
Inverse spectral results in Sobolev spaces for the AKNS operator
with partial informations on the potentials

L. Amour∗, and J. Faupin†

Abstract

We consider the AKNS (Ablowitz-Kaup-Newell-Segur) operator on the unit interval with po-
tentials belonging to Sobolev spaces in the framework of inverse spectral theory. Precise sets of
eigenvalues are given in order that it together with the knowledge of the potentials on the side (a, 1)
and partial informations on the potential on (a− ε, a) for some arbitrary small ε > 0 determine the
potentials entirely on (0, 1). Naturally, the smaller is a and the more partial informations are known,
the less is the number of the needed eigenvalues.

1 Introduction and statement of the result.

In this short paper we consider the following operator acting in L2(0, 1)× L2(0, 1),

H(p, q) =
(

0 −1
1 0

)
d

dx
+

(
−q p

p q

)
, (1)

for x in (0, 1) and for real-valued square integrable potentials p and q defined on (0, 1).

This operator is called the AKNS (Ablowitz-Kaup-Newell-Segur) operator. Let us recall that it is unitarily
equivalent to the Zakharov-Shabat operator. Moreover, the AKNS operator is related to the first operator
appearing in the decomposition as a direct sum of the Dirac operator in R3 with a radial potential and
it may be also named Dirac operator. Note that following [LS, Chapter 7.1] operators with symmetric
matrix-valued potentials can be transformed into operators with symmetric matrix-valued potentials
with vanishing traces. The AKNS operator is related to QCD (Quantum Chromodynamic) as model for
hadrons (see [S, Section 1]). Let us also mention that the AKNS operator is the self-adjoint operator of
the Lax pair associated to the one dimensional nonlinear cubic defocusing Schrödinger equation iut +
uxx − 2|u|2u = 0. The vanishing trace property of the matrix-valued potential in (1) implies a negative
factor for the nonlinear term |u|2u and the corresponding Schrödinger equation is defocusing.
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A vector-valued function of L2(0, 1)×L2(0, 1) is here denoted
(

Y
Z

)
. The AKNS operator is associated

with the Dirichlet boundary conditions Y (0) = Y (1) = 0. One may also choose without loss (see Section
2) of generality the boundary conditions Z(0) = Z(1) = 0 or more generally the separated limit boundary
conditions, {

cos α Y (0) + sinα Z(0) = 0
cos β Y (1) + sinβ Z(1) = 0 (2)

for (α,β) ∈ R2.

The operator H(α,β, p, q) shall denote the following self-adjoint operator

D(H(α,β, p, q)) =
{

F =
(

Y
Z

)
belongs to H1(0, 1)×H1(0, 1) and satisfies (2)

}

H(α,β, p, q)F = H(p, q)F, ∀F ∈ D(H(α,β, p, q))
.

The spectrum of H(α,β, p, q) is a strictly increasing sequence of eigenvalues (λk(α,β, p, q))k∈Z. Each
eigenvalue λk(α,β, p, q) is simple. The spectrum is not bounded from below and the asymptotic expansion
of the eigenvalues is given by (see [A1]),

(λk(α,β, p, q)− kπ − α + β)k∈Z ∈ %2(Z). (3)

Note that the eigenvalues are properly labeled according to (3).

The main result of the paper is Theorem 1.1 below. This result gives the number of eigenvalues that are
sufficient in order to determine uniquely the pair of potentials when the following informations on the
potentials are already given. Firstly, the two pair of potentials are equal on the part (a, 1) of the interval
(0, 1). Secondly, the the pair of potentials are close enough in some precise sense locally inside the other
part (0, a) (see hypothesis (H ′) or (H ′′) in Theorem 1.1).

For any real-valued function u defined on a subset of R, u(j)(x) denotes if it exists the derivative of order
j of the function u at the point x and (u1, u2)(j) = (u(j)

1 , u(j)
2 ) if u1 and u2 are real-valued functions

defined on a subset of R, for any j ∈ N.

For any set of complex-valued numbers E and for all t ≥ 0, we set

nE(t) = &{e ∈ E | |e| ≤ t}. (4)

Theorem 1.1. Set (p1, q1), (p2, q2) ∈ L2(0, 1)×L2(0, 1). Fix a ∈ (0, 1
2 ] and suppose that (p1, q1) = (p2, q2)

a.e. on (a, 1).

Let α,β ∈ R2. Let S be a set of common eigenvalues of H(α,β, p1, q1) and H(α,β, p2, q2), i.e., S ⊆
σ(H(α,β, p1, q1)) ∩ σ(H(α,β, p2, q2)). Set k ∈ N ∪ {0}, r ∈ [2,+∞] and assume that S is large enough
in the following sense,

∃M ≥ 0, nS(t) ≥ 2a nσ(A)(t)− k − 1 +
1
r
, t ∈ σ(A), t ≥ M, (H)
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where in (H) the operator A denotes either H(α,β, p1, q1) or H(α,β, p2, q2).

Suppose also that,

x ,→ (a− x)−k((p1 − p2)(x), (q1 − q2)(x)) ∈ Lr(a− ε, a)× Lr(a− ε, a), (H ′)

for some arbitrary small ε > 0.

Then (p1, q1) = (p2, q2) all over (0, 1).

Remark 1.2.

1. In Theorem 1.1, hypothesis (H ′) may be replaced by the following assumption,

(p1−p2, q1−q2) ∈ W k,r(a−ε, a)×W k,r(a−ε, a), (p1, q1)(j)(a−) = (p2, q2)(j)(a−), j = 0, . . . , k−1, (H ′′)

for some arbitrary small ε > 0. This shall be underlined in the next Section by proving that (H ′′) implies
(H ′).

2. Let us emphasize here that the case r = +∞ is considered in Theorem 1.1. In that case, the term 1
r in

the hypothesis (H) is suppressed.

3. Only the difference of the pair of potentials is considered in assumptions (H ′) in Theorem 1.1 or (H ′′)
in Remark 1.2 and not the pair of potentials themselves.

4. The partial informations (H ′) or (H ′′) on the potentials are additional informations that allows to
remove k (or k + 1) eigenvalues from the known spectrum.

5. One may also suppose that one of the parameters α or β is not known and recover it from (3).

For the case of AKNS operators, related results are already obtained in [DG]. In [DG] the known spectra
S have the special form S = {λj0j(p, q,α, β), j ∈ Z} for some given j0 ∈ N and the potentials are
supposed to be L2, that is to say, the particular case k = 0 and r = 2 is considered there instead of
k ∈ N ∪ {0} and r ∈ [2,+∞] as in Theorem 1.1.

This type of results have been initiated in [Ha], [HL] and [GS] for the Schrödinger operators. In 1978,
the case a = 1

2 with L1 potentials is considered in [HL]. In 1980, it is proved that continuity assumption
of the potentials allows to remove an eigenvalue from the known spectrum (see [Ha]). In 2000, the results
in [Ha] and [HL] are largely extended in [GS] by considering any a ∈ (0, 1

2 ] and C2k potentials allowing
to remove k + 1 eigenvalues from the known spectrum. See also related results established in 1997 in
[DGS1] and [DGS2].

The steps of the proof of Theorem 1.1 are borrowed to [DG] (see also [L] for the proof that two spectra
determine the potential in the case of Schrödinger operators on the unit interval). Namely, we start from
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the same entire function f (c.f. (5)) in Section 2 as in [DG] depending on the pair of potentials (p1, q1),
(p2, q2) and vanishing on S. 1) The first step consists into proving that f is actually entirely vanishing.
This point is the main point and it becomes the purpose of this paper. Let us mention that our approach
of that step is different to the one in [DG] even if there are similarities, that is to say, when setting k = 0,
r = 2 and S = {λj0j(p, q), j ∈ Z} for some j0 ∈ N our proof is not becoming the proof appearing in
[DG]. 2) The second step is to derive that f equals zero implies that (p1, q1) = (p2, q2). This step does
not depend on the assumptions (H ′) or (H ′′) in Theorem 1.1, it is effectuated in [DG] and it is therefore
not appearing here.

The proof of the first step described above relies here on [AFR] and [AF] where the case of Schrödinger
operators are analyzed in W k,p spaces. There are also similarities with [A2] where the map µ×κ is proved
to be one to one for the AKNS systems with L2 potentials (see [A2]). Let us also mention that still in
the case of the Schrödinger operators these type of results has been obtained in [GS] [DGS1] [DGS2] for
C2k potentials by different methods involving Weyl-Tichmarsch’s functions.

Let us outline the proof of step 1 described above. On one side, the assumptions (H ′) or (H ′′) on the
potentials (p1, q1) and (p2, q2) allows us to derive a bound on the entire function f in the complex plane
which provides a first estimate of Nf−1(0) a density repartition of the zeroes of f according to Jensen’s
Theorem under the assumption that f is not entirely vanishing. On the other side, the assumption (H)
in Theorem 1.1 implies an estimate of density repartition of the common eigenvalues. Since the common
eigenvalues also are zeroes of f the last point provides a second estimate on Nf−1(0) the density repartition
of the zeroes of f . These two estimates are in contradiction. Therefore f is entirely vanishing.

The next Section is concerned with the proof of Theorem 1.1.

2 Proof of Theorem 1.1.

Let us first remark that we may suppose in Theorem 1.1 without loss of generality that α = β = 0.
Indeed from [A2, Remark 2.1], there is a unitary map in L2(0, 1)× L2(0, 1) denoted here Uαβ such that
σ(H(α,β, p, q)) = σ(H(0, 0,Uαβ(p, q)) + α − β for any (p, q) ∈ L2(0, 1) × L2(0, 1) and each (α,β) ∈ R2.
Namely, Uαβ(p, q) = (cos θp + sin θq,− sin θp, cos θq) a.e. on (0, 1) with θ(x) = −2(α − β)x + 2α, for
x ∈ (0, 1). Therefore if S, (p1, q1), (p2, q2), (α,β), a, k, r are given as in Theorem 1.1 then one may
apply Theorem 1.1 with S′ = S − α + β, Uαβ(p1, q1), Uαβ(p2, q2), (α,β) = (0, 0), a, k, r to obtain that
Uαβ(p1, q1)=Uαβ(p2, q2).

Next it is noticed that the assumption (H ′′) implies assumption (H ′) in Theorem 1.1. This point follows
from a Hardy type inequality. Namely, there exists a constant C depending only on k ∈ N and r ∈ (1,+∞]
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such that,
||u/dk||Lr(0,1) ≤ C||u||W k,r(0,1)

for any u ∈ W k,r(0, 1) satisfying u(j)(0) for j = 0, . . . , k − 1 where d(x) = x for a.e. x ∈ (0, 1). Let us
mention that, when r ∈ (1,+∞) this inequality may be proved by iteration on k using the same argument
appearing in the usual proof in the case k = 1. When r = +∞ the proof of this inequality is simpler as
a consequence of the Taylor formula, starting from u(x)− u(0) =

∫ x
0 u′(t)dt for u ∈ W 1,1(0, 1).

We now define the entire function f . Let us also recall that F (·, z, p, q) is defined on [0, 1] as the solution to

H(p, q)F (·, z, p, q) = zF (·, z, p, q), F (0, z, p, q) =
(

0
1

)
for any (p, q) ∈ L2(0, 1)×L2(0, 1) and for any z in

C and that u and v are the the two bilinear forms on R2×R2 defined by u(a, b) = a1b1−a2b2, v(a, b) =
a1b2 + a2b1 for any a = (a1, a2) ∈ R2 and b = (b1, b2) ∈ R2. It is already known (see [LS]) that each
component of z ,→ F (x, z, p, q) is an entire function for all x ∈ [0, 1] and (p, q) ∈ L2(0, 1)× L2(0, 1).

Let us define

f(z) =
∫ a

0

〈(
v(F (x, z, p1, q1), F (x, z, p2, q2))

−u(F (x, z, p1, q1), F (x, z, p2, q2))

)
;
(

p1(x)− p2(x)
q1(x)− q2(x)

)〉
dx, (5)

for all z ∈ C.

The first property of f is to vanish on any common eigenvalue of H(0, 0, p1, q1) and H(0, 0, p2, q2). This
point is proved in [DG] and we recall the proof for the sake of completeness: the derivative with respect
to x of the scalar product appearing in the r.h.s. of (5) equals −[F (x, z, p1, q1), F (x, z, p2, q2)] for any

z ∈ C where the Wronskian
[(

G1

G2

)
,

(
H1

H2

)]
= G1H2 − G2H1. Integrating this equality gives

f(z) = [F (x, z, p1, q1), F (x, z, p2, q2)]|x=1
x=0 which vanishes when assuming that z ∈ σ(H(0, 0, p1, q1)) ∩

σ(H(0, 0, p2, q2)).

Proposition 2.1. Let (p1, q1), (p2, q2) ∈ L2(0, 1) × L2(0, 1) Fix k ∈ N ∪ {0} and let r ∈ [2,+∞].
Fix any arbitrary small ε > 0 and assume that, x ,→ (a − x)−k((p1 − p2)(x), (q1 − q2)(x)) belongs to
Lr(a− ε, a)× Lr(a− ε, a). Then there is a real positive number C independent on z ∈ C such that,

|f(z)| ≤ C
e2|$z|a

|.z|k+1− 1
r

(e−ε′|$z| + o(1)) (6)

as ε′ → 0+ uniformly in z ∈ C\R.

Proof of Proposition 2.1: Fix 0 < ε′ < ε < a. The function f is decomposed as,

f(z) = f1(z) + f2(z) + f3(z), (7)

for all z ∈ C where the domain of integration of f1, f2, f3 are respectively (0, a − ε), (a − ε, a − ε′),
(a− ε′, a). Since F (x, z, p, q) = O(e|$z|x) uniformly on x ∈ (0, 1) and z ∈ C then f1(z) = O(e2|$z|(a−ε)).
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In particular,

|f1(z)| ≤ C
e2a|$z|

|.z|l , (8)

for any l ∈ N and z ∈ C\R. In order to estimate f2 and f3 one verifies that, for any a > ε1 > ε2 > 0 , for
any ξ > 0, for any k ∈ N and u ∈ Lr(a− ε1, a− ε2) with r ∈ [1,+∞], one has ( 1

r′ + 1
r′ = 1),

∣∣∣∣
∫ a−ε2

a−ε1

e2ξx(a− x)ku(x) dx

∣∣∣∣ ≤ Γ(kr′ + 1)
1
r′ ||u||Lr(a−ε1,a−ε2)

e(2a−ε2)ξ

ξk+ 1
r′

. (9)

This inequality follows by first applying Hölder inequality and then using the change of variable t =
ξr′(a− x).

Set u(x) = (a−x)−k(|(p1−p2)(x)|+ |(q1−q2)(x)|) for a.e. x ∈ (a−ε, a). By assumption, u ∈ Lr(a−ε, a).
Using (9) with ε1 = ε, ε2 = ε′ and ξ = |.z|, one has that,

|f2(z)| ≤ C
e(2a−ε′)|$z|

|.z|k+ 1
r′

, (10)

and using (9) with ε1 = ε′, ε2 = 0, ξ = |.z|, one sees that,

|f3(z)| ≤ C||u||Lr(a−ε′,a)
e2a|$z|

|.z|k+ 1
r′

, (11)

for all z ∈ C\R.

In particular, (7) (8) (10) (11) prove (6) in Proposition 2.1 with o(1) = ||u||Lr(a−ε′,a). !

Let E = (ej) be a family of real (or complex) numbers. For any t > 0 let nE(t) denotes the number of
elements of E counted with their multiplicity inside the closed ball of radius t and centered at the origin.
Define

NE(R) =
∫ R

0

nE(t)
t

dt, (12)

for any R > 0.

As a corollary of the preceding Proposition we have the following result.

Corollary 2.2. Let a, k, r, (p1, q1) and (p2, q2) be as in Theorem 1.1. Assume that f is not entirely
vanishing. Then

lim
R→+∞

Nf−1(0)(R)− 4a

π
R +

(
k + 1− 1

r

)
lnR = −∞. (13)

Proof of Corollary 2.2: it is a consequence of Jensen’s Theorem (see also [A2] for similar computations).
!

We shall now derive a second estimate on Nf−1(0) starting from hypothesis (H) in Theorem 1.1 contra-
dicting (13) unless the function f is entirely vanishing.
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Proposition 2.3. Let (p, q) ∈ L2(0, 1) × L2(0, 1) and let σ(H(0, 0, p, q)) = (λj(0, 0, p, q))j∈Z be the
spectrum of H(0, 0, p, q). The λj(0, 0, p, q) are indexed in such a way that (λj(p, q)− jπ) ∈ %2(Z). Let S

be any subset of σ(H(0, 0, p, q)) verifying,

nS(t) ≥ 2anσ(H(0,0,p,q))(t) + b, ∀ t ∈ σ(H(p, q)), (14)

for some a ∈ (0, 1
2 ] and b ∈ R. Define

Rj = min(−λ−j(0, 0, p, q), λj(0, 0, p, q)), ∀ j ∈ N.

Then the sequence (NS(Rj)− 4a
π Rj − b lnRj)j∈N is bounded from below.

Proof of Proposition 2.3: the proof is similar to [A2, Proposition 2.3]. Define rj = max(−λ−j(p, q), λj(p, q)),
∀ j ∈ N. Let k0 ∈ N be such that Rk > 0 for all k ≥ k0. According to hypothesis (14),

nS(t) ≥ 4ak + b, ∀ t ∈ [Rk, rk[
nS(t) ≥ 4ak + 2a + b, ∀ t ∈ [rk, Rk+1[, ∀ k ≥ k0

(15)

and

NS(Rj) ≥
j−1∑

k=k0

∫ rk

Rk

4ak

t
dt +

j−1∑

k=k0

∫ Rk+1

rk

4ak + 2a

t
dt + b lnRj + O(1)

≥
j−1∑

k=k0

∫ Rk+1

Rk

4ak

t
dt +

j−1∑

k=k0

∫ Rk+1

rk

2a

t
dt + b lnRj + O(1), (16)

as j → +∞.

We denote by T1, T2 and T3 the first, second and third term in (16) above. One has,

T1 = 4a
j−1∑

k=k0

k(lnRk+1 − lnRk)

= 4a
j−1∑

k=k0

(k + 1) lnRk+1 − k lnRk)− 4a
j−1∑

k=k0

lnRk+1

= 4aj lnRj − 4a
j−1∑

k=k0

lnRk+1 + O(1), (17)

and

T2 =
j−1∑

k=k0

(∫ Rk

rk

2a

t
dt +

∫ Rk+1

Rk

2a

t
dt

)

= 2a
j−1∑

k=k0

ln
Rk

rk
+ 2a lnRj + O(1), (18)
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as j → +∞. The first term in (18) is O(1) as j → +∞ since (Rk − kπ) and (rk − kπ) belong to %2(N).
Thus, (16)− (18) gives,

NS(Rj) ≥ 4aj lnRj − 4a
j∑

k=k0

lnRk + (2a + b) lnRj + O(1), (19)

as j → +∞. Since lnRj = ln j + O(1), j lnRj = j ln j + j lnπ + O(1) and
∑j

k=k0
lnRk = (j + 1) lnπ +

(
j + 1

2

)
ln j − j + O(1) by Stirling’s formula, as j → +∞, one sees that NS(Rj) ≥ 4aj + b ln j + O(1) ≥

4a
π Rj + b lnRj + O(1) as j → +∞. This completes the proof. !

Proof of Theorem 1.1: Set

b = −
(

k + 1− 1
r

)
. (20)

Again the case r = +∞ is allowed. It is learned from Proposition 2.3 that (NS(Rj)− 4a
π Rj − b ln j)j∈N is

bounded from below. If f is not vanishing then Corollary 2.2 implies that (NS(Rj) − 4a
π Rj − b ln j)j∈N

goes to −∞ as j tends to +∞ with b defined in (20). This leads to a contradiction and the function f is
entirely vanishing. Using the same argument as in [DG], this fact implies that (p1, q1) = (p2, q2) on (0, 1)
and Theorem 1.1 is derived. !.
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