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Abstract. We consider a free hydrogen atom composed of a spin- 1
2

nucleus and a spin- 1
2

electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamilton-
ian associated with this system at a fixed total momentum. For small enough values of the
fine-structure constant, we prove that the ground state is unique. This result reflects the
hyperfine structure of the hydrogen atom ground state.

1. Introduction

The structure of the spectrum of the Pauli Hamiltonian describing a non-relativistic Hy-
drogen atom in Quantum Mechanics is well-known (see e.g. [10]). Among many properties,
a remarkable one is that the interaction between the spins of the nucleus and the electron
causes the so-called hyperfine structure of Hydrogen. In particular, in spite of the spins de-
grees of freedom, the ground state of the Pauli Hamiltonian is unique; A three-fold degenerate
eigenvalue appears besides, close to the ground state energy. This phenomenon justifies the
famous observed 21-cm Hydrogen line. Mathematically, using standard perturbation theory
of isolated eigenvalues, this statement is not difficult to establish.

In the framework of non-relativistic QED, due to the absence of mass of photons, the bottom
of the spectrum of the Hamiltonian coincides with the bottom of its essential spectrum. Thus
the question of the (existence and) multiplicity of the ground state is much more subtle.

In this paper we consider a moving Hydrogen atom in non-relativistic QED. The total
system (electron, nucleus and photons) is translation invariant, hence one can fix the total
momentum and study the corresponding fiber Hamiltonian. For sufficiently small values of the
total momentum, the bottom of the spectrum is known to be an eigenvalue [3, 20]. Moreover,
under simplifying assumptions, the multiplicity of the ground state eigenvalue is also known:
If both the electron and nucleus spins are neglected, the ground state is unique [3]. If the
electron spin is taken into account and the nucleus spin is neglected, then the ground state is
twice degenerate [21].

Now, following the physical prescription, we assume that both the electron and the nu-
cleus have a spin equal to 1

2 . In [1], using a contradiction argument, we proved under this
assumption that the multiplicity of the ground state is strictly less than 4. This shows that a
hyperfine splitting does occur in non-relativistic QED (we refer the reader to the introduction
of [1] for a more detailed discussion on the hyperfine structure of Hydrogen). Refining our
previous analysis, we shall prove in the present paper that the ground state of the dressed
Hydrogen atom is unique.

1.1. Definition of the model and main results. We briefly recall the definition of the
Hamiltonian associated with a freely moving hydrogen atom at a fixed total momentum P in
non-relativistic QED. For more details, we refer to [1, Section 2].
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The Hamiltonian associated with a hydrogen atom in the standard model of non-relativistic
QED acts on the Hilbert space L2(R3; C2) ⊗ L2(R3; C2) ⊗Hph ' C4 ⊗ L2(R6) ⊗Hph, where
the photon space,

Hph := C⊕
∞⊕
n=1

Sn
[
L2(R3 × {1, 2})⊗n

]
,

is the symmetric Fock space over L2(R3 × {1, 2}) (Sn denotes the symmetrization operator).
In units such that the Planck constant divided by 2π and the velocity of light are equal to 1,
the Hamiltonian of the system, H, is formally given by the expression

H :=
1

2mel

(
pel − α

1
2AΛα2(xel)

)2
+

1
2mn

(
pn + α

1
2AΛα2(xn)

)2
+ V (xel, xn) +Hph

− α
1
2

2mel
σel ·BΛα2(xel) +

α
1
2

2mn
σn ·BΛα2(xn),

where α = e2 is the fine-structure constant (with e the charge of the electron), x#, p#, m#

denote the positions, momenta and masses of the electron and of the nucleus, and V (xel, xn) =
−α|xel−xn|−1 is the Coulomb potential. The 3-uples σel = (σel

1 , σ
el
2 , σ

el
3 ) and σn = (σn

1 , σ
n
2 , σ

n
3 )

are the Pauli matrices associated with the spins of the electron and the nucleus, respectively.
They can be written as

σel
1 =

0BB@
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1CCA , σel
2 =

0BB@
0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

1CCA , σel
3 =

0BB@
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

1CCA ,

σn
1 =

0BB@
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

1CCA , σn
2 =

0BB@
0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

1CCA , σn
3 =

0BB@
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

1CCA .

The symbol Hph stands for the energy of the free photon field (see (1.6) below), and AΛα2(x),
BΛα2(x) are the vectors of the quantized electromagnetic field in the Coulomb gauge (defined
in (1.2)–(1.3) below). An ultraviolet cutoff is imposed, which turns off interactions between
the charged particles and photons with energies larger than Λα2, where Λ is an arbitrary
large positive parameter.

Choosing the energy unit to be 4 Rydberg, with 4Ry = melα
2, we are led, after the change

of scaling (xel, xn, k) 7→ (xel/α, xn/α, α
2k), where k is the photon wave vector, to study the

Hamiltonian

Hg :=
1

2mel

(
pel − gAΛ(g

2
3xel)

)2
+

1
2mn

(
pn + gAΛ(g

2
3xn)

)2

− 1
|xel − xn|

+Hph −
g

2mel
σel ·BΛ(g

2
3xel) +

g

2mn
σn ·BΛ(g

2
3xn).

Now the coupling parameter g is given by g := α3/2.
Since Hg is translation invariant, it can be decomposed into a direct integral, Hg '∫

R3 Hg(P )dP , with respect to the total momentum of the system (see e.g. [1, 2, 20]). The
Hilbert space at a fixed total momentum is

Hfib := C4 ⊗ L2(R3)⊗Hph,
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and the Hamiltonian we shall study in this paper, acting on Hfib, is given by the expression

Hg(P ) =
1

2mel

(mel

M
(P − Pph) + pr − gA(

mel

M
g

2
3 r)
)2

+
1

2mn

(mn

M
(P − Pph)− pr + gA(−mn

M
g

2
3 r)
)2

− 1
|r|

+Hph −
g

2mel
σel ·B(

mel

M
g

2
3 r) +

g

2mn
σn ·B(−mn

M
g

2
3 r). (1.1)

Here r is the internal position variable of the hydrogen atom, pr := −i∇r is the associated
momentum operator, and M := mel +mn is the total mass of the atom.

Now we recall the definitions of the operators on Fock space that we consider. As usual,
for any h ∈ L2(R3 × {1, 2}), we set

a∗(h) :=
∑
λ=1,2

∫
R3

h(k, λ)a∗λ(k)dk, a(h) :=
∑
λ=1,2

∫
R3

h̄(k, λ)aλ(k)dk,

and Φ(h) := a∗(h) + a(h), where the creation and annihilation operators, a∗λ(k) and aλ(k),
are operator-valued distributions obeying the canonical commutation relations

[aλ(k), aλ′(k′)] = [a∗λ(k), a∗λ′(k
′)] = 0, [aλ(k), a∗λ′(k

′)] = δλλ′δ(k − k′).

For x ∈ R3, A(x) ≡ AΛ(x) and B(x) ≡ BΛ(x) are defined by

A(x) :=
1

2π

∑
λ=1,2

∫
R3

χΛ(k)

|k|
1
2

ελ(k)
[
e−ik·xa∗λ(k) + eik·xaλ(k)

]
dk, (1.2)

B(x) := − i
2π

∑
λ=1,2

∫
R3

|k|
1
2χΛ(k)

( k
|k|
∧ ελ(k)

) [
e−ik·xa∗λ(k)− eik·xaλ(k)

]
dk, (1.3)

where the polarization vectors are chosen in the following way:

ε1(k) :=
(k2,−k1, 0)√

k2
1 + k2

2

, ε2(k) :=
k

|k|
∧ ε1(k) =

(−k1k3,−k2k3, k
2
1 + k2

2)√
k2

1 + k2
2

√
k2

1 + k2
2 + k2

3

.

In particular, for j ∈ {1, 2, 3}, we have Aj(x) = Φ(hAj (x)) and Bj(x) = Φ(hBj (x)), with

hAj (x, k, λ) :=
1

2π
χΛ(k)

|k|
1
2

ελj (k)e−ik·x, (1.4)

hBj (x, k, λ) := − i
2π
|k|

1
2χΛ(k)

(
k

|k|
∧ ελ(k)

)
j

e−ik·x. (1.5)

In (1.2) and (1.3), χΛ(k) denotes an ultraviolet cutoff function which is chosen, for simplicity,
as χΛ(k) := 1|k|≤Λ(k), with Λ > 0.

The Hamiltonian and total momentum of the free photon field, Hph and Pph, are defined
by

Hph :=
∑
λ=1,2

∫
R3

|k|a∗λ(k)aλ(k)dk, Pph :=
∑
λ=1,2

∫
R3

ka∗λ(k)aλ(k)dk. (1.6)

The Fock vacuum is denoted by Ω.
Our main result is the following.



4 L. AMOUR AND J. FAUPIN

Theorem 1.1. There exist gc > 0 and pc > 0 such that, for all 0 < g ≤ gc and 0 ≤ |P | ≤ pc,
Hg(P ) has a unique ground state, that is

Eg(P ) := inf spec(Hg(P )) is a simple eigenvalue of Hg(P ).

Remarks 1.2.

(1) For convenience, we shall work in the sequel with the Hamiltonian :Hg(P ): obtained
from the expression (1.1) by Wick ordering. Since :Hg(P ): and Hg(P ) only differ by a
constant, the statement of Theorem 1.1 is equivalent if we replace :Hg(P ): by Hg(P ).
From now on, to keep notations simple, we use Hg(P ) to designate the Wick-ordered
Hamiltonian.

(2) With some more work, Theorem 1.1 may be proven with the critical value pc = M −ε,
ε > 0, and gc depending on ε. However, for large values of the total momentum,
|P | > M , due to Cerenkov radiation, one expects that Eg(P ) is not an eigenvalue.

1.2. Notations and strategy of the proof. Now we describe the strategy of our proof and
introduce corresponding notations. Our main tools will be a suitable infrared decomposition
of Fock space combined with iterative perturbation theory. The introduction of an infrared
cutoff into the interaction Hamiltonian is a standard step in the analysis of models of non-
relativistic QED [11]. The idea of considering a sequence of Hamiltonians with decreasing
infrared cutoffs and comparing them iteratively by perturbation theory can be traced back
to [22]. It was later used successfully in different contexts [5, 9, 2, 8].

Roughly speaking, the method employed in these papers to prove the existence of a unique
ground state is as follows: Let H denote the Hamiltonian of the model, and Hσ denote the
Hamiltonian with an infrared cutoff of parameter σ, acting on the Fock space of particles of
energies ≥ σ. For large σ’s, there is no interaction in Hσ and it is easy to verify that Hσ

has a unique ground state separated by a gap of order O(σ) from the rest of the spectrum.
Next, using perturbation theory, one shows that, if for some given σ > 0, Hσ fulfills this gap
property (uniqueness of the ground state and gap of order O(σ) above it), then the same holds
for Hσ/2. Proceeding iteratively, one thus obtains the existence of a unique ground state, Φσ,
for any σ > 0. To prove that a ground state persists as the infrared cutoff is removed, one
considers the weak limit, Φ := w- lim Φσj , along some subsequence σj → 0. It is then easy
to see that HΦ = EΦ, with E = inf spec(H), and hence it remains to verify that Φ 6= 0. To
this end, using of a ‘pull-through’ argument, one shows that the expectation in the number
of photons, 〈Φ,NΦ〉, is small (assuming that the coupling constant is small). This implies
that Φ overlaps with the unperturbed ground state and hence, in particular, that Φ 6= 0.

In all the previously cited papers, the ground state of the non-interacting Hamiltonian is
unique. In our context, however, it is 4-fold degenerate, so that the method does not directly
apply. Let us be more precise. For σ > 0, the infrared (fibered) Hamiltonian acts on Hfib and
is defined as

Hg,≥σ(P ) =
1

2mel
:
(mel

M
(P − Pph) + pr − gA≥σ(

mel

M
g

2
3 r)
)2

:

+
1

2mn
:
(mn

M
(P − Pph)− pr + gA≥σ(−mn

M
g

2
3 r)
)2

:

− 1
|r|

+Hph −
g

2mel
σel ·B≥σ(

mel

M
g

2
3 r) +

g

2mn
σn ·B≥σ(−mn

M
g

2
3 r), (1.7)
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where, for any j ∈ {1, 2, 3}, x ∈ R3, k ∈ R3, λ ∈ {1, 2} and σ ≥ 0,

Aj,≥σ(x) := Φ(hAj,≥σ(x)) with hAj,≥σ(x, k, λ) := 1|k|≥σ(k)hAj (x, k, λ),

Bj,≥σ(x) := Φ(hBj,≥σ(x)) with hBj,≥σ(x, k, λ) := 1|k|≥σ(k)hBj (x, k, λ).

The expression (1.7) is Wick ordered in accordance with Remark 1.2 (1). For σ > 0, let

Hph,≥σ := C⊕
∞⊕
n=1

Sn
[
L2({(k, λ) ∈ R3 × {1, 2}, |k| ≥ σ})⊗n

]
,

Hph,≤σ := C⊕
∞⊕
n=1

Sn
[
L2({(k, λ) ∈ R3 × {1, 2}, |k| ≤ σ})⊗n

]
,

denote the Fock spaces for photons of energies ≥ σ, respectively of energies ≤ σ. It is well-
known that there exists a unitary transformation mapping Hph to Hph,≥σ ⊗Hph,≤σ.

Hfib,≥σ := C4 ⊗ L2(R3, dr)⊗Hph,≥σ.

Clearly, Hfib,≥σ identifies with a subset of Hfib, and

Hg,≥σ(P ) : Hfib,≥σ ∩D(Hg,≥σ(P ))→ Hfib,≥σ.

The restriction of Hg,≥σ(P ) to Hfib,≥σ ∩D(Hg,≥σ(P )) is then denoted by

Kg,≥σ(P ) := Hg,≥σ(P )|Hfib,≥σ∩D(Hg,≥σ(P )).

In order to avoid any confusion, we also set

Hph,≥σ := Hph|Hph,≥σ∩D(Hph), Pph,≥σ := Pph|Hph,≥σ∩D(Pph),

and the vacuum in Hph,≥σ is denoted by Ω≥σ. We shall use the decomposition

Kg,≥σ(P ) = K0,≥σ(P ) +Wg,≥σ(P ),

where

K0,≥σ(P ) :=H0(P )|D(H0(P ))∩Hfib,≥σ = Hr +
1

2M
(P − Pph,≥σ)2 +Hph,≥σ, (1.8)

and

Wg,≥σ(P ) =− g

mel

((mel

M
(P − Pph,≥σ) + pr

)
·A≥σ(

mel

M
g

2
3 r)
)

+
g

mn

((mn

M
(P − Pph,≥σ)− pr

)
·A≥σ(−mn

M
g

2
3 r)
)

+
g2

2mel
:A≥σ(

mel

M
g

2
3 r)2: +

g2

2mn
:A≥σ(−mn

M
g

2
3 r)2:

− g

2mel
σel ·B≥σ(

mel

M
g

2
3 r) +

g

2mn
σn ·B≥σ(−mn

M
g

2
3 r). (1.9)

In (1.8), Hr denotes the Schrödinger Hamiltonian

Hr :=
p2
r

2µ
− 1
|r|
,

where µ is the reduced mass, µ := m1m2/(m1 +m2).
For any self-adjoint and semi-bounded operator H, we set E(H) := inf spec(H) and

Gap(H) := inf(spec(H) \ {E(H)})− E(H).
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We then observe that, for all σ ≥ 0,

E(K0,≥σ(P )) = E(Hr) +
P 2

2M
=: e0 +

P 2

2M
=: E0(P ),

and that E0(P ) is 4-fold degenerate (see Lemma A.1 in the appendix). The lowest eigenvalue
of Hr is given by

e0 = −µ/2.

The projection onto the vector space associated with E0(P ) is denoted by

Π0,≥σ(P ) := 1{E0(P )}
(
K0,≥σ(P )

)
, and Π̄0,≥σ(P ) := 1Hfib,≥σ −Π0,≥σ(P ).

Note that Π0,≥σ(P ) is independent of P . Setting Π0,≥σ := Π0,≥σ(P ), Π̄0,≥σ := Π̄0,≥σ(P ), we
have

Π0,≥σ = 1C4 ⊗ π0 ⊗ΠΩ≥σ ,

where π0 is the projection onto the vector space associated with the ground state φ0 of Hr,
and ΠΩ≥σ is the projection onto the vacuum sector in Hph,≥σ. Moreover, we set

Eg,≥σ(P ) := E(Kg,≥σ(P )).

As mention above, we will analyze the bottom of the spectrum of Kg,≥σ(P ) iteratively, by
letting the infrared cutoff parameter σ ↓ 0. Of course, for σ ≥ Λ, we have that Kg,≥σ(P ) =
K0,≥σ(P ) and hence the spectrum of Kg,≥σ(P ) is explicit: It is composed of the 4-fold de-
generate eigenvalue Eg,≥σ(P ) = E0(P ) and a semi-axis of absolutely continuous spectrum
[Eg,≥σ(P ) + Cσ,∞) for some positive constant C (see Figure 1).

Cσ

.................
.........

� -

Eg,≥σ(P )
.................

.........

Figure 1. Spectrum of Kg,≥σ(P ) for σ ≥ Λ

Compared to previous works, the main substantial difficulty we encounter comes from
the fact that, as σ becomes strictly less that Λ, Eg,≥σ(P ) splits into 4 (generally) distinct
eigenvalues. Therefore, in particular, for σ such that g2 � σ < Λ, the gap above Eg,≥σ(P )
in the spectrum of Kg,≥σ(P ), Gap(Kg,≥σ(P )), is negligible compared to σ. To overcome this
difficulty, we have to start with analyzing the Hamiltonian Kg,≥σ(P ) for σ = Cg2 with C a
suitably chosen positive constant. In other words we choose an initial infrared cutoff of order
α3 Ry. Since for these values of the parameters, the perturbation is of the same order as the
distance between the ground state and the essential spectrum, one cannot straightforwardly
apply usual perturbation theory. We then do second order perturbation theory with the help
of the Feshbach-Schur map.

The Feshbach-Schur map is a natural tool to study second order perturbation of (possibly
embedded) eigenvalues of self-adjoint operators. In the context of non-relativistic QED, it was
introduced in [6] and further developed in [4, 13]. The Feshbach-Schur operator we consider
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here is associated with Kg,≥σ(P )− Eg,≥σ(P ) and Π0,≥σ and is defined by

Fg,≥σ(P ) :=(E0(P )− Eg,≥σ(P ))Π0,≥σ −Π0,≥σWg,≥σ(P )[
K0,≥σ(P )− Eg,≥σ(P ) + Π̄0,≥σWg,≥σ(P )Π̄0,≥σ

]−1Π̄0,≥σWg,≥σ(P )Π0,≥σ. (1.10)

We shall see in Section 2 that this operator is well-defined for suitable values of the parameters.
The main property of Fg,≥σ(P ) that we shall use is that

Kg,≥σ(P )− Eg,≥σ(P ) ≥ Fg,≥σ(P ),

(see Lemma 2.2). Combined with the min-max principle, this operator inequality appears to
be very useful in the context of the present paper. In particular, it will allow us to prove that
the spectrum of Kg,≥σ(P ) has the form pictured in Figure 2 (see Section 2): The bottom of
the spectrum, Eg,≥σ(P ), is an isolated eigenvalue separated by a gap of size δg2 from three
other eigenvalues and a semi-axis of essential spectrum.

δg2

.................
.........

.................
.........

.................
.........

.................
.........

� -

Eg,≥σ(P )
.................

.........
.................

.........
.................

.........
.................

.........

Figure 2. Spectrum of Kg,≥σ(P ) for σ = Cg2, C� 1

The key argument that allows the method to be applied is the decomposition of the
Feshbach-Schur operator Fg,≥σ(P ), viewed as a 4× 4 matrix, into three parts,

Fg,≥σ(P ) = d(g) + g2Γ + Rem(g),

where d(g) is a scalar matrix and Γ is a matrix independent of g whose spectrum exhibits a
gap between its first and second eigenvalues. The remainder term, Rem(g), must be negligible
compared to g2.

The rest of the proof borrows ideas from [22, 5, 2]. Namely, we shall prove (in Section 3)
that if the ground state of Kg,≥σ(P ) is unique and if Gap(Kg,≥σ(P )) ≥ ησ, then the same
holds for Kg,≥τ (P ) with τ = κσ, 0 < κ < 1. This will show that for small σ’s, the spectrum
of Kg,≥σ(P ) has the form pictured in Figure 3 (a non-degenerate eigenvalue separated from a
gap of size ησ from the rest of the spectrum). At the end, the parameters η and κ will have
to be carefully chosen, in relation with the initial analysis of Section 2.

ησ

.................
.........

� -

Eg,≥σ(P )
.................

.........

Figure 3. Spectrum of Kg,≥σ(P ) for σ ≤ C′g2, C′ � 1

We conclude this section with introducing a few more notations related to the infrared
decomposition, which will be useful in Section 3. For 0 ≤ τ ≤ σ, let

H≤σph,≥τ := C⊕
∞⊕
n=1

Sn
[
L2({(k, λ) ∈ R3 × {1, 2}, τ ≤ |k| ≤ σ})⊗n

]
.
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The vacuum in H≤σph,≥τ is denoted by Ω≤σ≥τ and the projection onto the vacuum sector is
denoted by Π

Ω≤σ≥τ
. The Hilbert spaces Hfib,≥τ and Hfib,≥σ ⊗H≤σph,≥τ are isomorphic. We shall

sometimes not distinguish between the two of them. As an operator on Hfib,≥τ , we set

W≤σg,≥τ (P ) =− g

mel
:
((mel

M
(P − Pph,≥τ ) + pr − gA≥σ(

mel

M
g

2
3 r)
)
·A≤σ≥τ (

mel

M
g

2
3 r)
)

:

+
g

mn
:
((mn

M
(P − Pph,≥τ )− pr + gA≥σ(−mn

M
g

2
3 r)
)
·A≤σ≥τ (−mn

M
g

2
3 r)
)

:

+
g2

2mel
:A≤σ≥τ (

mel

M
g

2
3 r)2: +

g2

2mn
:A≤σ≥τ (−mn

M
g

2
3 r)2:

− g

2mel
σel ·B≤σ≥τ (

mel

M
g

2
3 r) +

g

2mn
σn ·B≤σ≥τ (−mn

M
g

2
3 r), (1.11)

where A≤σ≥τ (·) and B≤σ≥τ (·) are given by the same expressions as A(·) and B(·) respectively,
except that the integrals are taken over {k ∈ R3, τ ≤ |k| ≤ σ}. Note that

Hg,≥τ (P ) = Hg,≥σ(P ) +W≤σg,≥τ (P ).

Finally, in the case where τ = 0, the subindex ≥ 0 is removed from the notations above, that
is, for instance, H≤σph := H≤σph,≥0, W≤σg (P ) := W≤σg,≥0(P ) and so on.

Throughout the paper, the notation . · · · will stand for ≤ C · · · where C is a positive
constant independent of the parameters. For any vector v, [v] and [v]⊥ will denote respectively
the subspace spanned by v and its orthogonal complement.

2. Existence of a gap for large enough infrared cutoffs

In this section, we investigate the spectrum of the infrared cutoff Hamiltonian Kg,≥σ(P )
for values of the coupling constant g and of the infrared cutoff parameter σ fixed such that
β−1
c2 g

2 ≤ σ ≤ β−1
c1 g

2 (for some 0 < βc1 < βc2 to be determined later).
For any small enough g and P , and for any σ, η > 0, let Gap(g, P, σ, η) denote the following

assertion:

Gap(g, P, σ, η)
{

(i) Eg,≥σ(P ) is a simple eigenvalue of Kg,≥σ(P ),
(ii) Gap(Kg,≥σ(P )) ≥ ησ.

The main result of this section is the following.

Theorem 2.1. There exist pc > 0, βc2 > 0 and δ > 0 such that, for all 0 < βc1 < βc2, there
exists gc > 0 such that, for all 0 ≤ |P | ≤ pc, 0 < g ≤ gc and βc1 ≤ β ≤ βc2,

Gap(g, P, σ, δβ) holds,

where σ = g2β−1.

The statement of Theorem 2.1 expresses the fact that, for small enough values of the
coupling constant g and total momentum P , there is a gap at least of size δg2 in the spectrum
of Kg,≥σ(P ) above the non-degenerate ground state eigenvalue Eg,≥σ(P ), provided that the
infrared cutoff parameter σ obeys β−1

c2 g
2 ≤ σ ≤ β−1

c1 g
2.
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2.1. Preliminary lemmas. The proof of Theorem 2.1 relies on a few lemmas that we shall
establish in this preliminary subsection. For the convenience of the reader, some standard
estimates used several times in the proofs below are recalled in Appendix A.

We begin with verifying that the Feshbach-Schur operator Fg,≥σ(P ) introduced in (1.10)
is well-defined for suitable values of the parameters.

Lemma 2.2. There exist pc > 0 and βc2 > 0 such that, for all 0 < βc1 < βc2, there exists
gc > 0 such that, for all 0 < g ≤ gc, 0 ≤ |P | ≤ pc and βc1 ≤ β ≤ βc2, the Feshbach-
Schur operator defined in (1.10), Fg,≥σ(P ) (where σ = g2β−1), is a bounded operator on
Ran(Π0,≥σ) ⊂ Hfib given by

Fg,≥σ(P ) =
(
E0(P )− Eg,≥σ(P ))

)
Π0,≥σ

−Π0,≥σWg,≥σ(P )
[
K0,≥σ(P )− Eg,≥σ(P )

]−1Π̄0,≥σWg,≥σ(P )Π0,≥σ

+ Rem1(g, P, β), (2.1)

where Rem1(g, P, β) is a bounded operator on Ran(Π0,≥σ) satisfying

‖Rem1(g, P, β)‖ . g2β
1
2 . (2.2)

Moreover the following inequality holds in the sense of quadratic forms on D(Kg,≥σ(P )):

Kg,≥σ(P )− Eg,≥σ(P ) ≥ Fg,≥σ(P ). (2.3)

Proof. Let gc, pc, σc and CW be given by Lemma A.7. Let βc2 be such that β1/2
c2 ≤ (6CW )−1,

and let 0 < βc1 < βc2. Possibly by considering a smaller gc, we can assume that g2
c ≤ βc1σc

and hence, for all 0 < g ≤ gc and β ≥ βc1, we have that 0 < σ = g2β−1 ≤ σc. In addition we
impose that pc ≤M/2.

Fix g, P and β as in the statement of the lemma. By Lemmas A.1 and A.5, we have that
K0,≥σ(P )− Eg,≥σ(P ) is bounded invertible on Ran(Π̄0,≥σ) and satisfies(

K0,≥σ(P )− Eg,≥σ(P )
)
Π̄0,≥σ ≥

(
E0(P )− Eg,≥σ(P ) + (1− |P |

M
)σ
)
Π̄0,≥σ ≥

σ

2
Π̄0,≥σ.

Using again that Eg,≥σ(P ) ≤ E0(P ) by Lemma A.5, it then follows from a straightforward
application of the Spectral Theorem that∥∥∥[K0,≥σ(P )− Eg,≥σ(P )

]−1Π̄0,≥σ
(
K0,≥σ(P )− E0(P ) + σ

)∥∥∥
≤
∥∥∥[K0,≥σ(P )− Eg,≥σ(P )

]−1Π̄0,≥σ
(
K0,≥σ(P )− Eg,≥σ(P ) + σ

)∥∥∥ ≤ 3. (2.4)

Moreover, by Lemma A.7, we have that∥∥∥[K0,≥σ(P )− E0(P ) + σ
]− 1

2Wg,≥σ(P )
[
K0,≥σ(P )− E0(P ) + σ

]− 1
2

∥∥∥
≤ CW gσ

− 1
2 = CWβ

1
2 , (2.5)

and hence∥∥∥[K0,≥σ(P )− Eg,≥σ(P )
]− 1

2 Π̄0,≥σWg,≥σ(P )
[
K0,≥σ(P )− Eg,≥σ(P )

]− 1
2 Π̄0,≥σ

∥∥∥ ≤ 3CWβ
1
2 .
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Taking into account the choice of βc2, we have 3CWβ
1
2 ≤ 1/2 so that in particular

(K0,≥σ(P )− Eg,≥σ(P )) Π̄0,≥σ + Π̄0,≥σWg,≥σ(P )Π̄0,≥σ

≥ 1
2

(K0,≥σ(P )− Eg,≥σ(P )) Π̄0,≥σ ≥
σ

4
Π̄0,≥σ. (2.6)

Therefore the operator (K0,≥σ(P )−Eg,≥σ(P ))Π̄0,≥σ+Π̄0,≥σWg,≥σ(P )Π̄0,≥σ is bounded invert-
ible on Ran(Π̄0,≥σ). Using in addition that Wg,≥σ(P ) is relatively bounded with respect to
K0,≥σ(P ), we obtain that Fg,≥σ(P ) is indeed a well-defined bounded operator on Ran(Π0,≥σ).

Next, using again (2.4) and (2.5), we obtain∥∥∥Π0,≥σWg,≥σ(P )
[
K0,≥σ(P )− Eg,≥σ(P )

]− 1
2 Π̄0,≥σ

∥∥∥ ≤ 2CWβ
1
2σ

1
2 = 2CW g. (2.7)

A standard Neumann series decomposition together with the previous estimates then lead to

Π0,≥σWg,≥σ(P )
[
K0,≥σ(P )− Eg,≥σ(P ) + Π̄0,≥σWg,≥σ(P )Π̄0,≥σ

]−1Π̄0,≥σWg,≥σ(P )Π0,≥σ

= Π0,≥σWg,≥σ(P )
[
K0,≥σ(P )− Eg,≥σ(P )

]−1Π̄0,≥σWg,≥σ(P )Π0,≥σ + Rem1(g, P, β),

where Rem1(g, P, β) is a bounded operator on Ran(Π0,≥σ) satisfying (2.2).
Finally, to prove (2.3), it suffices to use the following identity

Kg,≥σ(P )− Eg,≥σ(P ) = Fg,≥σ(P ) +R∗R, (2.8)

where

R :=
[
K0,≥σ(P )− Eg,≥σ(P ) + Π̄0,≥σWg,≥σ(P )Π̄0,≥σ

]− 1
2 Π̄0,≥σ(Kg,≥σ(P )− Eg,≥σ(P )).

We observe that the operator square root appearing in the expression of R is well-defined by
(2.6). Equation (2.8) follows from straightforward algebraic computations (see e.g. [4, 13]).
This concludes the proof of the lemma. �

Our next task is to extract the second order term from (2.1). It is the purpose of the
following three lemmas.

Lemma 2.3. There exist gc > 0, pc > 0 and σc > 0 such that, for all 0 ≤ g ≤ gc, 0 ≤ |P | ≤ pc
and 0 < σ ≤ σc,

Π0,≥σWg,≥σ(P )
[
K0,≥σ(P )− Eg,≥σ(P )

]−1Π̄0,≥σWg,≥σ(P )Π0,≥σ

=
∑
λ=1,2

∫
R3

Π0,≥σw̃≥σ(r, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

w≥σ(r, k, λ)Π0,≥σdk

+ Rem2(g, P, σ), (2.9)

where

w≥σ(r, k, λ) :=− g

mel

((mel

M
(P − Pph,≥σ) + pr

)
· hA≥σ(

mel

M
g

2
3 r, k, λ)

)
+

g

mn

((mn

M
(P − Pph,≥σ)− pr

)
· hA≥σ(−mn

M
g

2
3 r, k, λ)

)
− g

2mel
σel · hB≥σ(

mel

M
g

2
3 r, k, λ) +

g

2mn
σn · hB≥σ(−mn

M
g

2
3 r, k, λ), (2.10)

w̃≥σ(r, k, λ) is given by the same expression except that hA≥σ, hB≥σ are replaced by their conju-
gate h̄A≥σ, h̄B≥σ, and Rem2(g, P, σ) is a bounded operator on Ran(Π0,≥σ) satisfying

‖Rem2(g, P, σ)‖ . g3.
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Proof. It suffices to introduce the expression (1.9) of Wg,≥σ(P ) into the operator

Π0,≥σWg,≥σ(P )
[
K0,≥σ(P )− Eg,≥σ(P )

]−1Π̄0,≥σWg,≥σ(P )Π0,≥σ,

and next to estimate each term separately. An explicit computation then leads directly to
the statement of the lemma (see the proof of Lemma A.9 in [1] for more details). �

Lemma 2.4. There exist gc > 0, pc > 0 and σc > 0 such that, for all 0 ≤ g ≤ gc, 0 ≤ |P | ≤ pc,
0 < σ ≤ σc and λ ∈ {1, 2},∫

R3

Π0,≥σw̃≥σ(r, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

w≥σ(r, k, λ)Π0,≥σdk

=
∫

R3

Π0,≥σw̃≥σ(0, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

w≥σ(0, k, λ)Π0,≥σdk

+ Rem3(g, P, σ, λ),

where w≥σ(0, k, λ) and w̃≥σ(0, k, λ) are defined by (2.10), and Rem3(g, P, σ, λ) is a bounded
operator on Ran(Π0,≥σ) satisfying

‖Rem3(g, P, σ, λ)‖ . g
8
3 .

Proof. It follows from the definitions (1.4)–(1.5) of hAj and hBj that∣∣hAj,≥σ(r, k, λ)− hAj,≥σ(0, k, λ)
∣∣ . 1|k|≥σ(k)|k|

1
2χΛ(k)|r|,∣∣hBj,≥σ(r, k, λ)− hBj,≥σ(0, k, λ)

∣∣ . 1|k|≥σ(k)|k|
3
2χΛ(k)|r|,

for any j ∈ {1, 2, 3}, λ ∈ {1, 2}, r ∈ R3 and k ∈ R3. This implies that∥∥∥Π0,≥σ
(mel

M
(P − Pph,≥σ) + pr

)
·
(
hA≥σ(

mel

M
g

2
3 r, k, λ)− hA≥σ(0, k, λ)

)∥∥∥
. g

2
31|k|≥σ(k)|k|

1
2χΛ(k)

∥∥∥Π0,≥σ
(mel

M
(P − Pph,≥σ) + pr

)
〈r〉
∥∥∥

. g
2
31|k|≥σ(k)|k|

1
2χΛ(k).

In the last inequality, we used in particular that ‖〈r〉prπ0‖ < ∞, where, recall, π0 is the
projection onto the ground state of the Schrödinger operator Hr. Similarly,∥∥∥Π0,≥σσ

el ·
(
hB≥σ(

mel

M
g

2
3 r, k, λ)− hB≥σ(0, k, λ)

)∥∥∥
. g

2
31|k|≥σ(k)|k|

3
2χΛ(k)

∥∥∥Π0,≥σσ
el〈r〉

∥∥∥ . g 2
31|k|≥σ(k)|k|

3
2χΛ(k).

The same holds if mel is replaced by −mn and σel is replaced by σn. Besides, using that
Hr + P 2/2M ≥ E0(P ) ≥ Eg,≥σ(P ) by Lemma A.5, we obtain that∥∥∥[Hr +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

1|k|≥σ(k)
∥∥∥

≤ 1
−(k · P )/M + k2/2M + |k|

1|k|≥σ(k) ≤ 2
|k|
1|k|≥σ(k),

for |P | ≤M/2, and hence the statement of the lemma easily follows. �
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Lemma 2.5. There exist gc > 0, pc > 0 and σc > 0 such that, for all 0 ≤ g ≤ gc, 0 ≤ |P | ≤ pc,
0 < σ ≤ σc, and λ ∈ {1, 2},∫

R3

Π0,≥σw̃≥σ(0, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

w≥σ(0, k, λ)Π0,≥σdk

= g2
(
ΓA,diag
≥σ (P, λ) + ΓB≥σ(P, λ)

)
+ Rem4(g, P, σ, λ),

where

ΓA,diag
≥σ (P, λ) :=

1
µ2

∫
R3

Π0,≥σpr · hA≥σ(0, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − E0(P )
]−1

(1C4 ⊗ π̄0 ⊗ 1Hph
)pr · hA≥σ(0, k, λ)Π0,≥σdk,

and

ΓB≥σ(P, λ) :=
∫

R3

Π0,≥σ

(
− 1

2mel
σel · h̄B≥σ(0, k, λ) +

1
2mn

σn · h̄B≥σ(0, k, λ)
)

[
e0 +

1
2M

(P − k)2 + |k| − E0(P )
]−1

(
− 1

2mel
σel · hB≥σ(0, k, λ) +

1
2mn

σn · hB≥σ(0, k, λ)
)

Π0,≥σdk.

Moreover Rem4(g, P, σ, λ) is a bounded operator on Ran(Π0,≥σ) satisfying

‖Rem4(g, P, σ, λ)‖ . g4.

Proof. It follows from (2.10) that

w≥σ(0, k, λ) =− g

µ
pr · hA≥σ(0, k, λ)− g

2mel
σel · hB≥σ(0, k, λ) +

g

2mn
σn · hB≥σ(0, k, λ),

and likewise for w̃≥σ(0, k, λ) except that hA≥σ, hB≥σ are replaced by h̄A≥σ, h̄B≥σ. (Observe in
particular that the terms proportional to (P − Pph) vanish. This is due to the fact that the
charge of the total system we consider vanishes).

Moreover, we have that h̄A≥σ(0, k, λ) = hA≥σ(0, k, λ) and

Π0,≥σpr · hA≥σ(0, k, λ)(1C4 ⊗ π0 ⊗ 1Hph
) = 0.

This yields∫
R3

Π0,≥σw̃≥σ(0, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

w≥σ(0, k, λ)Π0,≥σdk

= g2
(
Γ̃A,diag
≥σ (g, P, λ) + Γ̃B≥σ(g, P, λ)

)
,

where

Γ̃A,diag
≥σ (g, P, λ) :=

1
µ2

∫
R3

Π0,≥σpr · hA≥σ(0, k, λ)
[
Hr +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

(1C4 ⊗ π̄0 ⊗ 1Hph
)pr · hA≥σ(0, k, λ)Π0,≥σdk,
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and

Γ̃B≥σ(g, P, λ) :=
∫

R3

Π0,≥σ

(
− 1

2mel
σel · h̄B≥σ(0, k, λ) +

1
2mn

σn · h̄B≥σ(0, k, λ)
)

[
e0 +

1
2M

(P − k)2 + |k| − Eg,≥σ(P )
]−1

(
− 1

2mel
σel · hB≥σ(0, k, λ) +

1
2mn

σn · hB≥σ(0, k, λ)
)

Π0,≥σdk.

For any |P | ≤M/2 and |k| ≥ σ, we have that∥∥∥[Hr +
1

2M
(P − k)2 + |k| − E0(P )

]−1(1C4 ⊗ π̄0 ⊗ 1 Hph
)
∥∥∥ ≤ 1

e1 − e0
,

and hence also that∥∥∥[Hr +
1

2M
(P − k)2 + |k| − Eg,≥σ(P )

]−1(1C4 ⊗ π̄0 ⊗ 1Hph
)
∥∥∥ ≤ 1

e1 − e0
,

by Lemma A.5. Therefore, using the first resolvent equation together with the facts that
|E0(P )−Eg,≥σ(P )| . g2 (see Lemma A.5) and |hA≥σ(0, k, λ)| . 1|k|≥σ(k)|k|−1/2χΛ(k), we get

Γ̃A,diag
≥σ (g, P, λ) = ΓA,diag

≥σ (P, λ) + RemA(g, P, σ),

where

‖RemA(g, P, σ)‖ . g2

∫
R3

1σ≤|k|≤Λ
dk
|k|
. g2.

Likewise, for any |P | ≤M/2 and |k| ≥ σ, we have that∣∣[e0 +
1

2M
(P − k)2 + |k| − Eg,≥σ(P )

]−1∣∣ ≤ 2
|k|
,

and since |hB≥σ(0, k, λ)| . 1|k|≥σ(k)|k|1/2χΛ(k), we thus obtain that

Γ̃B≥σ(g, P, λ) = ΓB≥σ(P, λ) + RemB(g, P, σ),

where

‖RemB(g, P, σ)‖ . g2

∫
R3

1σ≤|k|≤Λ
dk
|k|
. g2.

Hence the lemma is proven. �

To conclude this subsection, we estimate the size of the splitting induced by the second
order term in (2.2). Since the matrix ΓA,diag

≥σ (P, λ) of Lemma 2.5 is scalar, only ΓB≥σ(P, λ) is
responsible for this splitting.

From now on, to simplify a few computations and since the system is rotation invariant,
we choose the total momentum P to be directed along −→ε3 .

Lemma 2.6. There exist pc > 0 and σc > 0 such that, for all P = P3
−→ε3 satisfying 0 ≤ |P | ≤

pc, for all 0 < σ ≤ σc, and λ ∈ {1, 2},

ΓB≥σ(P, λ) = ΓB,diag
≥σ (P, λ) + ΓB,#≥σ (P, λ),
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where ΓB,diag
≥σ (P, λ) is the scalar operator on Ran Π0,≥σ given by

ΓB,diag
≥σ (P, λ) :=

( 1
4m2

el

+
1

4m2
n

)∫
R3

∣∣hB≥σ(0, k, λ)
∣∣2dk

|k| − (k · P )/M + k2/2M
Π0,≥σ,

and

ΓB,#≥σ (P, λ) := − 1
2melmn

∑
j=1,2,3

∫
R3

∣∣hBj,≥σ(0, k, λ)
∣∣2dk

|k| − (k · P )/M + k2/2M
Π0,≥σσ

el
j σ

n
j Π0,≥σ.

Proof. Using standard properties of the Pauli matrices (see Lemma A.10), since for any k ∈ R3

and λ ∈ {1, 2}, h̄B≥σ(0, k, λ) = −hB≥σ(0, k, λ), we have that(
σel · h̄B≥σ(0, k, λ)

)(
σel · hB≥σ(0, k, λ)

)
= −(hB≥σ(0, k, λ))2 =

∣∣hB≥σ(0, k, λ)
∣∣2,

and likewise with σn replacing σel. Next, we observe that for P = P3
−→ε3 , λ ∈ {1, 2} and

j, j′ ∈ {1, 2, 3}, j 6= j′, ∫
R3

h̄Bj,≥σ(0, k, λ)hBj′,≥σ(0, k, λ)

|k| − (k · P )/M + k2/2M
dk = 0.

The lemma then follows straightforwardly from the expression of ΓB≥σ(P, λ) given in the
statement of Lemma 2.5. �

Lemma 2.7. There exist pc > 0 and σc > 0 such that, for all P = P3
−→ε3 satisfying 0 ≤ |P | ≤ pc

and for all 0 < σ ≤ σc, the eigenvalues of the operator

ΓB,#≥σ (P ) := −
∑
λ=1,2

ΓB,#≥σ (P, λ)

are given by

γ
(0)
≥σ(P ) := − 1

8melmnπ2

∫
R3

|k|1σ≤|k|≤Λ(k)
|k| − (k · P )/M + k2/2M

dk,

γ
(j)
≥σ(P ) :=

1
8melmnπ2

∫
R3

|k|1σ≤|k|≤Λ(k)
|k| − (k · P )/M + k2/2M

k2
j

|k|2
dk, j = 1, 2, 3.

Proof. It directly follows from the properties of the Pauli matrices (see Lemma A.11). �

Remarks 2.8.
(1) For P = 0, we observe that γ(1)

≥σ(0) = γ
(2)
≥σ(0) = γ

(3)
≥σ(0). It may however not be the

case for P 6= 0.
(2) The gap above the lowest eigenvalue γ(0)

≥σ(P ) is non-vanishing. More precisely, letting

δ≥σ(P ) := min
(
γ

(1)
≥σ(P ), γ(2)

≥σ(P ), γ(3)
≥σ(P )

)
− γ(0)
≥σ(P ),

and

δ := inf
0≤|P |≤pc,0≤σ≤Λ/2

δ≥σ(P ),

we have

δ ≥ 1
8melmnπ2

∫
R3

|k|1Λ/2≤|k|≤Λ(k)
(1 + pc/M)|k|+ k2/2M

dk > 0.
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2.2. Proof of Theorem 2.1.
Proof of Theorem 2.1. Let pc be fixed as the minimum of the pc’s given by Lemmas 2.2–2.7
and A.5, and let CW be given by Lemma A.7. Let σc = βc2 = ε where ε > 0 is a small, fixed
parameter (smaller, in particular, than the minimum of the σc’s given by Lemmas 2.3–2.7 and
than the βc2’s given by Lemma 2.2). Let now 0 < βc1 < βc2 and let gc be fixed smaller than
the minimum of the gc’s given by Lemmas 2.2–2.7. We recall in particular from the proofs of
Lemma 2.2 that g2

c ≤ βc1σc, which implies that for all 0 < g ≤ gc and β ≥ βc1, we have that
0 < σg,β ≤ σc, with σg,β = g2β−1.

Let 0 ≤ |P | ≤ pc, 0 < g ≤ gc, βc1 ≤ β ≤ βc2. By rotation invariance, we can assume
that P = P3

−→ε3 . Before starting the proof we introduce a few more notations to simplify
expressions. Combining Lemmas 2.2–2.6, we can write

Fg,≥σ(P ) =(E0(P )− Eg,≥σ(P ))Π0,≥σ + g2d≥σ(P )Π0,≥σ + g2ΓB,#≥σ (P ) + Rem(g, P, β),

where d≥σ(P ) is the (scalar) bounded operator on Ran(Π0,≥σ) defined by

d≥σ(P ) :=−
∑
λ=1,2

(
ΓA,diag
≥σ (P, λ) + ΓB,diag

≥σ (P, λ)
)
,

and Rem(g, P, β) is a bounded operator on Ran(Π0,≥σ) satisfying

‖Rem(g, P, β)‖ . g2(β
1
2 + g + 2g

2
3 + 2g2) . g2ε

1
2 . (2.11)

Here we used that, by assumption, β and g are smaller than ε. We also introduce the operator

F (2) :=Fg,≥σ(P ) + Eg,≥σ(P )Π0,≥σ − Rem(g, P, β)

=
(
E0(P ) + g2d≥σ(P )

)
Π0,≥σ + g2ΓB,#≥σ (P ).

Identifying d≥σ(P ) with a scalar quantity, the lowest eigenvalue of F (2) is, according to Lemma
2.7, given by

e
(0)
≥σ(P ) := E0(P ) + g2(d≥σ(P ) + γ

(0)
≥σ(P )).

Moreover, it follows again from Lemma 2.7 that e(0)
≥σ(P ) is simple and that

Gap(F (2)) ≥ g2δ≥σ(P ) ≥ g2δ, (2.12)

on Ran(Π0,≥σ), where δ≥σ(P ) and δ > 0 are given by Remark 2.8 (2).
Let φ(0)

≥σ(P ) ∈ Ran(Π0,≥σ) denote a normalized eigenstate associated with the eigenvalue

e
(0)
≥σ(P ) of F (2).

Step 1 Let us prove that

e
(0)
≥σ(P ) ≥ Eg,≥σ(P )− g2δ

4
. (2.13)

Let ψ(0)
≥σ(P ) be the following trial state:

ψ
(0)
≥σ(P ) := φ

(0)
≥σ(P )−

[
K0,≥σ(P )− Eg,≥σ(P ) + Π̄0,≥σWg,≥σ(P )Π̄0,≥σ

]−1

Π̄0,≥σWg,≥σ(P )φ(0)
≥σ(P ).
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We observe that 〈ψ(0)
≥σ(P ), φ(0)

≥σ(P )〉 = 〈φ(0)
≥σ(P ), φ(0)

≥σ(P )〉 = 1. Proceeding as in the proof of
Lemma 2.2, using (2.6) and (2.7), we find that

‖ψ(0)
≥σ(P )− φ(0)

≥σ(P )‖ ≤ 4
√

2CWβ
1
2 . ε

1
2 , (2.14)

where we used that β1/2 ≤ ε1/2. Moreover, using the properties of the Feshbach operator, we
obtain that

Π0,≥σ
(
Kg,≥σ(P )− Eg,≥σ(P )

)
ψ

(0)
≥σ(P )

= Fg,≥σ(P )φ(0)
≥σ(P )

=
(
e

(0)
≥σ(P )− Eg,≥σ(P )

)
φ

(0)
≥σ(P ) + Rem(g, P, β)φ(0)

≥σ(P ),

and

Π̄0,≥σ
(
Kg,≥σ(P )− Eg,≥σ(P )

)
ψ

(0)
≥σ(P )

= Π̄0,≥σWg,≥σ(P )φ(0)
≥σ(P )− Π̄0,≥σWg,≥σ(P )φ(0)

≥σ(P ) = 0.

Therefore we deduce that

0 ≤
〈
ψ

(0)
≥σ(P ),

(
Kg,≥σ(P )− Eg,≥σ(P )

)
ψ

(0)
≥σ(P )

〉
= e

(0)
≥σ(P )− Eg,≥σ(P ) + 〈ψ(0)

≥σ(P ),Rem(g, P, β)φ(0)
≥σ(P )〉

≤ e(0)
≥σ(P )− Eg,≥σ(P ) + ‖ψ(0)

≥σ(P )‖‖Rem(g, P, β)‖

≤ e(0)
≥σ(P )− Eg,≥σ(P ) + Cg2ε

1
2 ,

where in the last inequality we used (2.14) and (2.11). Hence, choosing ε1/2 � δ, (2.13) is
proven.

Step 2 Let µ2 denote the second point above Eg,≥σ(P ) in the spectrum of Kg,≥σ(P ). The
min-max principle implies that

µ2 ≥ inf
ψ ∈ D(Kg,≥σ(P )), ‖ψ‖ = 1,

ψ ∈ [φ(0)
≥σ(P )]⊥

〈ψ,Kg,≥σ(P )ψ〉.

Now, for ψ as above, using inequality (2.3) of Lemma 2.2, we can write

〈ψ,Kg,≥σ(P )ψ〉 ≥ 〈ψ,Fg,≥σ(P )ψ〉+ Eg,≥σ(P )

≥ 〈ψ,F (2)ψ〉+ 〈ψ,Rem(g, P, β)ψ〉.

Since F (2)Π̄0,≥σ = 0 and since ψ ∈ [φ(0)
≥σ(P )]⊥, it follows from (2.12) that

〈ψ, F (2)ψ〉 ≥ (e(0)
≥σ(P ) + g2δ)‖Π0,≥σψ‖2 ≥ e(0)

≥σ(P ) + g2δ.

In the last inequality, we used that E0(P ) = P 2/2M + e0 = P 2/2M − µ/2 is negative for
|P | ≤ pc small enough, and hence that e(0)

≥σ(P ) + g2δ is also negative for g and |P | small
enough. Moreover, (2.11) yields

〈ψ,Rem(g, P, β)ψ〉 ≥ −Cg2ε
1
2 .
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Thus, applying Step 1, we obtain that

µ2 ≥ Eg,≥σ(P ) +
3
4
g2δ − Cg2ε

1
2 ≥ Eg,≥σ(P ) +

1
2
g2δ,

provided ε is small enough. Changing notations (δ/2→ δ), this implies the statement of the
theorem. �

3. Proof of Theorem 1.1

The main theorem of this section, which will allow us to prove Theorem 1.1, is the following.

Theorem 3.1. There exist gc > 0, pc > 0 and 0 < η ≤ 1/4 such that, for all 0 < g ≤ gc and
0 ≤ |P | ≤ pc, there exist σc > 0 such that for all 0 < σ ≤ σc,

Gap(g, P, σ, η) holds.

We need the following two lemmas before starting the proof of Theorem 3.1.

Lemma 3.2. Let gc > 0, σc > 0 and pc > 0 be fixed small enough and let 0 ≤ g ≤ gc, 0 ≤ σ ≤
σc and 0 ≤ |P | ≤ pc be such that Gap(g, P, σ, η) holds. Let Φg,≥σ(P ) be a normalized ground
state of Kg,≥σ(P ). For all 0 ≤ τ ≤ σ, Eg,≥σ(P ) is a simple eigenvalue of Hg,≥σ(P )|Hfib,≥τ

associated with the normalized ground state Φg,≥σ(P )⊗ Ω≤σ≥τ , and

Gap(Hg,≥σ(P )|Hfib,≥τ ) ≥ min(ησ,
τ

4
).

Proof. First, one can readily verifies that Φg,≥σ(P )⊗Ω≤σ≥τ is an eigenstate of Hg,≥σ(P )|Hfib,≥τ

associated with the eigenvalue Eg,≥σ(P ). Since

1Hfib,≥τ −
(
Πg,≥σ(P )⊗Π

Ω≤σ≥τ

)
=
(
1Hfib,≥σ −Πg,≥σ(P )

)
⊗Π

Ω≤σ≥τ

+ 1Hfib,≥σ ⊗
(
1H≤σph,≥τ

−Π
Ω≤σ≥τ

)
, (3.1)

and since 1H≤σph,≥τ
⊗Π

Ω≤σ≥τ
commutes with Hg,≥σ(P )|Hfib,≥τ , we have that

inf
ψ ∈ D(Hg,≥σ(P )|Hfib,≥τ ), ‖ψ‖ = 1,

ψ ∈ [Φg,≥σ(P )⊗ Ω≤σ≥τ ]⊥

〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉

≥ min
(

inf
ψ ∈ D(Hg,≥σ(P )|Hfib,≥τ ), ‖ψ‖ = 1,

ψ ∈ [Φg,≥σ(P )]⊥ ⊗ [Ω≤σ≥τ ]

〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉,

inf
ψ ∈ D(Hg,≥σ(P )|Hfib,≥τ ), ‖ψ‖ = 1,

ψ ∈ Hfib,≥σ ⊗ [Ω≤σ≥τ ]⊥

〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉
)
. (3.2)

The assumption that Gap(Kg,≥σ(P )) ≥ ησ yields that

inf
ψ ∈ D(Hg,≥σ(P )|Hfib,≥τ ), ‖ψ‖ = 1,

ψ ∈ [Φg,≥σ(P )]⊥ ⊗ [Ω≤σ≥τ ]

〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉 ≥ Eg,≥σ(P ) + ησ.

To estimate from below the second term in the right-hand-side of (3.2), we use the fact that
Hg,≥σ(P )|Hfib,≥τ commutes with the number operator 1Hfib,≥σ ⊗ N

≤σ
ph,≥τ (defined in (A.4)).
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We then consider ψ ∈ D(Hg,≥σ(P )|Hfib,≥τ ) such that ‖ψ‖ = 1 and 1Hfib,≥σ ⊗ N
≤σ
ph,≥τψ = nψ

with n ≥ 1. This state ψ may be seen as an element of L2({(k, λ), τ ≤ |k| ≤ σ};Hfib,≥σ ⊗
L2({(k, λ), τ ≤ |k| ≤ σ}n−1)), and we have that

〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉

=
∑
λ=1,2

∫
τ≤|k|≤σ

〈(
ψ(k, λ), Hg,≥σ(P − k)|Hfib,≥σ⊗L2({(k,λ),τ≤|k|≤σ}n−1) + |k|

)
ψ(k, λ)

〉
dk

≥ inf
τ≤|k|≤σ

(
Eg,≥σ(P − k) + |k|

)
≥ Eg,≥σ(P ) +

τ

4
,

where the last inequality is a consequence of Lemma A.2. Therefore we obtain that

inf
ψ ∈ D(Hg,≥σ(P )|Hfib,≥τ ), ‖ψ‖ = 1,

ψ ∈ Hfib,≥σ ⊗ [Ω≤σ≥τ ]⊥

〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉 ≥ Eg,≥σ(P ) +
τ

4
,

which concludes the proof of the lemma. �

Lemma 3.3. There exists pc > 0 such that, for all η and κ such that 0 < 4η ≤ κ < 1, there
exists gc > 0 such that, for all 0 ≤ g ≤ gc, 0 ≤ |P | ≤ pc and σ > 0

Gap(g, P, σ, η)⇒ Gap(g, P, κσ, η).

Proof. Assume that Gap(g, P, σ, η) is satisfied for some σ > 0. Let Φg,≥σ(P ) be a ground
state of Kg,≥σ(P ). Let τ = κσ and let µ2 denote the first point above Eg,≥τ (P ) in the
spectrum of Kg,≥τ (P ). By the min-max principle,

µ2 ≥ inf
ψ ∈ D(Kg,≥τ (P )), ‖ψ‖ = 1
ψ ∈ [Φg,≥σ(P )⊗ Ω≤σ≥τ ]⊥

〈ψ,Kg,≥τ (P )ψ〉,

where [Φg,≥σ(P )⊗Ω≤σ≥τ ]⊥ denotes the orthogonal complement of the vector space spanned by
Φg,≥σ(P )⊗Ω≤σ≥τ in Hfib,≥σ⊗H≤σph,≥τ ' Hfib,≥τ . It follows from Lemma A.8 that for any ρ > 0,

〈ψ,Kg,≥τ (P )ψ〉 = 〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉+ 〈ψ,W≤σg,≥τ (P )ψ〉

≥
[
1− CW gσ

1/2ρ−1/2
]
〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉

+ CW gσ
1/2ρ−1/2Eg,≥σ(P )− CW gσ

1/2ρ1/2.

Next, by Gap(g, P, σ, η), Lemma 3.2 and the fact that τ = κσ ≥ 4ησ, we obtain that for any
ψ in [Φg,≥σ(P )⊗ Ω≤σ≥τ ]⊥, ‖ψ‖ = 1,

〈ψ,Hg,≥σ(P )|Hfib,≥τψ〉 ≥ Eg,≥σ(P ) + ησ,

provided that g is sufficiently small. Hence for any ρ > 0 such that ρ1/2 > CW gσ
1/2,

〈ψ,Kg,≥τ (P )ψ〉 ≥ Eg,≥σ(P ) +
[
1− CW gσ

1/2ρ−1/2
]
ησ − CW gσ

1/2ρ1/2.

Choosing ρ1/2 = 2(1− κ)−1CW gσ
1/2 and using Lemma A.6, we get

〈ψ,Kg,≥τ (P )ψ〉 ≥ Eg,≥σ(P ) +
1 + κ

2
ησ − 2(1− κ)−1C2

W g
2σ

≥ Eg,≥τ (P ) + ητ +
1− κ

2
ησ − 2(1− κ)−1C2

W g
2σ.
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Hence µ2 ≥ Eg,≥τ (P )+ητ provided that g2 ≤ (4C2
W )−1(1−κ)2η, which proves the lemma. �

Let us now prove Theorem 3.1.

Proof of Theorem 3.1. Let pc be the minimum of the pc’s given by Theorem 2.1 and Lemma
3.3. Let βc2 and δ be given by Theorem 2.1. Note that, possibly by considering a smaller
βc2, we can assume that 4δ < β−1

c2 . Fix βc1 such that 0 < βc1 < βc2. Let η := δβc1 and
κ := βc1β

−1
c2 . In particular we have that 0 < 4η ≤ κ < 1. Let gc be the minimum of the gc’s

given by Theorem 2.1 and Lemma 3.3.
Let 0 < g ≤ gc and 0 ≤ |P | ≤ pc. By rotation invariance, we can assume that P = P3

−→ε3 .
Let σc := g2β−1

c1 . By Theorem 2.1, we know that, for all σ such that g2β−1
c2 ≤ σ ≤ g2β−1

c1 ,
Gap(g, P, σ, η) holds. Using Lemma 3.3, this implies that, for all σ such that g2β−1

c2 ≤
σ ≤ g2β−1

c1 and for all n ∈ N0, Gap(g, P, κnσ, η) holds. Since κ = βc1β
−1
c2 , we deduce that

Gap(g, P, σ, η) is satisfied for all 0 < σ ≤ g2β−1
c1 , which concludes the proof of the theorem.

We are now able to prove the main theorem of this paper.

Proof of Theorem 1.1. Let gc > 0, pc > 0 and 0 < η ≤ 1/4 be given by Theorem 3.1 and let
CW be given by Lemma A.8. Let 0 < g ≤ gc and 0 ≤ |P | ≤ pc. By rotation invariance, we
can assume without loss of generality that P = P3

−→ε3 . Let σc > 0 be given by Theorem 3.1.
For 0 < σ ≤ σc, let Φg,≥σ(P ) denote a normalized ground state of Kg,≥σ(P ). Recall

from Lemma 3.2 that Φg,≥σ(P ) ⊗ Ω≤σ is then a normalized ground state of Hg,≥σ(P ). By
the Banach-Alaoglu theorem, there exists a sequence (Φg,≥σn(P )⊗Ω≤σn)n∈N which converges
weakly as n→∞, with 0 < σn ≤ min(σc, 1) and σn → 0. Let Φg(P ) denote the corresponding
limit. One easily verifies that Hg(P )Φg(P ) = Eg(P )Φg(P ). To prove that Φg(P ) 6= 0, we
decompose

1 = 〈Φg,≥σn(P )⊗ Ω≤σn ,Φg,≥σn(P )⊗ Ω≤σn〉
= 〈Φg,≥σn(P )⊗ Ω≤σn ,

(
(1C4 ⊗ π0 ⊗ΠΩ≥σn

)Φg,≥σn(P )
)
⊗ Ω≤σn〉

+ 〈Φg,≥σn(P )⊗ Ω≤σn ,
(
(1C4 ⊗ π̄0 ⊗ΠΩ≥σn

)Φg,≥σn(P )
)
⊗ Ω≤σn〉

+ 〈Φg,≥σn(P )⊗ Ω≤σn ,
(
(1C4 ⊗ 1L2(R3) ⊗ Π̄Ω≥σn

)Φg,≥σn(P )
)
⊗ Ω≤σn〉.

By Lemma A.9, the second term in the r.h.s. is bounded by O(g2). Likewise, since Π̄Ω≥σn
≤

Nph,≥σnΠ̄Ω≥σn
, Lemma A.3 implies that the last term in the r.h.s. is also bounded by O(g2).

Letting αj , j = 1, . . . , 4, denote an orthonormal basis of C4, and taking the limit n→∞, we
deduce that ∑

j=1,...,4

∣∣〈Φg(P ), αj ⊗ φ0 ⊗ Ω〉|2 ≥ 1−O(g2).

Hence Φg(P ) 6= 0, and it follows that Φg(P ) is a normalized ground state of Hg(P ).
In order to prove Theorem 1.1, it now suffices to follow [5]. Assume by contradiction that

there exists another normalized ground state, say Φ′g(P ), such that 〈Φg(P ),Φ′g(P )〉 = 0. We
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write∣∣〈Φg(P ),Φ′g(P )〉
∣∣2 = lim

n→∞

∣∣〈Φg,≥σn(P )⊗ Ω≤σn ,Φ′g(P )〉
∣∣2

= lim
n→∞

〈
Φ′g(P ),1{Eg,≥σn (P )}(Hg,≥σn(P ))Φ′g(P )

〉
= 1− lim

n→∞

〈
Φ′g(P ), (1Hfib

− 1{Eg,≥σn (P )}(Hg,≥σn(P )))Φ′g(P )
〉
. (3.3)

Notice that, in the second equality, we used the fact that, by Theorem 3.1 and Lemma 3.2,
Eg,≥σn(P ) is a simple eigenvalue of Hg,≥σn(P ). We decompose

1Hfib
− 1{Eg,≥σn (P )}(Hg,≥σn(P )) =(1Hfib,≥σn

− 1{Eg,≥σn (P )}(Kg,≥σn(P )))⊗ΠΩ≤σn

+ 1Hfib,≥σn
⊗ (1H≤σnph

−ΠΩ≤σn ), (3.4)

and use that, by Lemma A.4,〈
Φ′g(P ),1Hfib,≥σn

⊗ (1H≤σnph
−ΠΩ≤σn )Φ′g(P )

〉
≤
〈
Φ′g(P ),N≤σnph Φ′g(P )

〉
. g2σ2

n . g
2. (3.5)

On the other hand, by Theorem 3.1, we can write〈
Φ′g(P ), (1Hfib,≥σn

− 1{Eg,≥σn (P )}(Kg,≥σn(P )))⊗ΠΩ≤σnΦ′g(P )
〉

≤ 1
ησn

〈
Φ′g(P ), (Kg,≥σn(P )− Eg,≥σn(P ))⊗ΠΩ≤σnΦ′g(P )

〉
=

1
ησn

〈
Φ′g(P ), (Hg,≥σn(P )− Eg,≥σn(P ))(1⊗ΠΩ≤σn )Φ′g(P )

〉
≤ 1
ησn

〈
Φ′g(P ), (Hg,≥σn(P )− Eg,≥σn(P ))Φ′g(P )

〉
=

1
ησn

〈
Φ′g(P ), (Eg(P )− Eg,≥σn(P )−W≤σng (P ))Φ′g(P )

〉
,

where in the last equality we used that (Hg(P ) − Eg(P ))Φ′g(P ) = 0 and that Hg(P ) =
Hg,≥σn(P ) +W≤σng (P ). By Lemmas A.6 and A.8, this implies that〈

Φ′g(P ), (1Hfib,≥σn − 1{Eg,≥σn (P )}(Kg,≥σn(P )))⊗ΠΩ≤σnΦ′g(P )
〉
≤ Cg2σn

η
+

CW g

η
. g, (3.6)

since σn ≤ 1. Combining (3.4), (3.5) and (3.6), we obtain that, for g small enough, (3.3) > 0,
which is a contradiction. Hence the theorem is proven. �

Appendix A. Known results and standard estimates

This appendix contains several already known results and fairly standard estimates which
were used above.

Lemma A.1. For all 0 ≤ |P | < M , and σ ≥ 0, we have that

K0,≥σ(P )− E0(P ) ≥
(
1− |P |

M

)
Hph,≥σ. (A.1)

Moreover, the spectrum of K0,≥σ(P ) satisfies

spec(K0,≥σ(P )) ⊆
{
E0(P )

}
∪
[
E0(P ) +

(
1− |P |

M

)
σ,+∞), (A.2)
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and

dim Ker
(
K0,≥σ(P )− E0(P )

)
= 4. (A.3)

Proof. Recall that

K0,≥σ(P ) = Hr +
P 2

2M
− 1
M
P · Pph,≥σ +

1
2M

P 2
ph,≥σ +Hph,≥σ,

on the Hilbert space Hfib,≥σ. For Φ ∈ D(K0,≥σ(P )), we have that

|〈Φ, P · Pph,≥σΦ〉| ≤ |P |〈Φ, Hph,≥σΦ〉.
Therefore,

K0,≥σ(P ) ≥ e0 +
P 2

2M
+
(
1− |P |

M

)
Hph,≥σ,

which proves (A.1).
In order to prove (A.2) and (A.3), it suffices to observe that

K0,≥σ(P )(y ⊗ φ0 ⊗ Ω≥σ) = E0(P )(y ⊗ φ0 ⊗ Ω≥σ),

for any y ∈ C4, and that, by (A.1), if ψ ∈ D(K0,≥σ(P )) satisfies ‖ψ‖ = 1 and 〈ψ, (y ⊗ φ0 ⊗
Ω≥σ)〉 = 0 for all y ∈ C4, then

〈ψ, (K0,≥σ(P )− E0(P ))ψ〉 ≥
(
1− |P |

M

)
σ.

Hence the lemma follows. �

The next result is proven in [3, Lemma 4.3]. This type of inequality is an important
ingredient in the proof of the existence of a ground state for translation invariant models in
non-relativistic QED (see e.g. [11, 22, 3, 20]).

Lemma A.2. There exist gc > 0, pc > 0 and σc > 0 such that, for all 0 ≤ g ≤ gc,
0 ≤ |P | ≤ pc, 0 ≤ σ ≤ σc and k ∈ R3,

Eg,≥σ(P − k)− Eg,≥σ(P ) ≥ −3
4
|k|.

The number operator of particles of energies ≥ σ is defined by

Nph,≥σ :=
∑
λ=1,2

∫
|k|≥σ

a∗λ(k)aλ(k)dk.

The following two lemmas are easy generalizations of [3, Lemma 4.5] based on the combination
of a pull-through formula together with a Pauli-Fierz transformation (see also [6, 14]). We
do not recall the proofs.

Lemma A.3. There exist gc > 0, pc > 0 and σc > 0 such that, for all 0 ≤ g ≤ gc, 0 ≤ |P | ≤ pc
and 0 ≤ σ ≤ σc, Ker(Kg,≥σ(P ) − Eg,≥σ(P )) ⊂ D(N 1/2

ph,≥σ), and the following holds: For all
Φg,≥σ(P ) ∈ Ker(Kg,≥σ(P )− Eg,≥σ(P )), ‖Φg,≥σ(P )‖ = 1, we have that

〈Φg,≥σ(P ),Nph,≥σΦg,≥σ(P )〉 . g2.

In the next lemma, we use the notation

N≤σph,≥τ :=
∑
λ=1,2

∫
τ≤|k|≤σ

a∗λ(k)aλ(k)dk. (A.4)
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Lemma A.4. There exist gc > 0, pc > 0 and σc > 0 such that, for all 0 ≤ g ≤ gc, 0 ≤ |P | ≤ pc
and 0 ≤ τ ≤ σ ≤ σc, Ker(Kg,≥τ (P ) − Eg,≥τ (P )) ⊂ D((N≤σph,≥τ )1/2), and the following holds:
For all Φg,≥τ (P ) ∈ Ker(Kg,≥τ (P )− Eg,≥τ (P )), ‖Φg,≥τ (P )‖ = 1, we have that

〈Φg,≥τ (P ),N≤σph,≥τΦg,≥τ (P )〉 . g2σ2.

The next lemma is proven in the same way as Lemma A.6 in [1]. We do not reproduce the
proof here.

Lemma A.5. There exist gc > 0, pc > 0, σc > 0 and C0 > 0 such that, for all 0 ≤ g ≤ gc,
0 ≤ |P | ≤ pc, and 0 ≤ σ ≤ σc,

Eg,≥σ(P ) ≤ E0(P ) ≤ Eg,≥σ(P ) + C0g
2.

Similarly we have the following:

Lemma A.6. There exist gc > 0, pc > 0, σc > 0 and C0 > 0 such that, for all 0 ≤ g ≤ gc,
0 ≤ |P | ≤ pc, and 0 ≤ τ ≤ σ ≤ σc,

Eg,≥τ (P ) ≤ Eg,≥σ(P ) ≤ Eg,≥τ (P ) + C0g
2σ2. (A.5)

Proof. Again, the proof is similar to the one of Lemma A.6 in [1]. We only sketch the main
differences here. Recall that

Kg,≥τ (P ) = Hg,≥σ(P )|Hfib,≥τ +W≤σg,≥τ (P ), (A.6)

in Hfib,≥τ , where W≤σg,≥τ (P ) is given in (1.11). By Lemma 3.2,

Hg,≥σ(P )|Hfib,≥τ

(
Φg,≥σ(P )⊗ Ω≤σ≥τ

)
= Eg,≥σ(P )Φg,≥σ(P )⊗ Ω≤σ≥τ .

Thus, the first inequality in (A.5) follows from

Eg,≥τ (P ) ≤
〈
Φg,≥σ(P )⊗ Ω≤σ≥τ ,Kg,≥τ (P )Φg,≥σ(P )⊗ Ω≤σ≥τ

〉
= Eg,≥σ(P ),

since W≤σg,≥τ (P ) is Wick ordered.
In order to prove the second inequality in (A.5), we use that, by (A.6),

Eg,≥σ(P ) ≤
〈
Φg,≥τ (P ), Hg,≥σ(P )|Hfib,≥τΦg,≥τ (P )

〉
≤ Eg,≥τ (P )−

〈
Φg,≥τ (P ),W≤σg,≥τ (P )Φg,≥τ (P )

〉
.

Decomposing W≤σg,≥τ (P ) into its expression (1.11) and estimating each term separately, we are
able to conclude the proof thanks to Lemma A.4. �

The next two lemmas are proven in the same way as Lemma A.8 in [1].

Lemma A.7. There exist gc > 0, pc > 0, σc > 0 and CW > 0 such that, for all 0 ≤ g ≤ gc,
0 ≤ |P | ≤ pc, 0 ≤ σ ≤ σc and 0 < ρ < 1, the following holds:∥∥[K0,≥σ(P )− E0(P ) + ρ]−

1
2Wg,≥σ(P )[K0,≥σ(P )− E0(P ) + ρ]−

1
2

∥∥ ≤ CW gρ
− 1

2 .

Lemma A.8. There exist gc > 0, pc > 0, σc > 0 and CW > 0 such that, for all 0 ≤ g ≤ gc,
0 ≤ |P | ≤ pc, 0 ≤ τ ≤ σ ≤ σc and 0 < ρ < 1, the following holds:∥∥[Hg,≥σ(P )|Hfib,≥τ − Eg,≥σ(P ) + ρ]−

1
2W≤σg,≥τ (P )[Hg,≥σ(P )|Hfib,≥τ − Eg,≥σ(P ) + ρ]−

1
2

∥∥
≤ CW gσ

1
2 ρ−

1
2 .
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The next lemma is an easy consequence of Lemma A.3. It follows in the same way as [1,
Lemma A.7].

Lemma A.9. There exist gc > 0, pc > 0 and σc > 0 such that, for all 0 ≤ |g| ≤ gc, 0 ≤
|P | ≤ pc and 0 ≤ σ ≤ σc, the following holds: for all Φg,≥σ(P ) ∈ Ker(Kg,≥σ(P )−Eg,≥σ(P )),
‖Φg,≥σ(P )‖ = 1, we have that

〈Φg,≥σ(P ), (1C4 ⊗ π̄0 ⊗ΠΩ≥σ)Φg,≥σ(P )〉 . g2. (A.7)

We conclude with two easy lemmas concerning Pauli matrices. Their proofs are left to the
reader.

Lemma A.10. Let a = (a1, a2, a3) denote a 3-vector of complex numbers. We have that

(a · σel)(a · σel) = a2
1 + a2

2 + a2
3 = (a · σn)(a · σn).

Lemma A.11. Let a = (a1, a2, a3) denote a 3-vector of complex numbers. The eigenvalues
of the 4× 4 matrix a1σ

el
1 σ

n
1 + a2σ

el
2 σ

n
2 + a3σ

el
3 σ

n
3 are the following:

a1 + a2 − a3, a1 − a2 + a3, −a1 + a2 + a3, −a1 − a2 − a3.
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2. L. Amour, J. Faupin, B. Grébert and J.-C. Guillot, On the infrared problem for the dressed non-relativistic
electron in a magnetic field, In Spectral and Scattering Theory for Quantum Magnetic Systems, vol. 500
of Contemp. Math., Amer. Math. Soc., Providence, RI, (2009), 1–24.
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