε〈t〉−3(1/2−1/p), ‖ψt‖Hs . ε. (4.8)

Note that 3(1/2− 1/p) > 1 (since p ∈ (6,∞]).
Then, let us first fix, for the sake of explanation, p′ = 1. It follows that

‖Wψ
t ‖W 1,∞ =

∥∥|ψ|2σ∥∥
W 1,∞ .

∥∥ψt∥∥W 1,∞‖ψt‖
2
L∞ . ε3〈t〉−3, (4.9)

provided s > 5/2, and, for all γ ≤ s,

‖Wψ
t ‖Hγ =

∥∥|ψ|2σ∥∥
Hγ .

∥∥ψt∥∥Hγ‖ψt‖
2
L∞ . ε3〈t〉−3. (4.10)

In particular, the condition in Proposition 3.1, and the stronger condition (4.2)
in Theorem 4.1 hold. Analogues of Lemma 4.2 and 5.2 also hold (note that the
only relevant thing is that the exponent d/q > 2, so we can fix q = 3/2 − ε when
comparing to the rates in (4.9)-(4.10)). The mapping properties in Lemma 5.4 and
5.5 can also be proved using (4.8), and the same goes for the estimates on the
differences from Lemmas 5.6-5.9, since these only rely on (4.8)-(4.10) and the above
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mentioned lemmas. Theorem 1.1 then follows for solutions of (1.9) with σ = 3/2
and p′ = 1.

5. Mapping properties of Wψ
t and Uψ

t

In this section, we state several properties of Wψ
t and the flow Uψ

t that will
be essential ingredients in the proofs in the next section. Proofs are deferred to
Appendix C.

5.1. Mapping properties of Wψ
t . Recall that the norms of Wψ

t in the spaces
L∞ and W γ,∞ have been estimated in Lemma 5.1. We also need to estimate the
W s,2q-norm of Wψ

t .

Lemma 5.1. Under the conditions of Theorem 2.1, we have that∥∥Wψ
t

∥∥
W s,2q . ε2〈t〉−

d
2q . (5.1)

Identifying Wψ
t with a multiplication operator, Lemmas 4.2 and 5.1 imply the

following

Lemma 5.2. Under the conditions of Theorem 2.1, we have that∥∥Wψ
t

∥∥
Hs 7→Hs . ε2〈t〉−

d
2q . (5.2)

Suppose in addition that v satisfies (1.2). Then∥∥Wψ
t

∥∥
Hγ 7→Hγ . ε2〈t〉−

d
q . (5.3)

Lemmas 4.2 and 5.2 show that by imposing stronger regularity conditions on v,
namely v ∈ W s,(q,∞) (see Condition (1.2)) instead of v ∈ Lq,∞, one improves the

decay rate of Wψ
t . This can also be achieved by assuming more regularity on the

initial data ψ0.

Lemma 5.3. Let 1 ≤ q < d/2 and s > γ. Let σ = σ1 + σ2 with σ1, σ2 ≥ 0 and

s >
d

2q
+

σ2d

d− 2q
.

Assume that V satisfies Conditions (1.3), (1.4) and that

v ∈ W σ1,(q,∞) if 1 < q < d/2, v ∈ Lσ1,1 if q = 1. (5.4)

Then, there exists ε̄ > 0 such that, for any ε ≤ ε̄, for any

ψ0 ∈ Hs ∩ Lp′ , ‖ψ0‖Hs∩Lp′ ≤ ε, (5.5)

we have∥∥Wψ
t

∥∥
Wσ,∞ . ε2−2ε′q/d〈t〉−d/q+ε′ ,

with d/q − ε′ > 2. In particular,∥∥Wψ
t

∥∥
Hs 7→Hs . ε2−2ε′q/d〈t〉−d/q+ε′ .
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In the next lemmas of this section, one can replace the regularity assumption on
v (i.e. v satisfies Condition 1.2) by the assumptions of Lemma 5.3. For simplicity,
and since in our application we need that v satisfies (1.2), we do not elaborate.

5.2. Mapping properties of Uψ
t . We now prove some mapping properties for Uψ

t ,
where ψ is a global solution of (1.1) as in Theorem 2.1. Our first lemma shows that

Uψ
t is bounded as an operator in Hs.

Lemma 5.4. Under the conditions of Theorem 2.1, there exists an absolute constant
C > 0 such that∥∥Uψ

t

∥∥
Hs 7→Hs ≤ C. (5.6)

In order to prove Proposition 3.4, we also need to estimate the norm of Uψ
t as an

operator from Hγ ∩L2
γ to L2

γ. Note that here we need to impose stronger regularity
conditions on v than in the previous lemma.

Lemma 5.5. Under the conditions of Theorem 1.1 and with γ < d/q − 1, for all
ϕ ∈ Hγ ∩ L2

γ, we have∥∥Uψ
t ϕ
∥∥
L2
γ
. 〈t〉γ‖ϕ‖Hγ + ‖ϕ‖L2

γ
. (5.7)

We mention that our proof of Lemma 5.5 actually establishes a stronger result

than (5.7), as we estimate ‖〈H〉 `2 〈x〉γ′Uψ
t ϕ‖ for suitable values of ` and γ′, see (C.21).

The estimate (5.7) is however sufficient for our purpose.

5.3. Estimates on differences. The result of this subsection are needed to prove
the contraction property in the fixed point argument used to establish Proposition
3.4. The first lemma estimates the differences between two solutions of (1.1).

Lemma 5.6. Under the conditions of Theorem 2.1, consider ψt and ϕt two global
solutions of (1.1) as in Theorem 2.1. We have∥∥ψt − ϕt∥∥Lp . 〈t〉−d/(2q)‖ψ0 − ϕ0‖Lp′∩Hs . (5.8)

Using Lemma 5.6, it is not difficult to prove the following lemma.

Lemma 5.7. Under the conditions of Theorem 2.1, consider ψt and ϕt two global
solutions of (1.1) as in Theorem 2.1. We have∥∥Wψ

t −W
ϕ
t

∥∥
L∞
. ε〈t〉−d/q‖ψ0 − ϕ0‖Lp′∩Hs , (5.9)∥∥Wψ

t −W
ϕ
t

∥∥
W s,2q . 〈t〉−d/(2q)‖ψ0 − ϕ0‖Lp′∩Hs , (5.10)

and ∥∥Wψ
t −W

ϕ
t

∥∥
Hs 7→Hs . 〈t〉−d/(2q)‖ψ0 − ϕ0‖Lp′∩Hs . (5.11)

If in addition v satisfies (1.2), then∥∥Wψ
t −W

ϕ
t

∥∥
W γ,∞ . ε〈t〉−d/q‖ψ0 − ϕ0‖Lp′∩Hs , (5.12)
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and ∥∥Wψ
t −W

ϕ
t

∥∥
Hγ 7→Hγ . ε〈t〉−d/q‖ψ0 − ϕ0‖Lp′∩Hs . (5.13)

Finally, we estimate the norms of the differences of the flows Uψ
t − U

ϕ
t .

Lemma 5.8. Under the conditions of Theorem 2.1, consider ψt and ϕt two global
solutions of (1.1) as in Theorem 2.1. Then we have∥∥Uψ

t − U
ϕ
t

∥∥
Hs 7→Hs . ‖ψ0 − ϕ0‖Lp′∩Hs . (5.14)

Lemma 5.9. Under the conditions of Theorem 1.1 and with γ ≤ d/q − 1, consider
ψt and ϕt two global solutions of (1.1) as in Theorem 2.1. For all f ∈ Hγ ∩L2

γ, we
have ∥∥(Uψ

t − U
ϕ
t

)
f
∥∥
L2
γ
. ‖ψ0 − ϕ0‖Lp′∩Hγ

(
〈t〉γ‖f‖Hγ + ‖f‖L2

γ

)
. (5.15)

6. Proof of Proposition 3.4

In the first part of this proof, we will omit the superindex ψ for Wψ
s , Uψ

s and gψ+
and so on, when there is no risk of confusion.

Let 0 < ε� 1 and φ ∈ Bsγ(ε). Fix ε̃ > 0 such that C0ε ≤ ε̃� 1 for some absolute
C0 > 1 to be determined. We will show that the map

ψ0 7→ Fφ(ψ0) := g
Ψ(ψ0)
+ (H)φ

is a contraction in Bsγ(ε̃). Let ψ0 ∈ Bsγ(ε̃). From (3.7) we have

Fφ(ψ0) = g(H)φ− i
∫ ∞

0

U−1
r W ′

r Urφ dr, W ′
r := [g(H),Wr]. (6.1)

With p as in (1.11), by Hölder’s inequality we have ‖f‖Lp′ ≤ ‖〈x〉−γ‖L2q‖〈x〉γf‖L2 ,
and, since γ > d/(2q), L2

γ ⊂ Lp
′
. Therefore, using Theorem 2.1, for any given

ψ0 ∈ Bsγ(ε̃) we can construct a unique global solution ψt to (1.1) satisfying (2.4)-
(2.5).

Boundedness on Hs. We begin by proving the bound on Hs. We want to show∥∥g+(H)φ
∥∥
Hs . ‖φ‖Hs . (6.2)

Since (6.2) obviously holds true with g instead of g+, by (6.1) it suffices to prove
that ∥∥U−1

r g(H)WrUr
∥∥
Hs . 〈r〉−d/(2q)‖φ‖Hs , (6.3)

and use that d/(2q) > 1. Note that we are writing g(H)Wr instead of the full
commutator W ′

r from (6.1). We will adopt a similar convention in the rest of the
proofs in this section. The estimate (6.3) exchanging the position of g(H) and Wr

can be obtained in the same way (since, in particular, we will not make use of the
fact that the projection g(H) is bounded from Hs to L2 in what follows).
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By Lemma 5.4, we have
∥∥Uψ

t

∥∥
Hs 7→Hs . 1, while Lemma 5.2 gives

∥∥Wψ
r

∥∥
Hs 7→Hs .

ε̃〈r〉−d/(2q). This implies (6.3).

Boundedness on L2
γ. Next, we prove boundedness on L2

γ, that is,∥∥g+(H)φ
∥∥
L2
γ
. ‖φ‖L2

γ∩Hγ , φ ∈ L2
γ ∩Hγ. (6.4)

Since it is not difficult to show the necessary estimate for g(H), by (6.1) it suffices
to prove that, for any φ ∈ L2

γ ∩Hγ, we have∥∥U−1
r g(H)Wr Ur φ

∥∥
L2
γ
. 〈r〉γ−d/q‖φ‖L2

γ∩Hγ , (6.5)

and then use γ < d/q − 1 so that the above bound is integrable. Note that we are
once again just working with g(H)Wr instead of the commutator.

First, using Lemma 5.5, we obtain∥∥U−1
r g(H)Wr Ur φ

∥∥
L2
γ
. 〈r〉γ

∥∥g(H)WrUrφ
∥∥
Hγ +

∥∥g(H)WrUrφ
∥∥
L2
γ
. (6.6)

For the first term, we use Lemmas 5.2 and 5.4, which yield∥∥g(H)WrUrφ
∥∥
Hγ . ε̃2〈r〉−d/q‖φ‖Hγ . (6.7)

For the second term, since g(H) : L2
γ → L2

γ is bounded, we can write∥∥g(H)WrUrφ
∥∥
L2
γ
. ‖Wr‖L∞

∥∥Urφ∥∥L2
γ

. ε̃2〈r〉−d/q
(
〈r〉γ‖φ‖Hγ + ‖φ‖L2

γ

)
, (6.8)

having used Lemmas 4.2 and 5.5 in the second inequality. Equations (6.6), (6.7)
and (6.8) imply (6.5) and therefore (6.4).

Contraction. To prove that Fφ is contractive, we use arguments that are similar
to those above, but we now need to apply them to the difference Fφ(ϕ0)− Fφ(ψ0),
for data ψ0, ϕ0 ∈ L2

γ∩Hs. Let us denote by ψt and ϕt the respective global solutions
guaranteed by Theorem 2.1.

We skip the estimate for the Sobolev norm since it is easier, and concentrate on
estimating the L2

γ norm. We restore the superindex ψ for Hψ
t ,W

ψ
t , Uψ

t and so on.

For ψ0, ϕ0 ∈ Bsγ(ε̃) ⊂ L2
γ ∩Hs, and φ ∈ Bsγ(ε), we estimate first∥∥Fφ(ϕ0)− Fφ(ψ0)
∥∥
L2
γ
≤ D1 +D2 +D3 + ‘similar’, (6.9)

D1 :=

∫ ∞
0

∥∥(Uϕ
r )−1 g(H)Wϕ

r

(
Uϕ
r − Uψ

r

)
φ
∥∥
L2
γ
dr, (6.10)

D2 :=

∫ ∞
0

∥∥(Uϕ
r )−1g(H)

(
Wϕ
r −Wψ

r

)
Uψ
r φ
∥∥
L2
γ
dr, (6.11)

D3 :=

∫ ∞
0

∥∥((Uϕ
r )−1 − (Uψ

r )−1
)
g(H)Wψ

r Urφ
∥∥
L2
γ
dr, (6.12)
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where we are again only looking at terms with g(H)Wr and can disregard the ‘sim-
ilar’ ones with Wrg(H). We then want to prove

D1, D2, D3 . ε ε̃‖ψ0 − ϕ0‖L2
γ∩Hs . (6.13)

The terms D1 and D3 can be estimated similarly so we just focus on the first.
Using Lemma 5.5, we obtain∥∥(Uϕ

r )−1 g(H)Wϕ
r

(
Uϕ
r − Uψ

r

)
φ
∥∥
L2
γ

. 〈r〉γ
∥∥g(H)Wϕ

r

(
Uϕ
r − Uψ

r

)
φ
∥∥
Hγ +

∥∥g(H)Wϕ
r

(
Uϕ
r − Uψ

r

)
φ
∥∥
L2
γ
. (6.14)

To estimate the first term in the rhs of (6.14), we use Lemmas 5.2 and 5.8 yielding∥∥g(H)Wϕ
r

(
Uϕ
r − Uψ

r

)
φ
∥∥
Hγ . ε̃2〈r〉−d/q‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖Hγ . (6.15)

Since g(H) : L2
γ → L2

γ is bounded, the second term in the rhs of (6.14) can be
estimated by∥∥g(H)Wϕ

r

(
Uϕ
r − Uψ

r

)
φ
∥∥
L2
γ

. ‖Wϕ
r ‖L∞

∥∥(Uϕ
r − Uψ

r

)
φ
∥∥
L2
γ

. 〈r〉−d/qε̃2‖ψ0 − ϕ0‖Lp′∩Hγ

(
〈r〉γ‖φ‖Hγ + ‖φ‖L2

γ

)
, (6.16)

the second inequality being a consequence of Lemmas 4.2 and 5.9. Inserting (6.15)
and (6.16) into (6.14) gives∥∥(Uϕ

r )−1 g(H)Wϕ
r

(
Uϕ
r − Uψ

r

)
φ
∥∥
L2
γ

. 〈r〉−d/q+γ ε̃2‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖L2
γ∩Hγ . (6.17)

Therefore, since γ < d/q − 1 and ‖φ‖L2
γ∩Hγ ≤ ε, we have shown that

D1 . εε̃2‖ψ0 − ϕ0‖L2
γ∩Hγ . (6.18)

The same bound holds for D3.
To estimate D2, we write using Lemma 5.5∥∥(Uϕ

r )−1g(H)
(
Wϕ
r −Wψ

r

)
Uψ
r φ
∥∥
L2
γ

. 〈r〉γ
∥∥(Wϕ

r −Wψ
r

)
Uψ
r φ
∥∥
Hγ +

∥∥(Wϕ
r −Wψ

r

)
Uψ
r φ
∥∥
L2
γ
. (6.19)

The first term is estimated using Lemma 5.7, which gives∥∥(Wϕ
r −Wψ

r

)
Uψ
r φ
∥∥
Hγ . ε̃〈r〉−d/q‖ψ0 − ϕ0‖Lp′∩Hγ

∥∥Uψ
r φ
∥∥
Hγ

. ε̃〈r〉−d/q‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖Hγ , (6.20)
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the second inequality following from Lemma 5.4. The second term in the rhs of
(6.19) is estimated as∥∥(Wϕ

r −Wψ
r

)
Uψ
r φ
∥∥
L2
γ

.
∥∥Wϕ

r −Wψ
r

∥∥
L∞

∥∥Uψ
r φ
∥∥
L2
γ

. ε̃〈r〉−d/q‖ψ0 − ϕ0‖Lp′∩Hγ

(
〈r〉γ‖φ‖Hγ + ‖φ‖L2

γ

)
, (6.21)

where we have used Lemmas 5.7 and 5.5 to obtain the second inequality. Plugging
(6.20) and (6.21) into (6.19) gives∥∥(Uϕ

r )−1g(H)
(
Wϕ
r −Wψ

r

)
Uψ
r φ
∥∥
L2
γ
. εε̃〈r〉−d/q‖ψ0 − ϕ0‖Lp′∩Hγ , (6.22)

since ‖φ‖L2
γ∩Hγ ≤ ε, and therefore

D2 . εε̃‖ψ0 − ϕ0‖L2
γ∩Hγ . (6.23)

Hence, since s ≥ γ, we have proven (6.13), which implies∥∥Fφ(ϕ0)− Fφ(ψ0)
∥∥
L2
γ
. ε̃ε

∥∥ϕ0 − ψ0

∥∥
L2
γ∩Hs . (6.24)

The analogous estimate for the Sobolev norm, that is,∥∥Fφ(ϕ0)− Fφ(ψ0)
∥∥
Hs . ε̃ε

∥∥ϕ0 − ψ0

∥∥
L2
γ∩Hs , (6.25)

can be obtained similarly, and is in fact easier to show. Since ε̃ � 1, (6.24)-(6.25)
imply that Fφ is a contraction.

Injectivity. Finally, we verify that the map φ 7→ ψ0 = gψ+(H)φ is injective on
g(H)Bsγ(ε). Indeed, assume that for ` = 1, 2 we have φ` ∈ Bsγ(ε) with g(H)φ1 6=
g(H)φ2, and let ψ0,` ∈ Bsγ(C0ε) be the (unique) solutions of ψ0,` = gψ`+ (H)φ` with

ψ` = Uψ`
t ψ0,`. Then, from (6.1) and arguments similar to those above, we can

estimate∥∥gψ1
+ (H)φ1 − gψ2

+ (H)φ2

∥∥
Hs

≥
∥∥g(H)(φ1 − φ2)

∥∥
Hs − Cε2

[
‖φ1 − φ2‖Hs + ‖ψ1 − ψ2‖Hs∩L2

γ

]
.

This concludes the proof. 2

Appendix A. Proof of Proposition 1.8

Proof of Proposition 1.8. Let V = V+ − V− be such that (1.8) holds. We first prove
that −1

2
∆ +V+ does not have nonpositive eigenvalues nor a resonance at 0. Clearly,

since −1
2
∆ + V+ ≥ 0, its spectrum is contained in R+. We show that 0 is not an

eingenvalue nor a resonance of −1
2
∆ + V+.

Suppose that φ ∈ ∩γ> 1
2
L2
−γ is a solution to (−1

2
∆+V+)φ = 0. Since V

1
2

+ (−∆)−1V
1
2

+

is a bounded operator in L2 by the assumption (1.8), this implies that

V
1
2

+ φ = −2V
1
2

+ (−∆)−1V+φ.
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Taking the scalar product with V
1
2

+ φ gives∥∥V 1
2

+ φ
∥∥2

L2 = −2〈φ, V+(−∆)−1V+φ〉L2 .

Since in addition V
1
2

+ (−∆)−1V
1
2

+ is nonnegative, this shows that V
1
2

+ φ = 0. Hence
(−1

2
∆)φ = 0, which implies that φ = 0. Thus −1

2
∆ + V+ does not have nonpositive

eigenvalues nor a resonance at 0.
Next we show that −1

2
∆ + V does not have negative eigenvalues. Let λ > 0. Let

φ ∈ L2 be such that (−1
2
∆ + V + λ)φ = 0. As above, since (−1

2
∆ + V+ + λ) is

invertible, this implies that∥∥V 1
2
− φ
∥∥2

L2 = 〈φ, V−(−1

2
∆ + V+ + λ)−1V−φ〉L2 . (A.1)

We have −1
2
∆ + V+ + λ ≥ −1

2
∆ + λ and hence, since both operators are invertible

and −1
2
∆ + λ is positive,(
− 1

2
∆ + V+ + λ

)−1 ≤
(
− 1

2
∆ + λ

)−1
. (A.2)

Indeed, for any self-adjoint, invertible operators A and B having the same do-
main and satisfying A ≤ B and A > 0, we have B−1/2AB−1/2 ≤ 1, which implies
B1/2A−1B1/2 ≥ 1 giving A−1 ≥ B−1. Relation (A.2) together with (A.1), implies∥∥V 1

2
− φ
∥∥2

L2 ≤ 〈φ, V−(−1

2
∆ + λ)−1V−φ〉L2 . (A.3)

Due to the assumption 〈x〉αV−(x) ≤ δ, this yields∥∥V 1
2
− φ
∥∥2

L2 ≤
〈
〈x〉

α
2 V−φ, 〈x〉−

α
2 (−1

2
∆ + λ)−1〈x〉−

α
2 〈x〉

α
2 V−φ

〉
L2 (A.4)

≤ δ
∥∥V 1

2
− φ
∥∥2

L2

∥∥〈x〉−α2 (−1

2
∆ + λ)−1〈x〉−

α
2

∥∥. (A.5)

Since α > 2, the operator 〈x〉−α2 (−1
2
∆ + λ)−1〈x〉−α2 : L2 → L2 is bounded uni-

formly in λ ≥ 0. Hence, for δ small enough, we deduce that V−φ = 0. Therefore
(−1

2
∆ + V+ + λ)φ = 0 which yields φ = 0 since we know that −1

2
∆ + V+ does not

have negative eigenvalues.
Now we show that 0 is neither an eigenvalue nor a resonance of −1

2
∆+V . Suppose

that φ ∈ ∩γ> 1
2
L2
−γ is a solution to (−1

2
∆ + V )φ = 0. Letting λ→ 0 in (A.2) shows

that (−1
2
∆ + V+)−1 : L2

γ → L2
−γ is bounded for γ > 1. Hence, using (1.8), we see

that the equation (−1
2
∆ + V )φ = 0 implies V

1
2
− φ = V

1
2
− (−1

2
∆ + V+)−1V−φ. Taking

the scalar product with V
1
2
− φ and using V−(x) ≤ δ〈x〉−α we obtain∥∥V 1

2
− φ
∥∥2

L2 ≤ δ2
∥∥V 1

2
− φ
∥∥2

L2

∥∥〈x〉−α2 (−1

2
∆ + V+)−1〈x〉−

α
2

∥∥.
For δ small enough, we can conclude that V−φ = 0. Therefore (−1

2
∆ + V+)φ = 0,

which yields that φ = 0 since we know that 0 is not a resonance of −1
2
∆ + V+.



18 J. ARBUNICH, J. FAUPIN, F. PUSATERI, AND I. M. SIGAL

It remains to prove that −1
2
∆ + V doest not have positive eigenvalues. This is a

standard result given the condition (1.8) (see e.g. [34, Theorem XIII.58]). �

Appendix B. Proof of Theorem 2.1

To prove Theorem 2.1, we use standard arguments, combining energy and decay
estimates. Recall that global existence in L2(Rd) of solutions satisfying (2.3) is
standard (see e.g. [6]). Local existence in Hs(Rd) is also standard, see e.g. [6,
Theorem 4.10.1], for s > d/(2q), an integer. We prove it here for convenience of the
reader as the proof under our conditions is simpler than that of [6] which is done
for fairly general nonlinearities. We then bootstrap it to the global existence. We
also use some of the estimates, or variants of them, in Section C.

As is standard in the local existence proofs, we use the Duhamel principle to
rewrite the Hartree equation (1.1) as a fixed point problem

ψt = Gt(ψ), Gt(ψ) := e−iHtψ0 − i
∫ t

0

e−iH(t−r)Wψ
r ψrdr, (B.1)

(recall the definition of the nonlinear potential Wψ
t from (3.2)) and then use the

contraction mapping principle to prove the existence of a unique fixed point in a
ball in Hs.

By time-reversal symmetry we may assume t ≥ 0. Elementary estimates under
Condition (1.3) show the equivalence of the norms ‖ψ‖Hs and

∥∥(H + C)s/2ψ
∥∥
L2 ,

where C ≥ − inf H + 1, which yields the bound∥∥eitHf∥∥
Hs . ‖f‖Hs . (B.2)

Using definition (B.1) of G and estimate (B.2), we find right away for all t ∈ [0, T ]:∥∥Gt(ψ)
∥∥
Hs ≤

∥∥ψ0

∥∥
Hs +

∥∥Wψ
t ψt

∥∥
L1
t ([0,T ])Hs

x
. (B.3)

Applying the Kato-Ponce inequality (or fractional Leibniz rule) and the weak Young’s
inequality, recalling that p = 2q′ = 2q/(q − 1), and observing that

1/2 = 1/(2q) + 1/p, 1 + 1/(2q) = 1/q + 1/p1, (B.4)

where 1/p1 = 1/2 + 1/p, we estimate the Hs-norms of the last term in (B.6) for
fixed t as follows∥∥Wψ

t ψt
∥∥
Hs .

∥∥Wψ
t

∥∥
L∞

∥∥ψt∥∥Hs +
∥∥Wψ

t

∥∥
W s,2q

∥∥ψt∥∥Lp
.
∥∥v∥∥

Lq,∞

(∥∥|ψt|2∥∥Lq′∥∥ψt∥∥Hs +
∥∥|ψt|2∥∥W s,p1

∥∥ψt∥∥Lp)
.
∥∥v∥∥

Lq,∞

∥∥ψt∥∥2

Lp

∥∥ψt∥∥Hs . (B.5)

Now, consider the Banach spaces Hs
T := L∞

(
[0, T ], Hs

)
and LpT := L∞

(
[0, T ], Lp

)
,

with the norms ‖f‖Hs
T

:= sup0≤t≤T ‖f(t)‖Hs and ‖f‖LpT := sup0≤t≤T ‖f(t)‖Lp , and
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let ψt ∈ Hs
T such that ψ0 ∈ Hs. Then the last two inequalities give, after taking the

supremum in t over [0, T ],∥∥Gt(ψ)
∥∥
Hs
T
.
∥∥ψ0

∥∥
Hs + T

∥∥v∥∥
Lq,∞

∥∥ψt∥∥2

LpT

∥∥ψt∥∥Hs
T
. (B.6)

Hence, since Hs ↪→ Lp (as s > d/(2q) = d(1/2 − 1/p)), the map G takes the ball
Hs
T,R in Hs

T of the radius R centred at the origin into itself, provided R satisfies

R ≥ C(
∥∥ψ0

∥∥
Hs + T

∥∥v∥∥
Lq,∞

R3) with C large enough.

Similarly, we estimate the difference
∥∥Gt(ψ)−Gt(φ)

∥∥
Hs
T
:∥∥Gt(ψ)−Gt(φ)

∥∥
Hs
T
. T

∥∥v∥∥
Lq,∞

(∥∥ψt∥∥Hs
T

+
∥∥φt∥∥Hs

T

)2∥∥ψt − φt∥∥Hs
T
.

Hence G is a contraction on Hs
T,R provided R and T satisfy R ≥ C(

∥∥ψ0

∥∥
Hs +

T
∥∥v∥∥

Lq,∞
R3) and CT

∥∥v∥∥
Lq,∞

R2 < 1 for some constant C > 1 independent of R
and T . This implies local well-posedness in Hs

T , provided the local time of existence
T > 0 is sufficiently small.

The local existence proven above implies that the bounds in (2.4) and (2.5) hold
for some finite time. We now bootstrap the local existence and these bounds to the
global existence and the global bounds.

More precisely, we assume, for some T > 0 and D large enough, that the solution
ψt of (1.1), with ‖ψ0‖Lp′∩Hs ≤ ε, satisfies

sup
t∈[0,T ]

‖ψt‖Hs ≤ 2D‖ψ0‖Hs , (B.7)

sup
t∈[0,T ]

(
〈t〉d/2q‖ψt‖Lp

)
≤ 2D‖ψ0‖Lp′∩Hs , (B.8)

and then show that

sup
t∈[0,T ]

‖ψt‖Hs ≤ D‖ψ0‖Hs , (B.9)

sup
t∈[0,T ]

(
〈t〉d/2q‖ψt‖Lp

)
≤ D‖ψ0‖Lp′∩Hs . (B.10)

To begin with, we mention first that under Conditions (1.3) and (1.4), the unitary
evolution of the linear part e−iHt of (1.1) is bounded from Lp

′
to Lp and satisfies

the dispersive estimate

‖e−iHtf‖Lp . t−d( 1
2
− 1
p

)‖f‖Lp′ , t > 0, (B.11)

(see for example [43, 3], the introduction of [19] and the recent survey [36]). This
estimate, together with estimate (B.2) and with the Sobolev embedding Hs ↪→ Lp

(as s > d(1/2− 1/p)) and the relation 1/2− 1/p = 1/(2q) yield the bound

‖e−iHtf‖Lp . 〈t〉−d/(2q)‖f‖Hs∩Lp′ . (B.12)
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Now, applying estimates (B.6), (B.7) and (B.8) to the fixed point equation (B.1)
gives ∥∥ψt∥∥Hs ≤ C

∥∥ψ0

∥∥
Hs + 4CD3

∥∥v∥∥
Lq,∞

∥∥ψ0

∥∥2

Lp′∩Hs‖ψ0

∥∥
Hs

∫ t

0

〈r〉−d/q dr

≤ Cε+D3C̃ε3,

where the integral converges since d/q > 2. Altogether, this implies (B.9), provided
C + D3C̃ε2 ≤ D, for D sufficiently large. This bound implies also that ψt ∈
C([0, T ], Hs).

Let us now prove (B.10). Applying the Lp-norm to the fixed point equation (B.1)
and using estimate (B.12), we obtain, for all t ∈ [0, T ],

‖ψt‖Lp ≤
∥∥e−iHtψ0

∥∥
Lp

+
∥∥∥∫ t

0

e−iH(t−r)Wψ
r ψrdr

∥∥∥
Lp

≤ 〈t〉−d/(2q)
∥∥ψ0

∥∥
Hs∩Lp′ +

∫ t

0

〈t− r〉−d/(2q)
∥∥Wψ

r ψr
∥∥
Hs∩Lp′dr. (B.13)

Now, observing that 1/p′ = 1/q + 1/p, using the Hölder estimate
∥∥Wψ

t ψt
∥∥
Lp′
.∥∥Wψ

t

∥∥
Lq

∥∥ψt∥∥Lp and then the weak Young one
∥∥Wψ

t

∥∥
Lq
.
∥∥v∥∥

Lq,∞

∥∥|ψt|2∥∥L1 , together
with (B.5), (B.13), (B.7), (B.8) and ‖ψ0‖Lp′∩Hs ≤ ε, gives

‖ψt‖Lp . 〈t〉−d/2qε+ ε3D3

∫ t

0

〈t− r〉−d/2q〈r〉−d/2qdr.

Since d/2q > 1, the integral above is bounded by C〈t〉−d/2q and hence (B.10) follows
provided we choose ε so that 1 + ε2D3 � D.

Thus, we have shown (B.9) and (B.10) which allows us to iterate the local existence
result by a standard continuation argument to complete the proof of the theorem.
2

Appendix C. Proof of Lemmas 5.1–5.9

In this section we prove the results stated in Section 5 which were used in Section
6. Some of the arguments used below are similar to those in the proof of Theorem
2.1 just given above, so we will skip some details.

Notation: As above, we will use in this section Uψ
t (and similarly Uϕ

t ) to denote

the flow of Hψ
t = H + f(|ψ|2) = −1

2
∆ + V + v ∗ |ψ|2, see (3.2), where V satisfies the

conditions (1.3)-(1.4) and ψ = ψt is the unique global Hs (s > d/(2q)) solution of
(1.1) under the conditions of Theorem 2.1; in particular, we are assuming that the
initial data ψ0 satisfies (2.2), and ψt satisfies (2.4) and (2.5). Also, the indexes p, q
and p1 satisfy the same relations used so far:

1/p = 1/2− 1/(2q) and 1/p1 = 1/2 + 1/p (C.1)
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(p = ∞ for q = 1). Recall that we write L1,∞ ≡ L1, W γ,(q,∞) ≡ W γ,q in the case
where q = 1. We also recall that Condition (1.3) implies the equivalence of the
norms ‖ψ‖Hs and

∥∥(H + C)s/2ψ
∥∥
L2 , where C ≥ − inf H + 1.

Proof of Lemma 5.1. Using Young’s and Hölder’s inequalities, recalling that 1/p1 =
1− 1/(2q) = 1/2 + 1/p, we obtain∥∥Wψ

t

∥∥
W s,2q . ‖v‖Lq,∞

∥∥|ψt|2∥∥W s,p1
. ‖v‖Lq,∞‖ψt‖Lp‖ψt‖Hs .

Hence (5.1) follows from (2.4)–(2.5) in Theorem 2.1. �

Proof of Lemma 5.2. Let f ∈ Hs, with s > d(1/2 − 1/p) = d/(2q). Applying the
Kato-Ponce inequality (or fractional Leibniz rule), we have∥∥Wψ

t f
∥∥
Hs .

∥∥Wψ
t

∥∥
L∞

∥∥f∥∥
Hs +

∥∥Wψ
t

∥∥
W s,2q

∥∥f∥∥
Lp
. (C.2)

Using Sobolev’s embedding Hs(Rd) ↪→ Lp(Rd), for s > d/(2q), together with Lem-
mas 4.2 and 5.1, we obtain (5.2). To prove (5.3), we write similarly,∥∥Wψ

t f
∥∥
Hγ .

∥∥Wψ
t

∥∥
L∞

∥∥f∥∥
Hγ +

∥∥Wψ
t

∥∥
W γ,∞

∥∥f∥∥
L2 ,

and hence the result follows from (4.5)-(4.6) of Lemma 4.2 applied to the last two
inequalities. �

Proof of Lemma 5.3. Using Young’s inequality, we write∥∥Wψ
t

∥∥
Wσ,∞ .

∥∥(〈∇〉σ1v) ∗ (〈∇〉σ2|ψt|2)∥∥L∞
.
∥∥〈∇〉σ1v∥∥

Lq,∞

∥∥〈∇〉σ2ψt∥∥L2q′‖ψt‖L2q′

=
∥∥〈∇〉σ1v∥∥

Lq,∞

∥∥ψt∥∥Wσ2,p
‖ψt‖Lp , (C.3)

since p = 2q′. Next, the Gagliardo-Nirenberg-Sobolev inequality gives

‖ψt‖Wσ2,p . ‖ψt‖1−β
Hs ‖ψt‖βLp , (C.4)

provided that

1

p
=
σ2

d
+
(1

2
− s

d

)
(1− β) +

β

p
, 0 < β < 1. (C.5)

Now, given ε′ > 0 such that d/(2q) − ε′ > 0, we choose β such that dβ
2q

= d
2q
− ε′.

The condition (C.5) then yields

s =
d

2q
+

σ2

1− β
>

d

2q
+

2d

d− 2q
.

Equations (C.3), (C.4) together with Theorem 2.1 imply∥∥Wψ
t

∥∥
Wσ,∞ .

∥∥〈∇〉σ1v∥∥
Lq,∞
‖ψt‖1+β

Lp .
∥∥〈∇〉σ1v∥∥

Lq,∞
〈t〉(1+β) d

2q .

This proves the lemma. �
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Proof of Lemma 5.4. For any f0 ∈ Hs we let f = ft := Uψ
t f0 and write

f = e−iHtf0 − i
∫ t

0

e−iH(t−r)Wψ
r f dr. (C.6)

For the integrated term, using 1/p = 1/2− 1/(2q), we estimate∥∥∥∫ t

0

e−iH(t−r)Wψ
r f dr

∥∥∥
Hs

.
∫ t

0

(∥∥Wψ
r

∥∥
L∞
‖f‖Hs +

∥∥Wψ
r

∥∥
W s,2q‖f‖Lp

)
dr

. ε

∫ t

0

〈r〉−
d
2q ‖f‖Hs dr, (C.7)

having used Sobolev embedding and Lemmas 4.2 and 5.1. Using (C.7) and ‖e−iHtf0‖Hs .
‖f0‖Hs (see (B.2)) in (C.6) we can then obtain (5.6) by Gronwall’s inequality since
d/(2q) > 1. �

Proof of Lemma 5.5. Let n be a nonnegative integer such that n ≤ γ and suppose
that v ∈ W n,(q,∞). We first prove by induction that for all k ∈ {0, . . . , n} and
` ∈ {0, . . . , n− k},∥∥〈H〉 `2 〈x〉kUψ

t ϕ
∥∥ ≤ C

k∑
j=0

〈t〉j
∥∥〈H〉 `+j2 〈x〉k−jϕ∥∥. (Hk,`)

Note that (Hk,`) is a natural statement in view of the dispersion relation and the
consequent localization property “|x|2 ≈ t2H” for (linear) Schrödinger flows.

For k = 0, (H0,`) holds for any ` ∈ {0, . . . , n} as follows from Lemma 5.4. Let
k ∈ {0, . . . , n−1}. Suppose that (Hk′,`) holds for all k′ ≤ k and all ` ∈ {0 . . . , n−k′}.
First we show that (Hk+1,0). Using the relation

[A,Ur] = −iUr
∫ r

0

U−1
τ [A,Hτ ]Uτ dτ, (C.8)

we write∥∥〈x〉k+1Uψ
t ϕ
∥∥

.
∥∥〈x〉k+1ϕ

∥∥+

∫ t

0

∥∥[〈x〉k+1,∆]Uψ
r ϕ
∥∥ dr

.
∥∥〈x〉k+1ϕ

∥∥+

∫ t

0

(∥∥〈∇〉〈x〉kUψ
r ϕ
∥∥+

∥∥〈x〉k−1Uψ
r ϕ
∥∥) dr

.
∥∥〈x〉k+1ϕ

∥∥+

∫ t

0

(∥∥〈H〉 12 〈x〉kUψ
r ϕ
∥∥+

∥∥〈x〉k−1Uψ
r ϕ
∥∥) dr

.
∥∥〈x〉k+1ϕ

∥∥+
k∑
j=0

∫ t

0

〈r〉j
∥∥〈H〉 1+j2 〈x〉k−jϕ∥∥ dr

.
∥∥〈x〉k+1ϕ

∥∥+
k∑
j=0

〈r〉j+1
∥∥〈H〉 1+j2 〈x〉k−jϕ∥∥, (C.9)
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where we used the induction hypothesis in the inequality before last. This easily
implies that (Hk+1,0) holds. Next, let ` ∈ {0, . . . , n− (k+2)}. Assuming in addition
that (Hk+1,`′) holds for all `′ ≤ `, we show that (Hk+1,`+1) holds. As above, we write∥∥〈H〉 `+1

2 〈x〉k+1Uψ
t ϕ
∥∥

.
∥∥〈H〉 `+1

2 〈x〉k+1ϕ
∥∥+

∫ t

0

∥∥[〈H〉
`+1
2 〈x〉k+1, Hψ

τ ]Uψ
r ϕ
∥∥ dr

.
∥∥〈H〉 `+1

2 〈x〉k+1ϕ
∥∥+

∫ t

0

∥∥〈H〉 `+1
2 [〈x〉k+1,∆]Uψ

r ϕ
∥∥ dr

+

∫ t

0

∥∥[〈H〉
`+1
2 ,Wψ

r ]〈x〉k+1Uψ
r ϕ
∥∥ dr. (C.10)

For the first integrated term, one verifies that∥∥〈H〉 `+1
2 [〈x〉k+1,∆]Uψ

r ϕ
∥∥

.
∥∥〈H〉 `+2

2 〈x〉kUψ
r ϕ
∥∥+

∥∥〈H〉 `+1
2 〈x〉k−1Uψ

r ϕ
∥∥. (C.11)

The second one can be estimated by∥∥[〈H〉
`+1
2 ,Wψ

r ]〈x〉k+1Uψ
r ϕ
∥∥ . ∑̀

`′=0

∥∥Wψ
r

∥∥
W `−`′+1,∞

∥∥〈H〉 `′2 〈x〉k+1Uψ
r ϕ
∥∥

. 〈r〉−
d
q

∑̀
`′=0

∥∥〈H〉 `′2 〈x〉k+1Uψ
r ϕ
∥∥, (C.12)

where the last inequality follows from Lemma 4.2. Inserting (C.11) and (C.12) into
(C.10) and using the induction hypothesis, we obtain that∥∥〈H〉 `+1

2 〈x〉k+1Uψ
t ϕ
∥∥

.
∥∥〈H〉 `+1

2 〈x〉k+1ϕ
∥∥+

k∑
j=0

∫ t

0

〈r〉j
∥∥〈H〉n−k+j2 〈x〉k−jϕ

∥∥ dr
+

k∑
j=0

∫ t

0

〈r〉−
d
q 〈r〉j

∥∥〈H〉n−k+j2 〈x〉k+1−jϕ
∥∥ dr. (C.13)

Since 〈r〉−d/q+j is integrable for all j ≤ n (since n ≤ γ < d/q− 1), one deduces from
the previous estimate that (Hk+1,`+1) holds.

Thus, we have proven that (Hk,`) holds for all k ∈ {0, . . . , n} and ` ∈ {0, . . . , n−
k}.

Next, we claim that, for all ` ∈ {0, . . . , n− k} we have∥∥〈H〉 `2 〈x〉kUψ
t ϕ
∥∥ . 〈t〉k∥∥〈H〉 k+`2 ϕ

∥∥+ ‖〈H〉
`
2 〈x〉kϕ‖, (C.14)

for all nonnegative integers `, k such that v ∈ W `+k,(q,∞). It suffices to bound each
term in the sum on the right-hand side of (Hk,`) by the right-hand side of (C.14)
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(which is equivalent to the first and last terms in the sum in (Hk,`)); that is, it
suffices to prove that for all j = 0, . . . k

〈t〉j
∥∥〈H〉 `+j2 〈x〉k−jϕ∥∥ . 〈t〉k∥∥〈H〉 k+`2 ϕ

∥∥+ ‖〈H〉
`
2 〈x〉kϕ‖. (C.15)

Recall that, under our assumptions on V , we have the equivalence of the Sobolev
norms

‖〈H〉s/2f‖L2 ≈ ‖〈∇〉sf‖L2 = ‖f‖Hs . (C.16)

Then, we square (C.15) to see that it is equivalent to

〈t〉2j
∥∥〈x〉k−jϕ∥∥2

H`+j . 〈t〉2k
∥∥ϕ∥∥2

H`+k + ‖〈x〉kϕ‖2

H` , 0 ≤ j ≤ k. (C.17)

On the standard Hs space we can now use the (inhomogeneous) Littlewood-Paley

decomposition f =
∑

N≥0 PNf , with P̂Nf(ξ) := χN(ξ)f̂(ξ) where χN is a bump

function supported on |ξ| ∈ [2N−1, 2N+1] for N > 0, and compactly supported in
[−2, 2] for N = 0. Recall that

‖f‖2
Hs ≈

∑
N≥0

22Ns‖PNf‖2
L2 ; (C.18)

moreover, by commuting PN and 〈x〉, we can see that

‖PN〈x〉f‖L2 ≈ ‖〈x〉PNf‖L2 , (C.19)

having slightly abused notation by disregarding similar terms with PN−1 and PN+1

instead of PN on the right-hand side. Then, we write

〈t〉2j
∥∥〈x〉k−jϕ∥∥2

H`+j ≈ 〈t〉2j
∑
N≥0

22N(`+j)‖PN〈x〉k−jϕ‖
2

L2

. 〈t〉2j
∑
N≥0

22N(`+j)‖〈x〉k−jPNϕ‖
2

L2 . (C.20)

In (C.20) we then distinguish the cases 〈x〉 ≤ 〈t〉2N and 〈x〉 > 〈t〉2N . When 〈x〉 ≤
〈t〉2N we bound

〈t〉2j
∑
N≥0

22N(`+j)‖〈x〉k−jPNϕ‖
2

L2(〈x〉≤〈t〉2N )

. 〈t〉2j
∑
N≥0

22N(`+j)‖(〈t〉2N)k−jPNϕ‖
2

L2

= 〈t〉2k
∑
N≥0

22N(`+k)‖PNϕ‖2
L2 ≈ 〈t〉2k‖ϕ‖2

H`+k ;
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this last term is accounted for in the right-hand side of (C.17). Similarly, we bound
the contribution from (C.20) in the region 〈x〉 > 〈t〉2N by

〈t〉2j
∑
N≥0

22N(`+j)‖〈x〉k−jPNϕ‖
2

L2(〈x〉>〈t〉2N )

.
∑
N≥0

22N`‖〈x〉k(〈x〉−1〈t〉2N)jPNϕ‖
2

L2(〈x〉>〈t〉2N )

=
∑
N≥0

22N`‖〈x〉kPNϕ‖
2

L2 ≈ ‖〈x〉kϕ‖
2

H` ,

having used (C.19) and (C.18) for the last equivalence. This gives us (C.17) and
therefore (C.14).

Now, let bγc be the integer part of γ ≥ 1. We claim that, by interpolation, one
can deduce from (C.14) that, for all γ′ ≥ 0 and ` an integer such that γ′ + ` ≤ bγc,∥∥〈H〉 `2 〈x〉γ′Uψ

t ϕ
∥∥ . 〈t〉γ′∥∥〈H〉 γ′+`2 ϕ

∥∥+ ‖〈H〉
`
2 〈x〉γ′ϕ‖. (C.21)

To see this, consider the linear operator T` : ϕ → 〈H〉`/2Uψ
t ϕ for ` = 0, . . . n − k

and v ∈ W `+k,(q,∞) as above. Then, using the equivalence of Sobolev norms (C.16)
and commuting (standard) derivatives and weights, the inequality (C.14) says that
T maps Hk(〈t〉kdx) ∩ L2

k into L2
k (recall the definition above (3.10)). Standard

interpolation between Sobolev spaces and between weighted L2 spaces then gives
that T maps Hγ′(〈t〉γ′dx)∩L2

γ′ into L2
γ′ that is, using again the equivalence (C.16),

inequality (C.21).
Taking ` = 0 in (C.21), we obtain∥∥〈x〉γ′Uψ

t ϕ
∥∥ . 〈t〉γ′∥∥〈H〉 γ′2 ϕ∥∥+ ‖〈x〉γ′ϕ‖, (C.22)

for all γ′ ≤ bγc. We then write, similarly as in (C.9),∥∥〈x〉γUψ
t ϕ
∥∥

.
∥∥〈x〉γϕ∥∥+

∫ t

0

(∥∥〈H〉 12 〈x〉γ−1Uψ
r ϕ
∥∥+

∥∥〈x〉γ−2Uψ
r ϕ
∥∥) dr. (C.23)

Since γ − 1 ≤ bγc, we can apply (C.21), which yields∥∥〈H〉 12 〈x〉γ−1Uψ
r ϕ
∥∥ . 〈r〉γ−1

∥∥〈H〉 γ2ϕ∥∥+ ‖〈H〉
1
2 〈x〉γ−1ϕ‖.

Inserting this into (C.23), and then applying (C.21) again (if γ > 2) gives∥∥〈x〉γUψ
t ϕ
∥∥

.
∥∥〈x〉γϕ∥∥+ 〈t〉γ

∥∥〈H〉 γ2ϕ∥∥+ 〈t〉‖〈H〉
1
2 〈x〉γ−1ϕ‖+

∫ t

0

∥∥〈x〉γ−2Uψ
r ϕ
∥∥ dr

.
∥∥〈x〉γϕ∥∥+ 〈t〉γ

∥∥〈H〉 γ2ϕ∥∥+ 〈t〉‖〈H〉
1
2 〈x〉γ−1ϕ‖. (C.24)
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Finally, we recall (C.15) which, for ` = 0, j = 1 reads

〈t〉‖〈H〉
1
2 〈x〉k−1ϕ

∥∥ . 〈t〉k‖〈H〉 k2ϕ∥∥+ ‖〈x〉kϕ‖,

and using interpolation for the weighted Sobolev spaces we obtain the same inequal-
ity above with γ replacing k; plugging it into (C.24) we get∥∥〈x〉γUψ

t ϕ
∥∥ . 〈t〉γ∥∥〈H〉 γ2ϕ∥∥+ ‖〈x〉γϕ‖. (C.25)

This concludes the proof of the lemma. �

Proof of Lemma 5.6. The proof of (5.8) uses similar estimates to (B.13) applied to
the difference of two solutions. From Duhamel’s representation we have

ut = e−iHtu0 − i
∫ t

0

e−iH(t−r)W u
r ur dr, u ∈ {ψ, ϕ}.

A bound by the right-hand side of (5.8) for the difference of the linear flows,
e−iHtψ0 − e−iHtϕ0, follows directly from the linear dispersive estimate (B.12). For
the difference of the nonlinear parts we have∥∥∥∫ t

0

e−iH(t−r)(Wψ
r ψr −Wϕ

r ϕr
)
dr
∥∥∥
Lp

.
∫ t

0

〈t− r〉−d/(2q)
(∥∥(Wψ

r −Wϕ
r )ψr

∥∥
Lp′∩Hs +

∥∥Wϕ
r (ψr − ϕr)

∥∥
Lp′∩Hs

)
dr.

(C.26)

The estimates for the Hs norms are the same used for the contraction argument in
the proof of Theorem 2.1 so we only show the bound for the Lp

′
norm.

To estimate the first term in (C.26) we note that, in view of (C.1), 1/p′ = 1/2 +
1/(2q) and 1 + 1/(2q) = 1/q + 1/p1, with 1/p1 = 1/2 + 1/p. Then, using Hölder’s
and Young’s inequalities, and (2.3), we get∥∥(Wψ

r −Wϕ
r )ψr

∥∥
Lp
′ .

∥∥v ∗ (|ψr|2 − |ϕr|2)
∥∥
L2q‖ψr‖L2

.
∥∥|ψr|2 − |ϕr|2∥∥Lp1‖ψr‖L2

. ε2‖ψr − ϕr‖Lp . (C.27)

For the second term in (C.26), using again Hölder with (C.1), Young’s inequality
and (2.3), we have∥∥Wϕ

r (ψr − ϕr)
∥∥
Lp′
. ‖ψr − ϕr‖Lp

∥∥v ∗ |ϕr|2∥∥Lq . ε2‖ψr − ϕr‖Lp . (C.28)

Plugging (C.27) and (C.28) into (C.26) we have obtained

‖ψt − ϕt‖Lp ≤ C〈t〉−d/(2q)‖ψ0 − ϕ0‖Lp′ + Cε2

∫ t

0

〈t− r〉−d/(2q)‖ψr − ϕr‖Lp dr.

From this we can obtain the conclusion (5.8) by a bootstrap argument (such as the
one for the quantity in (B.8) in the proof of Theorem 2.1). �
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Proof of Lemma 5.7. (5.9) follows from the Hölder and Young inequalities, (2.5) and
Lemma 5.6:∥∥Wψ

t −W
ϕ
t

∥∥
L∞
. ‖v‖Lq,∞

∥∥|ψt|2 − |ϕt|2∥∥Lq′
. ε‖v‖Lq,∞〈t〉−d/(2q)

∥∥ψt − ϕt∥∥Lp
. ε‖v‖Lq,∞〈t〉−d/q

∥∥ψ0 − ϕ0

∥∥
Lp′∩Hs .

Similarly, using (2.4),∥∥Wψ
t −W

ϕ
t

∥∥
W s,2q . ‖v‖Lq,∞

∥∥|ψt|2 − |ϕt|2∥∥W s,p1

. ‖v‖Lq,∞
∥∥ψt − ϕt∥∥Lp

. ‖v‖Lq,∞〈t〉−d/(2q)
∥∥ψ0 − ϕ0

∥∥
Lp′∩Hs .

This proves (5.10). Assuming in addition that v satisfies (1.2) with γ ≤ s, (5.12)
can be proven in the same way.

To prove (5.11), we proceed similarly as in the proof of Lemmas 4.2 and 5.2,
writing for f ∈ Hs(Rd),∥∥(Wψ

t −W
ϕ
t )f

∥∥
Hs

.
∥∥Wψ

t −W
ϕ
t

∥∥
L∞

∥∥f∥∥
Hs +

∥∥Wψ
t −W

ϕ
t

∥∥
W s,2q

∥∥f∥∥
Lp

. ε〈t〉−d/q
∥∥ψ0 − ϕ0

∥∥
Lp′∩Hs

∥∥f∥∥
Hs + 〈t〉−d/(2q)

∥∥ψ0 − ϕ0

∥∥
Lp′∩Hs

∥∥f∥∥
Lp
,

where we used (5.9) and (5.10) in the last inequality. Together with Sobolev’s
embedding and Lemma 5.6, this proves (5.11). If in addition v satisfies (1.2) with
γ ≤ s, then, using (5.9) and (5.12) gives∥∥(Wψ

t −W
ϕ
t )f

∥∥
Hγ

.
∥∥Wψ

t −W
ϕ
t

∥∥
L∞

∥∥f∥∥
Hγ +

∥∥Wψ
t −W

ϕ
t

∥∥
W γ,∞

∥∥f∥∥
L2

. ε‖v‖W γ,(q,∞)〈t〉−d/q
∥∥ψ0 − ϕ0

∥∥
Lp′∩Hs

∥∥f∥∥
Hγ .

This establishes (5.13). �

Proof of Lemma 5.8. For a given φ ∈ Hs, ‖φ‖Hs ≤ 1, let us define

(u1)t = u1 := Uψ
t φ, (u2)t = u2 := Uϕ

t φ.

We want to estimate ‖u1 − u2‖Hs . ε‖ψ0 − ϕ0‖Lp′∩Hs . From Duhamel’s formula we
have

‖u1 − u2‖Hs .
∫ t

0

∥∥Wψ
r (u1)r −Wϕ

r (u2)r
∥∥
Hs dr

.
∫ t

0

(∥∥(Wψ
r −Wϕ

r )(u1)r
∥∥
Hs +

∥∥Wϕ
r

(
(u1)r − (u2)r

)∥∥
Hs

)
dr.

(C.29)
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For the first of the two quantities in the integral in (C.29) we use Lemma 5.7,
which gives∥∥(Wψ

r −Wϕ
r )(u1)r

∥∥
Hs . 〈r〉−d/(2q)‖ψ0 − ϕ0‖Lp′∩Hs‖(u1)r‖Hs

. 〈r〉−d/(2q)‖ψ0 − ϕ0‖Lp′∩Hs . (C.30)

having also used (5.6).
For the second term in the integral in (C.29), we use Lemma 5.2, which gives∥∥Wϕ

r ((u1)r − (u2)r)
∥∥
Hs . ε〈r〉−d/(2q)‖(u1)r − (u2)r‖Hs . (C.31)

Putting together (C.29)-(C.31) we have obtained

‖(u1)t − (u2)t‖Hs . ‖ψ0 − ϕ0‖Lp′∩Hs +

∫ t

0

〈r〉−d/(2q)‖(u1)r − (u2)r‖Hs dr,

which implies (5.14) via Gronwall’s inequality since d/(2q) > 1. �

Proof of Lemma 5.9. Let φ ∈ L2
γ ∩Hγ. We use the notations of the proof of Lemma

5.8 and proceed similarly. As in (C.29), we have

‖u1 − u2‖L2
γ
.
∫ t

0

∥∥e−i(t−r)H(Wψ
r (u1)r −Wϕ

r (u2)r
)∥∥

L2
γ
dr

.
∫ t

0

(
〈t− r〉γ

∥∥Wψ
r (u1)r −Wϕ

r (u2)r
∥∥
Hγ

+
∥∥Wψ

r (u1)r −Wϕ
r (u2)r

∥∥
L2
γ

)
dr, (C.32)

where we used Lemma 5.5 (with v = 0) in the second inequality. It follows from
(C.30)–(C.31) that∥∥Wψ

r (u1)r −Wϕ
r (u2)r

∥∥
Hγ

. 〈r〉−d/(2q)
(
‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖Hγ + ‖(u1)r − (u2)r‖Hγ

)
.

Applying Lemma 5.8, this gives∥∥Wψ
r (u1)r −Wϕ

r (u2)r
∥∥
Hγ . 〈r〉−d/(2q)‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖Hγ . (C.33)

For the L2
γ-norm, using Lemma 5.5 and Lemma 5.7, we have∥∥(Wψ
r −Wϕ

r )(u1)r
∥∥
L2
γ

.
∥∥(Wψ

r −Wϕ
r )
∥∥
L∞
‖(u1)r‖L2

γ

. ε〈r〉−
d
q

+γ‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖Hγ + ε〈r〉−
d
q ‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖L2

γ
. (C.34)

Next, we obtain from Lemma 4.2 that∥∥Wϕ
r ((u1)r − (u2)r)

∥∥
L2
γ
. ‖Wϕ

r ‖L∞
∥∥(u1)r − (u2)r

∥∥
L2
γ

. ε2〈r〉−d/q‖(u1)r − (u2)r‖L2
γ
. (C.35)



MAXIMAL VELOCITY OF PROPAGATION FOR HE 29

Putting together (C.32)-(C.35) we have obtained

‖u1 − u2‖L2
γ
. 〈t〉γ

∫ t

0

(
〈r〉−d/(2q) + 〈r〉−

d
q

+γ
)
‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖Hγ dr

+ ε

∫ t

0

〈r〉−d/q‖ψ0 − ϕ0‖Lp′∩Hγ‖φ‖L2
γ
dr

+ ε2

∫ t

0

〈r〉−d/q‖(u1)r − (u2)r‖L2
γ
dr

. ‖ψ0 − ϕ0‖Lp′∩Hγ

(
〈t〉γ‖φ‖Hγ + ‖φ‖L2

γ

)
+ ε2

∫ t

0

〈r〉−d/q‖(u1)r − (u2)r‖L2
γ
dr, (C.36)

since d/(2q) and d/q − γ > 1. Using again d/q − γ > 1, Eq. (C.36) implies (5.15)
via Gronwall’s lemma. �

Appendix D. Proof of Theorem 4.1

In this appendix we give the proof of Theorem 4.1 which is an improved version of
the maximal velocity bounds for linear time-dependent potentials in [1]; see Theorem
3.3 there. We consider time-dependent hamiltonians of the form

Ht := H +Wt, (D.1)

where H = −1
2
∆ + V (x), with V real and satisfying (4.1) and Wt(x) = W (x, t), a

real, time-dependent bounded potential satisfying∫ ∞
0

∫ ∞
t

‖∂αxWr‖L∞drdt <∞ with either 0 ≤ |α| ≤ 1 or 1 ≤ |α| ≤ 2.

(D.2)

The main difference with respect to [1] is the quantification of the dependence of the
bounds on the norm in (D.2). The assumption (D.2) in fact is weaker than the as-
sumption made in [1] and, while this may still not be optimal, such an improvement
over [1] is necessary to obtain the results in the present paper.

We prove Theorem 4.1 in the case where

wt :=

∫ ∞
t

‖Wr‖W 1,∞dr (D.3)

is integrable and explain next how to modify the proof in the case where

w′t := max
1≤|α|≤2

∫ ∞
t

‖∂αxWr‖∞dr (D.4)

is integrable.
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D.1. Preliminary estimates. We will use the following notation:

A±ρ := {x ∈ Rd : ±|x| ≥ ±ρ}, χ−b := χA−b
, (D.5)

and

xts := s−1(〈x〉 − a− vt),

and the convention that A ≤̇B and A .̇B mean that for any integer n > 0, there
is Cn > 0 s.t. A ≤ B + Cns

−n and A . B + Cns
−n, respectively. Recall that kI

has been defined in (1.5). Given I a bounded open interval, we fix c > v > kI . and
let F ⊂ C∞(R;R) be the set of functions f ≥ 0, supported in R+ and satisfying
f(λ) = 1 for λ ≥ c− v, and f ′ ≥ 0, with

√
f ′ ∈ C∞. We say that u is admissible if

u is a smooth function such that supp(u) ⊂ (0, c− v) and
√
u ∈ C∞.

In what follows we use the notation p := −i∇.

Lemma D.1. Let I be a bounded open interval, g ∈ C∞0 (I;R), f ∈ F and u2 = f ′.
Then there is ũ, with ũ2 admissible, s.t.

‖pu(xts)g(H)ψ‖ ≤̇ kI‖u(xts)g(H)ψ‖+ s−1‖ũ(xts)g(H)ψ‖. (D.6)

Proof. We write g(H) = g̃(H)g(H), with g̃ ∈ C∞0 (I;R) and g̃ = 1 on supp g.
Commuting g̃(H) to the left, we find

pu(xts)g(H) = pg̃(H)u(xts)g(H) + p[u(xts), g̃(H)]g(H). (D.7)

Now, it follows from (E.3) in Appendix E that

p[u(xts), g̃(H)] =
n−1∑
k=1

s−k

k!
pBku

(k)(xts) +O(s−n),

for any n, with pBk bounded. Taking the norm of (D.7) applied to ψ and using
‖pg̃(H)‖ . kI , we obtain

‖pu(xts)g(H)ψ‖ ≤̇ kI‖u(xts)g(H)ψ‖+ s−1

n−1∑
k=1

‖u(k)(xts)g(H)ψ‖.

Since u(k) are smooth and suppu(k) ⊂ (0, c− v), one easily verifies that (D.6) holds
for some admissible ũ. �

D.2. Proof of Theorem 4.1. Note that Eq. (3.6) implies that

g+(H)− gt(H) = −i
∫ ∞
t

U−1
r [g(H),Wr]Urdr (D.8)

and, therefore,∥∥g+(H)− gt(H)
∥∥ . wt, (D.9)

which, together with Utgt(H) = UtU
−1
t g(H)Ut = g(H)Ut, implies∥∥Utg+(H)− g(H)Ut

∥∥ . wt. (D.10)
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Proof of Theorem 4.1. Let

ψt := Utg+(H)φ0, φ0 := χ−b φ, (D.11)

and

Φts = f(xts), (D.12)

for some f ∈ F , with 0 ≤ t ≤ s. Let 〈Φts〉t := 〈ψt,Φtsψt〉. We have

∂t〈Φts〉t = 〈ψt, DΦtsψt〉, DΦts := i[H,Φts] +
∂

∂t
Φts. (D.13)

We compute DΦts. First, we have

∂

∂t
Φts = −s−1v f ′(xts). (D.14)

Then, letting A := 1
2
(p · (∇〈x〉) + (∇〈x〉) · p), factorizing f ′ = u2 and using that

[Ht, 〈x〉] = A and [[A, u], u] = 0, one verifies that

i[Ht,Φts] =
i

2
[p2,Φts] =

1

2
s−1(Af ′(xts) + f ′(xts)A)

= s−1 u(xts)Au(xts). (D.15)

Together with (D.14), this yields:

DΦts = s−1 u(xts) (A− v)u(xts). (D.16)

For convenience, let R := ψt − g(H)Utφ0. Note that, by (D.10)-(D.11) we have

R = O(wt)φ0. (D.17)

Moreover, we can also see that

‖pR‖ = O(wt) (D.18)

as follows: from (D.11) we have pR = p(Utg+(H) − g(H)Ut)φ0, and from (D.8) we
get

p(Utg+(H)− g(H)Ut) = −ip Ut
∫ ∞
t

U−1
r [g(H),Wr]Urdr; (D.19)

then, using the same notation in (E.8) (that is, S := (H + c)1/2 with c := inf H + 1,
and B′ := p(H+ c)−1/2) we can control p = B′S by S, apply the commutator bound
(E.10) and its analogue for the inverse U−1

r , and, recalling the definition of wt in
(4.2), we arrive at (D.18).

Using the above notation for R, from the formula (D.13), we can write

∂t〈Φts〉t = 〈g(H)Utφ0, DΦtsg(H)Utφ0 〉
+ 〈R,DΦtsg(H)Utφ0 〉+ 〈g(H)Utφ0, DΦtsR 〉+ 〈R,DΦtsR 〉.

(D.20)

Now, we claim that, with kI defined in (1.5), there is C > 0 s.t.

g(H)u(xts)Au(xts)g(H) ≤̇ kIg(H)u(xts)
2g(H)

+ Cs−1g(H)ũ(xts)
2g(H), (D.21)
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where ũ is an admissible function. To see this, we first estimate

|〈ψ, g(H)u(xts)Au(xts)g(H)ψ〉|
≤ ‖∇〈x〉u(xts)g(H)ψ‖‖pu(xts)g(H)ψ‖. (D.22)

This inequality, together with (D.6), gives

|〈ψ, g(H)u(xts)Au(xts)g(H)ψ〉|

≤̇ ‖u(xts)g(H)ψ‖
(
kI‖u(xts)g(H)ψ‖+ s−1‖ũ(xts)g(H)ψ‖

)
, (D.23)

which implies (D.21). Now, using (D.21), together with (D.16) and the definitions
u(xts)

2 = f ′(xts) and h(xts) := ũ(xts)
2, we obtain

g(H)DΦs(t)g(H)

≤̇ (kI − v)s−1g(H)f ′(xts)g(H) + Cs−2g(H)h(xts)g(H). (D.24)

Next, we claim that the three terms in the second line of (D.20) are all at least
O(s−1wt). For the first term this bound follows using (D.16), (D.17) and (D.6):∣∣〈R,DΦtsg(H)Utφ0 〉

∣∣
= s−1

∣∣〈R, u(xts)Au(xts) g(H)Utφ0 〉 − v〈R, u2(xts)g(H)Utφ0 〉
∣∣

. s−1‖R‖
(
‖φ0‖+ ‖pu(xts)g(H)Utφ0‖

)
= s−1O(wt).

The second term can be treated identically. For the last term on the right-hand side
of (D.20) we can use (D.18) to get an even better bound of O(s−1w2

t ):∣∣〈R,DΦtsR 〉
∣∣ . s−1‖R‖

(
‖R‖+ ‖pR‖

)
= s−1O(w2

t ).

Going back to (D.20), using also (D.24) to bound the first terms on the r.h.s., we

get, for some admissible function f̃ ,

∂t〈Φts〉t = 〈g(H)Utφ0, DΦtsg(H)Utφ0 〉+O
(
s−1wt)

≤̇ (kI − v)s−1〈g(H)Utφ0, f
′(xts) g(H)Utφ0〉

+ Cs−2〈g(H)Utφ0, f̃(xts) g(H)Utφ0〉+O(s−1wt). (D.25)

Next, passing back to ψt by using the pull-through relations in the opposite di-
rection and the fact that f̃ is bounded, we obtain

∂t〈Φts〉t ≤ (kI − v)s−1 〈f ′(xts)〉t + Cs−2 + Cs−1wt. (D.26)

Since v > kI , we can drop the first term on the r.h.s. Using the definition Φts :=
f(xts), the conditions (4.2) and s ≥ t, we find

〈f(xts)〉t ≤ 〈f(x0s)〉0 + Cs−1. (D.27)

For the first term on the r.h.s., we claim that, for 0 < β < 1,

〈f(x0s)〉0 = O(s2β−2) +O(w2
sβ). (D.28)

To prove this estimate, we recall ψt := Utg+(H)χ−b φ, note that

〈f(x0s)〉0 = ‖χ(x0s)ψ0‖2,
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with χ2 = f , and pass from g+(H) to gsβ(H) := U−1
sβ
g(H)Usβ , with β < 1, paying

with the error O(wsβ) (see (D.10)):

χ(x0s)ψ0 = χ(x0s)g+(H)χ−b φ = χ(x0s)gsβ(H)χ−b φ+O(wsβ).

In Lemma E.2 of Appendix E we show that

χ(x0s)gsβ(H)χ−b = O(sβ−1).

This, together with the previous estimate yields (after squaring up) (D.28). Finally,
(D.28) and (D.27) imply

〈f(xts)〉t ≤ Cs−1 + Cs2β−2 + Cw2
sβ

which, in view of the definition of f , gives, after setting s = t, Theorem 4.1 in the
case of integrable wt =

∫∞
t
‖Wr‖W 1,∞dr.

The proof in the case of integrable w′t = max1≤|α|≤2

∫∞
t
‖∂αxWr‖∞dr is identical,

the only difference being that the estimate∥∥[g(H),Wr]
∥∥ . ‖Wr‖L∞

used to prove (D.9) is replaced by∥∥[g(H),Wr]
∥∥ . max

1≤|α|≤2
‖∂αxWr‖L∞ ,

see Lemma E.3 below. �

Appendix E. Commutator expansions and localization estimate

First, we state commutator expansions and estimates, first derived in [39] and
then improved in [41, 23, 24] (see also [1, Appendix B]). We follow [23] and refer to
this paper as well as to [1] for details and references. To begin with, we mention
that, by the Helffer-Sjöstrand formula, a function f(A) of a self-adjoint operator A
can be written as

f(A) =

∫
df̃(z)(z − A)−1, (E.1)

where f̃(z) is an almost analytic extension of f to C supported in a complex neigh-

borhood of supp f . For f ∈ Cn+2(R), we can choose f̃ satisfying the estimates (see
(B.8) of [23]):∫

|df̃(z)||Im(z)|−p−1 .
n+2∑
k=0

‖f (k)‖k−p−1, (E.2)

where ‖f‖m :=
∫
〈x〉m|f(x)|.

The essential commutator estimates are incorporated in the following lemma. We
refer the reader to e.g. [1, Lemma A.1] for a proof.
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Lemma E.1. Let f ∈ C∞(R) be bounded, with
∑n+2

k=0 ‖f (k)‖k−2 < ∞, for some
n ≥ 1. Let xs = s−1(〈x〉 − a) for a > 0 and 1 ≤ s < ∞. Suppose that H satisfies
(1.2) and let g ∈ C∞0 (R). Then, for any n ≥ 1,

[g(H), f(xs)] =
n−1∑
k=1

s−k

k!
Bkf

(k)(xs) +O(s−n), (E.3)

uniformly in a ∈ R, where HjBk, j = 0, 1, k = 1, . . . , n − 1, are bounded operators
and ‖HjO(s−n)‖ . s−n, j = 0, 1. For n = 1, the sum on the r.h.s. is omitted.

Now, we prove a localization estimate used at the of the proof of Theorem 4.1.
Recall the definition gsβ(H) := U−1

sβ
g(H)Usβ .

Lemma E.2. Suppose that∫ ∞
0

w
(1)
t dt < +∞, w

(1)
t := max

|α|=1

∫ ∞
t

‖∂αxWr‖∞dr. (E.4)

With the notations of Eq. (D.5), we have

‖χ(x0s)gsβ(H)χ−b ‖ = O(sβ−1). (E.5)

Proof. Let χ ≡ χ(x0s). Using χχ−b = 0, we write

χgsβ(H)χ−b = [χ, U−1
sβ

]g(H)Usβχ
−
b +U−1

sβ
[χ, g(H)]Usβχ

−
b

+ U−1
sβ
g(H)[χ, Usβ ]χ−b . (E.6)

Since [χ, Usβ ] = Usβ(U−1
sβ
χUsβ − χ) = Usβ

∫ sβ
0
∂r(U

−1
r χUr)dr and ∂r(U

−1
r χUr) =

iU−1
r [Hr, χ]Ur , we have

[χ, Usβ ] = iUsβ

∫ sβ

0

U−1
r [Hr, χ]Urdr. (E.7)

Note that [Hr, χ] = −ip∇χ + 1
2
(∆χ). We control p by S−1 = (H + c)−1/2, with

S = (H + c)1/2 and c := inf H + 1:

p = SB = B′S, (E.8)

where B := (H + c)−1/2p and B′ := p(H + c)−1/2, bounded operators. Eq. (E.7),
together with the last two relations, gives

[χ, Usβ ] = Usβ

∫ sβ

0

U−1
r

(
SB∇χ+ i

1

2
(∆χ)

)
Urdr. (E.9)

Next, we commute (H + c)1/2 to the left. To this end, we apply the equation

[S, Ur] = O(1), (E.10)

which we now prove. First, we write S = (H + c)1/2 = (H + c)(H + c)−1/2 and use
the explicit formula (H + c)−s := c′

∫∞
0

(H + c + ω)−1dω/ωs, where s ∈ (0, 1) and

c′ := [
∫∞

0
(1 + ω)−1dω/ωs]−1, to obtain [Wr, (H + c)1/2] = O(w

(1)
r ). This implies the
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estimate [Hr, (H+ c)1/2] = [Wr, (H+ c)1/2] = O(w
(1)
r ), which, together with the fact

that w
(1)
r is integrable and the relation

[S, Ur] = Ur

∫ r

0

iU−1
r′ [Hr′ , S]Ur′dr

′, (E.11)

yields (E.10).
Commuting S in Eq. (E.9) to the left (either twice through U−1

r and Usβ , or once
through UsβU

−1
r = U(sβ, r)) and using (E.10), ∇χ = O(s−1) and ∆χ = O(s−2),

gives

[χ, Usβ ] = SO(sβ−1) +

∫ sβ

0

(
O(s−1) +O(s−2)

)
Urdr

= SO(sβ−1) +O(sβ−1). (E.12)

A similar estimate holds for [χ, U−1
sβ

] = −[χ, Usβ ]∗:

[χ, U−1
sβ

] = O(sβ−1)S +O(sβ−1). (E.13)

Now, the second term on the r.h.s. of the above relation produces the right
bound, O(s−1+β) and so does the first term multiplied by g(H), as (H + 1)1/2g(H)
is a bounded operator. This shows that the first term on the r.h.s. of (E.6) is of the
order O(s−1+β). The same estimates apply to the third term on the r.h.s. of (E.6)
giving O(s−1+β). For the second term on the r.h.s. of (E.6), we use (E.3) to obtain
[χ, g(H)] = O(s−1). This proves the lemma. �

Finally we prove a lemma used in the proof of Theorem 4.1 in the case of integrable
w′t = max1≤|α|≤2

∫∞
t
‖∂αxWr‖∞dr.

Lemma E.3. We have∥∥[g(H),Wr]
∥∥ . max

1≤|α|≤2
‖∂αxWr‖L∞ . (E.14)

Proof. Using (E.1), we have

[Wr, g(H)] =

∫
dg̃(z)(z −H)−1[Wr, H](z −H)−1. (E.15)

Using this, estimate (E.2) for g̃(z) and the fact that [Wr, H] = ∇Wr · ∇+ 1
2
∆Wr is

(H + c)1/2-bounded, where c := inf H + 1 and the estimate

‖(H + c)1/2R(z)‖ . |Re z|1/2/|Imz|,

we arrive at (E.14). �
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