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Abstract. We consider a spin- 1
2

electron and a spin- 1
2

nucleus interacting with the quan-
tized electromagnetic field in the standard model of non-relativistic QED. For a fixed total
momentum sufficiently small, we study the multiplicity of the ground state of the reduced
Hamiltonian. We prove that the coupling between the spins of the charged particles and the
electromagnetic field splits the degeneracy of the ground state.

1. Introduction

This paper is concerned with the spectral analysis of the quantum Hamiltonian associated
with a free hydrogen atom, in the context of non-relativistic QED. Before describing our
result more precisely, we begin with recalling a few well-known facts about the spectrum of
Hydrogen in the case where the corrections due to quantum electrodynamics are not taken into
account. For more details, we refer the reader to classical textbooks on Quantum Mechanics
(see, e.g., [Me, CTDL]). See also [BS, IZ, And].

We consider a neutral hydrogenoid system composed of one electron with spin 1
2 and one

nucleus with spin 1
2 . The Pauli Hamiltonian in L2(R6; C4) associated with this system can be

written in the following way:

HPa :=
1

2mel
(pel − α

1
2An(xel))2 − α

1
2

2mel
σel ·Bn(xel)

+
1

2mn
(pn + α

1
2Ael(xn))2 +

α
1
2

2mn
σn ·Bel(xn)− α

|xel − xn|
. (1.1)

Here the units are chosen such that ~ = c = 1, where ~ = h/2π, h is the Planck constant,
and c is the velocity of light. The notations mel, xel and pel = −i∇xel

(respectively mn,
xn and pn = −i∇xn) stand for the mass, the position and the momentum of the electron
(respectively of the nucleus), and α = e2 is the fine-structure constant (with e the charge of the
electron). Moreover, σel = (σel

1 , σ
el
2 , σ

el
3 ) (respectively σn) are the Pauli matrices accounting

for the spin of the electron (respectively of the nucleus), and An(xel) is the vector potential
of the electromagnetic field generated by the nucleus at the position of the electron, that is
An(xel) = Cα1/2(σn∧ (xel−xn))/(mn|xel−xn|3) where C is a positive constant (and similarly
for Ael(xn)). Finally, Bn(xel) = ipel ∧An(xel) and Bel(xn) = ipn ∧Ael(xn).

The Hamiltonian HPa can be derived from the Dirac equation in the non-relativistic regime.
It allows one to justify the so-called hyperfine structure of the ground state of the Hydrogen
atom. More precisely, let HPa(0) be the Hamiltonian obtained when the total momentum
vanishes. Then HPa(0) in L2(R3; C4) can be decomposed into a sum of four terms, HPa(0) =
H0 +H1 +H2 +H3, where H0 = p2

r/(2µ)−α/|r| (here µ denotes the reduced mass of the atom
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and pr = −i∇r), H1 is the orbital interaction, H2 is the spin-orbit interaction, and H3 is the
spin-spin interaction (see e.g. [And, Chapter 4] and [AA] for details). It is seen that H0 has
a 4-fold degenerate ground state. The correction terms, H1, H2, and H3, produce an energy
shift. Moreover, under the influence of the spin-spin interaction, the unperturbed ground
state eigenvalue splits into two parts: a simple eigenvalue associated with a unique ground
state, and a 3-fold degenerate eigenvalue. This phenomenon is referred to as the hyperfine
splitting of the hydrogen atom ground state. Let us mention that this splitting explains the
famous observed 21-cm Hydrogen line.

In this paper, we investigate the hyperfine structure of the hydrogen atom in the standard
model of non-relativistic QED. We aim at establishing that a hyperfine splitting does occur
in the framework of non-relativstic QED. The Hamiltonian is still given by the expression
(1.1), except that An(xel) and Ael(xn) are replaced by the vector potentials of the quantized
electromagnetic field in the Coulomb gauge (and likewise for Bn(xel) and Bel(xn), precise
definitions will be given in Subsection 2.1 below). Moreover the energy of the free photon field
is added. Since both the electron and the nucleus are treated as moving particles, the total
Hamiltonian, Hg, is translation invariant. Here g denotes a coupling parameter depending
on the fine-structure constant α. The translation invariance implies that Hg admits a direct
integral decomposition, Hg ∼

∫
R3 Hg(P )dP , with respect to the total momentum P of the

system. We set Eg(P ) := inf σ(Hg(P )).
In [AGG], it is established that, for g and P sufficiently small, Eg(P ) is an eigenvalue of

Hg(P ), that is Hg(P ) has a ground state. We also mention [LMS1] where the existence of a
ground state for Hg(P ) is obtained for any value of g, under the assumption that Eg(0) ≤
Eg(P ). Using a method due to [Hi2], it is proven in [AGG] that the multiplicity of Eg(P )
cannot exceed the multiplicity of E0(P ) := inf σ(H0(P )), where H0(P ) := Hg=0(P ) denotes
the non-interacting Hamiltonian. In other words,

(0 <) dim Ker (Hg(P )− Eg(P )) ≤ dim Ker (H0(P )− E0(P )). (1.2)

Our purpose is to determine whether the inequality in (1.2) is strict, or, on the contrary, is
an equality.

Of course, the multiplicity of Eg(P ) depends on the value of the spins of the charged
particles. If the spin of the electron is neglected and the spin of the nucleus is equal to 0,
then E0(P ) is simple, and hence, according to (1.2), Eg(P ) is also a simple eigenvalue. In
particular, (1.2) is an equality.

If the spin of the electron is taken into account, and the spin of the nucleus is equal to 0, then
E0(P ) is twice-degenerate. Using Kramer’s degeneracy theorem (see [LMS2]), one can prove
that the multiplicity of Eg(P ) is even. Therefore, by (1.2), Eg(P ) is also twice-degenerate,
and hence (1.2) is again an equality. We refer the reader to [HS, Sp, Sa, Hi1, LMS2] for results
on the twice-degeneracy of the ground state of various QED models.

Consider now a hydrogen atom composed of a spin-1
2 electron and a spin-1

2 nucleus (e.g. a
proton). In this case, the multiplicity of E0(P ) is equal to 4. Our main result states that

dim Ker (Hg(P )− Eg(P )) < dim Ker (H0(P )− E0(P )) = 4, (1.3)

for g 6= 0 small enough. Equation (1.3) can be interpreted as a hyperfine splitting of the
ground state of Hg(P ). In other words, the Hamiltonian of a freely moving hydrogen atom at
a fixed total momentum in non-relativistic QED contains hyperfine interaction terms which
split the degeneracy of the ground state, in the same way as for the Pauli Hamiltonian of
Quantum Mechanics mentioned above. Pursuing the analogy with the Pauli Hamiltonian
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(1.1), one can conjecture that Eg(P ) is simple. Proving this is however beyond the scope of
the present paper.

We also mention that non-relativistic QED provides a suitable framework to rigorously
justify radiative decay and Bohr’s frequency condition (see [BFS1, BFS2, AFFS, Sig] for
the case of atomic systems with an infinitely heavy nucleus). In particular, save for the
ground state, all stationary states are expected to turn into metastable states with a finite
lifetime. Hence in relation with the 21-cm hydrogen line mentioned above, one can expect
that a resonance appears near the ground state energy Eg(P ), with a very small imaginary
part. Showing this would presumably require the use of complex dilatations together with
renormalization techniques as in [BFS1].

The case of a nucleus of spin ≥ 1 is not considered here (for instance, the nucleus of
deuterium, composed of one proton and one neutron, can be treated as a spin-1 particle),
but we expect that a similar hyperfine splitting of the ground state occurs in this case also.
As for positively charged hydrogenoid ions, the question of the existence of a ground state is
more subtle than for the hydrogen atom. Indeed, it is proven in [HH] that the Hamiltonian
of a positive ion at a fixed total momentum in non-relativistic QED does not have a ground
state in Fock space. This result should be compared with the corresponding one for the model
of a freely moving, dressed non-relativistic electron in non-relativistic QED, which has been
studied recently by several authors (see, among other papers, [Ch, CF, BCFS2, HH, CFP,
LMS2, FP]; see also [AFGG]).

Let us finally mention that the ground state degeneracy of the non-relativistic hydrogen
atom confined by its center of mass (see [AF, Fa]) could also be analyzed by the techniques
developed here, provided that both the electron and the nucleus have a spin equal to 1

2 .

2. Definition of the model and statement of the main result

2.1. Definition of the model. In the standard model of non-relativistic QED, the Hamil-
tonian associated with the system we consider acts on the Hilbert space H := Hat ⊗ Hph

where
Hat := L2(R3; C2)⊗ L2(R3; C2) ∼ L2(R6; C4) (2.1)

is the Hilbert space for the charged particles (the electron and the nucleus), and

Hph := C⊕
∞⊕
n=1

Sn
[
L2(R3 × {1, 2})⊗n]

(2.2)

is the symmetric Fock space for the photons. Here Sn denotes the symmetrization operator.
The Hamiltonian of the system, HSM, is formally given by the expression

HSM :=
1

2mel

(
pel − α

1
2A(xel)

)2
+

1
2mn

(
pn + α

1
2A(xn)

)2
+ V (xel, xn) +Hph

− α
1
2

2mel
σel ·B(xel) +

α
1
2

2mn
σn ·B(xn), (2.3)

where xel, xn, pel, pn and α are defined as in (1.1). For x ∈ R3, A(x) is defined by

A(x) :=
1

2π

∑
λ=1,2

∫
R3

χΛ(k)

|k|
1
2

ελ(k)
[
e−ik·xa∗λ(k) + eik·xaλ(k)

]
dk, (2.4)
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and B(x) is given by

B(x) := − i
2π

∑
λ=1,2

∫
R3

|k|
1
2χΛ(k)

( k
|k|
∧ ελ(k)

) [
e−ik·xa∗λ(k)− eik·xaλ(k)

]
dk, (2.5)

where the polarization vectors ε1(k) and ε2(k) are chosen in the following way:

ε1(k) :=
(k2,−k1, 0)√

k2
1 + k2

2

, ε2(k) :=
k

|k|
∧ ε1(k) =

(−k1k3,−k2k3, k
2
1 + k2

2)√
k2

1 + k2
2

√
k2

1 + k2
2 + k2

3

. (2.6)

In (2.4) and (2.5), χΛ(k) denotes an ultraviolet cutoff function which, for the sake of con-
creteness, we choose as

χΛ(k) := 1|k|≤Λα2(k). (2.7)
Here, Λ is supposed to be a given arbitrary (large and) positive parameter. As explained in
[BFS2, Sig], the model is physically relevant if we assume that 1� Λ� α−2. The reason for
introducing α2 into the definition (2.7) will appear below (see (2.18)).

As usual, for any h ∈ L2(R3 × {1, 2}), we set

a∗(h) :=
∑
λ=1,2

∫
R3

h(k, λ)a∗λ(k)dk, a(h) :=
∑
λ=1,2

∫
R3

h̄(k, λ)aλ(k)dk, (2.8)

and Φ(h) := a∗(h) + a(h), where the creation and annihilation operators, a∗λ(k) and aλ(k),
obey the canonical commutation relations

[aλ(k), aλ′(k′)] = [a∗λ(k), a∗λ′(k′)] = 0, [aλ(k), a∗λ′(k′)] = δλλ′δ(k − k′). (2.9)

Hence, in particular, for j ∈ {1, 2, 3}, we have Aj(x) = Φ(hAj (x)) and Bj(x) = Φ(hBj (x)), with

hAj (x, k, λ) :=
1

2π
χΛ(k)

|k|
1
2

ελj (k)e−ik·x, (2.10)

hBj (x, k, λ) := − i
2π
|k|

1
2χΛ(k)

(
k

|k|
∧ ελ(k)

)
j

e−ik·x. (2.11)

The Coulomb potential V (xel, xn) is given by

V (xel, xn) ≡ V (xel − xn) := − α

|xel − xn|
, (2.12)

and Hph is the Hamiltonian of the free photon field, defined by

Hph :=
∑
λ=1,2

∫
R3

|k|a∗λ(k)aλ(k)dk. (2.13)

The 3-uples σel = (σel
1 , σ

el
2 , σ

el
3 ) and σn = (σn

1 , σ
n
2 , σ

n
3 ) are the Pauli matrices associated with

the spins of the electron and the nucleus respectively. They can be written as 4× 4 matrices
in the following way:

σel
1 =

0BB@
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1CCA , σel
2 =

0BB@
0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

1CCA , σel
3 =

0BB@
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

1CCA , (2.14)

σn
1 =

0BB@
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

1CCA , σn
2 =

0BB@
0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

1CCA , σn
3 =

0BB@
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

1CCA . (2.15)
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In order to exhibit the perturbative behavior of the interaction between the charged par-
ticles and the photon field, we proceed to a change of units. More precisely, let U : H → H
be the unitary operator associated with the scaling

(xel, xn, k1, λ1, . . . , kn, λn) 7→ (xel/α, xn/α, α
2k1, λ1, . . . , α

2kn, λn). (2.16)

We have
1
α2
UHSMU∗ =

1
2mel

(
pel − α

3
2 Ã(αxel)

)2
+

1
2mn

(
pn + α

3
2 Ã(αxn)

)2

− 1
|xel − xn|

+Hph −
α

3
2

2mel
σel · B̃(αxel) +

α
3
2

2mn
σn · B̃(αxn), (2.17)

where Ã and B̃ are defined in the same way as A and B, except that the ultraviolet cutoff
function χΛ(k) is replaced by

χ̃Λ(k) := χΛ(α2k) = 1|k|≤Λ(k). (2.18)

To simplify the notations, we redefine χ̃Λ = χΛ, A = Ã and B = B̃. Setting g := α
3
2 , we are

thus led to study the Hamiltonian

HSM
g :=

1
2mel

(
pel − gA(g

2
3xel)

)2
+

1
2mn

(
pn + gA(g

2
3xn)

)2

− 1
|xel − xn|

+Hph −
g

2mel
σel ·B(g

2
3xel) +

g

2mn
σn ·B(g

2
3xn). (2.19)

Let the total mass, M , and the reduced mass, µ, be defined respectively by

M := mel +mn,
1
µ

:=
1
mel

+
1
mn

. (2.20)

Let

r := xel − xn, R :=
mel

M
xel +

mn

M
xn,

pr
µ

:=
pel

mel
− pn

mn
, PR := pel + pn. (2.21)

For g = 0, the Hamiltonian HSM
0 := HSM

g=0 is given by

HSM
0 =

p2
el

2mel
+

p2
n

2mn
− 1
|xel − xn|

+Hph = HR +Hr +Hph, (2.22)

where the Schrödinger operators HR and Hr on L2(R3) are defined by

HR :=
P 2
R

2M
, Hr :=

p2
r

2µ
− 1
|r|
. (2.23)

Let e0 := −µ
2 be the ground state eigenvalue of Hr and e1 be the first eigenvalue above e0.

Note that a normalized eigenstate associated with e0 is given by

φ0(r) := (π−1µ3)
1
2 e−µ|r|. (2.24)

To conclude this subsection, we recall the definition of the photon number operator, Nph,
which will be used in the sequel:

Nph :=
∑
λ=1,2

∫
R3

a∗λ(k)aλ(k)dk. (2.25)
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2.2. Fiber decomposition. The Hamiltonian HSM
g is translation invariant in the sense that

HSM
g formally commutes with the total momentum operator Ptot := PR + Pph, where Pph

denotes the momentum operator of the photon field, given by the expression

Pph :=
∑
λ=1,2

∫
R3

ka∗λ(k)aλ(k)dk. (2.26)

In the same way as in [AGG], it follows that HSM
g can be decomposed into a direct integral,

which is expressed in the following proposition.

Proposition 2.1 ([AGG]). There exists gc > 0 such that for all |g| ≤ gc, the following holds:
the Hamiltonian HSM

g given by the formal expression (2.19) identifies with a self-adjoint
operator which is unitarily equivalent to the direct integral

∫ ⊕
R3 Hg(P )dP . Moreover, for all

P ∈ R3, Hg(P ) is a self-adjoint operator acting on the Hilbert space

H(P ) := L2(R3; C4)⊗Hph ∼ C4 ⊗ L2(R3, dr)⊗Hph, (2.27)

with domain D(Hg(P )) = D(H0(P )), and Hg(P ) is given by the expression:

Hg(P ) =
1

2mel

(mel

M
(P − Pph) + pr − gA(

mel

M
g

2
3 r)
)2

+
1

2mn

(mn

M
(P − Pph)− pr + gA(−mn

M
g

2
3 r)
)2

− 1
|r|

+Hph −
g

2mel
σel ·B(

mel

M
g

2
3 r) +

g

2mn
σn ·B(−mn

M
g

2
3 r). (2.28)

Let us mention that this direct integral decomposition remains true for an arbitrary value
of the coupling constant g (see [LMS1]). However, in this paper, we shall only be interested
in the small coupling regime.

For g = 0, the fiber Hamiltonian H0(P ) := Hg=0(P ) reduces to the diagonal operator

H0(P ) = Hr +
1

2M
(P − Pph)2 +Hph, (2.29)

where Hr is the Schrödinger operator defined in (2.23). Let Ω denote the photon vacuum in
Hph. One can verify that

E0(P ) := inf σ(H0(P )) = e0 +
P 2

2M
, (2.30)

and that e0 + P 2/2M is an eigenvalue of multiplicity 4 of H0(P ). Moreover, the associated
normalized eigenstates can be written under the form y ⊗ φ0 ⊗ Ω, where y is an arbitrary
normalized element in C4.
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The operator H0(P ) is treated as an unperturbed Hamiltonian, the perturbation Wg(P ) :=
Hg(P )−H0(P ) being given by

Wg(P ) =− g

mel

((mel

M
(P − Pph) + pr

)
·A(

mel

M
g

2
3 r)
)

+
g

mn

((mn

M
(P − Pph)− pr

)
·A(−mn

M
g

2
3 r)
)

+
g2

2mel
A(
mel

M
g

2
3 r)2 +

g2

2mn
A(−mn

M
g

2
3 r)2

− g

2mel
σel ·B(

mel

M
g

2
3 r) +

g

2mn
σn ·B(−mn

M
g

2
3 r). (2.31)

Note that, due to the choice of the Coulomb gauge, the operators A(melg
2/3r/M) and

A(−mng
2/3r/M) commute both with pr and Pph.

2.3. Main result and organization of the paper. Our main result is stated in the fol-
lowing theorem.

Theorem 2.2. There exist gc > 0 and pc > 0 such that, for any 0 < |g| ≤ gc and 0 ≤ |P | ≤ pc,

dim Ker (Hg(P )− Eg(P )) < 4. (2.32)

Our proof of Theorem 2.2 is based on a contradiction argument and the use of the Feshbach-
Schur identity. The point is that the assumption dim Ker (Hg(P )−Eg(P )) = 4 will allow us
to compute the second order expansion in g of the expression (Eg(P )−E0(P ))Π0, where Π0

denotes the projection onto the eigenspace associated with the eigenvalue E0(P ) of H0(P ).
More precisely, applying in a suitable way the Feshbach-Schur map, we will find that (Eg(P )−
E0(P ))Π0 = Γ + O(|g|2+τ ) for some τ > 0, where Γ is an explicitly given 4× 4 matrix. The
previous identity implies in particular that all the coefficients of order g2 in the matrix Γ
must be located on the diagonal, which will lead to a contradiction.

We decompose the proof of Theorem 2.2 into two main steps. In Section 3, we introduce
and study some properties of the Feshbach-Schur operator that we consider. Next, in Section
4, we assume that the multiplicity of Eg(P ) is equal to 4, and we conclude the proof of
Theorem 2.2 by a contradiction argument. In Appendix A, we collect some fairly standard
estimates which are used in Sections 3 and 4.

Throughout the paper, C,C′,C′′ will denote positive constants that may differ from one
line to another.

3. The Feshbach-Schur operator

In this section, we introduced the Feshbach-Schur operator that we consider, and we study
some of its properties. They will be used below in Section 4 in order to prove Theorem 2.2.

It is convenient to work with the Hamiltonian H̃g(P ) obtained from Hg(P ) by Wick or-
dering, that is H̃g(P ) = : Hg(P ) : , with the usual notations. It is not difficult to check
that H̃g(P ) = Hg(P ) − g2CΛ, where CΛ is a positive constant depending on the ultra-
violet cutoff parameter Λ. Hence it suffices to prove Theorem 2.2 with H̃g(P ) replacing
Hg(P ) and Ẽg(P ) := inf σ(H̃g(P )) replacing Eg(P ). To simplify the notations, we redefine
Hg(P ) := H̃g(P ) and Eg(P ) := Ẽg(P ). Moreover, in what follows, we drop the dependence
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on P everywhere unless a confusion may arise. In particular, we set

Hg = Hg(P ), H0 = H0(P ), Wg = Wg(P ), Eg = Eg(P ), E0 = E0(P ) = e0 +
P 2

2M
. (3.1)

For any ρ ≥ 0, we define the projections Πρ in the tensor product C4 ⊗ L2(R3)⊗Hph by

Πρ := 1⊗Πφ0 ⊗ 1Hph≤ρ, (3.2)

where Πφ0 denotes the projection onto the eigenspace associated with the eigenvalue e0 of Hr.
In particular, as above, Π0 = 1⊗ Πφ0 ⊗ ΠΩ is the projection onto the eigenspace associated
with the eigenvalue E0 of H0 (here ΠΩ is the projection onto the Fock vacuum) .

Lemma 3.1. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc, 0 ≤ |P | ≤ pc,
ε ≥ 0 and g2 � ρ � 1, the operator Π̄ρHgΠ̄ρ − Eg + ε : D(H0) ∩ Ran(Π̄ρ) → Ran(Π̄ρ) is
invertible and satisfies[

Π̄ρHgΠ̄ρ − Eg + ε
]−1Π̄ρ =

[
H0 − Eg + ε

]−1Π̄ρ

∑
n≥0

(
−WgΠ̄ρ

[
H0 − Eg + ε

]−1Π̄ρ

)n
. (3.3)

Proof. Since Π̄ρ

(
Hg −Eg + ε

)
Π̄ρ =

(
H0 −Eg + ε)Π̄ρ + Π̄ρWgΠ̄ρ, it suffices to prove that the

Neumann series in the right-hand-side of (3.3) is convergent. It follows from Lemmata A.2
and A.8 in Appendix A that, for all n ∈ N, ε ≥ 0 and ρ > 0,∥∥∥[H0 − Eg + ε

]−1Π̄ρ

(
−WgΠ̄ρ

[
H0 − Eg + ε

]−1Π̄ρ

)n∥∥∥ ≤ Cρ−1
(
C′|g|ρ−

1
2
)n
, (3.4)

Therefore, for 1� ρ� g2, (3.4) implies (3.3). �

Lemma 3.2. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc, 0 ≤ |P | ≤ pc,
ε ≥ 0 and g2 � ρ� 1, the Feshbach-Schur operator

Fρ(ε) = (H0 − Eg + ε)Πρ + ΠρWgΠρ −ΠρWg

[
Π̄ρHgΠ̄ρ − Eg + ε

]−1Π̄ρWgΠρ (3.5)

is a well-defined (bounded) operator on Ran(Πρ). Moreover, Fρ(ε) satisfies

Fρ(0) = lim
ε→0+

Fρ(ε), (3.6)

in the norm topology, and
‖Fρ(0)‖ ≤ Cρ. (3.7)

Proof. By Lemma 3.1 and the fact that Ran(Πρ) ⊂ D(H0) ⊂ D(Wg), Fρ(ε) is obviously
well-defined on Ran(Πρ), for any ε ≥ 0. The boundedness of Fρ(ε) and Equation (3.6) are
straightforward verifications.

In order to prove (3.7), we proceed as follows: First, it follows from Lemma A.6 that∥∥(H0 − Eg)Πρ

∥∥ =
∥∥(E0 − Eg)Πρ + (− P

M
· Pph +

P 2
ph

2M
+Hph)Πρ‖ ≤ Cg2 + C′ρ ≤ C′′ρ, (3.8)

since, by assumption, ρ� g2. Next, by Lemma A.8, we have that

‖ΠρWgΠρ‖ ≤ C|g|ρ
1
2 ≤ C′ρ. (3.9)

Lemma 3.1 gives

ΠρWg

[
Π̄ρHgΠ̄ρ − Eg

]−1Π̄ρWgΠρ

= ΠρWg

[
H0 − Eg

]−1Π̄ρ

∑
n≥0

(
−WgΠ̄ρ

[
H0 − Eg

]−1Π̄ρ

)n
WgΠρ. (3.10)
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Using again Lemma A.8, we obtain that, for all n ≥ 0,∥∥ΠρWg

[
H0 − Eg

]−1Π̄ρ

(
−WgΠ̄ρ

[
H0 − Eg

]−1Π̄ρ

)n
WgΠρ

∥∥ ≤ Cg2(C′|g|ρ−
1
2 )n, (3.11)

which implies ∥∥ΠρWg

[
Π̄ρHgΠ̄ρ − Eg

]−1Π̄ρWgΠρ

∥∥ ≤ Cg2 ≤ C′ρ. (3.12)
Equations (3.8), (3.9) and (3.12) give (3.7). �

We now turn to the Feshbach-Schur identity. We refer to [BFS1, BCFS1, GH] for def-
initions and properties of the (smooth) Feshbach-Schur map, and its use in the context of
non-relativistic QED. In our case, the operator Hg−Eg +ε is obviously invertible (for ε > 0),
so that the following lemma simply follows from usual second order perturbation theory.

Lemma 3.3. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc, 0 ≤ |P | ≤ pc,
ε > 0 and g2 � ρ � 1, the operators Hg − Eg + ε : D(H0) → C4 ⊗ L2(R3) ⊗ Hph and
Fρ(ε) : Ran(Πρ)→ Ran(Πρ) are invertible and satisfy

Πρ[Hg − Eg + ε]−1Πρ = Fρ(ε)−1. (3.13)

Proof. Since Hg − Eg ≥ 0, for any ε > 0, the operator Hg − Eg + ε from D(H0) to C4 ⊗
L2(R3, dr) ⊗Hph is obviously invertible. The identity (3.13) is then easily verified following
for instance [BCFS1, Theorem 2.1]. �

As a consequence of Lemmata 3.2 and 3.3, we obtain the following lemma.

Lemma 3.4. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc, 0 ≤ |P | ≤ pc, and
g2 � ρ� 1,

Fρ(0)Πρ1{Eg}(Hg)Πρ = 0. (3.14)

Proof. We obtain from (3.13) that

Fρ(ε)Πρ[Hg − Eg + ε]−1Πρ = Πρ. (3.15)

for all ε > 0. It follows from the functional calculus that

s− lim
ε→0+

ε[Hg − Eg + ε]−1 = 1{Eg}(Hg), (3.16)

where s − lim stands for strong limit. Hence, using (3.6), we obtain (3.14) by multiplying
(3.15) by ε and letting ε go to 0. �

The next lemma will be used in the proof of Theorem 2.2.

Lemma 3.5. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc and 0 ≤ |P | ≤ pc,
Π0Fρ(0)Π0 =

(
E0 − Eg

)
Π0

−
∑
λ=1,2

∫
R3

Π0w̃(r, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg
]−1

w(r, k, λ)Π0dk +O(|g|2+τ ), (3.17)

where ρ = |g|2−2τ , τ > 0 is fixed sufficiently small,

w(r, k, λ) :=− g

mel

((mel

M
(P − Pph) + pr

)
· hA(

mel

M
g

2
3 r, k, λ)

)
+

g

mn

((mn

M
(P − Pph)− pr

)
· hA(−mn

M
g

2
3 r, k, λ)

)
− g

2mel
σel · hB(

mel

M
g

2
3 r, k, λ) +

g

2mn
σn · hB(−mn

M
g

2
3 r, k, λ), (3.18)
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and w̃(r, k, λ) is given by the same expression as w(r, k, λ) except that hA and hB are replaced
by h̄A and h̄B respectively.

Proof. We have that Π0Πρ = ΠρΠ0 = Π0 and H0Π0 = E0Π0. Introducing (3.3) into (3.5), we
thus obtain that

Π0Fρ(0)Π0 =
(
E0 − Eg

)
Π0 + Π0WgΠ0 −Π0Wg

[
H0 − Eg

]−1Π̄ρWgΠ0

−
∑
n≥1

Π0Wg

[
H0 − Eg

]−1(− Π̄ρWgΠ̄ρ

[
H0 − Eg

]−1)nΠ̄ρWgΠ0. (3.19)

Observe that Π0WgΠ0 = 0 since Wg is Wick ordered. Hence Estimate (3.11) for n ≥ 1 yields

Π0Fρ(0)Π0 =
(
E0 − Eg

)
Π0 −Π0Wg

[
H0 − Eg

]−1Π̄ρWgΠ0 +O(|g|3ρ−
1
2 ). (3.20)

We conclude the proof by applying Lemma A.9 of Appendix A. �

4. Proof of Theorem 2.2

From now on we assume that dim Ker (Hg −Eg) = 4, which will lead to a contradiction at
the end of this section.

Lemma 4.1. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc and 0 ≤ |P | ≤ pc,
the following holds: If dim Ker (Hg −Eg) = 4, then Π01{Eg}(Hg)Π0 is invertible on Ran(Π0)
and satisfies ∥∥[Π01{Eg}(Hg)Π0]−1

∥∥ ≤ 1
1− Cg2

. (4.1)

Proof. In order to prove that Π01{Eg}(Hg)Π0 is invertible on Ran(Π0), it suffices to show that∥∥Π0 −Π01{Eg}(Hg)Π0

∥∥ < 1. Observe that Π0 −Π01{Eg}(Hg)Π0 is a finite rank and positive
operator. We have that∥∥Π0 −Π01{Eg}(Hg)Π0

∥∥ ≤ tr(Π0 −Π01{Eg}(Hg)Π0)

= tr(Π0)− tr(Π01{Eg}(Hg))

= tr(Π0)− tr(1{Eg}(Hg)) + tr(Π̄01{Eg}(Hg))

= 4− 4 + tr(Π̄01{Eg}(Hg)) = tr(Π̄01{Eg}(Hg)). (4.2)

The projection Π̄0 can be decomposed as

Π̄0 = 1⊗ Π̄φ0 ⊗ΠΩ + 1⊗ 1⊗ Π̄Ω. (4.3)

It follows from Lemma A.7 that

tr((1⊗ Π̄φ0 ⊗ΠΩ)1{Eg}(Hg)) ≤ Cg2, (4.4)

and from Lemma A.5 that

tr((1⊗ 1⊗ Π̄Ω)Pg) ≤ tr(NphPg) ≤ C′g2. (4.5)

Therefore, ‖Π0−Π01{Eg}(Hg)Π0‖ ≤ C′′g2. The invertibility of Π01{Eg}(Hg)Π0 and Equation
(4.1) directly follow from the latter estimate. �

As a consequence of Lemma 4.1, we obtain the following lemma.
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Lemma 4.2. Let Γ denote the operator on Ran(Π0) defined by

Γ :=
∑
λ=1,2

∫
R3

Π0w̃(r, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg
]−1

w(r, k, λ)Π0dk, (4.6)

with w(r, k, λ) and w̃(r, k, λ) as in (3.18). There exist gc > 0 and pc > 0 such that, for all
0 ≤ |g| ≤ gc and 0 ≤ |P | ≤ pc, the following holds: If dim Ker (Hg − Eg) = 4, then

Γ =
(
E0 − Eg

)
Π0 +O(|g|2+τ ), (4.7)

where τ > 0 is fixed sufficiently small.

Proof. Fix ρ = |g|2−2τ for some sufficiently small τ > 0. Multiplying both sides of Equation
(3.14) by Π0, we get

Π0Fρ(0)Πρ1{Eg}(Hg)Π0 = 0. (4.8)

Introducing the decomposition 1 = Π0 + Π̄0 into (4.8) and using Lemma 4.1, this yields

Π0Fρ(0)Π0 = −Π0Fρ(0)ΠρΠ̄01{Eg}(Hg)Π0[Π01{Eg}(Hg)Π0]−1. (4.9)

By Equations (4.3), (4.4) and (4.5), we learn that∥∥Π̄01{Eg}(Hg)
∥∥ ≤ tr(Π̄01{Eg}(Hg)) ≤ Cg2, (4.10)

which, combined with (3.7) and (4.1), implies that∥∥Π0Fρ(0)ΠρΠ̄01{Eg}(Hg)Π0[Π01{Eg}(Hg)Π0]−1
∥∥ ≤ Cg2ρ = C|g|4−2τ . (4.11)

We conclude the proof thanks to Lemma 3.5. �

Let us consider the canonical orthonormal basis of C4 in which the Pauli matrices σel
j ,

σn
j , j ∈ {1, 2, 3}, are given by (2.14)–(2.15). Obviously, Γ identifies with a 4 × 4 matrix in

this basis. In the next theorem, we determine a non-diagonal coefficient of Γ of the form
−C0g

2 + o(g2) with C0 > 0.

Theorem 4.3. Let Γ be given as in (4.6). There exist gc > 0 and pc > 0 such that, for all
0 ≤ |g| ≤ gc and 0 ≤ |P | ≤ pc, the coefficient of Γ located on the third line and second column,
Γ32, satisfies

Γ32 = −C0g
2 +O(|g|

8
3 ), (4.12)

where C0 is a strictly positive constant independent of g.

Proof. We view w(r, k, λ) as a linear combination (some coefficients being given by operators)
of the functions hAj (· · · ) and hBj (· · · ), j ∈ {1, 2, 3}. We introduce the corresponding expression
into (4.6) and consider each term separately.

Since the coefficients located on the third line and second column of the Pauli matrices
expressed in (2.14)–(2.15) vanish, the terms containing at least one factor hAj (· · · ) do not
contribute to Γ32. The same holds for the terms containing at least one factor hB3 (· · · ), since
the third Pauli matrices, σel

3 and σn
3 , are diagonal.
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Therefore, Γ32 is equal to the coefficient located on the third line and second column of the
matrix Γ′ given by

Γ′ =
∑
λ=1,2

∫
R3

Π0

∑
j=1,2

(
− g

2mel
σel
j h̄

B
j (
mel

M
g

2
3 r, k, λ) +

g

2mn
σn
j h̄

B
j (−mn

M
g

2
3 r, k, λ)

)
[
Hr +

1
2M

(P − k)2 + |k| − Eg
]−1

∑
j′=1,2

(
− g

2mel
σel
j′h

B
j′(
mel

M
g

2
3 r, k, λ) +

g

2mn
σn
j′h

B
j′(−

mn

M
g

2
3 r, k, λ)

)
Π0dk. (4.13)

It follows from the definition (2.11) of hBj that∣∣hBj (r, k, λ)− hBj (0, k, λ)
∣∣ ≤ C|k|

3
2χΛ(k)|r|, (4.14)

for any j ∈ {1, 2, 3}, λ ∈ {1, 2}, r ∈ R3 and k ∈ R3. Moreover, the expression (2.24) of φ0

implies that ∥∥|r|φ0(r)
∥∥ ≤ C. (4.15)

Hence, using in addition that, for |P | sufficiently small,∥∥∥ [Hr +
(P − k)2

2M
+ |k| − Eg

]−1∥∥∥ ≤ C
|k|
, (4.16)

we obtain from (4.13) and (4.14)–(4.16) that

Γ′ =
∑
λ=1,2

∫
R3

Π0

∑
j=1,2

(
− g

2mel
σel
j h̄

B
j (0, k, λ) +

g

2mn
σn
j h̄

B
j (0, k, λ)

)
[
e0 +

1
2M

(P − k)2 + |k| − Eg
]−1

∑
j′=1,2

(
− g

2mel
σel
j′h

B
j′(0, k, λ) +

g

2mn
σn
j′h

B
j′(0, k, λ)

)
Π0dk +O(|g|

8
3 ). (4.17)

Notice now that, for j, j′ ∈ {1, 2}, the coefficient on the third line and second column of
the products σel

j σ
el
j′ and σn

j σ
n
j′ vanishes. We thus obtain from (4.17) that

Γ32 = Γ′32 = γ1 + γ2 +O(|g|
8
3 ), (4.18)

where

γ1 :=− g2

4melmn

∑
λ=1,2

∫
R3

(φ0,
[
h̄B1 (0, k, λ) + ih̄B2 (0, k, λ)

]
[
e0 +

1
2M

(P − k)2 + |k| − Eg
]−1[

hB1 (0, k, λ)− ihB2 (0, k, λ)
]
φ0)dk, (4.19)

and

γ2 :=− g2

4melmn

∑
λ=1,2

∫
R3

(φ0,
[
h̄B1 (0, k, λ)− ih̄B2 (0, k, λ)

]
[
e0 +

1
2M

(P − k)2 + |k| − Eg
]−1[

hB1 (0, k, λ) + ihB2 (0, k, λ)
]
φ0)dk. (4.20)
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We remark that the cross terms involving hB1 (0, k, λ) and hB2 (0, k, λ) vanish. Thus, we obtain

Γ32 =− g2

2melmn

∑
j=1,2

∑
λ=1,2

∫
R3

h̄Bj (0, k, λ)

[
e0 +

(P − k)2

2M
+ |k| − Eg

]−1
hBj (0, k, λ)dk +O(|g|

8
3 ). (4.21)

The integral in the right-hand-side of (4.21) still depends on g through the ground state
energy Eg. Nevertheless, one can readily check that∣∣∣[e0 +

(P − k)2

2M
+ |k| − Eg

]−1
−
[
e0 +

(P − k)2

2M
+ |k| − E0

]−1∣∣∣
≤ |E0 − Eg|

C
|k|2
≤ C′g2

|k|2
, (4.22)

where, in the last inequality, we used Lemma A.6. Therefore, since, for any j ∈ {1, 2} and
λ ∈ {1, 2}, the functions hBj (0, k, λ) satisfy |hBj (0, k, λ)| ≤ C|k|1/2χΛ(k), we get

Γ32 =− g2

2melmn

∑
j=1,2

∑
λ=1,2

∫
R3

h̄Bj (0, k, λ)

[
e0 +

(P − k)2

2M
+ |k| − E0

]−1
hBj (0, k, λ)dk +O(|g|

8
3 ). (4.23)

Now, the integrals in the right-hand-side of (4.23) can be explicitly computed, which leads to

Γ32 =− g2

8π2melmn

∫
R3

|k|χΛ(k)2

k2/2M − k · P/M + |k|
( k2

3

|k|2
+ 1
)
dk +O(|g|

8
3 ). (4.24)

The integrand in (4.24) is strictly positive (for P sufficiently small), and hence the integral
does not vanish. This concludes the proof of the theorem. �

We are now able to prove Theorem 2.2:

Proof of Theorem 2.2. By [AGG], we know that dim Ker(Hg−Eg) ≤ 4. Assume by contradic-
tion that dim Ker(Hg −Eg) = 4. By Lemma 4.2, the matrix Γ defined in (4.6) satisfies (4.7).
In particular, in any basis of C4, the non-vanishing terms of order g2 of Γ are necessarily
located on the diagonal. However, according to Theorem 4.3, in the canonical orthonormal
basis of C4 in which the Pauli matrices are given by (2.14)–(2.15), the non-diagonal coefficient
Γ32 contains a non-vanishing term of order g2. Hence we get a contradiction and the theorem
is proven. �

Appendix A

In this appendix, we collect some estimates which were used in Sections 3 and 4. Some of
them are standard (see for instance [BFS1, BFS2]). We begin with two lemmata concerning
the non-interacting Hamiltonian H0 defined in (2.29).

Lemma A.1. There exists pc > 0 such that for all 0 ≤ |P | ≤ pc,

Hph ≤ 2(H0 − E0). (A.1)
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Proof. For j ∈ {1, 2, 3}, one can easily verify that |(Pph)j | ≤ Hph. Hence, since E0 =
e0 + P 2/2M , we have that

H0 = Hr +
P 2

2M
− 1
M
P · Pph +

1
2M

P 2
ph +Hph ≥ E0 +

1
2
Hph, (A.2)

for P sufficiently small, which proves the lemma. �

Lemma A.2. There exists pc > 0 such that, for all 0 ≤ |P | ≤ pc and ρ ≥ 0,

Π̄ρH0Π̄ρ ≥
( P 2

2M
+ min(e0 +

ρ

2
, e1)

)
Π̄ρ. (A.3)

Proof. Since Πρ = 1⊗Πφ0 ⊗ 1Hph≤ρ in the tensor product C4 ⊗ L2(R3)⊗Hph, we can write
Π̄ρ = 1−Πρ = 1⊗Π̄φ0⊗1Hph≤ρ+1⊗1⊗1Hph≥ρ, where Π̄φ0 = 1−Πφ0 . Since HrΠ̄φ0 ≥ e1Π̄φ0 ,
we get that

H0(1⊗ Π̄φ0 ⊗ 1Hph≤ρ) ≥
(
e1 +

P 2

2M
)
(1⊗ Π̄φ0 ⊗ 1Hph≤ρ), (A.4)

for P small enough. Moreover, by Lemma A.1,

H0(1⊗ 1⊗ 1Hph≥ρ) ≥
(
e0 +

P 2

2M
+
ρ

2
)
(1⊗ 1⊗ 1Hph≥ρ). (A.5)

Hence (A.3) is proven. �

The proofs of the next two lemmata being standard, we omit them.

Lemma A.3. For any f ∈ L2(R3×{1, 2}), the operators a(f)[NphΠ̄Ω]−1/2 and [NphΠ̄Ω]−1/2a(f)
extend to bounded operators on Hph satisfying∥∥a(f)[NphΠ̄Ω]−

1
2

∥∥ ≤ ‖f‖, (A.6)∥∥[NphΠ̄Ω]−
1
2a(f)

∥∥ ≤ √2‖f‖. (A.7)

Lemma A.4. Let f ∈ L2(R3×{1, 2}) be such that (k, λ) 7→ |k|−1/2f(k, λ) ∈ L2(R3×{1, 2}).
Then, for any ρ > 0, the operators a(f)[Hph +ρ]−1/2 and [Hph +ρ]−1/2a(f) extend to bounded
operators on Hph satisfying∥∥a(f)[Hph + ρ]−

1
2

∥∥ ≤ ‖|k|− 1
2 f‖, (A.8)∥∥[Hph + ρ]−

1
2a(f)

∥∥ ≤ ‖|k|− 1
2 f‖+ ρ−

1
2 ‖f‖. (A.9)

The following lemma is taken from [AGG]. Its proof is based on a “pull-through” formula
(see [AGG]).

Lemma A.5. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc and 0 ≤ |P | ≤ pc,
the following holds:

∀Φg ∈ Ker(Hg − Eg), ‖Φg‖ = 1, we have (Φg,NphΦg) ≤ Cg2, (A.10)

where C is a positive constant independent of g.

In the next lemma, we estimate the difference between the ground state energies Eg =
inf σ(Hg) and E0 = inf σ(H0).
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Lemma A.6. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc and 0 ≤ |P | ≤ pc,

Eg ≤ E0 ≤ Eg + Cg2, (A.11)

where C is a positive constant independent of g.

Proof. Note that, since the perturbation Wg is Wick-ordered, we have that (1⊗1⊗ΠΩ)Wg(1⊗
1⊗ΠΩ) = 0, where, recall, ΠΩ denotes the orthogonal projection onto the vector space spanned
by the Fock vacuum Ω. Hence, by the Rayleigh-Ritz principle,

Eg ≤
(
(y ⊗ φ0 ⊗ Ω), Hg(y ⊗ φ0 ⊗ Ω)

)
=
(
(y ⊗ φ0 ⊗ Ω), H0(y ⊗ φ0 ⊗ Ω)

)
= E0, (A.12)

where, as above, y denotes an arbitrary normalized element in C4.
In order to prove the second inequality in (A.11), we use Lemmata A.3 and A.5. More

precisely, let Φg ∈ Ker(Hg − Eg), ‖Φg‖ = 1 (Φg exists by [AGG]). We have that

E0 − Eg ≤ (Φg, (H0 −Hg)Φg) = −(Φg,WgΦg). (A.13)

Recall that Wg is given by the Wick-ordered expression obtained from (2.31). We express the
latter in terms of operators of creation and annihilation, and estimate each term separately.
Consider for instance the term

g

mel

((mel

M
(P − Pph) + pr

)
· a(hA(

mel

M
g

2
3 r))

)
. (A.14)

It is not difficult to check that

(P − Pph)2 ≤ aH0 + b and p2
r ≤ aH0 + b, (A.15)

for some positive constants a and b depending on µ and M . One easily deduces from (A.15)
that ∥∥(mel

M
(P − Pph) + pr

)
Φg

∥∥ ≤ C. (A.16)

Moreover, by Lemmata A.3 and A.5, we have that∥∥a(hA(
mel

M
g

2
3 r))Φg

∥∥ ≤ C
∥∥N 1

2
phΦg

∥∥ ≤ C′|g|. (A.17)

Equations (A.16) and (A.17) imply that
∣∣(Φg, (A.14)Φg)

∣∣ ≤ Cg2, and since the other terms
in Wg are estimated similarly, this concludes the proof. �

Lemma A.5 gives an estimation of the overlap of the ground state Φg of Hg with the Fock
vacuum. We also need to estimate the overlap of Φg with the ground state φ0 of the electronic
Hamiltonian Hr in the sense stated in the following lemma.

Lemma A.7. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc and 0 ≤ |P | ≤ pc,
the following holds:

∀Φg ∈ Ker(Hg − Eg), ‖Φg‖ = 1, we have (Φg, (1⊗ Π̄φ0 ⊗ΠΩ)Φg) ≤ Cg2, (A.18)

where C is a positive constant independent of g.
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Proof. Let Φg be a normalized ground state of Hg, that is (Hg −Eg)Φg = 0, ‖Φg‖ = 1. Since
E0 − Eg = e0 + P 2/2M − Eg ≥ 0 by Lemma A.6, we have that

0 =
∣∣(Φg, (1⊗ Π̄φ0 ⊗ΠΩ)(Hg − Eg)Φg

)∣∣
=
∣∣(Φg, (1⊗ Π̄φ0 ⊗ΠΩ)

(
Hr +

P 2

2M
− Eg +Wg

)
Φg)
∣∣

≥ (e1 − e0)
(
Φg, (1⊗ Π̄φ0 ⊗ΠΩ)Φg

)
−
∣∣(Φg, (1⊗ Π̄φ0 ⊗ΠΩ)WgΦg

)∣∣, (A.19)

and hence

(Φg, (1⊗ Π̄φ0 ⊗ΠΩ)Φg) ≤
1

e1 − e0

∣∣(Φg, (1⊗ Π̄φ0 ⊗ΠΩ)WgΦg)
∣∣. (A.20)

We conclude the proof thanks to Lemmata A.3 and A.5, by arguing in the same way as in
the proof of Lemma A.6. �

We now give estimates relating the perturbation Wg to H0.

Lemma A.8. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc, 0 ≤ |P | ≤ pc,
0 < ρ� 1 and ε ≥ 0, the following estimates hold:∥∥[H0 − Eg + ε]−

1
2 Π̄ρWgΠ̄ρ[H0 − Eg + ε]−

1
2

∥∥ ≤ C|g|ρ−
1
2 , (A.21)∥∥ΠρWgΠ̄ρ[H0 − Eg + ε]−

1
2

∥∥ ≤ C|g|, (A.22)∥∥[H0 − Eg + ε]−
1
2 Π̄ρWgΠρ

∥∥ ≤ C|g|, (A.23)∥∥ΠρWgΠρ

∥∥ ≤ C|g|ρ
1
2 . (A.24)

Proof. Let us begin with proving (A.21). As in the proof of Lemma A.6, we express Wg in
terms of creation and annihilation operators from the Wick-ordered expression obtained from
(2.31), and we estimate each term separately. Let us consider again the term (A.14) as an
example. Using (A.15), Lemma A.2, and the fact that E0 ≥ Eg, we obtain∥∥∥[H0 − Eg + ε]−

1
2 Π̄ρ

(mel

M
(P − Pph) + pr

)
j

∥∥∥ ≤ Cρ−
1
2 . (A.25)

for j ∈ {1, 2, 3}. Next, for j ∈ {1, 2, 3}, Lemma A.4 gives∥∥a(hAj (
mel

M
g

2
3 r))[Hph + ρ]−1/2

∥∥ ≤ C, (A.26)

and it follows from Lemmata A.1 and A.2 that∥∥[Hph + ρ]
1
2 Π̄ρ[H0 − Eg + ε]−

1
2

∥∥ ≤ C. (A.27)

Using (A.25), (A.26) and (A.27), we obtain∥∥[H0 − Eg + ε]−
1
2 Π̄ρ(A.14)Π̄ρ[H0 − Eg + ε]−

1
2

∥∥ ≤ C|g|ρ−
1
2 . (A.28)

The other terms in Wg are estimated similarly, using in particular Estimate (A.9) (in addition
to (A.8)) for the terms quadratic in the annihilation and creation operators. Hence (A.21) is
proven. In order to prove (A.22), (A.23) and (A.24), we proceed similarly, using the further
following estimates:∥∥∥(mel

M
(P − Pph) + pr

)
j
Πρ

∥∥∥ ≤ C,
∥∥[Hph + ρ]

1
2 Πρ

∥∥ ≤ Cρ
1
2 . (A.29)
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The first estimate in (A.29) follows from (A.15), while the second is an obvious consequence
of the Spectral Theorem. �

Lemma A.9. There exist gc > 0 and pc > 0 such that, for all 0 ≤ |g| ≤ gc, 0 ≤ |P | ≤ pc,
0 < ρ� 1, and ε ≥ 0, we have

Π0Wg

[
H0 − Eg

]−1Π̄ρWgΠ0 =
∑
λ=1,2

∫
R3

Π0w̃(r, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg
]−1

w(r, k, λ)Π0dk +O(|g|3) +O(g2ρ), (A.30)

where w(r, k, λ) and w̃(r, k, λ) are defined in (3.18).

Proof. The perturbation Wg appears twice in Π0Wg[H0 − Eg]−1Π̄ρWgΠ0. We introduce the
expression (2.31) of Wg into the latter operator, and consider each term separately.

First, the terms containing a creation operator in the “first” Wg vanish since Π0 projects
onto the Fock vaccum. The same holds for the terms containing an annihilation operator in
the “second” Wg. Next, the terms involving the parts of Wg quadratic in the creation and
annihilation operators are (at least) of order O(|g|3), as follows again from Lemmata A.4 and
A.8. Therefore, one can compute

Π0Wg

[
H0 − Eg

]−1Π̄ρWgΠ0

=
∑
λ=1,2

∫
R3

Π0w̃(r, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg
]−1

w(r, k, λ)Π0dk

−
∑
λ=1,2

∫
|k|≤ρ

Π0w̃(r, k, λ)
[
e0 +

1
2M

(P − k)2 + |k| − Eg
]−1

× (1⊗Πφ0 ⊗ 1)w(r, k, λ)Π0dk +O(|g|3). (A.31)

The second term in the right-hand-side of (A.31) is estimated as follows:∥∥∥∥ ∑
λ=1,2

∫
|k|≤ρ

Π0w̃(r, k, λ)
[
e0 +

1
2M

(P − k)2 + |k| − Eg
]−1

× (1⊗Πφ0 ⊗ 1)w(r, k, λ)Π0dk
∥∥∥∥ ≤ ∑

λ=1,2

∫
|k|≤ρ

C
|k|2

dk ≤ C′ρ. (A.32)

Hence (A.30) is proven. �
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