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Abstract. Let α = −2+
√
−1 be a root of the polynomial p(x) = x2 +4x+5. It is well-known

that the pair (α, {0, 1, 2, 3, 4}) forms a canonical number system, i.e., that each γ ∈ Z[α] admits
a finite representation of the shape γ = a0 + a1α + · · · + a`α

` with ai ∈ {0, 1, 2, 3, 4}. The set
T of points with integer part 0 in this number system

T :=

{
∞∑

i=1

aiα
−i, ai ∈ {0, 1, 2, 3, 4}

}

is called the fundamental domain of this canonical number system. It is a plane continuum with
nonempty interior which induces a tiling of C. Moreover, it has a disconnected interior T o. In
the first paper of this series we described the closures C0, C1, C2 and C3 of the four largest
components of T o as attractors of graph-directed self-similar sets. Each of these four sets is a
translation of C0. We conjectured that the closures of the other components are images of C0

by similarity transformations. In this article we prove this conjecture. Moreover, we provide a
graph from which the suitable similarities can be read off.

1. Introduction and statement of the main result

We study topological properties of a plane self-similar tile with disconnected interior. In partic-
ular, we describe the connected components of its interior (see Figure 1). In a first paper [18], the
closure C0 of the component containing the origin was described by a graph-directed construction.
We now obtain all the other components: they are images of C0 by similarity transformations that
can be read off from a graph. Although we deal with a single example in the present work, we are
confident that our method may be used for whole families of self-similar sets, such as classes of
tiles associated to quadratic canonical number systems (the example in this paper is a tile related
to this kind of number systems).

1.1. The tile T . We first give the definition of the tile T that forms the main object of this
paper. It is known (see [10, 15, 16]) that the root α = −2 +

√
−1 of the polynomial x2 + 4x+ 5

together with N := {0, 1, 2, 3, 4} gives rise to a canonical number system (or CNS ) (α,N ), i.e.,
each element γ ∈ Z[α] has a unique representation

γ =

`(γ)
∑

i=0

aiα
i

for some non-negative integer `(γ) and ai ∈ N with a`(γ) 6= 0 for γ 6= 0. In the natural embedding

Φ : C → R2

γ 7→ (<(γ),=(γ))

the multiplication by α can be represented by the 2× 2 matrix

A :=

(
−2 −1
1 −2

)

,
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Figure 1. Closure of some inner components of the self similar tile T .

i.e., for every z ∈ C,

Φ(αz) = AΦ(z).

In these notations, the contractions

(1.1) ψi(z) = A−1 (z + Φ(i)) , z ∈ R
2 (0 ≤ i ≤ 4)

form an iterated function system whose attractor

(1.2) T =

4⋃

i=0

ψi(T )

is a tile. Indeed, it is a self-similar connected compact set (or continuum) which is equal to the
closure of its interior (see [14]). It induces a tiling of the plane by its translates. Remember
that a tiling (cf. [12, 27]) of the plane is a decomposition of R2 into sets whose interiors are
pairwise disjoint (or non-overlapping sets), each set being the closure of its interior and having a
boundary of Lebesgue measure zero. Properties of tiles and tilings can be found for instance in
[4, 8, 17, 25, 28]. It was shown in [14] that the family of sets

(1.3) {T + Φ(ω), ω ∈ Z[α]}
is a tiling of the plane. For the special case of tiles related to canonical number systems, we refer
to [6, 7, 15, 16] and to the survey [1]. Finally, among many topological results, it is shown in [2]
that our tile T has disconnected interior. Ngai and Tang proved in [22] that the closure of each
of its interior components is homeomorphic to a closed disk.

Our purpose is to describe the closure of all the connected components of T o in terms of the
natural subdivisions of T , which are defined as follows. Let w be a finite digit string, that is
w = (a1, . . . , an) with n ∈ N and ai ∈ N . If w is empty, we write w = ε. The integer n is then
called the length of the string w (we write |w| = n, |ε| = 0). For a finite string w = (a1, . . . , an)
we define the mapping ψw by

(1.4) ψw(z) := ψa1 ◦ . . . ◦ ψan
(z) = A−nz +

n∑

i=1

A−iΦ(ai), z ∈ R
2.
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We add the convention ψε = id, the identity mapping of R2. If |w| = n the set ψw(T ) is called an
n-th level subpiece of T .

Iterating (1.2) we have for every n ≥ 1 the subdivision principle

(1.5) T =
⋃

w,|w|=n

ψw(T ).

We finally remark that the set T consists of the points of integer part zero in the canonical
number system (α,N ) embedded into the plane:

(1.6) T :=

{
∞∑

i=1

Φ(α−iai), (ai)i∈N ∈ NN

}

=

{
∞∑

i=1

A−iΦ(ai), (ai)i∈N ∈ NN

}

.

Thus each point of this set can be represented by an infinite string w = (a1, a2, a3, . . .) with
ai ∈ N . This representation is not always unique.

1.2. Graphs Gd and pregraph P. The closures of the four biggest components of T o, i.e., the
sets C0, C1, C2 and C3 which can be seen in Figure 1 were computed in [18]. Their description
relies on the graphs Gd (d = 0, 1, 2, 3) depicted in Figure 2. For the so-called accepting state ◦
in Gd, there is by convention an edge ◦ a−→ ◦ for every a ∈ N . In particular, Cd is the set of all
x =

∑

i≥1 A−iai such that w = (a1, a2, . . .) is a labeling of a walk in Gd starting at Fd. In other
words, Cd is the attractor of the graph-directed self-similar set associated to the state Fd of Gd.

The sets C0, C1, C2 and C3 (which are translates of each other) can be used to describe all the
components of T o. Indeed, we will show that the closure of any component is of the form ψw(Cd),
where w is a certain finite walk in the pregraph P . This pregraph is depicted in Figure 3. To
avoid too many crossings in the drawing of the graph, the node GG′ at the top was duplicated
(somewhat shaded) at the bottom of the figure. Thus GG′ can be also reached from N1 and N ′

1 by
an edge with the label 2. The states S,G1, G

′
1, I1, I

′
1 are called transition states. They will connect

the pregraph P to the graphs Gd (d = 0, 1, 2, 3). We will dwell on this more precisely later.

The graphs Gd (d = 0, 1, 2, 3) and P are right resolving, i.e., each walk is uniquely defined by
its starting state together with its labeling. Note that the graph P and the graphs Gd have a
similar structure. The main differences are the following. In P outgoing edges have been added to
those states which correspond to states in Gd that do not accept all letters {0, 1, 2, 3, 4} on their
outgoing edges. Moreover the accepting state was removed in P . Thus, in some way, P and Gd

(0 ≤ d ≤ 3) complement each other.

1.3. Graph notations. We will need the following notations related to our graphs. Let H ∈
{P ,G0,G1,G2,G3}. A walk w in H is a sequence of edges

Z1
a1−→ Z2

a2−→ . . .
an−−→ Zn+1,

where n is an integer, and, for each i, Zi is a state of H and ai ∈ N . We say that w starts at
Z1 and ends at Zn+1. Since H is right resolving, we will write w = (Z; a1, . . . , an) for a walk w
starting in Z with labeling (a1, . . . , an). If we emphasize on the labeling (a1, . . . , an) of a walk w
we will just write w = (a1, . . . , an). For subsets of the walks in H we adopt the following notations:

H(Z1) set of walks in H starting at node Z1,
H(Z1, Z2) set of walks in H(Z1) ending at node Z2.

If w is a walk in H with labeling (a1, . . . , an), then we denote the walk which corresponds to
w in the transposed graph HT by wT (backwards walk). Its labeling is obviously (an, . . . , a1). If
w1 and w2 are two walks in H and w2 starts at the ending state of w1, then we write w1&w2

for the concatenation of these two walks. If we concatenate w1 = (Z1; a1, . . . , an) and w2 =
(Z2; b1, . . . , bm) we will often write (Z1, a1, . . . an)&(b1, . . . , bm) because the starting state of w2 is
defined via w1. For a walk w of length n and k ≤ n we denote by w|k the prefix of w consisting
of the first k edges of w, i.e., (a1, . . . , an)|k = (a1, . . . , ak).
If Z is a state of H, we call Z ′ its dual. By convention the states S,GG′, Fd, and ◦ are equal to
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Figure 2. Graph Gd of the closure of the interior component of T containing dα−1.

their dual, and Z ′′ = Z for all the other states of H. Note that in H every edge Z1
a−→ Z2 with

Z1 6= Fd has a dual edge Z ′
1

4−a−−→ Z ′
2.

1.4. Main result. As mentioned above, in [18] it was proved that the graph Gd (d = 0, 1, 2, 3)
describes the closure of the inner component containing dα−1 in the following sense:

Cd =
⋃

w∈Gd(Fd,◦)

ψw(T ).

The component Cd differs from C0 by the translation Φ(dα−1). Remember that in [22] it is
shown that they are topological disks. We use these four sets to describe all the other components,
as stated in Theorem 1.2 below.

Definition 1.1. In P , we call

• S a d-ending state for d ∈ {0, 1, 2, 3},
• G1 a d-ending state for d ∈ {2, 3},
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Figure 3. Pregraph P for the closure of the interior components of T .
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• G′
1 a d-ending state for d ∈ {0, 1},

• I1 a d-ending state for d ∈ {0},
• I ′1 a d-ending state for d ∈ {3}.

Moreover, if a walk w ∈ P(S) ends at a d-ending state, we call it a d-ending walk.

Hence each transition state is a d-ending state for one, two or four values of d. Also, the empty
walk w = ε is a d-ending walk for all values of d.

Theorem 1.2. Let w be a finite string of digits and d ∈ {0, 1, 2, 3}. Then C is the closure of a

component of T o if and only if it is of the form C = ψw(Cd) such that w ∈ P(S) is a d-ending

walk. In particular, the closure of each component of T o is a similar image of C0.

We will divide the proof in two parts. The result of Section 2 (Proposition 2.1) will be used to
prove that the tile T is covered by the closure of the union of the sets ψw(Cd) with the property
that w is a d-ending walk. In Section 3, we will prove that each piece ψw(Cd) is indeed the closure
of an inner component of T . To this matter, we will show that the boundary of such a piece is a
subset of the boundary of T . In the last section, we finish the proof of Theorem 1.2.

2. A cover of the tile T

The result of this section will be used to show that the closure of the union of the sets ψw(Cd)
such that w is a d-ending walk equals the tile T , i.e.,

T =
⋃

w is a
d-ending walk

ψw(Cd).

Obviously, P(S) does not recognize the full shift. We denote by P◦ the extension of P obtained
as follows. The states of P◦ are the states of P together with the accepting state ◦. The edges of

P◦ are the edges of P together with the edges Z
a−→ ◦ if Z

a−→ is not in P . Also, as before, there is

an edge ◦ a−→ ◦ in P◦ for all a ∈ N . Now P◦(S) recognizes the full shift.

In the sequel, the notations of Subsection 1.3 will be used for H = P◦ also. Moreover, we will
need the set of walks (P&Gd)(S, ◦), which we define to be the set of walks w&w′, where w is
d-ending walk of P(S) and w′ is a walk of Gd(Fd, ◦).

We will prove the following proposition.

Proposition 2.1. Let w be a walk in P◦(S, ◦). Then w ∈ (P&Gd)(S, ◦) for some d ∈ {0, 1, 2, 3}.

Before we start with the proof we give an example in order to illustrate what is going on in the
proof.

Example 2.2. Consider w = (S; 1, 1, 4, 1, 2, 2, 4, 0, 4, 4, 4), which is a walk in P◦(S, ◦):

S
1−→ GG′ 1−→ H ′

1
4−→ I1

1−→ N1
2−→ GG′ 2−→ GG′ 4−→ I1

0−→ G1
4−→ G′

1
4−→ I1

4−→ ◦.
We choose d such that Gd(Fd) reads the maximal number of digits of w before it gets stuck, if
ever. Trying out the four possibilities shows that there is exactly one choice, which is d = 1 :

F1
(1,1,4,1,2,2)−−−−−−−→ G

exists in G1(F1) after which the walk gets stuck as there is no edge G
4−→ in G1(F1). We look back

for the last transition state passed through in P◦ :

S
(1,1,4)−−−−→ I1,
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and write w = (1, 1, 4)&(1, 2, 2, 4, 0, 4, 4, 4). The last transition state passed through, I1, is an
e-ending state for the value e = 0 only. Hence, now we check if the remaining walk w1 =
(1, 2, 2, 4, 0, 4, 4, 4) is accepted by G0(F0). We see that this walk leads from F0 to I , in particular

F0
(1,2,2,4)−−−−−→ I.

where w1 gets stuck, but one more digit (the digit 4) could be read than in our first trial. Moreover,
one more transition state was passed through in P◦. It is again I1 :

S
(1,1,4)−−−−→ I1

(1,2,2,4)−−−−−→ I1,

an e-ending state for e = 0 only. Writing w = (1, 1, 4, 1, 2, 2, 4)&(0, 4, 4, 4), we feed G0(F0) with
w2 = (0, 4, 4, 4):

F0
0−→ G,

and w2 gets stuck, but again one more digit (the digit 0) could be read than in the situation
before. In P◦, we now reached one more transition state; it is G1:

S
(1,1,4)−−−−→ I1

(1,2,2,4)−−−−−→ I1
0−→ G1,

which is an e-ending state for e ∈ {2, 3}. We choose between G2(F2) and G3(F3) the graph that
reads the maximal number of digits of w3 = (4, 4, 4) : it is G3(F3) (in this example, G2(F2) reads
in fact no digit of w3). Now G3(F3) accepts w3. Indeed

F3
(4,4,4)−−−−→ ◦

is a walk in G3(F3) and we are done : w = v&v′ with v = (1, 1, 4, 1, 2, 2, 4, 0) and v′ = (4, 4, 4),
where v is a 3-ending walk in P and v′ is a walk of G3(F3, ◦). Thus w ∈ (P&G3)(S, ◦).

The following proof of Proposition 2.1 follows the lines of the example. We start with a walk w
in P◦(S, ◦) and scan its transition states as long as we arrive at a point where this transition state
leads to a decomposition w = v&v′ such that v′ is readable by a suitable graph Gd(Fd). To this
matter we need to show that the algorithm outlined in the example always terminates properly.

Proof of Proposition 2.1. Let w = (a1, a2, . . . , an) be a walk in P◦(S, ◦) : S
w−→ ◦. Two cases can

occur.

(1) w is accepted by Gd(Fd) for some d ∈ {0, 1, 2, 3}.
(2) For each d ∈ {0, 1, 2, 3}, w is not accepted by Gd(Fd). Each Gd(Fd) accepts a prefix of w

of length pd − 1 say, i.e., the letter with index pd is the first one which is not accepted by
Gd(Fd). We choose a d with pd = max0≤e≤3 pe (we will see that this choice is unique).

In case (1), w is accepted by Gd(Fd, ◦), and taking v = ε, v′ = w, we have w = v&v′ where v is
a d-ending walk of P(S) and v′ is a walk of Gd(Fd, ◦). Thus w ∈ (P&Gd)(S, ◦).

In case (2), let us write w in the form

w = (a1, 2, 2, . . . , 2, ak0+2, . . . , an)

with ak0+2 6= 2 (k0 = 0 is not excluded). If a1 = 0 (or 4), then the unique choice will be d = 0 (or 3),
and pd ≥ k0+2. If a1 = 1, 2 or 3, then the unique choice for d (leading to pd ≥ k0+3) will be made

according to the parity of k0. This is because in Gd we have the edges Fa1

a1−→ G↔2 G′ a1←− Fa1−1.
Moreover, the outgoing edges of G and G′ are labelled with 0, 1, 2 and 2, 3, 4, respectively. Hence,
the element d ∈ {0, 1, 2, 3} with pd = max0≤e≤3 pe is uniquely determined also in this case. We
set p := pd.

The walk w gets stuck in Gd(Fd) after reading the prefix w|p−1. At this stage the graph Gd(Fd)
must rest in a state which does not have an outgoing edge for some a ∈ N . Thus it must rest
in one of the states contained in the set {G,G′, I, I ′, N,N ′}. We want to know what happens in
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P◦(S) when reading w|p. As the structures of Gd(Fd) and P◦(S) are very similar to each other,
by inspecting both graphs we easily see that one of the following possibilities must hold :

S
w|p−1−−−−→ G1

wp∈{3,4}−−−−−−→ . . .

S
w|p−1−−−−→ G′

1

wp∈{0,1}−−−−−−→ . . .

S
w|p−1−−−−→ I1

wp=0−−−→ . . .

S
w|p−1−−−−→ I ′1

wp=4−−−→ . . .

S
w|p−2−−−−→ I1

1−→ N1
wp∈{3,4}−−−−−−→ . . .

S
w|p−2−−−−→ I ′1

3−→ N ′
1

wp∈{0,1}−−−−−−→ . . .

As P◦(S) also contains the state GG′ the following additional possibilities can occur

S
w|p−k1−1−−−−−−→ G1

2−→ GG′ 2−→ . . .
2−→ GG′ wp 6=2−−−→ . . . ,

S
w|p−k1−2−−−−−−→ I1

1−→ N1
2−→ GG′ 2−→ . . .

2−→ GG′ wp 6=2−−−→ . . . ,

where either k1 is even and wp ∈ {0, 1}, or k1 is odd and wp ∈ {3, 4}, and finally

S
w|p−k1−1−−−−−−→ G′

1
2−→ GG′ 2−→ . . .

2−→ GG′ wp 6=2−−−→ . . . ,

S
w|p−k1−2−−−−−−→ I ′1

3−→ N ′
1

2−→ GG′ 2−→ . . .
2−→ GG′ wp 6=2−−−→ . . . ,

where k1 is odd and wp ∈ {0, 1}, or k1 is even and wp ∈ {3, 4}. We call this set of possibilities
Poss(p).

In all these cases, Fd

w|p−1−−−−→ . . . is a walk in Gd(Fd) and the walk S
w|p−1−−−−→ . . . in P◦(S) passes

through some transition state. We are interested in the last transition state passed in P◦(S) when
reading w|p−1. We call it T . Thus there is a q < p such that

S
w|q−−→ T.

Depending on the state of Gd(Fd) where w got stuck, we have

q = p− 1, q = p− 2, q = p− k1 − 1 or q = p− k1 − 2.

As in the example given before the proof, we write w = v1&w1 with v1 = w|q. The state T is
a e-ending state for one or two values of e. Let us say that it is an e-ending and e′-ending state
(maybe e = e′).

We claim that there are a p′ ≥ p, a unique d′ ∈ {e, e′} and states U1 ∈ P◦ and U ∈ Gd′ such
that the following walks exist :

S
w|q−−→ T

(wq+1,...,wp,...,wp′)−−−−−−−−−−−−−→ U1 ∈ P◦(S),

Fd′

(wq+1,...,wp,...,wp′)−−−−−−−−−−−−−→ U ∈ Gd′(Fd′),

where the following simple relation holds : U = H if U1 = H1, U = G if U1 = G1, and so on.

This has to be checked for all the possibilities of Poss(p) listed above. We provide the details
only for two cases, all the other cases can be treated likewise. First consider

S
w|p−1−−−−→ G1

wp∈{3,4}−−−−−−→ . . . .

Then q = p− 1, S
w|q−−→ G1 (T = G1) and G1 is 3- and 4-ending state (e = 3 and e′ = 4).

If wp = 4, then

S
w|q−−→ G1

wq+1=wp=4−−−−−−−−→ G′
1 = U1,

F3
wq+1=wp=4−−−−−−−−→ G′ = U,
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where d′ = 3 is the unique possible choice. Setting p′ = p the claim is proved in this instance. If
wp = 3, we have four possibilities in P◦(S) (always T = G1 holds)

S
w|q0−−−→ G1

wq0+1=wp0=3−−−−−−−−−→ GG′ 2−→ . . .
2−→

︸ ︷︷ ︸

k times

GG′
wp0+k=0−−−−−−→ I ′1,

S
w|q0−−−→ G1

wq0+1=wp0=3−−−−−−−−−→ GG′ 2−→ . . .
2−→

︸ ︷︷ ︸

k times

GG′
wp0+k=1−−−−−−→ H ′

1,

S
w|q0−−−→ G1

wq0+1=wp0=3−−−−−−−−−→ GG′ 2−→ . . .
2−→

︸ ︷︷ ︸

k times

GG′
wp0+k=3−−−−−−→ H1,

S
w|q0−−−→ G1

wq0+1=wp0=3−−−−−−−−−→ GG′ 2−→ . . .
2−→

︸ ︷︷ ︸

k times

GG′
wp0+k=4−−−−−−→ I1,

where k ≥ 0. The choice of d′ will depend on the parity of k together with the value of wp+k.
Suppose k is even and wp+k ∈ {0, 1}, the only choice is d′ = 3 :

F3
wq+1=wp=3−−−−−−−−→ G

2−→ G′ . . .
2−→

︸ ︷︷ ︸

k times

G
wp+k=0−−−−−→ I ′,

F3
wq+1=wp=3−−−−−−−−→ G

2−→ G′ . . .
2−→

︸ ︷︷ ︸

k times

G
wp+k=1−−−−−→ H ′,

hence, setting p′ = p + k proves the claim. Suppose k is even but wp+k ∈ {3, 4}, then the only
choice is d′ = 2:

F2
wq+1=wp=3−−−−−−−−→ G′ 2−→ G . . .

2−→
︸ ︷︷ ︸

k times

G′ wp+k=3−−−−−→ H

F2
wq+1=wp=3−−−−−−−−→ G′ 2−→ G . . .

2−→
︸ ︷︷ ︸

k times

G′ wp+k=4−−−−−→ I,

and taking p′ = p+ k proves the claim. Everything runs along similar lines if k is odd.

As a second instance consider now the case

S
w|p−k1−2−−−−−−→ I1

1−→ N1
2−→ GG′ 2−→ . . .

2−→ GG′ wp 6=2−−−→ . . .

with k1 even and wp ∈ {0, 1}. Then q = p− k1 − 2, S
w|q−−→ I1 (here T = I1) and I1 is a 0-ending

state (e = e′ = 0). We have the following walks in P◦(S) and G0(F0), respectively:

S
w|p−k1−2−−−−−−→ I1

1−→ N1
2−→ GG′ 2−→ . . .

2−→ GG′ wp=0 (or 1)−−−−−−−→ I ′1 (or H ′
1)

F0
wq+1=1−−−−−→ G′ 2−→ G

2−→ G′ . . .
2−→ G

wp=0 (or 1)−−−−−−−→ I ′ (or H ′),

hence, taking p′ = p proves the claim.

As all the other cases can be treated likewise, our claim follows.

By this claim, we came to a similar situation as at the beginning of the proof. Indeed, two
cases can occur.

(1′) w1 is accepted by Gd′(Fd′).
(2′) w1 is not accepted by Gd′(Fd′). Gd′(Fd′) accepts a prefix of w1 of maximal length p′ − 1,

i.e., Gd′(Fd′) accepts the p′ − 1 first letters of w1 and can not read the p′-th letter.

In case (1′), w1 even belongs to Gd′(Fd′ , ◦). Taking v = v1, v′ = w1, we have w = v&v′ where
v is a d′-ending walk and v′ is a walk of Gd′(Fd′ , ◦). Thus w ∈ (P&Gd′)(S, ◦) and we are done.

In case (2′), we consider the first moment w1 gets stuck in Gd′(Fd′):

p′ = min{k;w1
|k /∈ Gd′(Fd′)}.
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The claim assures that p′− 1 ≥ 1 and that one of the possibilities of Poss(p+ p′− 1) occurs when

the walk w1 gets stuck in Gd′(Fd′). In all the cases, Fd′

(wp,...,wp+p′−1)−−−−−−−−−−→ ∈ Gd′(Fd′) and T
w1

|p′−−−→
passes through some transition state. We look back for the last transition state passed through in
P◦(S) and call it T ′ :

S
v1

−→ T
w1

|q′−−−→ T ′

for some q′ ≥ 1. Hence we are in the former situation and we can write w = v1&v2&w2 with
v2 = w1

|q′ . The preceding claim holds in a similar way and gives some value d′′ with the required

properties (in particular, T ′ is a d′′-ending state).

Iterating this procedure like in the example given before this proof, since w is finite, one
eventually gets w = v1& . . .&vr&wr and some d(r) ∈ {0, 1, 2, 3} such that v1& . . .&vr is a d(r)-
ending walk and wr is a walk of Gd(r)(Fd(r) , ◦). Hence, w ∈ (P&Gd(r))(S, ◦) and the proposition is
proved.

�

3. Boundary inclusions

In this section we prove that if w is a d-ending walk of P(S), then the boundary of the piece
ψw(Cd) is contained in the boundary of T .

Let us recall a way to identify points of the boundary of T . Let B be the graph of Figure 4.
It is given in [24, 26] for bases of quadratic canonical number systems in general and reproduced
here for α = −2 +

√
−1.

P Q

R −Q

−R −P

0, 1

2, 3, 4

0, 1, 2

4 0, 1, 2, 3

4

0

1, 2, 3, 4

3, 4

0

Figure 4. Graph B.

The following proposition gives a way to check whether an infinite walk of digits represents a
point of the boundary.

Proposition 3.1 (Müller et al. [20]). If there exists an infinite walk

V
a1←− V1

a2←− . . .
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in B and x =
∑

i≥1 A−iΦ(ai), then x ∈ ∂T .

Lemma 3.2. Let d ∈ {0, 1, 2, 3}. Furthermore, let n ∈ N and w with |w| = n be a walk in P(S)
with

S
w−→∈ P(S).

Then, for each V ∈ V(Z) of Table 1, there is a walk in B of the form

V
wT

−−→W

for some W . This also holds for the duals with1 V(Z ′) := {B ∈ B,−B ∈ V(Z)} = −V(Z).

Proof. This is proved by induction on the length of w. For n = 1, w ∈ {(0), (1), (2), (3), (4)} with
the following edges:

S
0−→ G1,

S
1,2,3−−−→ GG′,

S
4−→ G′

1,

and one checks the existence in B of the edges

−P,±Q,±R 0−→ W,

±Q,±R 1,2,3−−−→ W,

P,±Q,±R 4−→ W,

for some W .

Assume now that the lemma is true for the walks of length n (n ≥ 1). Consider a walk w of
length n+ 1 :

S
w−→ Z

with w = (a1, . . . , an, an+1). Thus we wonder if, for all V0 ∈ V(Z), a walk

V0
an+1−−−→ V

an−−→ . . .
a1−→W

exists in B.

Suppose that w ends up in Z = G1. Then w|n ends up in G′
1 or I1, because G′

1
0−→ G1 and

I1
0−→ G1 are the only edges in P leading to G1. S need not be considered, because n ≥ 1. Also,

an+1 = 0. If w|n ends up in G′
1, then by assumption there are walks

V
w|Tn−−→W

in B for all V ∈ {P,Q,−Q,R,−R} = V(G′
1). Hence, for each V0 ∈ V(G1), one just needs to check

whether

V0
an+1=0−−−−−→ V

1Note that for the self dual states Z of P we have V(Z) = −V(Z).

Z V(Z)
G1 {−P,Q,−Q,R,−R}
H1 {Q,R,−R}
I1 {P,Q,−R}
J1 {−R}
K1 {−P}
L1 {Q,−R}
M1 {Q}
G′N {R,Q,−Q}
GG′ {Q,−Q,R,−R}

Table 1. Table for Lemma 3.2.
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Z Z1, end of w|n an+1 V ∈ V(Z1) V0 ∈ V(Z) V0
an+1−−−→ V

G1
G′

1

I1
0

±R,P,±Q
P,Q,−R ±R,−P,±Q −P −→ −R;R,−Q −→ Q;−R,Q −→ P

−P −→ −R;Q,R −→ Q;Q −→ P

GG′

G1

GG′

G′
1

N1

N ′
1

2, 3
2

1, 2
2
2

−P,±Q,±R
±Q,±R
P,±Q,±R
R,±Q
−R,±Q

±R,±Q

Q,−R 2,3−−→ −Q;−Q 2−→ Q;−Q 3−→ −P ;R
2,3−−→ Q

±R −→ ±Q;±Q −→ ∓Q
Q,−R 2,3−−→ −Q;−Q 2−→ Q;−Q 3−→ −P ;R

2,3−−→ Q
{±R,±Q} −→ {±Q}
{±R,±Q} −→ {±Q}

I1

H ′
1

GG′

L′
1

G′
1

N1

4

−Q,±R
±Q,±R
−Q,R

P,±Q,±R
R±Q

P,Q,−R {P,Q,−R} −→ {R,−Q}

N1 I1 1 P,Q,−R R,±Q R,−Q −→ Q;Q −→ P

L1

H ′
1

L′
1

M ′
1

N ′
1

I ′1
K ′

1

2, 3
2, 3

2, 3, 4
4
2
0

−Q,±R
−Q,R
−Q
R,±Q

−P,−Q,−R
P

Q,−R Q,−R 2,3,4−−−→ −Q

Q,−R 0−→ P
M1 K ′

1 P Q Q −→ P

J1

H ′
1

M ′
1

L′
1

I ′1

1

P
−Q,±R
−Q
−Q,R
−P,−Q,R

−R −R −→ −Q

H1

GG′

G1

N ′
1

N1

1

±Q,±R
−P,±Q,±R
−R,±Q
R,±Q

−Q,±R −Q,±R −→ ±Q

K1
H ′

1

J1
0 −Q,±R −P −P −→ −R

Table 2. Proof of Lemma 3.2.

exists in B for at least one V ∈ {P,Q,−Q,R,−R}. This is true since the edges

−P 0−→ −R, Q 0−→ P, −Q 0−→ Q, R
0−→ Q, −R 0−→ P

all exist in B. The case where w ends up in G′
1 is treated likewise. The proof runs along similar

lines for the other possible endings Z of w.

All the results are summed up in Table 2 (the duals can be treated likewise).

�

Let us define, for d = 0, 1, 2, 3, the graph G′d emerging from Gd when the accepting state ◦ is
removed.

Remark 3.3. If (a1, a2, a3, . . .) is accepted by G′d(Fd) then it is also accepted by P(S).

Lemma 3.4. Let w be a d-ending walk of P(S) and w′ ∈ G′d(Fd) an infinite walk. Denote by l
the labeling of w′. Then w&l ∈ P(S).

Proof. All the possible ending states of w can be considered. We only treat two examples.
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First suppose that w = ε, that is w ends at S, and w is a d-ending state for all values of d.
Take an infinite walk w′ ∈ Gd(Fd) (d = 0, 1, 2 or 3). Denote by l the labeling of w′. Then, by
Remark 3.3, l ∈ P(S), hence w&l ∈ P(S) holds trivially. But this remark is also helpful for the
other cases.

Indeed, suppose now that w ends in the state G1:

S
w−→ G1,

which is d-ending for d = 2 and d = 3. Suppose here that w′ ∈ G3(F3). We write l = (a1, a2, . . .)
for its labeling. As we mentioned, we have the property that l ∈ P(S):

S
a1−→ Z(1) a2−→ Z(2) a3−→ . . . ∈ P(S).

If a1 = 4, then

S
a1=4−−−→ Z(1) = G′

1

is the prefix of l. On the other side,

S
w−→ G1

a1=4−−−→ G′
1

is the starting w&a1 of w&l. It belongs to P(S). Thus the concatenation with (a2, a3, . . .) remains
in P(S):

S
w−→ G1

a1=4−−−→ G′
1 = Z(1) a2−→ Z(2) a3−→ . . . ∈ P(S),

that is, w&l = w&(a1, a2, . . .) belongs to P(S).
If on the contrary a1 = 3, then

S
a1=3−−−→ Z(1) = GG′,

and also here

S
w−→ G1

a1=3−−−→ GG′.

Hence w&l = w&(a1, a2, . . .) belongs to P(S):

S
w−→ G1

a1=3−−−→ GG′ = Z(1) a2−→ Z(2) a3−→ . . . ∈ P(S).

If w ends in the state G1 but w′ ∈ G2(F2), we have again

S
a1∈{2,3}−−−−−−→ Z(1) = GG′

and

S
w−→ G1

a1∈{2,3}−−−−−−→ GG′,

thus w&l = w&(a1, a2, . . .) belongs to P(S):

S
w−→ G1

a1∈{2,3}−−−−−−→ GG′ = Z(1) a2−→ Z(2) a3−→ . . . ∈ P(S).

The cases where w ends in G′
1, N1 and N ′

1 are treated similarly.

�

Proposition 3.5. If w is a d-ending walk of P(S), then ∂ψw(Cd) ⊂ ∂T .

Proof. For each d, G′d defines a system of graph directed sets δMd(Z), where Z runs through the
states of G′d. Let us write δMd(Fd) =: δMd. It was shown in [18] that δMd ⊂ ∂Cd and ∂Cd \ δMd

is countable. Consequently, for any finite sequence of digits w and any digit d,

ψw(δMd) ⊂ ψw(∂Cd) = ∂(ψw(Cd))

and equality holds up to countably many points. We show that this implies equality. Indeed,
suppose that z ∈ ∂Cd \ δMd. Then, as δMd is compact, there is an ε > 0 such that the ball Bε(z)
of radius ε around z has empty intersection with δMd. However al Cd is a closed disk, ∂Cd is a
simple closed curve. Thus ∂Cd ∩Bε(z) is uncountable. This yields uncountably many elements of
∂Cd \ δMd, a contradiction. Thus ∂Cd \ δMd = ∅ which means that

ψw(δMd) = ∂(ψw(Cd)).
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Hence, it remains to prove that ψw(δMd) ⊂ ∂T in the case that w is a d-ending walk.

Let w be a d-ending walk and z ∈ ψw(δMd). Then there is a v = (a1, a2, . . .) satisfying v = w&l
for some labeling l of a walk of G′d(Fd) and z =

∑∞
i=1 A−iΦ(ai). By Lemma 3.4, v ∈ P(S).

Therefore, each prefix v|n of v belongs to P(S,Zn) for some Zn. Note that z ∈ ψv|n(T ) for all n.
Let ε > 0. Take n ≥ 1 such that diam(ψv|n(T )) ≤ ε. By Lemma 3.2, choosing a V ∈ V(Zn), there
is a W such that

W
a1←− . . . an←−− V

is a (backwards) walk in B. Let (a′n+1, a
′
n+2, . . .) any sequence of digits such that

V
a′

n+1←−−− Vn+1

a′
n+2←−−− . . .

is an infinite (backwards) walk in B. Hence (a1, . . . , an, a
′
n+1, a

′
n+2, . . .) is an infinite backwards

walk of B that ends at W . By Proposition 3.1,

z′ =

n∑

i=1

A−iΦ(ai) +
∑

i≥n+1

A−iΦ(a′i) ∈ ∂T .

But z′ ∈ ψv|n(T ). Consequently, we proved that the intersection Bε(z)∩ ∂T is nonempty. This is
true for all ε > 0, and ∂T is closed, thus we obtain that z ∈ ∂T .

�

4. Proof of the main result

Proof of Theorem 1.2. From Proposition 3.5 we conclude that if w is a d-ending walk, then
∂ψw(Cd) ⊂ ∂T . Moreover, since the set ψw(Cd) is the image of Cd under the (bijective) sim-
ilarity transformation ψw, its interior is a connected subset of T o. Thus ψw(Cd) is the closure of
a component of T o.

It remains to prove that

T =
⋃

w is a
d-ending walk

ψw(Cd).

Consider a point z ∈ T and an associated sequence of digits v = (a1, a2, . . .) satisfying z =
∑

i≥1 A−iΦ(ai). In Section 2, we mentioned that P◦(S) accepts every infinite sequence of digits.

Suppose that v eventually ends up in ◦ in this graph. Then v has a prefix v′ ∈ P◦(S, ◦). By
Proposition 2.1, v′ ∈ (P&Gd)(S, ◦) for some d ∈ {0, 1, 2, 3}. Thus v′ has a prefix v′′ which is a
d-ending walk of P(S) and such that z ∈ ψv′′ (Cd).

Otherwise, v is an infinite walk in P(S). We show that {z} is a limit set of the family

{ψw(Cd) ; w is a d-ending walk}.
Let ε > 0. Then there is an n such that diam(ψv|n(T )) ≤ ε. It is easy to see that each state
of P is at a distance of at most three edges of a d-ending state. Thus there is a wn having at
most three digits such that w := v|n&wn is a d-ending walk of P(S) for some d. Note that
z ∈ ψv|n(T ) ⊃ ψw(T ). Hence the ball Bε(z) intersects the set ψw(Cd) where w is a d-ending walk.
Since such a set can be found for all ε > 0, we are done.

�
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