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Abstract

We provide sufficiently large sets of eigenvalues that determine the potential of a Schrödinger
operator on the unit interval [0, 1] partially known on [a, 1] and belonging to W k,p in a neighbourhood
of a (k ∈ N ∪ {0}, p ∈ [1, +∞]). The number of these given eigenvalues depends on (a, k, p).

1 Introduction and statement of the results

This paper is concerned with the Schrödinger operator

Aq,h,H = − d2

dx2
+ q (1)

defined on the unit interval with real-valued potentials q belonging to L1((0, 1)). This operator is asso-
ciated with the boundary conditions

u′(0) + hu(0) = 0, u′(1) + Hu(1) = 0 (2)

where h,H are real numbers and where the notation ′ stands for the derivative with respect to the
variable x. It is well-known that, for each (q, h,H) ∈ L1([0, 1]) × R2 the operator Aq,h,H is a self-
adjoint operator in L2([0, 1]). Its spectrum σ(Aq,h,H) is an increasing and non-bounded sequence of non
degenerate eigenvalues denoted by (λj(q, h,H))j∈N∪{0}.

Our purpose here is to provide sets of eigenvalues sufficiently large in order to determine a potential that
is already known on [a, 1] (for some given a ∈ (0, 1

2 ]) when it belongs to some W k,p space. This problem
has been initiated in 1978 by [HL] in the special case a = 1

2 and for potentials in L1([0, 1]). In 2000, the
problem is studied in [GS] for any a and for potentials in C2k near a (k ∈ N ∪ {0}). Results like one
spectrum and half of another one added to the knowledge of the potential on [34 , 1] uniquely determine
the potential are derived in [DGS1] and [DGS2]. Potentials in Lp spaces are considered in [Ho] and [AR].
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Recently, potentials in W k,p([0, a]) are considered in [AFR] for any a (p ∈ [1, +∞]), with however the
restriction k ∈ {0, 1, 2}. We have conjectured in [AFR] that the result in [AFR] should be valid for all
k ∈ N∪ {0}. This is one of our aim here to get rid of this condition on k and to consider all k ∈ N∪ {0}.
Our second goal is to replace regularity hypotheses of q1, q2 on [0, a] by regularity hypotheses on q1, q2

only on an arbitrary small neighborhood of a (as in [GS]).

The following function is involved in the statement of the main theorem (Theorem 1.1). For any complex-
valued sequence α = (αj)j∈N∪{0} and for all t ≥ 0, we set

nα(t) = ${j ∈ N ∪ {0} | |αj | ≤ t}. (3)

The main result of the paper is the following.

Theorem 1.1.

Set q1, q2 ∈ L1((0, 1)). Fix a ∈ (0, 1
2 ] and suppose that q1 = q2 on [a, 1].

Let k ∈ N ∪ {0} and p ∈ [1, +∞]. Assume that q1, q2 ∈ W k,1((a− ε, a)) with q1 − q2 ∈ W k,p((a− ε, a))
for some arbitrary small ε ∈ (0, a). If k ≥ 1 assume in addition that q1 − q2 ∈ Ck−1((a− ε, a + ε)) with
any arbitrary small ε ∈ (0, a).

Fix the real numbers h1, h2 and H. Assume that a set of common eigenvalues S ⊆ σ(Aq1,h1,H) ∩
σ(Aq2,h2,H) verifies either

nS(t) ≥ 2anσ(A)(t)−
k

2
+

1
2p
− 1

2
− a, t ∈ σ(A), t large enough, (H)

or assume that there exists a real number C such that

2a nσ(A)(t) + C ≥ nS(t) ≥ 2anσ(A)(t)−
k

2
+

1
2p
− 2a, t ∈ S, t large enough, (H ′)

where in (H) and (H ′) the operator A denotes either Aq1,h1,H or Aq2,h2,H .

Then h1 = h2 and q1 = q2.

Let us emphasize here that the case p = +∞ is considered in Theorem 1.1. In that case, the term 1
p in

the hypotheses (H) or (H ′) is suppressed. Also note that only the difference of the two potentials needs
to be in W k,p and Ck−1 near a.

One may replace the assumptions on q1 and q2 in Theorem 1.1 by the more concise (but stronger)
hypotheses: q1, q2 ∈ L1((0, 1))∩W k,1((a− ε, a)) with q1−q2 ∈ W k,p((a− ε, a+ε)) (since W k,p((a− ε, a+
ε)) ⊂ Ck−1([a− ε, a + ε]) for k ≥ 1).
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Let us gives two corollaries of Theorem 1.1. The first one concerns the particular case k = 0, p = 1 and
a = 1

4 . It is already given in [AR] (where k = 0), it is however recalled here in order to emphasize on the
role of (H ′) in Theorem 1.1. Namely, this corollary may be proved using the assumption (H ′) while it is
not be derived assuming (H) (see [AR]). It is written in a short way.

Corollary 1.2. Suppose that q belongs to L1((0, 1)) and H ∈ R. Then the even (resp. odd) spectrum
(λ2j(q, h, H))j≥0 (resp. (λ2j+1(q, h, H))j≥0), q|[0, 1

4 ] and H uniquely determine h and the potential q on
all of [0, 1].

The second corollary is Theorem 1.1 in the particular case p = +∞ and a = 1
2 using hypothesis (H).

It allows us to remove a precise number of eigenvalues when the potentials (and their difference) are
sufficiently regular. It slightly improves one of the results established in [GS]. The result in [GS] is the
same as Corollary 1.3 but the potentials satisfy q1, q2 ∈ L1((0, 1)) ∩ C2k(( 1

2 − ε, 1
2 + ε)) for some small

positive ε.

Corollary 1.3. Let k ∈ N ∪ {0}. Suppose that q1 and q2 belong to L1((0, 1)) ∩W 2k,∞(( 1
2 − ε, 1

2 )) and if
k ≥ 1 also assume that the difference q1 − q2 is in C2k−1(( 1

2 − ε, 1
2 + ε)) for some ε > 0. Suppose that

q1 = q2 on
[
1
2 , 1

]
. Let h1, h2,H ∈ R.

If σ(Aq1,h1,H) = σ(Aq2,h2,H) excepted for at most k + 1 eigenvalues, then h1 = h2 and q1 = q2.

Also note that this implies that, if q ∈ L1((0, 1)) is L∞ near x = 1
2 then q on [0, 1

2 ], H and all the
eigenvalues of σ(Aq,h,H) excepted one, uniquely determine h and q on [0, 1].

The proof of Theorem 1.1 relies on the same strategy as in [AFR] excepted that [AFR, Proposition 3.1]
is replaced by Proposition 1.4 below. Let us also mention that our proof is different from the result in
[GS] which and is based on Weyl-Titchmarsh functions.

The estimate in Proposition 1.4 is the same as the one in [AFR, Proposition 3.1] but the assumption on
k and on the regularity on q1 − q2 are largely weakened. Firstly, k ∈ {0, 1, 2} in [AFR] is replaced here
with k ∈ N ∪ {0}. Secondly, the hypotheses q1, q1 ∈ W k,1([0, 1]) and q1 − q2 ∈ W k,p([0, a]) in [AFR] is
now replaced by the hypotheses on q1, q2 in Theorem 1.1, namely, q1, q2 ∈ L1((0, 1)) ∩W k,1((a− ε, a))
with q1 − q2 ∈ W k,p((a− ε, a)) added when k ≥ 1 to q1 − q2 ∈ Ck−1((a− ε, a + ε)) (for any arbitrary
small ε ∈ (0, a)). Note that Sobolev’s imbedding implies that W k,p((a− ε, a)) ⊂ Ck−1([a− ε, a]) when
k ≥ 1.

We now define the entire function f which is involved in Proposition 1.4. Fix q ∈ L1((0, 1)) and fix
H, h ∈ R. For any z in C, let ψ(·, z, q, h) be defined on [0, 1] as the solution to −d2ψ

dx2 + qψ = z2ψ,
ψ(0) = 1, ψ′(0) = −h. It is known that ψ(x, ·, q, h) is an entire function ([LG]).
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For all z ∈ C, let us define

f(z) =
∫ a

0

(
ψ(x, z, q1, h1)ψ(x, z, q2, h2)−

1
2

)
(q1(x)− q2(x))dx. (4)

Proposition 1.4. Set a ∈ (0, 1
2 ], fix k ∈ N ∪ {0} and let p ∈ [1,+∞]. Fix q1, q2 ∈ L1((0, 1)) ∩

W k,1((a− ε, a)) such that q1−q2 ∈ W k,p((a− ε, a)) and assume furthermore that q1−q2 ∈ Ck−1((a− ε, a+
ε)) when k ≥ 1 for some arbitrary small ε ∈ (0, a). Then there is a real positive number C independent

of z ∈ C and ε′ > 0 such that |f(z)| ≤ C
e2|'z|a

|+z|k+1− 1
p

(e−ε′|'z| + o(1)) as ε′ → 0+ uniformly in z ∈ C\R.

Proof of Theorem 1.1: It is the same as the one of [AFR, Theorem 1] when replacing [AFR, Proposition
3.1] by Proposition 1.4 above. For the sake of completeness let us recall very briefly here the main steps
(see [AFR] for more details). Suppose that a, k, p, q1, q2, h1, h2 satisfy the same assumptions as the ones
in Theorem 1.1. Define the sj , j ∈ N as the strictly increasing sequence being in S and define the set
S

1
2 = {±√sj , j ∈ N}. We also define for any set of complex numbers α, Nα(R) =

∫ R
0

nα(t)
t dt, for

any R > 0 and where nα(t) is given in (3). On one hand, the hypothesis (H) or (H ′) implies that the
sequence

(
N

S
1
2
(√sj)− 4a

π
√

sj +
(
k + 1− 1

p

)
ln√sj

)

j∈N
is bounded from below ([AFR, Prop. 4.1 and

4.2]). On the other side, using Proposition 1.4 above, using [AFR, Prop. 4.3] and assuming that f is
not entirely vanishing in order to use Jensen’s Theorem, we deduce that limR→+∞Nf−1(0)(R) − 4a

π R +(
k + 1− 1

p

)
lnR = −∞. The last two points combined to Nf−1(0) ≥ N

S
1
2

(see (23) in [AFR]) lead to a
contradiction if f is not entirely vanishing. The fact that f ≡ 0 implies that (q1, h1) = (q2, h2) is already
proved in [L]. !

The rest of this paper is therefore concerned with the proof of Proposition 1.4. The main difference here
is that we imply the transformation operators [L] (see also references therein and see [Le],[LS],[M],...)
instead of using expansions of the fundamental solutions to Aq,h,Hy = zy

Proposition 1.4 is derived in the next section. The case of Dirichlet boundary conditions is considered in
Appendix A.

2 Proof of Proposition 1.4

The proof of Proposition 1.4 shall follow from Lemmata 2.1-2.7 below.

We first start with the definition of the transformation operators (see [L],[Le],[LS],[M] and references
therein). We shall use in the following the kernel L̃ (see (11) below) computed in [L]. This kernel is
expressed in terms of the kernel L (see (7) below). Its properties are taken from [M].

We first recall the definition of L given by [M]. To do this we first define the kernel K.
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Suppose q ∈ L1
loc((0, 1)). There exists a kernel K ≡ K(x, t) for 0 ≤ x ≤ 1 and −x ≤ t ≤ x (see [M]) such

that, for each z ∈ C, the solution α ≡ α(x, z) to

−α′′ + qα = z2α [0, 1], α(0, z) = 1, α′(0, z) = iz (5)

may be expressed as

α(x, z) = eizx +
∫ x

0
K(x, t)eizt dt, x ∈ [0, 1]. (6)

Let
L(x, t) = −h + K(x, t) + K(x,−t)− h

∫ x

t
(K(x, ξ)−K(x,−ξ)) dξ, (7)

for 0 ≤ t ≤ x ≤ 1. One then obtains that, for each z ∈ C, the solution β ≡ β(x, z) to

−β′′ + qβ = z2β [0, 1], β(0, z) = 1, β′(0, z) = −h (8)

may be expressed as

β(x, z) = cos zx +
∫ x

0
L(x, t) cos zt dt, x ∈ [0, 1]. (9)

Let us denote respectively by I and TL the identity operator and Volterra operator with kernel L(x, t).
Let β0(x, z) = cos zx (z ∈ C). With these notations (9) is also written as β(·, z) = (I + TL)β0(·, z) for
any z ∈ C. Fix q ∈ L1((0, 1)) and h ∈ R. The main point is that the operator (I +TL) maps the solution
to (8) with q identically vanishing and h = 0 to solution to (8) with the potential q and the parameter h.

Fix qj in L1((0, 1)) and hj ∈ R for j = 1, 2. Set Lj the function defined in (7) associated to q = qj and
h = hj , j = 1, 2 and extended for t ∈ [−x, 0] by setting L(x, t) = L(x,−t). With these notations one
obtains (see [L, Appendix IV]),

ψ(x, z, q1, h1)ψ(x, z, q2, h2)−
1
2

=
1
2

cos 2zx +
1
2

∫ x

−x
L̃(x, τ) cos 2zτ dτ, (10)

with x ∈ [0, 1] and where

L̃(x, τ) =






2(L1(x, x− 2τ) + L2(x, x− 2τ)) +
∫ x
−x+2τ L1(x, s)L2(x, s− 2τ) ds if τ > 0,

∫ x+2τ
−x L1(x, s)L2(x, s− 2τ) ds if τ < 0.

(11)

Throughout the paper we suppose that a and ε are fixed in
(
0, 1

2

]
and (0, a) respectively. Let us first

decompose f as
f(z) = fa−ε(z) + fa(z)

with

fa−ε(z) =
∫ a−ε

0

(
ψ(x, z, q1, h1)ψ(x, z, q2, h2)−

1
2

)
(q1(x)− q2(x))dx

and
fa(z) =

∫ a

a−ε

(
ψ(x, z, q1, h1)ψ(x, z, q2, h2)−

1
2

)
(q1(x)− q2(x))dx,

for all z ∈ C. The function fa−ε is easily estimated.
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Lemma 2.1. For q1 and q2 in L1((0, 1)) we have

fa−ε(z) = O(e2|Im z|(a−ε))

uniformly in z ∈ C.

Proof of Lemma 2.1: It follows from the asymptotic expansions of the function ψ.
Namely, ψ(x, z, q, h) = O(e|Im z|x) uniformly for (z, x) ∈ C × [0, 1] (see [LG]) and q1 − q2 ∈ L1((0, 1))
directly implies the stated estimate on fa−ε(z). !

In view of (10) the function fa is split as

fa(z) = f0(z) + f̃(z), ∀ z ∈ C,

where
f0(z) =

1
2

∫ a

a−ε
cos 2zx(q1(x)− q2(x)) dx, ∀ z ∈ C (12)

and
f̃(z) =

1
2

∫ a

a−ε

(∫ x

−x
L̃(x, τ) cos 2zτ dτ

)
(q1(x)− q2(x)) dx, ∀ z ∈ C. (13)

We shall first estimate the function f0. For any k ∈ N, let ck be the kth integral of the cosine function
verifying c(l)

k (0) = 0, l = 0, . . . , k−1, that is to say, ck(x) =
∫ x
0

∫ tk

0 · · ·
∫ t2
0 cos(t1) dt1 . . . dtk. For any l ∈ N

and for any sufficiently smooth function g depending only on one variable, g(l) denotes its lth derivative.

Lemma 2.2. Fix k ∈ N ∪ {0}. Let q1, q2 ∈ W k,1((a− ε, a)) with q1 − q2 ∈ Ck−1((a− ε, a + ε)) if k ≥ 1.
There exist k complex numbers L0,l(z) (l = 1, . . . , k) satisfying

L0,l(z) = O
(
e2|' z|(a−ε)

)
(14)

uniformly in z ∈ C and such that

f0(z) =
k∑

l=1

L0,l(z)
(2z)l

+
∫ a

a−ε

ck(2zx)
(−2z)k

(q1 − q2)(k)(x) dx, (15)

for all z ∈ C\{0}.

Proof of Lemma 2.2: Clearly one may suppose that k ≥ 1. Then one can integrate by parts k times the
r.h.s. of (12) since q1 − q2 ∈ W k,1((a− ε, a)). Since q1 − q2 ∈ Ck−1 near a and using q1 − q2 ≡ 0 on
[a, 1] we see that (q1 − q2)(l)(a) = 0, l = 0, . . . k − 1. This shows that the k boundary terms at x = a

are vanishing. It remains k boundary terms at x = a− ε. These terms lead to
∑k

l=1
L0,l(z)

2zl with the
L0,l(z) = (−1)l−1cl(2z(a− ε))(q1 − q2)(l−1)(a− ε). Using | sin z| ≤ e|'z| and | cos z| ≤ e|'z| for all z ∈ C
one clearly gets (14) and (15). !
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Next and in order to deal with f̃ we write using Fubini’s theorem that

f̃ = f1 + f2 + f3

with
f1(z) =

∫ a

a−ε

∫ a

τ
L̃(x, τ)(q1(x)− q2(x)) cos 2zτ dx dτ, (16)

f2(z) =
∫ −a+ε

−a

∫ a

−τ
L̃(x, τ)(q1(x)− q2(x)) cos 2zτ dx dτ, (17)

and

f3(z) =
∫ a

a−ε

∫ a−ε

−a+ε
L̃(x, τ)(q1(x)− q2(x)) cos 2zτ dτ dx, (18)

for all z ∈ C. Consequently, we shall only consider f1 and f3 in the sequel since the treatment of f2

would be similar to f1 making the change of variables τ 0→ −τ in f2 .

Set
w(τ) =

∫ a

τ
L̃(x, τ)(q1(x)− q2(x)) dx, (19)

for any τ ∈ (a− ε, a). That is to say,

f1(z) =
∫ a

a−ε
w(τ) cos 2zτ dτ, (20)

for all z ∈ C. In order to integrate by parts the r.h.s. of (20), we need that w defined in (19) belongs
to W k,1((a− ε, a)). It is actually in W k,∞([a− ε, a]). This is precisely the purpose of Lemma 2.4 below
with the help of Lemma 2.3.

In the sequel, for any sufficiently smooth function g depending on the variables (x1, . . . , xn), ∂j1,...,jlg

stands for the derivative of order l of g with respect the variables xj1 , . . . , xjl (with j1, . . . , jl ∈ {1, . . . , n},
l ∈ N) and ∂m

j g denotes the derivative of order m of g with respect the variable xj (where j ∈ {1, . . . , n},
m ∈ N).

Let us recall that the kernel L̃ is written in terms of the two kernels L1 and L2 and these two kernels Lj

(j = 1, 2) are expressed in (7) with the functions Kj corresponding to q = qj .

Set Ta,ε be the triangle {a− ε ≤ t ≤ x ≤ a} and let Da,ε be the diagonal Da,ε = {(τ, τ) | τ ∈ [a− ε, a]}.
Let us recall here that in this section ε is fixed in (0, a).

Lemma 2.3. (i) Fix k ∈ N ∪ {0} and q ∈ L1((0, 1)) ∩W k,1((a− ε, a)). Then, the kernel K associated
to q belongs to Ck(Ta,ε).

(ii) Suppose that q ∈ L1((0, 1)) ∩W k,1((a− ε, a)) for some k ∈ N ∪ {0}. Then, the kernel L defined in
(7) corresponding to q is in Ck(Ta,ε).
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(iii) Assume that q1, q2 ∈ L1((0, 1)) ∩ W k,1((a − 2ε, a)) for k ≥ 0 (with 0 < ε < a
2 ). If k = 0 then

the kernel L̃ given by (11) is in C0(Ta,ε). When k ≥ 1 then ∂j
2L̃ ∈ C0(Ta,ε) for all 0 ≤ j ≤ k and

[(∂l
2L̃)|Da,ε ](α) ∈ C0(Da,ε) for l + α ≤ k (with l ≥ 0 and α ≥ 0).

Proof of Lemma 2.3:

(i) It is proved in Theorem 1.2.1 in [M] (see also Problem 1 in [M]) that if q ∈ L1
loc((0, 1)) then the kernel

K belongs to C0(T ) where T = {0 ≤ t ≤ x ≤ 1}. When k ≥ 1, if q ∈ W k,1((0, 1)) then q ∈ Ck−1([0, 1])
and it is derived in Theorem 1.2.2 ([M]) that K ∈ Ck(T ).

Here q ∈ L1((0, 1)) then K exists and is continuous on T and the same arguments as in ([M]) show that
K ∈ Ck(Ta,ε) when q ∈ W k,1((a− ε, a)) (k ≥ 1).

(ii) From the definition of L (see (7)) and (i) we only have to check that I defined by I(x, t) =
∫ x

t K(x, ξ) dξ

verifies I ∈ Ck(Ta,ε) when q ∈ W k,1((a− ε, a)) (k ≥ 0).

If k = 0 then K ∈ C0(T ) and I ∈ C0(Ta,ε).

If k ≥ l1 ≥ 1 then

∂l1
1 I(x, t) =

∑

i,j≥0,i+j=l1−1

[(∂j
1K)|Da,ε ]

(i)(x) +
∫ x

t
∂l1
1 K(x, ξ) dξ, (21)

for all (x, t) ∈ Ta,ε.

If k ≥ l2 ≥ 1 then
∂l2
2 I(x, t) = −∂l2−1

2 K(x, t) (22)

for all (x, t) ∈ Ta,ε.

Thus, if l1 ≥ 1, l2 ≥ 1 with l1 + l2 ≤ k then,

∂l1
1 ∂l2

2 I(x, t) = −∂l1
1 ∂l2−1

2 K(x, t) (23)

for any (x, t) in Ta,ε. In view of (21) (22) (23) and according to (i) we see that I ∈ Ck(Ta,ε) when k ≥ 1.

(iii) From the definition (11) and following the point (ii) above it is sufficient to verify that J satisfies
∂k
2J ∈ C0(Ta,ε) and [∂l

2J |Da,ε ](α) ∈ C0(Da,ε) when l + α ≤ k where the function J is defined by

J(x, τ) =
∫ x

−x+2τ
L1(x, s)L2(x, s− 2τ) ds (24)

for all (x, τ) ∈ Ta,ε.

If k = 0 then L1 and L2 are continuous on Ta,2ε and J ∈ C0(Ta,ε).
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Suppose k ≥ 1. One may differentiate the r.h.s of (24) k times with respect to the second variable.
Indeed, one gets

∂k
2J(x, τ) =

∑

i,j≥0,i+j=k−1

2i(−2)j+1∂i
2L1(x,−x + 2τ)∂j

2L2(x,−x)+

(−2)k

∫ x

−x+2τ
L1(x, s)∂k

2L2(x, s− 2τ) ds, (25)

for all (x, τ) in Ta,ε. According to (ii), this implies that ∂k
2J ∈ C0(Ta,ε). Moreover, on the diagonal Da,ε

the last integral in (25) vanishes and we obtain after differentiating α times that,

[(∂l
2J)|Da,ε ]

(α)(x) =
∑

i+j=l−1 α1+α2=α

cijα1α2∂
i
2(∂1 + ∂2)α1L1(x, x)∂j

2(∂1 + ∂2)α2L2(x,−x),

for some numerical real number cijα1α2 , for any x ∈ [a− ε, a] and for all l + α ≤ k. Since i + α1 ≤ l + α,
j +α2 ≤ l+α, l+α ≤ k and since L1 and L2 are Ck(Ta,ε) then [(∂k

2J)|Da,ε ](α) is continuous on [a− ε, a].
!

Lemma 2.4. Set k ∈ N∪ {0} and let q1, q2 ∈ L1((0, 1))∩W k,1((a− 2ε, a)). Then the function w defined
in (19) belongs to W k,∞((a− ε, a)).

Proof of Lemma 2.4: From (19) it is clear that

w(j)(τ) =
∑

l,m≥0,l+m=j−1

∑

α,β≥0,α+β=m

cjlmαβ [(∂l
2L̃)|Da,ε ]

(α)(τ)(q1−q2)(β)(τ)+
∫ a

τ
∂j
2L̃(x, τ)(q1−q2)(x) dx,

(26)
for all τ ∈ [a− ε, a] and for some numerical coefficients cjlmαβ provided that the r.h.s. is well-defined. If
j = 0 the first term in the r.h.s. of the equality above is omitted. Let us verify that w(j) ∈ L∞((a− ε, a))
for j ≤ k. Since l + α ≤ l + m ≤ k − 1 then τ 0→ [(∂l

2L̃)|Da,ε ](α)(τ) ∈ L∞((a− ε, a)) by Lemma 2.3 (iii).
Since β ≤ m ≤ k − 1 then (q1 − q2)(β) ∈ L∞((a− ε, a)). Thus, the first term in the r.h.s. of the above
equality is in L∞([a− ε, a]) as a function of the variable τ . Furthermore, (q1 − q2) ∈ L1((a− ε, a)) and
∂j
2L̃ ∈ L∞(Ta,ε) by Lemma 2.3 (iii) imply that the second term in the r.h.s. of the above equality for all

j ∈ N ∪ {0} with j ≤ k is also in L∞((a− ε, a)) as a function of the variable τ . !

With this Lemma, we are now able to integrate by parts k times the function in the r.h.s. of (20). We
recall that the functions ck are defined before Lemma 2.2.

Lemma 2.5. Let k ∈ N∪ {0}. Set q1, q2 ∈ L1((0, 1))∩W k,1((a− 2ε, a)) and if k ≥ 1 assume in addition
that q1 − q2 ∈ Ck−1((a− ε, a + ε)). One has

f1(z) =
k∑

l=1

L1,l(z)
(2z)l

+
1

(−2z)k

∫ a

a−ε
w(k)(τ)ck(2zτ) dτ
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for all z ∈ C, for i = 1, 2 where the L1,l(z) are k real numbers satisfying

L1,l(z) = O
(
e2|'z|(a−ε)

)
(27)

for all z ∈ C\{0}.

Proof of Lemma 2.5: It suffices to suppose k ≥ 1. As in Lemma 2.2, the proof follows from k integrations
by parts. These are justified by the regularity of w provided by Lemma 2.4. Note also that all the
boundary terms at τ = a are vanishing. Indeed, in view of (26) one sees that w(β)(a) = 0, β = 0, . . . , k−1
since q1−q2 ∈ Ck−1((a− ε, a+ε)) and q1−q2 = 0 on [a, 1] and since the last integral vanishes. Therefore
L1,l(z) = (−1)l−1cl(2z(a− ε))w(l−1)(a− ε). From Lemma 2.6 the function w(k) ∈ C0([a− ε, a]) and
using again |ck(2zτ)| ≤ e2|'z|τ one gets the estimate (27). !

Finally we consider f3(z) defined in (18).

Lemma 2.6. Let k ∈ N ∪ {0}. Let q1, q2 ∈ L1((0, 1)). One has

f3(z) = O(e2|'z|(a−ε))

for all z ∈ C.

Proof of Lemma 2.6: it follows directly from (18) with L̃ ∈ C0(T ) and | cos 2zτ | ≤ e2|'z|τ for all z ∈ C
and all τ ∈ R together with q1 − q2 ∈ L1((0, 1)). !

We are now ready to derive Proposition 1.4. Let us first recall the following result (see [L] and see also
Lemma 3.2 in [AFR] for a short proof replacing 0 by b).

Lemma 2.7. Let a, b ∈ (0, 1] with b < a. Suppose that the function u defined on [0, 1] × C satisfies
|u(x, z)| = O

(
e2|'z|x)

and let v ∈ Lp([0, 1]) with 1 ≤ p ≤ +∞. Set g(z) =
∫ a

b u(x, z)v(x)dx. There is
a real positive number C depending only on p and ||v||Lp([b,a]) such that for any ε′ > 0 there is a real
positive number δε′ depending only on ε′, p, a, b and ||v||Lp([b,a]) verifying

lim
ε′→0

δε′ = 0

and

|g(z)| ≤ C
e2|'z|a

|+z|1−
1
p

(e−ε′|'z| + δε′).

Proof of Proposition 1.4: Without loss of generality we suppose that q1 and q2 are in W k,1((a − 2ε, a))
instead of W k,1((a− ε, a)). Let us denote by w1 the preceding function w defined in (19) associated to f1

and by w2 the similar one corresponding to f2. Using the estimates for fa−ε, f0, f1 (and the analogous
one for f2) and f3 in Lemma 2.1, 2.2 2.5 and 2.6 respectively, one has

f(z) =
k∑

l=0

O

(
e2|'z|(a−ε)

|z|l

)
+

1
(−2z)k

∫ a

a−ε
ck(2zx) (q1 − q2 + w1 + w2)

(k) (x) dx. (28)
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Since (q1− q2) ∈ W k,p((a− ε, a)) and w1, w2 ∈ W k,∞((a− ε, a)) one concludes with Lemma 2.7 that the
integral term in the r.h.s. of (28) is bounded by e2|#z|a

|'z|k+1− 1
p
(e−ε′|'z| +o(1)) as ε′ → 0+ uniformly in z ∈ C.

In the sum in the r.h.s. of (28), the functions fa−ε and f3 are contributing for l = 0 . Writing

e2|'z|(a−ε)

|+z|l ≤ e2|'z|a

|+z|k+1− 1
p

e−|'z|ε′e−|'z|ε|+z|k+1− 1
p−l

for all ε′ ≤ ε and since e−|'z|ε|+z|k+1− 1
p−l ≤ Cl for all z ∈ C and for some Cl depending on l (and ε)

one sees that the sum in the r.h.s. of (28) is o

(
e2|#z|a

|'z|k+1− 1
p

)
as ε′ → 0+ uniformly in z ∈ C. These two

points complete the proof of Proposition 1.4. !

3 Appendix A

The case of Dirichlet boundary conditions

u(0) = 0, u(1) = 0

corresponding to h = H = ∞ may be considered similarly to the case of finite h and H. Let us also
mention that the cases (h = ∞, H < ∞) and (h < ∞,H = ∞) may be not treated analogously entirely,
the reason being that the leading term in the asymptotic expansions of the square roots of the sequences
of eigenvalues is (up to the π factor) an half-integer whereas it is an integer for the cases (h < ∞,H < ∞)
and (h = ∞,H = ∞) and one cannot follow [AFR, Section 4].

Theorem 3.1. Under the hypotheses of Theorem 1.1 with H = ∞ one concludes that, h1 = h2 = ∞ and
q1 = q2 on [0, 1].

Proof of Theorem 3.1: it is a direct modification of the proof of Theorem 1.1 when setting

f(z) = z2

∫ a

0
(ψ(x, z, q1)ψ(x, z, q2)) (q1(x)− q2(x))dx

where ψ(·, z, q) defined on [0, 1] is the solution to−d2ψ
dx2 +qψ = z2ψ with the initial conditions ψ(0, z, q) = 0,

ψ′(0, z, q) = 1.

Therefore we emphasize here on the main changes comparing to the case (h < ∞,H < ∞). Note that
the missing factor 1

2 in the definition of f comes from the fact that
∫ 1
0 q(x)dx is a spectral invariant in

the Dirichlet case. The sequence of eigenvalues is denoted by (λj(q))j≥1.

The point of adding the z2 factor in the definition of f is the following. On one side, 0 is now a supple-
mentary zero of order two for the function f compensating the missing eigenvalue λ0(q). Furthermore

11



the leading term in the asymptotic expansion of (
√

λj(q)) is the same. In particular, when setting

S
1
2 =

{
0, 0, ±√sj , j ≥ 1

}

the same analysis as in [AFR, Section 4] holds and one obtains exactly the same estimates on N
S

1
2

as
the ones in [AFR, Section 4]. On the other side, the functions ψ(·, z, q1) and ψ(·, z, q2) are written using
a transformation operator with kernel L1 and L2 starting from sin zx

z instead of cos zx. These two factors
1
z vanish with the added z2 factor.

Moreover, the kernel Lj (j = 1, 2) is simpler since it is essentially (up to a change of sign) the same kernel
as in the case of finite hj and H with hj = 0 (see [M]). Therefore the results concerning the regularity
properties of the kernels involved in Section 2 are unchanged and Proposition 1.4 holds for the function
f defined above. !
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plications 22. Birkhäuser Verlag, Basel, (1986).

[PT] J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, (1987).

13


